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Abstract.  10 

Seasonal snowmelt in the high mountains of Asia is an important source of river discharge. Therefore, observation of the 11 

spatiotemporal variations in snow cover at catchment scales using high-resolution satellites is essential for understanding changes 12 

in water supply from headwater catchments. In this study, we adapt an algorithm to automatically detect the snowline altitude 13 

(SLA) using the Google Earth Engine platform with available high-resolution multispectral satellite archives that can be readily 14 

applied for areas of interest. Here, we applied and evaluated the tool to five glacierised watersheds across the Himalayas to quantify 15 

the changes in seasonal and annual snow cover over the past 21 years and analyse climate reanalysis data to assess the 16 

meteorological factors influencing the SLA. Our findings revealed substantial variations in the SLA among sites in terms of 17 

seasonal patterns, decadal trends, and meteorological controls. We identify positive trends in SLA in the Hidden Valley (+11.9 m 18 

yr-1), Langtang Valley (+14.4 m yr-1), and Rolwaling Valley (+8.2 m yr-1) in the Nepalese Himalaya, but a negative 19 

trend at Satopanth (−15.6 m yr-1) in the western Indian Himalaya, and no significant trend in Parlung Valley in southeast 20 

Tibet. We suggest that the increase in SLA in Nepal was caused by warmer temperatures during the monsoon season, whereas the 21 

decrease in SLA in India was driven by increased winter snowfall and reduced monsoon snowmelt. By integrating the outcomes 22 

of these analyses, we found that long-term changes in SLA are primarily driven by shifts in the local climate, whereas seasonal 23 

variability may be influenced by geographic features in conjunction with climate. 24 

 25 

 26 

1 Introduction 27 

Snow is an essential water resource in the high mountains of Asia (HMA), as it supplies melted water to downstream regions and 28 

regulates seasonal streamflow, especially during drought years (Pritchard, 2019; Kraaijenbrink et al., 2021). Mountain-sourced 29 

water supplies are increasingly sustaining human society through drinking, irrigation, industrial, and hydropower generation 30 

(Immerzeel et al., 2020; Viviroli et al., 2020). Snow has a cooling effect on the atmosphere by reflecting shortwave radiation and 31 

maintaining freezing ground temperatures, and decrease in the extent of snow has been suggested as one of the causes of high-32 

elevation warming (Palazzi et al., 2019). Therefore, understanding the current and past snow cover distribution, its ongoing 33 

changes, and its driving factors are fundamentally important. 34 

Several studies have addressed variations in snow cover in detail for individual watersheds (e.g., Gironoa-Mata et al., 2019; 35 

Stigter et al., 2017), whereas large-scale assessments have predominantly focused on annual values with moderate-resolution 36 
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sensors (> 500 m) such as MODIS (Smith et al., 2018; Tang et al., 2020; Kraaijenbrink et al., 2021). Past studies have used MODIS 37 

to provide a strong baseline understanding of global and regional snow phenology, including snow cover duration and extent (e.g. 38 

Johnston et al., 2023; Notarnicola, 2022; Roessler & Dietz, 2023). MODIS snow products have been essential for the constraint of 39 

snow reanalyses (Kraaijenbrink et al., 2021; Liu et al., 2021), but standard MODIS snow products may overestimate snow cover 40 

in HMA and require additional processing (Muhammad & Thapa, 2020). Furthermore, although MODIS provides a daily temporal 41 

resolution and a broad perspective, but the coarse spatial resolution of retrievals (500 m) poorly resolves topographic features; 42 

fractional snow cover products are a key advance but do not mitigate this problem (Painter et al., 2009; Rittger et al, 2021). Because 43 

catchment-scale snow cover derived from MODIS can be affected by cloud cover owing to spectral similarities between clouds 44 

and snow (Stillinger et al, 2019), it can be biased by high-elevation snow-free areas and struggle with shadows and subpixel effects 45 

in the extreme high-relief topography of the Himalayas (Girona-Mata et al., 2019).  46 

The snowline altitude (SLA) is a useful metric to study snow cover variations at annual and seasonal time scales since it 47 

integrates both snowfall and snowmelt dynamics and is independent of catchment hypsometry (Girona-Mata et al., 2019; Deng et 48 

al., 2021). SLA is less biased by cloud cover than snow cover extent and is useful for evaluating and constraining hydrological 49 

models (e.g., Krajčí et al., 2014, Buri et al., 2023, 2024, Robinson et al., 2025). The seasonal pattern and aspect dependency of 50 

SLA are particularly useful to reveal the primary controls of snow cover dynamics (e.g., Girona-Mata et al., 2019). On glaciers, it 51 

can also be used as a proxy for the equilibrium line altitude (e.g., Spiess et al, 2016; Racoviteanu et al., 2019) and to constrain 52 

glacier mass balance (e.g. Mernild et al., 2013; Barandun et al, 2018). By reflecting the interplay between solid precipitation and 53 

melt, changes in seasonal snowlines can provide an important and simple indicator of climatic changes.  Several previous studies 54 

have derived SLA and its changes on various scales; e.g., individual catchments to continental scales (e.g., McFadden et al., 2011; 55 

Racoviteanu et al., 2019; Girona-Mata et al., 2019; Tang et al., 2020). In High Mountain Asia, most studies have used MODIS to 56 

examine SLA changes, and have highlighted a broad tendency towards shorter snowcover periods excepting the western Himalaya, 57 

part of eastern Tibet, and part of the eastern Tien Shan (Tang et al., 2022). However, none of them have examined SLA changes 58 

and the primary controls of SLA variations at high resolution and in multiple regions, to identify and understand regional 59 

differences. Analysis of seasonal variations in snow cover at high spatial resolution provides insights into snow dynamics and their 60 

relationships with climatic and geographic factors (Girona-Mata et al., 2019). 61 

Knowledge of the regional variation in the SLA, its seasonal controls, and ongoing changes provides an important basis for a 62 

deeper understanding of current and future changes in snow cover under climate change. This study therefore aimed to answer the 63 

following research questions: 1. How does snowline seasonality vary across the Himalayas? 2. Which meteorological factors play 64 

a dominant role in controlling SLA throughout the year across this region? 3. How much and in which months has the snowline 65 

shifted in the recent 21st-century? 4. Which climatic changes are associated with these changes in catchment snowline? 66 

 67 

2 Methods 68 

Our method to delineate snowline altitudes closely follows that of Girona-Mata et al. (2019) but is implemented in Google Earth 69 

