Responses to reviewers for Sasaki et al, submitted to The
Cryosphere

We'd like to thank both reviewers for their very valuable inputs and thorough reviews. Our
answers to each comment are indicated in blue below.

Reviewer 1

The authors established the automatic detection method for snowline altitude in the
Himalayan region by using many images obtained from various satellites. Overall, the
manuscript is written well. However, further manuscript improvement is necessary for the
publication on The Cryosphere. | suggest the revision of the structure in the manuscript, the
reconsideration of the analysis method for seasonal and interannual changes in SLA, and
the enhancement of the study's significance. Please see the following comments. | hope my
comments help to improve the manuscript.

We’d like to thank the reviewer for their very valuable inputs and thorough review. The Reviewer
has provided many constructive comments and suggestions, which will improve the manuscript.
Our answers to each comment are indicated in blue below.

Major comments:

1. | suggest you come up with a structure, figure, and table to explain the methodology. This
is because you used various data (satellite images, DEM data, and reanalysis data) through
many processes. A little confusing for me. Refer to the specific comments below.

Thank you for the suggestion. Our approach follows that of (Girona-Mata et al., 2019) closely, so
we had not thought that such a figure would be necessary, but we appreciate that a
methodological figure would enable the reader to follow the analyses more easily.

Outcome: We have adapted Figure R1 (below) from Figure S2, to illustrate the methodological
workflow in the manuscript, and will include this in the main text as a new Figure 2.
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Figure R1. Schematic diagram of the snowline detection algorithm with a sample image
obtained from Sentinel-2. The parts highlighted in blue represent updates to the method of
Girona-Mata et al. (2019). By inputting longitude and latitude, all procedures are automatically
performed on the Google Earth Engine platform.

2. | have concerns you use both Landsat-8 and Sentinel-2 for the trend analysis. This is

because the accuracy of SLA using Landsat-8 is obviously lower than that using Sentinel-2
as you show Table 2 and Figure S3. | understand the advantage of detecting more SLA by
using Landsat-8. However, you should explain the disadvantages too in the manuscript. In



addition, | suggest you unify the satellite for the analysis images to discuss the SLA trends.
The trends range from -15.6 m yr-1 to +14.4 m yr-1. Compared to the seasonal variations,
the trends are sensitive to the bias resulting from the use of different satellites. If you
choose a single satellite for the trend analysis, you might be able to see clear trends.

The reviewer raises a valid concern about the possible sensitivity of the trend analysis to the
spatial resolution of the different satellites. We would like to highlight that the trend analysis is
not only dependent on Sentinel-2 and Landsat8, but also the TM and ETM+ sensors on Landsat
4,5 and 7, which are essentially equivalent to Landsat8 (and now 9) in spatial and spectral
resolution but much poorer in terms of radiometric resolution, which can lead to saturation in the
visible bands (Knap et al., 1999).

The reviewer interprets that the Sentinel-2 snowlines perform better than those derived with
Landsat8 for our evaluation scenes (original Table 2, Figure S3). Our analyses actually show
that the seasonal snowlines retrieved by the distinct sensors are nearly equivalent (Figure S4).
Indeed, the spatial resolution difference between Landsat and Sentinel-2 (30m vs 10m) should,
at worst, lead to an increased SLA detection error of a similar scale (30m vs 10m); slopes
steeper than 50 degrees tend to rapidly shed snow and are likely to be self-shadowed (and
therefore masked in our workflow).

First, relating to the apparent performance difference, we do not think that this is due to the
sensor differences. In investigating the performance difference between the two sensors, we
found that the detected snowlines corresponded very closely in space to the manual snowlines
for all scenes, and were surprised by the degree of mismatch between the automatic and
manual SLA values. After a closer look, it has become apparent that this is primarily due to
spatial sampling biases, as the manual snowlines cover only a small portion of the entire scene.
Thus, the apparent better performance of S-2 was due to chance. However, this indicates that
we were not using a robust measurement of performance.

To better evaluate the ability of our automated method to retrieve snowline information, we have
entirely revised our evaluation of the remotely-sensed data. We focus on the automated
method’s ability to retrieve the snowline boundaries. We do this, in a similar manner to
Girona-Mata et al (2019), by determining the nearest automatically detected snowline point for
each manual snowline point, in order to measure the distance between the points (a metric of
the retrieval success) and the corresponding elevation difference (the consequence for our
measurements). We now do this for each of the 12 validation scenes and against both
independent candidate manual snowline interpretations.