Engine. A schematic diagram of the method is shown in Figure 1. The framework uses an automated processing to map snowcover, 70 

masking confounding landcover types, identify boundaries of the snowcovered area, and finally retrieve topographical information 71 

corresponding to the SLA. Here we explain the approach  and input datasets in more detail, before introducing our test sites and 72 

the data evaluation and analysis. 73 
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2.1. Detection of snowline altitude 74 

Our method starts with the identification of a catchment of interest, specified by Latitude and Longitude. Based on these 75 

coordinates, we automatically determine the boundaries of the target catchment from the HydroBASINS version 1.0 from the 76 

HydroSHEDS database (Lehner and Grill, 2013). HydroBASINS provides 12 hierarchical levels of nested watershed boundaries 77 

according to their stream order, from which we chose level 9 for the target catchments, which is comparable in size to that used in 78 

Girona-Mata et al. (2019). To refine the domain of investigation, we used three kinds of land surface classification data: (1) glacier 79 

outlines from the latest version of the GAMDAM inventory (Nuimura et al., 2015; Sakai, 2019), (2) outlines of supraglacial debris 80 

detected by Scherler et al. (2018), and (3) maps of surface water bodies named “Global Surface Water” created by the Joint 81 

Research Center (Pekel et al., 2016). We used these datasets to mask these surface types, as areas that may be erroneously identified 82 

as snow. 83 

Next, the tool collects multispectral data for the target domain. We used Level-1 top-of-atmosphere (TOA) reflectance for 84 

Landsat 5/7/8 data and Level-1C TOA reflectance for Sentinel-2 data to detect snow-covered areas. The spatial resolutions of these 85 

datasets were 30 m for Landsat 5/7/8, 10 m for the visible bands of Sentinel-2, and 20 m for the SWIR bands of Sentinel-2. We 86 

identified all scenes from to 1999–2019 period whose internal metadata indicated a cloud cover of less than 50% of the scene.  87 

To determine the snow-covered area, we calculated the Normalized Difference Snow Index (NDSI; Dozier, 1989) which is 88 

defined as the relative magnitude of the reflectance of the visible (green) and shortwave infrared (SWIR) bands. The NDSI 89 

approach is an established, robust and accessible method for mapping snow in a variety of illumination and atmospheric conditions, 90 

and is applicable to both TOA and surface reflectance values. There is an extensive precedent for NDSI as a practical method for 91 

identifying snow, although threshold values are not always transferable between settings (e.g. Burns & Nolin, 2014; Dozier, 1989; 92 

Gascoin et al., 2019; Härer et al., 2018). We masked clouds based on the metadata associated with each scene, then used an NDSI 93 

threshold of 0.45 to identify snow covered areas, which is relatively conservative but performs well against independent high-94 

resolution measurements and spectral-unmixing approaches (Girona-Mata et al., 2019). Saturation issues are common in Landsat 95 

5/7, where the input signal exceeds the maximum measurable signal and may bias the detected snow-covered areas. Considerable 96 

sensor improvements were made with Landsat 8 and Sentinel-2 in terms of radiometric resolution (mitigating saturation problems, 97 

as well as sensor stability, and acquisition schedule, but fortunately, snow and ice can be mapped effectively with established 98 

approaches (Paul et al., 2016). Rittger et al. (2021) evaluated the impact of band saturation using 25 images of Landsat 7 in the 99 

Himalayas and reported that 28% of snow-covered pixels were saturated in the visible bands. This problem was mitigated by 100 

selecting a conservative NDSI threshold (0.45) for identifying snow. 101 

Next, we delineated the snowline from the derived snow cover map using the Canny edge detection algorithm (Canny, 1986) 102 

which produces clean edges based on filtered local high values in image gradient. However, at this point, the snowline may include 103 

misidentified areas because snow-covered areas are often obscured by clouds, shadows, scan line corrector (SLC) error stripes, or 104 

band saturation over snow. For example, the boundary of an obscured area may be misidentified as a snowline if clouds cover the 105 

actual boundary of a snow-covered area. Therefore, we removed snowlines from potentially erroneous areas such as cloud cover, 106 

deep shadows, SLC-error stripes (Landsat 7), and ice and water surfaces. The last two categories (removal of surface ice and water 107 

surfaces) were not implemented in Girona-Mata et al. (2019), but the NDSI can return high values for both surfaces, even when 108 

snow is not present (i.e., frozen water or bare glacier ice), which could bias the results. As per Girona-Mata et al. (2019), we also 109 

removed very small polygons (smaller than 35 pixels) to eliminate the effects of rock outcrops which may not be relevant to 110 

meteorological patterns (i.e., over steepened slopes that cannot hold snow). 111 

Finally, we retrieve topographic information for each point on the snowline boundary, including elevation, slope, and aspect. As 112 

a reference digital surface elevation model (DEM), we used the ALOS World 3D－30 m (AW3D30) version 2.2 which was 113 

https://www.zotero.org/google-docs/?6selUn
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produced from measurements by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) on board the 114 

Advanced Land Observing Satellite (ALOS). The spatial resolution of AW3D30 is approximately 30 m (1-arcsecond mesh). The 115 

target accuracy of AW3D30 was set to 5 m (root mean square value) both vertically and horizontally (Takaku and Tadono, 2017). 116 

Finally, we calculated the median snowline altitude for (i) the entire catchment, and (ii) each 45-degree aspect group of each 117 

catchment. This process was repeated for all available images for each study area. 118 

 119 

Figure 1. Schematic diagram of the snowline detection algorithm with a sample image obtained from Sentinel-2. The parts highlighted 120 

in blue represent updates to the method of Girona-Mata et al. (2019). By inputting longitude and latitude, all procedures are 121 

automatically performed on the Google Earth Engine platform. 122 
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2.2 Study sites 123 

We selected five glacierised catchments along the Himalayas (Fig. 2), where hydro-glaciological studies and glacier monitoring 124 

programs have been conducted in recent years. The catchments that we identified after the representative glacier, river, or valley 125 

were, from west to east, Satopanth, Hidden Valley, Langtang, Rolwaling, and Parlung (Fig. 2). The catchments have mean 126 

elevations ranging from 3,864 m to 5,384 m and include numerous glaciers covering 6.8% to 38.7% of the catchment area (Table 127 

1). Although the Asian summer monsoon dominates the climate over its entire range, the monsoon intensity varies considerably 128 

across the five catchments. The Satopanth receives limited summer precipitation and moderate winter snow from westerly 129 

disturbances (Cannon et al., 2015; Bao et al., 2019), whereas the Parlung experiences considerable spring precipitation (Yang et 130 

al., 2013). In the other three regions, most annual precipitation occurred from June to September (Fig. S1). Our scene selection 131 

criteria for these sites resulted in 6,128 scenes: 1,384 for Satopanth, 1,173 for Hidden Valley, 967 for Langtang, 1,520 for 132 

Rolwaling, and 1,084 for Parlung, spread across the 1999-2019 study period (Fig. S3-S7). 133 

 134 

 135 

Figure 2: Upper center figure shows the location of target catchments (from west to east; Satopanth (SP), Hidden Valley (HV), Langtang 136 
(LT), Rolwaling (RW), Parlung (PL)). Enlarged views of target catchments are shown in surrounding figures; (a) Satopanth (SP), (b) 137 
Hidden Valley (HV), (c) Langtang (LT), (d) Rolwaling (RW), and (e) Parlung (PL). Catchment outlines and glaciers are indicated by red 138 
and light blue polygons, which are sourced from HydroSHEDS (Lehner and Grill, 2013) and GAMDAM (Sakai, 2019) databases, 139 
respectively. Yellow dots denote representative villages. The background images of (a)-(e) are composite images created using the 140 
Sentinel-2 images acquired between 2017 to 2020. 141 

 142 

Table 1: Information on target catchments. Catchment geometric characteristics were derived from the HydroBasins level 9 catchment 143 
boundaries and the ALOS World 3D 30m DEM, and glacier geometries from the Randolph Glacier Inventory 6.0, while the 144 
climatological characteristics were determined from ERA5, downscaled with an adiabatic lapse rate to the median catchment snowline 145 
elevation (see Results). 146 
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Area 

[km2] 

Glacierised 
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 [km2] 

Annual total 

precip. 

[mm] 

Daily mean 

air temp. 

[℃] 
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Satopanth 
79.36°E, 

30.78°N 

5,031 
(7,080; 3,154) 

243.0 
94.0 

(39 %) 
1,654 －7.5 

Hidden Valley 
83.63°E, 

28.91°N 

5,384 
(6,492; 2,876) 

445.0 
49.1 

(11 %) 
801 －8.4 

Langtang 
85.58°E, 

28.21°N 

4,879 
(7,156; 1,461) 

587.7 
144.6 
(25 %) 

1,978 －3.7 

Rolwaling 
86.41°E, 

27.89°N 

5,008 
(6,897; 1,621) 

309.5 
76.8 

(25 %) 
1,170 －3.9 

Purlung 
95.71°E, 

29.84°N 

3,864 
(6,052; 2,678) 

253.2 
17.1 

(7%) 
2,056 －2.2 

 147 

2.3. Evaluation of the automated approach 148 

High-resolution multispectral images from RapidEye and PlanetScope were used to manually produce snowline datasets against 149 

which to evaluate the automatically detected snowlines. RapidEye and PlanetScope are both Earth observation constellations 150 

operated by Planet Labs, with spatial resolutions of 6.5 m and 3.7 m. We prepared one to three ortho-images for each target 151 

catchment that were obtained close to the date when automatic detections were conducted from the Landsat 5/7/8 or Sentinel-2 152 

images. A list of the images used is shown in Table 2. 153 

The automatically detected snowlines were compared with the manually delineated snowlines obtained using high-resolution 154 

PlanetScope ortho-images obtained near the date of automatic detection (within 10 days). In manual delineations, the location of 155 

the snowline was determined by checking high-resolution satellite images as well as the glacier outline and elevation data. Because 156 

it was difficult to distinguish snowlines on ridges, we created two sets of manually delineated snowlines: (i) snowlines extracted 157 

by excluding ridges or shadows (minimum extraction, orange lines in Fig. S3), and (ii) snowlines extracted without excluding 158 

ridges (maximum extraction; blue lines in Fig. S3). We then compare each manually detected snowline point to the nearest 159 

automatically detected point in the temporally corresponding Landsat or Sentinel-2 scene, and computed the horizontal and implied 160 

vertical distance (based on the DEM) between these two points. We did this for each of 12 validation scenes and for both manual 161 

slowline delineations, producing nearly 90’000 evaluation pairs. From these, we determine the median absolute deviations of 162 

pairwise distances and height differences for each manual snowline dataset and each scene.  163 

In addition, to investigate the agreement of SLAs derived from different satellites, we compared the SLAs derived from Landsat 164 

7, Landsat 8, and Sentinel-2 from 2016 to 2019. Landsat 5 data were excluded from this comparison because of the operational 165 

period (March 1984 to January 2013), but we note that the predecessor approach performed favorably for Landsat 5 and 7 scenes 166 

(Girona-Mata et al., 2019). This second check is important for determining whether snowlines derived using our method from 167 

sensors with different spatial and radiometric resolutions are biased relative to one another (Rittger et al, 2021). 168 

 169 

2.4. Analysis of SLA seasonality, trends, and controls 170 

We first analysed the seasonality of the SLAs by considering a dual-phase harmonic regression (Eastman, et al, 2009) of the 171 

derived SLA values for the full period. The seasonal patterns of SLA in the first (1999–2009) and the second (2010–2019) half 172 

decades are compared using t-tests (significant level = 0.05). For months with significant differences between the two periods, we 173 

examined the ERA5 climatic factors that could drive the SLA changes. 174 
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To examine long-term trends, satellite-derived SLA values for each scene were converted to a monthly mean. By linearly 175 

interpolating the missing values, the 21-year SLA trend was identified using the Mann-Kendall test (significance level = 0.01). We 176 

then examined the climatic factors driving SLA changes using multiple regression analysis for both annual variations (12-month 177 

moving averages) and longer-term changes (60-month moving averages). 178 

The detected SLA was analysed to explore the effects of orographic and meteorological controls on seasonal and long-term 179 

variations. We investigated the disparities in SLA among aspect classes (east-, south-, west-, and north-facing slopes), interpreting 180 

the observed differences conceptually using the framework proposed by Girona-Mata et al. (2019). 181 

To further understand the seasonal and long term controls of SLA variations, we analysed climate reanalysis data. We obtained 182 

a 0.25° gridded near-surface 2 m air temperature, downward surface shortwave radiation, cloud cover, and precipitation from 183 