We show examples here for Landsat-8 and Sentinel-2 scenes, which highlight that the detected
snowlines correspond very well in space (Figures R1 and R2). Specifically, we find that the
method successfully retrieves a snowline for both sensors to a comparable degree. In both
cases, the snowline generally corresponds very well in space, and therefore in elevation (as
hypothesized above - within approximately one pixel). We note that some manually-derived
snowline points do not correspond clearly to a point on the automatic snowlines (lateral
distances of greater than 100m), usually due to cloud cover, but these errors are strongly



overcome by the general close agreement. Through this point-by-point comparison of nearly
90000 manually mapped snowline positions, we determine an NMAD of 8.6m against operator 1
and 10.2m against operator 2. On the overall comparison of scenes (new Table 2, also depicted
below) we see clearly that 11 of the 12 scenes corresponded very closely, with one scene

showing slightly less favorable agreement as there was little overlap between the automatic and
manual coverage..
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Figure R1. Correspondence of manual and automatic snowlines at the Hidden Valley site in
October 2020. The manual snowlines were delimited from a cloud-free PlanetScope image, the
automatic snowlines from Sentinel-2. Comparing corresponding nearest snowline points, the
automatic snowline had a bias of -4.7m (-5 m) elevation and 41 m (18 m) relative to the

Manual1 (Manual2) snowline.
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Figure R2. Correspondence of manual and automatic snowlines at the Hidden Valley site in
June 2019. The manual snowlines were delimited from a cloud-free PlanetScope image, the
automatic snowlines from Landsat 8. Comparing corresponding nearest snowline points, the
automatic snowline had a bias of 7.8m (3.6 m) elevation and 45 m (30. m) relative to the
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Table 2. Performance of the automated snowline in comparison to manually digitized snowlines
by operators 1 (M1) and 2 (M2), reporting the median absolute deviation (MAD) for horizontal
distances (D) and vertical differences (H) of nearest pairs of snowline points in the dataset. The
poor performance for the RW scene on 2020.04.20 is due to little overlap in measurement area,
leading to large spatial distances for nearest points, and therefore large height differences.

Site | Sensor | Date M1 MAD D (m) | M1 MAD H (m) | M2 MAD D (m) | M2 MAD H (m)
24K | L8 2020.12.29 |20.35 9.77 19.83 8.71
HV L8 2019.06.15 | 9.55 3.14 9.28 2.68
HY | s2 2020.05.23 | 9.79 2.92 9.96 3.32
HY | s2 2020.10.12 | 9.88 3.26 9.25 2.31
HY | s2 2020.12.30 | 10.55 3.42 10.23 3.06
Lang | L8 2016.02.12 | 15.30 6.73 15.39 5.63
Lang | L8 2017.11.12 | 14.96 5.73 17.34 7.50
RW |[L8 2019.12.30 |21.62 9.79 18.80 8.42
RW |s2 2020.05.17 | 17.74 8.25 17.47 7.74
Sato | L8 2017.09.13 | 16.49 9.07 15.75 7.22
Sato | L8 2021.01.27 | 16.20 8.54 15.88 7.30
mean 14.77 6.42 14.47 5.81

We appreciate that the reviewer may wish to see additional evidence of the comparability of
sensors’ results and the susceptibility of the trends to possible bias between sensors. We have
therefore, following their suggestions, also investigated the sensitivity of our derived trends to
the inclusion of Sentinel-2 data. Below (Figures R3-R7) please find a depiction showing that the
inclusion of additional observations from Sentinel-2, despite having no influence on the
seasonal pattern, can have a moderate numerical effect on the overall trend. However, this
effect 1) varies from site to site, and 2) never changes the sign nor the significance of the trend.
Nevertheless, in the text, we will report trend values including and excluding Sentinel-2 data,
and include these figures in the supplementary material.
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Figure R3. Decomposition of seasonal snowline and trends for the 24K site, with and without
inclusion of Sentinel-2 data.
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Figure R4. Decomposition of seasonal snowline and trends for the Hidden Valley site, with and
without inclusion of Sentinel-2 data.
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Figure R5. Decomposition of seasonal snowline and trends for the Langtang site, with and
without inclusion of Sentinel-2 data.
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Figure R6. Decomposition of seasonal snowline and trends for the Rolwaling site, with and
without inclusion of Sentinel-2 data.
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Figure R7. Decomposition of seasonal snowline and trends for the Satopanth site, with and
without inclusion of Sentinel-2 data.