ERA5 (Hersbach et al., 2020). We aggregate the hourly products into daily and monthly mean datasets. The air temperature was 184 

corrected to the average snowline altitude during the target period (1999 –2019) in each catchment using a standard environmental 185 

lapse rate (0.065 ℃ m-1). Finally, we compared the 12-month and 60-month seasonal decomposition of the SLAs with those of 186 

climatic variables (air temperature, precipitation, and solar radiation) and assessed their statistical relationships through multiple 187 

regression analysis. For this trend analysis, we use a Seasonal Trend Decomposition based on Loess (STL) method, which is 188 

typically a robust trend detection method for noisy data with variable sampling and strong seasonality (Cleveland et al, 1990).  189 

 190 

3 Results 191 

3.1. Evaluation of detected snowlines 192 

We first present the comparison of detected SLAs from our method with those obtained through manual delineation at multiple 193 

scenes in each catchment to indicate the accuracy of the detected SLA. The SLAs obtained from our method exhibited a very close 194 

agreement with the manual delineation results (Table 2), with median absolute horizontal distances below 25 m for nearest snowline 195 

points in all scenes, and median absolute vertical distances (SLA differences) of 10m or less. The spatial correspondence of the 196 

derived snowlines from automatic and manual methods was superb (Fig. S8-9 for examples) for areas of overlapping coverage. 197 

Interestingly, despite this close correspondence, the cumulative distributions of snowline elevations differed substantially between 198 

the automatic and manual snowline derivations (Fig S10) highlighting the importance of consistent catchment-wide sampling of 199 

snowline elevations. This is achievable through automated processing but not through manual delineation; we note that in situ 200 

monitoring of snowlines (e.g. Moringa, Seko, and Takahashi, 1987) can thus provide rich information about temporal variability 201 

of snowlines, but may be locally biased in terms of the SLA. 202 

Considering the intersatellite variability between the SLAs retrieved from Landsat 7, Landsat 8, and Sentinel-2 (Fig. S4), we 203 

observed the least variation in SLAs during the monsoon season (with a standard deviation 𝜎 of SLA for all sites and satellites < 204 

18 m) and the largest variation during winter (𝜎 < 140 m). Disagreements during winter were not unexpected given the inconsistent 205 

acquisition dates for the three satellites and the variable occurrence of winter snowfall in the Himalayas. Focusing on the differences 206 

in snowline altitudes (SLAs) between different satellites during the monsoon season, we observed a high degree of consistency in 207 

the range of SLA values within each catchment. Despite heavy cloud cover, the standard deviation in the median SLA between 208 

different satellites generally remained within 50 m, except for Parlung, where the deviation extended to 120 m. Although these 209 

variations may appear significant, they are relatively minor compared to the seasonal SLA variations observed for each sensor. 210 

Therefore, we consider the bias resulting from the use of different satellites in this study to be acceptable for examining seasonal 211 

and decadal changes in the SLA. 212 
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 213 

Table 2: Performance of the automated snowline in comparison to manually digitized snowline datasets 1 and 2, reporting the median 214 
absolute deviation (MAD) for horizontal distances (D) and vertical differences (H) of nearest pairs of snowline points in the dataset.  215 

Catchment 
Scene for automatic 

detection 

Scene for manual 

delineation 

MAD D1 

(m) 

MAD H1 

(m) 

MAD D2 

(m) 

MAD H2 

(m) 

Satopanth 

September 13, 2017, 

Landsat 8 

September 13, 2017, 

RapidEye 
16 9 16 7 

January 20, 2021, 

Landsat 8 

January 27, 2021, 

PlanetScope 
16 9 16 7 

Hidden Valley 

June 15, 2019, Sentinel-

2 

June 15, 2019, 

PlanetScope 
10 3 9 3 

May 25, 2020, Sentinel-

2 

May 23, 2020, 

PlanetScope 
10 3 10 3 

October 12, 2020, 

Sentinel-2 

October 12, 2020, 

PlanetScope 
10 3 9 2 

 
December 30, 2020, 

Sentinel-2 

December 30, 2020, 

Sentinel-2 
11 3 10 3 

Langtang 

February 12, 2016, 

Landsat 8 

February 13, 2016, 

RapidEye 
15 7 15 6 

November 13, 2017, 

Landsat 8 

November 12, 2017, 

RapidEye 
15 6 17 8 

Rolwaling 

December 30, 2019, 

Landsat 8 

December 30, 2019, 

PlanetScope 
22 10 19 8 

May 17, 2020, Sentinal-

2 

May 27, 2020, 

PlanetScope 
18 8 17 8 

Parlung 
December 29, 2020, 

Landsat 8 

December 29, 2020, 

PlanetScope 
20 10 20 9 

Mean   15 6 14 6 

 216 

3.2. Snowline seasonality 217 

The derived SLA values demonstrate strong seasonal variability (Figure 3). Across most sites, SLA maxima were observed 218 

during the monsoon and minima in the winter season, which is consistent with the findings of Girona-Mata et al. (2019). However, 219 

the timing of the maximum SLA varied slightly among the sites: July in Langtang and August in Satopanth, Rolwaling, and 220 

Parlung. Hidden Valley showed a relatively stable SLA during the monsoon season, with a less pronounced maximum SLA 221 

occurring in August (Fig. 3f). The minimum SLA occurred in late winter or early pre-monsoon at all sites: January in Langtang, 222 

February in Hidden Valley, March in Rolwaling and Parlung, and April in Satopanth. The winter-spring SLA transition differed 223 

between sites: at Langtang SLA began to increase in January, whereas the SLA at Satopanth continued to decrease until April. All 224 

sites exhibited a relatively steady winter SLA. The differences between the minimum and maximum SLAs varied from 480 m 225 

(Hidden Valley) to 1,100 m (Langtang). 226 

All sites show strong intraseasonal dispersion in wintertime, when the range of SLA measurements is greater than the annual 227 

SLA amplitude; the winter SLA range doubles the annual amplitude at Hidden Valley, Langtang, and Rolwaling. Despite the 228 

relatively small number of images acquired during the monsoon period at all sites due to thick cloud cover, the derived SLAs for 229 

this period exhibit narrow spread and the highest SLA values. In all catchments other than Parlung, the monsoon-period SLA 230 

exceeded 5500 m a.s.l.; in Parlung, the ice-free topographic availability limited snowline retrievals to 5000 m a.s.l. As noted by 231 

Girona-Mata et al., (2019), we find a strong second harmonic phase in Satopanth, Rolwaling, and Hidden Valley, which are located 232 

at high elevation but monsoon-dominated sites. This second harmonic was less prominent in Langtang Valley and in Parlung. 233 
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 234 

 235 

Figure 3: (a)-(e) The derived snowline altitude (SLA) over the target period (1999-2019) at each catchment and (f) the SLA anomaly 236 
from the mean SLA over the target period (1999-2019). Grey dots and solid lines in (a)-(e) show the SLAs derived from each satellite 237 
scene and smooth curves fitted with harmonic functions, respectively. Catchment abbreviations denote ST: Satopanth, HV: Hidden 238 
Valley, LT: Langtang, RW: Rolwaling, and PL: Parlung, respectively. 239 

  240 

3.3. Trends in SLA 1999-2019 241 

The STL time series decomposition of SLAs revealed contrasting SLA trends between catchments (Fig. 4). Increasing SLA trends 242 

were found in Hidden Valley (+11.9 m yr-1), Langtang (+14.4 m yr-1), and Rolwaling (+8.2 m yr-1), whereas Satopanth showed a 243 

decreasing trend (－15.6 m yr-1) and Parlung showed no statistically significant trend (Fig. 4). These trends were confirmed for 244 

both 12-month and 60-month moving averages using the Mann-Kendall test, and the p-values for the four catchments where trends 245 

were detected were all less than 0.001. The altitudinal difference between the minimum and maximum SLAs, with 12-month 246 

moving averages for each catchment, varied between 580 m (Parlung) and 820 m (Langtang). 247 

 248 

 249 

Figure 4: Snowline altitude with 60-month (solid lines) and 12-month (dashed lines) moving averages at the five target catchments. 250 
Catchment abbreviations denote ST: Satopanth, HV: Hidden Valley, LT: Langtang, RW: Rolwaling, and PL: Parlung, respectively. 251 
Trends (p<0.001) for the moving averages were ST: -15.6 m yr-1; HV: 11.9 m yr-1; LT: 14.4 m yr-1; RW: 8.2 m yr-1; PL: insignificant. 252 
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 253 

3.4. Seasonal SLA aspect differences 254 

Catchment snowlines showed distinct seasonal patterns of aspect dependence (Fig. 5). A common characteristic among the five 255 

catchments was the minimal difference in SLA between aspects during the monsoon season, in contrast to the substantial SLA 256 

differences between aspects during winter. Additionally, the standard deviation in the SLA, represented by the error bars in Fig. 5, 257 

was smallest during the monsoon season, gradually increasing, and largest during winter. Regarding specific regional 258 

characteristics, Satopanth showed minimal differences in the SLA between aspects, even during winter, with only a slight decrease 259 

in the north-facing SLA. Conversely, aspect-induced differences were pronounced throughout the year in the Parlung region. 260 

Furthermore, Parlung exhibited a relatively small seasonal variability in the standard deviation of the SLA values. 261 

 262 

 263 

Figure 5: (a)-(e) Boxplots of monthly snowline altitude (SLA) for each aspect of the slope; north, east, south, and west. (f) Relative 264 
distribution of 45-degree topographic aspects for each catchment (%). 265 
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 266 

3.5. Decadal changes in seasonal SLA 267 

To examine the cause of the long-term changes in the SLA shown in Fig. 4, we compared the seasonal patterns of the SLA and 268 

climatic variables for the first half (1999-2009 in blue) and second half (2010-2019 in red) of each catchment (Fig. 6). Focusing 269 

on the months with statistically significant changes, SLA decreases were found in March in Satopanth (Fig. 6a), Hidden Valley 270 

(Fig. 6b), and Rolwaling (Fig. 6d) and in January in Parlung (Fig. 6e). No significant seasonal SLA decrease was observed at 271 

Langtang (Fig. 6c). Increases in the SLA were evident in September in Satopanth (Fig. 6a), October to December in Hidden Valley 272 

(Fig. 6b), July and October in Langtang (Fig. 6c), and July, October, and November in Rolwaling (Fig. 6d). No significant increase 273 

was observed in Parlung (Fig. 6e). Overall, SLA decreases were primarily detected in winter to early spring, and increases in the 274 

monsoon and post-monsoon seasons. 275 

The decrease of winter SLA is associated with a decrease in temperature in January across all regions where a decrease in winter 276 

SLA was detected. The increase in precipitation during February and March may also have contributed to the lowering of winter 277 

SLAs in Satopanth, Hidden Valley, and Rolwaling. No changes in solar radiation were identifiable in relation to decreases in the 278 

winter SLA.  279 

The rising SLAs identified in the three Nepalese catchments (Hidden Valley, Langtang, and Rolwaling) were all associated with 280 

rising temperatures during the monsoon. We note that the SLA increases occurred in conjunction with precipitation increases (all 281 

three sites) and net shortwave decreases (all except Rolwaling). Consequently, the SLA variations during the monsoon may be 282 

more closely linked to air temperature than to precipitation, shortwave radiation, or cloud cover. The decrease in solar radiation 283 

during the monsoon was statistically significant in the three Nepalese regions which is consistent with increased precipitation. It 284 

is unrealistic for the decrease in solar radiation to contribute to the increase in SLA, but it could suppress the increasing rate of the 285 

SLA. In contrast, the increasing solar radiation in November in Rolwaling may have contributed to the increase in the SLA in the 286 

same month. In Satopanth, an increase is observed only in September, suggesting an association with the temperature increase in 287 

the same month. 288 

 289 
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 290 

Figure 6: Monthly climatologies of SLA and climate variables (Ta: air temperature at 2-m height, Pm: monthly total precipitation, and 291 
Rs: daily mean downward solar radiation flux at the surface) for the first half (1999-2009 in blue) and the second half (2010-2019 in red), 292 
respectively. Shaded areas indicate statistically significant changes (pink for the increase and light blue for the decrease) between the 293 
periods. 294 

 295 

3.6. Relationships between trends in meteorology and SLA 296 

The 12-month moving averages of snowline altitude exhibited significant correlations with changes in air temperature across 297 

most sites, except for Satopanth (Fig 7, Table 3). In Rolwaling, all climatic variables except precipitation demonstrated a correlation 298 

with the SLA, with air temperature exhibiting the strongest impact, as evidenced by the largest t-value. Conversely, in Satopanth, 299 

precipitation emerged as the sole statistical control on SLA, with a negative t-value indicating that precipitation lowers the SLA. 300 