Outcome: To address these concerns, we will take the following steps:

1. We will update the evaluation of the performance of the automated method with respect
to our manually-derived snowline data, reporting the spatial and elevation



correspondence of these datasets for each scene, following Figures R1 and R2 (similar
figures will be included in the supplementary material for all evaluation scenes), and
include the updated Table 2 in the manuscript.

2. We will include discussion of the influence of inclusion of Sentinel-2 data for both
seasonality and long-term trends identification. Please note that we have also performed
testing of the trend retrieval from temporally-biased data, which is presented in our
response to Reviewer 3. Our method works quite well for this, not excluding the
possibilities of differing SLA retrieval biases between sensors or preferential seasonal
sampling differences.

3. The significance of this study seemed weak. This is because it was unclear how much of
the change in the detected SLA was related to the snow melt amount. Could you calculate
the variation of the snow area with SLA changing in each catchment? Since it is a given that
SLA has a sensitivity to weather conditions such as air temperature, | would like to see
more value in this study by adding new findings. At least, you should quantitatively mention
how this study contributes to the understanding of the hydrological cycle in the Himalayan
region.

Thank you for this constructive criticism. We are sorry to hear that the significance of the study
did not seem strong to the reviewer, and we will be sure to make this clearer in the revised
manuscript. Determining the amount of snow melt (i.e. changes in catchment-wide SWE) in
each catchment is outside the current scope of the study, as SWE is not directly retrievable at
high resolution from remote sensing measurements. Our objective is to measure changes
(seasonally and decadally) in the altitudinal coverage of snow in the catchments, and to
understand its links to meteorological factors and climatic changes. We find this to be a
compelling topic of research, as SLA can be used to evaluate distributed modelling results (Buri
et al., 2023, 2024; Robinson et al., 2025), thus providing constraint on SWE changes, yet is
retrievable at high resolution (e.g. considerably better than 500m MODIS coverage) relevant for
constraining models in mountainous areas. This is especially important for catchments without
in situ measurements. The snowline, as we derive it, is also relatively less sensitive to cloud
coverage than catchment-wide snow-covered area. Consequently, the methodological advance
in this study can enable future efforts to easily leverage snowlines to help constrain catchment
processes within models at a variety of sites and spatial scales.

Further, although studies of changes in snow-covered area exist, area represents an integration
of catchment hypsometry (Tang et al., 2022), and we consider snowline changes to be a cleaner
metric of climatic change, yet few past studies have attempted to understand long-term
snowline changes; we do. We further note that both seasonal and long-term variations in
snowline provide useful information about the local controls of snow processes (e.g.
Girona-Mata et al, 2019; this study). For example, the investigation of aspect-dependence of
snowlines provides insights into the seasonal radiative controls on snowcover (Figure 4), and
this study highlights that a variety of process manifestations occur across this section of the
Himalaya.



Outcome: We will modify the text (both the motivation and the discussion/conclusions) to better
highlight the significance of the study in terms of methodology and ultility, in terms of seasonal
process inference, and in terms of decadal SLA change. We will also indicate the importance as
an indicator of the annual water cycle within catchments, both for seasonal storage and for blue
water generation.

Specific comments:

L23: Remove “as Heading 1”.
We will do this.

L12: Remove or replace “Globally” in this sentence because you didn’t evaluate this
algorithm globally.

Agreed, we will change this to ‘for areas of interest’.

2 Study site and data: | suggest the order of this section be replaced with the method
section. The explanations of the data in this study appear suddenly, it is hard to read for me.

Thank you for the suggestion. We will combine and restructure these sections. The ‘Data’ must
nevertheless come before the actual methods, but we will reframe to use the study sites as
initial sites of interest. Consequently, in the revised manuscript, we will implement a combined
'Methods' section that includes subsections of ‘Detection of Snowline’, ‘Study sites and
Evaluation’, and ‘Detection of changes’.