This finding that increased precipitation at the decadal scale has lowered the SLA is consistent with the results of our seasonal 301 

analyses that increased winter snowfall lowers the winter SLA at Satopanth.  302 

Overall, our results underscore the substantial influence of air temperature on SLA variations, which is consistent with previous 303 

research (Girona-Mata et al, 2019; Tang et al., 2020). This relationship is also expected to decisively control future snow 304 
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climatology in the region (Kraaijenbrink et al., 2021). However, we also found that winter precipitation can serve as a significant 305 

driving factor, particularly in Satopanth, where the SLA displays a negative trend over our study period. Although the influence of 306 

solar radiation is smaller than that of air temperature, it contributes to an increase in the SLA in Rolwaling. We also note that cloud 307 

cover plays a significant role and is negatively correlated to SLA for both Hidden Valley and Langtang. 308 

 309 

 310 

Figure 7: Time series of SLA and climate variables (Ta: air temperature at 2-m height, Pm: monthly total precipitation, and Rs: daily 311 
mean downward solar radiation flux at the surface) for the period from 1999 to 2019. Variables with 60-month and 12-month moving 312 
averages are drawn with thick and thin lines, respectively. 313 

  314 
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Table 3: Correlation coefficients (R) between SLAs and single variables calculated using 12-month and 60-month moving averages, and 315 
results of the multiple regression analysis using 12-month moving averages of climate data and SLA. Influential factors (p-value < 0.05 316 
and |t-value| > 2.0) are shown in bold. A positive or negative t-value indicates a contribution to the increase or decrease of SLA, 317 
respectively. 318 

 319 

 Univariate   Multivariate   

  12-month R 

(p-value) 

60-month R 

(p-value) 

Coefficient Standard 

error 

t-value p-value 

Satopanth Air temperature 0.50 

(<0.001) 

0.80 

(<0.001) 

6.05 11.18 0.54 0.580 

Precipitation − 0.18 

(0.004) 

− 0.44 

(<0.001) 

− 2.81 0.39 − 7.24 <0.001 

Solar radiation − 0.44 

(<0.001) 

− 0.11 

(0.129) 

− 11.85 1.17 − 10.12 <0.001 

Cloud cover − 0.15 

(0.017) 

− 0.34 

(<0.001) 

− 0.13 1.97 − 0.07 0.948 

Hidden 

Valley 

Air temperature 0.34 

(<0.001) 
− 0.07  
(0.34) 

68.26 12.82 5.32 <0.001 

Precipitation − 0.21 

(<0.001) 

0.51 

(<0.001) 

0.10 0.62 0.17 0.869 

Solar radiation 0.04  

(0.51) 
− 0.36 

(<0.001) 

5.56 2.45 2.27 0.024 

Cloud cover 0.05  

(0.47) 

0.18  

(0.017) 

10.52 3.29 3.20 0.002 

Langtang Air temperature 0.57 

(<0.001) 

0.45 

(<0.001) 

94.58 12.49 7.58 <0.001 

Precipitation − 0.08 

(0.207) 

0.59 

(<0.001) 
− 0.34 0.78 − 0.43 0.667 

Solar radiation − 0.19 

(0.003) 

− 0.69 

(<0.001) 

− 2.98 3.12 − 0.95 0.341 

Cloud cover − 0.13 

(0.037) 

− 0.15 

(0.031) 

− 0.39 3.68 − 0.11 0.916 

Rolwaling Air temperature 0.61 

(<0.001) 

0.71 

(<0.001) 

87.45 13.19 6.63 <0.001 

Precipitation 0.01  

(0.864) 

0.40 

(<0.001) 

0.74 0.70 1.06 0.290 

Solar radiation − 0.05 

(0.410) 

0.11  

(0.146) 
− 8.47 3.23 − 2.63 0.009 

Cloud cover − 0.40 

(<0.001) 

− 0.76 

(<0.001) 

− 32.63 4.50 − 7.26 <0.001 

Parlung Air temperature 0.28 

(<0.001) 

0.43 

(<0.001) 

32.41 7.71 4.20 <0.001 

Precipitation − 0.15 

(0.019) 

− 0.67 

(<0.001) 

− 0.43 0.40 − 1.08 0.286 
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Solar radiation 0.04 

 (0.549) 

0.58 

(<0.001) 

1.34 1.34 1.00 0.317 

Cloud cover − 0.06 

(0.334) 

− 0.51 

(<0.001) 

3.09 2.66 1.16 0.248 

 320 

4 Discussion 321 

4.1. Seasonal pattern & controls 322 

We found consistencies and differences in the seasonal patterns across the five target catchments. Across the five regions, the SLA 323 

reaches its highest level during the monsoon summer and is maintained at a relatively stable snow/rain transition altitude caused 324 

by abundant precipitation and altitude dependence on air temperature (Girona-Mata et al., 2019). Once the precipitation reaches a 325 

sufficient level to maintain this altitude, additional precipitation has no further impact on the SLA. Solar radiation is less effective 326 

during the monsoon summer because of frequent and heavy cloud cover, leading to highly diffused shortwave radiation (Pellicciotti 327 

et al., 2011). However, Parlung was an exception, as indicated by the minimal differences in SLA between the aspects (Fig. 5). In 328 

Parlung, differences in SLA between aspects persisted even in summer (Fig. 5), suggesting that solar radiation still has an impact 329 

on SLA. 330 

Snow is most abundant from late winter to early pre-monsoon, just before the snowmelt begins in earnest. In Langtang, SLA 331 

shows the seasonal minimum in January, indicating snowmelt starting in February as solar radiation increases. In contrast, 332 

Satopanth experiences a later minimum, seeing the lowest SLA in April. This region is less influenced by solar radiation throughout 333 

the year (Fig. 5), so snowmelt may begin primarily when temperatures rise. 334 

Winter exhibits significant variability in the snowline altitude (SLA) across catchments. Winter storms sporadically deposit 335 

snow to very low elevations, which then ablates to the seasonal freezing line, leading to increased variability in the SLA. The 336 

cumulative likelihood of these storms increases throughout the winter, such that the seasonal snowline eventually converges to 337 

approximate the freezing line before the monsoon. Particularly at Langtang and Rolwaling, the variability was pronounced, with 338 

more snow cover on the west-facing slopes than on the east-facing slopes (Fig. 5). Conversely, Hidden Valley experiences less 339 

east-west variation and winter SLA variability than Langtang and Rolwaling. This could be attributed to the high-altitude 340 

Dhaulagiri mountain range to the southwest, which may act as a barrier to westerly winds, thereby limiting the inflow of moist air 341 

across the mountains. Despite being located further west, Satopanth exhibited minimal aspect variation in the SLA (Fig. 5). The 342 

Satopanth catchment features high-elevation ridges on its western side (Fig. 1).  343 