3 Method: This is the evaluation paper for the SLA detection algorithm, you should move
Table S2 to the main manuscript to show the detection method for SLA even if the flow is
similar to that proposed by Girona-Mata et al. (2019). | suggest you add more detailed
information, you used satellite products, atmospheric datasets, new categories (ice and
water surfaces), and the point that you newly used Google Earth Engine, to the table. In
addition, change and enhance the line color for the snowline. It is hard to see the black line
(it is the same color as the catchment area!). It might be kind to add the explanation, you
updated the previous study, to the caption.

Thank you for the helpful suggestion. Following on your main comment (1) above, we will create
such a figure, adapted from Figure S2, for inclusion in the main manuscript. We will endeavour
to make this figure complete and visually clear.

Figure 1: Add the category of Snow to Overview in the legend. Does the white area mean
the snow area, right? Also, | could not find the category of Water from the histograms. Also,
it would be good if you could show the SLA in the figures (if possible).

Thank you for the helpful comments. We will revise this figure according to your comments, also
to improve the readability according to the comments of Reviewer 2. The white areas are mostly



snow (some are cloud) but as evident from the background Sentinel-2 images, as this is a
transient landcover class. There are indeed water areas, but it appears that this landcover class
did not display properly - the lake of Tsho Rolpa in RW should be evident at the glacier terminus.
However, the water areas, while important to remove for snow-cover detection purposes, are
relatively small and hard to spot at this scale. We would prefer not to depict the SLA in these
figures, as that would be a primary result. Please see below for a revised version of Figure 1:
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Figure 1 (revised).
L 73: Modify the table number. Do you have any references for the values?

Thank you. Indeed, this caption should have read that the catchment geometric characteristics
were derived from the HydroBasins level 9 catchment boundaries and the ALOS World 3D 30m
DEM, while th climatological characteristics were determined from ERA5, downscaled with an
adiabatic lapse rate to the median catchment snowline elevation. We will ensure that the figure
number and caption is corrected in the revised manuscript.

L77: What do you mean by “level”? Please explain it briefly.

The HydroBasins product is a nested hierarchy of watershed boundaries; the ‘level’ is the
hierarchical level of nesting; this is their terminology, and basically refers to the approximate size
and stream order of the catchment. We will slightly elaborate this in the revised text.

L94-95: | don’t understand the expression that the SLA automatically detected using manual
delineation. Is it manual or automatic?



Apologies for the confusion. This will be revised to ‘to evaluate the automatically detected
snowlines against snowlines detected manually.” The manual delineations are the reference
dataset for this comparison.

Figure S3: What are the vertical lines in the panels (for example, the lines around the x-axis
= 5500 m)? Probably, those mean the median values, but you should add an explanation in
the caption.

The reviewer is correct, these are the median values. We will include this in the revised
manuscript.

4 Results: The Results section should be nominally limited to new results from the current
observation or calculation and not include a literature review (L197, 277...). In addition, |
saw the words “consider” and "suggesting" in the results section (L186, 261). The author’s
speculation should be described in the discussion section. Please move the speculations to
the discussion section.

Thank you for noting this; we will carefully re-examine the manuscript to relocate any
interpretations and speculations to the discussion section, and to eliminate any instances of
literature review, including those which you note.

L164-177: You should explain the differences in accuracy between Landsat-8 and
Sentinel-2. The results from Sentinel-2 are better.

Thank you. Indeed, the comparison of accuracy and results from the different sensors has been
significantly expanded in response to your main comment 1, although our investigations indicate
that the performance for Landsat-8 and Sentinel-2 are very similar.

Figure 3: | suggest you show the SLA anomalies. Or, please add the value of the trend to
the figure. It is hard to see the trends.

Thank you for the suggestion. We were not able to produce an aesthetic version of the figure
that depicted the anomalies. We will, however, indicate the trends in the modified figure caption.

Figure 5: Why don’t you show seasonal anomalies of the SLA? Hard to see the
differences...

Thank you for the suggestion. As above, we were not able to produce an aesthetic version of
the figure that depicted the anomalies. Indeed, the changes between periods are much smaller
in magnitude than the seasonal variability. For this reason, we have depicted the periods of
statistically-significant change with the background shading.

Figure 6: | suggest you add the correlation coefficients of the interannual changes in the
atmosphere variables with those in the SLA to the panels. Before the result of multiple
regression analysis, | would like to see relationships between SLA and a single variable.



Thank you, this is a good suggestion and we have included correlation coefficients for each
individual parameter in the modified Figure (shown below).