Therefore, westerly winds (Cannon et al., 2015; Maussion et al, 2014) may have deposited more snow on the outer western 344 

slopes of the catchment area. It is conceivable that winds crossing these western ridges contributed to snowfall within the 345 

catchment. This phenomenon may explain the reduced east-west disparity observed in Satopanth compared to regions directly 346 

impacted by prevailing winds. In contrast, Parlung, located on the southeastern Tibetan Plateau, is less influenced by westerly 347 

winds. Based on the above analysis, the seasonal patterns of SLA are not only dependent on climatic factors but are also 348 

significantly influenced by topography. 349 

 350 
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4.2. Trends, decadal changes in seasonality, and controls 351 

Long-term trends and statistically significant explanatory variables exhibited similar patterns in the study catchments (Fig. 7). 352 

Satopanth showed a declining SLA trend, primarily associated with the trend in ERA5 precipitation. In contrast, the three Nepalese 353 

catchments exhibited increasing SLA trends that were mainly associated with temperature. Parlung showed no discernible trend, 354 

with fluctuations that were possibly related to temperature variations. 355 

We interpreted the seasonal meteorological changes driving long-term variations in SLA. In Satopanth, the declining trend was 356 

primarily driven by a decrease in SLA in March. This decrease in SLA in March could be attributed to increased snowfall in 357 

February following a temperature decrease in January. This finding is consistent with that of a previous study that reported an 358 

increasing trend of synoptic-scale Western Disturbance activity over the past few decades, leading to increased winter precipitation 359 

in the western Himalayas (Krishnan et al., 2019). Conversely, the rising SLA in September may have moderated the decreasing 360 

rate of the interannual trend of SLA in Satopanth. In the three Nepalese regions, the increasing trends of SLA are driven by SLA 361 

increase during the monsoon to post-monsoon period, corresponding to rising temperatures during the monsoon season. The rising 362 

temperatures during the monsoon had a stronger effect on SLA than concurrent precipitation increases and net shortwave decrease. 363 

Although the increase in precipitation during the monsoon season is also statistically significant in these three catchments, the SLA 364 

during the monsoon may be controlled by the snow/rain transition altitude which is determined by the altitude dependence of air 365 

temperature, generalizing past inferences for Langtang by (Girona-Mata et al., 2019) to the Central Himalaya. It thus seems 366 

plausible that the increase in temperature is the main factor contributing to the SLA increase during the monsoon and the post-367 

monsoon 368 

Hidden Valley and Rolwaling also exhibited SLA lowering in March, possibly attributed to increased winter precipitation. In 369 

Parlung, a decrease in SLA due to lower temperatures was observed in January. However, this decrease in the January SLA was 370 

not sufficient to cause a long-term trend of declining SLA. 371 

We anticipate that the long-term SLA trend is controlled by the balance between increased snowmelt during the monsoon and 372 

increased snowfall during winter. The balance between winter precipitation and summer temperature varied among the five 373 

catchments despite being located in the same Himalayan range. These results indicate that regions with different climatic and 374 

topographic characteristics, such as arid areas or those with winter accumulation, may have distinct factors controlling snow cover 375 

variability. 376 

4.3. Reliability of trend detection  377 

Our data-inclusive approach to snowline analyses mixes four satellite sensors with differing radiometric capabilities and 378 

sampling biases. The three Landsat sensors exhibit broad similarities in terms of spectral and temporal sampling, although with 379 

considerable improvements for Landsat 8, in particular (Paul et al, 2016). Collectively, these three sensors led to a relatively stable 380 

temporal sampling over our five study catchments, but the inclusion of Sentinel-2 data substantially increases the quantity of 381 

observations for the later period (Fig. S3-S7), in addition to the slightly different sensor characteristics. We therefore tested the 382 

effect of the Sentinel-2 data inclusion on our trend retrieval approach. The retrieved SLA trends differ for each site (up to 2.6 m 383 

yr-1 difference) depending on the inclusion of Sentinel-2 data, but at no site does the trend direction or significance change based 384 

on this dataset (Fig. S14-S18).  385 

All four sensors exhibited a similar seasonal sampling (Fig. S11), and the inclusion of Sentinel-2 data had minimal effect on the 386 

seasonal harmonic regression of SLA (Fig. S19-S23). However, all four sensors exhibited reduced sampling during the monsoon 387 

months due to the extensive summer cloud cover, so evaluate the reliability of the trend retrieval for reduced data sampling through 388 
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a synthetic trend retrieval experiment. Beginning with a sampled harmonic and a random trend similar to that measured at our 389 

sites, we introduce noise and reduced monsoon image availability (Fig. S24-28). Our experiment highlights that the seasonal 390 

decomposition approach is robust to both noise and seasonal sampling biases, and successfully retrieves the imposed trends to 391 

within 2.5 m yr-1. Our results highlight that standard regressions of oscillations around trends, even without sampling errors and 392 

biases, are subject to produce erroneous trends due to edge effects. This emphasizes the importance of long records and careful 393 

trend retrieval, such as with our seasonal decomposition approach, for environmental records with strong variability.  394 

4.4 Limitations, advantages, and future perspectives 395 

A major limitation for our study is the inconsistent data availability over time due to changing sensor missions, cloud cover, and 396 

varying extent of observations. Image availability is improving due to the increased number of operational imagers, but could have 397 

a strong impact on both the characterization of seasonal snow dynamics, especially for earlier periods, as well as the robust 398 

detection of a trend. A second major limitation is the prevalence of cloud cover, which further limits the usable area of affected 399 

images, and can, in some cases, lead to biases in the detected snowline due to undersampling. This can be mitigated with more 400 

stringent cloud coverage criteria, but will further reduce image availability for severely cloud-affected regions. Our cloud masking 401 

was largely successful for the evaluation scenes, but is likely to fail in some situations, leading to false snowline detections. As 402 

detailed above, our method is able to successfully recover snowlines and snowline trends despite these challenges.  403 

 404 

The combination of multiple datasets with differing footprints, compounded by variable cloud cover and deep shadows, can lead 405 

sequential scenes to differ in snowline, but this can be the result of spatial sampling biases. Although our evaluation of the 406 

automated snowline retrieval showed its high accuracy relative to manual datasets (Table 2), it is clear that sampling biases due to 407 

spatial coverage can lead to statistical differences at the catchment scale (Fig. S10). In our study, differences in spatial coverage 408 

may have increased the variability of derived catchment snowlines even over short timescales. Our results indicate SLA variations 409 

are typically 200m within 10-20 days based on a variable-lag sensor cross-comparison (Fig. S28). This is reflected in the spread 410 

of seasonal retrieved SLA values (Fig. 3) but should not affect our derived trends. Nevertheless the challenge of spatial sampling 411 

underlines the importance of complete spatial coverage for integrated snowline assessments, encouraging the use of future rapid-412 

repeat and cloud-insensitive snow monitoring methods (e.g. Tsai et al., 2019). We note that an advantage of our methodology is 413 

its transferability, and additional snow cover data products could easily be included in the analysis. Our full approach is directly 414 

transferable to Landsat 9, launched in 2021, or other high-resolution satellites that will be launched soon, will allow for longer and 415 

more detailed analyses. In addition, our method can be applied to wider areas as it leverages cloud-accessible global datasets and 416 

cloud processing. 417 

 418 

This study used top-of-atmosphere radiances from multiple sensors to determine snowcover based on a fixed NDSI threshold; 419 

this simple approach showed close correspondence with independent evaluation datasets, and the similar method of Girona-Mata 420 

et al. (2019) also produced reliable snow cover at the Langtang site.  Future developments could, in the future, be applied to 421 

homogenized surface reflectances with a fractional snow cover algorithm (Rittger et al., 2021). Further adaptations to the method, 422 

to enable application more broadly, could include temporal stacking, data fusion, or a different statistical definition of the snowline, 423 

in order to further control for spatial sampling challenges. In addition, to reduce the effect of spectral differences between Landsat 424 

and Sentinel-2 sensors on our derived snowlines, future efforts could make use of recent harmonized products (e.g. Feng et al., 425 

2024). 426 

 427 
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An advantage of our method leveraging high-resolution sensors, compared to the standard snowline detection method leveraging 428 

MODIS data (Krajci et al., 2014), is its high spatial precision, which enabled us to examine aspect differences in snowline and to 429 

resolve snow at high altitudes. The coarser spatial resolution of MODIS snow cover products (500m) results in a crude 430 

representation of steeper topography, which leads to a high snow cover dropout rate at high elevations (e.g., Colleen et al., 2018), 431 

causing the detected SLA to jump to very high elevations in summer. As a result, the SLAs obtained from MODIS were much 432 

higher than SLAs from our method at all sites during the monsoon season, as high-elevation snow was essentially undetected (Fig. 433 

S6). In contrast, the low-elevation discrepancies in SLAs appear to occur mainly in Satopanth and occasionally in Hidden Valley 434 

(Fig. S6). Upon examining the snowlines in Satopanth, we discovered that many north-facing slopes were shadowed by topography. 435 

As a result, our method, which masks shadows, tends to detect snowlines that are biased towards south-facing slopes. This likely 436 

explains the discrepancies observed at lower elevations in Satopanth, as snowlines detected on higher south-facing slopes were not 437 

fully captured. One option to address this issue is to apply a statistical correction, considering that we have measured the aspect 438 

difference and can identify which areas of the domain have been sampled versus those that have not. This correction would help 439 

provide a more accurate representation of the SLA across areas with various topographies. 440 

 441 

Our study demonstrated significant regional differences in snow cover dynamics across five catchments in the Himalayas, 442 

highlighting the diversity of snow phenology in similar climates and emphasising the need for further detailed investigations in 443 

distinct climates. By applying our automated method to broader areas, such as the whole of Asia or globally, future studies can 444 

investigate the distinct characteristics of snow dynamics in different regions; application to strongly differing domains will, 445 

however, need further evaluation. This approach will enable us to examine changes in the SLA worldwide and identify the factors 446 

controlling these changes, contributing to a deeper knowledge of the spatial and temporal distributions of snow cover and the 447 

hydrology in the cryosphere and downstream regions. Future works on SLA detection at larger scales could provide process-based 448 

advances beyond the foundations achieved with coarse sensors such as MODIS. 449 

 450 

5 Conclusion 451 

In this study, we demonstrate an algorithm to automatically detect the catchment snowline altitude (SLA) from multispectral remote 452 

sensing data and apply it to five glacierized monsoonal catchments in the High Mountain Asia region for the 1999-2019 period. 453 

Our results highlight strongly variable seasonal SLA amplitudes between the five sites. All sites exhibit maximum SLA values 454 

during the monsoon of 5500 m a.s.l., with the exception of the topographically-limited Parlung catchment, as well as minimum 455 

values during the winter, when the scatter of SLA is also very high. This behaviour and the variable aspect dependence during 456 

these periods highlight the contrast between temperature control on SLA, during the monsoon, and precipitation control during the 457 

winter. Our results indicate rising SLA at three of the study catchments (Hidden Valley, Langtang, and Rolwaling) with trends up 458 

to +14.4 m yr-1, no statistical trend at the Parlung catchment, and a lowering SLA at Satopanth (−15.6 m yr-1).  Decadal changes 459 

in the monthly SLA and climatic factors suggests that long-term SLA trends are primarily controlled by the balance between higher 460 

temperatures during the monsoon and lower temperatures with increased snowfall during winter. Further application of our method 461 

on a broader scale could provide novel insights into the spatiotemporal variation in snow cover and its controlling factors, and 462 

providing control for numerical modelling efforts. This will contribute to a deeper understanding of the future state of snow cover 463 

and related hydrology, which are crucial for water resource management and climate change adaptation. 464 

 465 
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Code availability 467 

The scripts for automatic detection of SLA is available through the following GitHub repository: https://github.com/s-468 

orie/SLA_TC2025. 469 

 470 

Data availability 471 

HydroSHEDS data, Landsat 5/7/8 data, Sentinel-2 data and AW3D30 are available through the Earth Engine Data Catalog 472 

(https://developers.google.com/earth-engine/datasets/catalog/) which is a data catalogue of the Google Earth Engine that is a 473 

cloud-based geospatial analysis platform. The latest version of the GAMDAM Inventory data used in this study are available on 474 

the PANGAEA website (https://doi.org/10.1594/PANGAEA.891423). Outline data for the supraglacial debris are available in the 475 

supplemental data of Scherler et al. (2018). Surface water body data are available from the official Global Surface Water website 476 

(https://global-surface-water.appspot.com/; Pekel et al., 2016). RapidEye and PlanetScope data are available from the European 477 

Space Agency (https://earth.esa.int/eogateway/missions/rapideye and https://earth.esa.int/eogateway/missions/planetscope). 478 

Finally, meteorological data from ERA5 were available via the Copernicus Climate Data Store 479 

(https://doi.org/10.24381/cds.adbb2d47; Hersbach et al., 2023). 480 
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