L296-298: | think an increase in cloud cover causes an increase in downward longwave
radiation. Could you not consider that variations in downward longwave radiation contribute
to SLA variations?

We absolutely agree that cloud cover changes, if present, could also affect the snow
persistence, and therefore the SLA trends. We have included this variable in the revised Figure
6 (below) and the revised regression analysis (Tables 3 and 4, below). Cloud cover is correlated
with SLA changes at two sites, and improves the multivariate regression at two sites.
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Figure 6 (revised to include cloud cover and show correlation coefficients).



Table 3 (revised to include cloud cover). Correlation coefficients (R) between SLAs and single

variables (air temperature, precipitation, solar radiation, and cloud cover) calculated using
12-month and 60-month moving averages. Coefficients with p-values < 0.05 are shown in bold.

12-month R (p-value) 60-month R (p-value)
Satopanth Air temperature 0.50 (<0.001) 0.80 (<0.001)
Precipitation - 0.18 (0.004) - 0.44 (<0.001)
Solar radiation - 0.44 (<0.001) - 0.11 (0.129)
Cloud cover -0.15(0.017) - 0.34 (<0.001)
Hidden Valley Air temperature 0.34 (<0.001) -0.07 (0.34)
Precipitation - 0.21 (<0.001) 0.51 (<0.001)
Solar radiation 0.04 (0.51) - 0.36 (<0.001)
Cloud cover 0.05 (0.47) 0.18 (0.017)
Langtang Air temperature 0.57 (<0.001) 0.45 (<0.001)
Precipitation - 0.08 (0.207) 0.59 (<0.001)
Solar radiation -0.19 (0.003) - 0.69 (<0.001)
Cloud cover -0.13 (0.037) -0.15(0.031)
Rolwaling Air temperature 0.61 (<0.001) 0.71 (<0.001)
Precipitation 0.01 (0.864) 0.40 (<0.001)
Solar radiation - 0.05(0.410) 0.11 (0.146)
Cloud cover - 0.40 (<0.001) - 0.76 (<0.001)
Parlung Air temperature 0.28 (<0.001) 0.43 (<0.001)
Precipitation -0.15(0.019) - 0.67 (<0.001)
Solar radiation 0.04 (0.549) 0.58 (<0.001)
Cloud cover - 0.06 (0.334) - 0.51 (<0.001)

The inclusion of cloud cover substantially improved the multivariate correlations for Hidden
Valley and Rolwaling, as shown in the modified Table 4 (below).

Table 4. Results of the multiple regression analysis using 12-month moving averages of climate data and SLA.
Influential factors (p-value < 0.05 and |t-value| > 2.0) are shown in bold. A positive or negative t-value indicates a
contribution to the increase or decrease of SLA, respectively.



Coefficient Standard t-value p-value
error
Satopanth Air temperature 6.05 11.18 0.54 0.580
Precipitation -2.81 0.39 -7.24 <0.001
Solar radiation -11.85 1.17 -10.12 <0.001
Cloud cover -0.13 1.97 -0.07 0.948
Hidden Valley  Air temperature 68.26 12.82 5.32 <0.001
Precipitation 0.10 0.62 0.17 0.869
Solar radiation 5.56 245 2.27 0.024
Cloud cover 10.52 3.29 3.20 0.002
Langtang Air temperature 94.58 12.49 7.58 <0.001
Precipitation -0.34 0.78 -0.43 0.667
Solar radiation -2.98 3.12 -0.95 0.341
Cloud cover -0.39 3.68 - 0.1 0.916
Rolwaling Air temperature 87.45 13.19 6.63 <0.001
Precipitation 0.74 0.70 1.06 0.290
Solar radiation - 8.47 3.23 - 2.63 0.009
Cloud cover - 32.63 4.50 - 7.26 <0.001
Parlung Air temperature 32.41 7.71 4.20 <0.001
Precipitation -0.43 0.40 -1.08 0.286
Solar radiation 1.34 1.34 1.00 0.317
Cloud cover 3.09 2.66 1.16 0.248

L376-379: The algorithm you proposed might be able to detect SLA globally, but the

evaluation has not been done globally. You should add an explanation that further
evaluation is necessary to apply the algorithm to glaciers worldwide.

The reviewer is absolutely correct that application to very different regions would require further
evaluation, even if the core algorithm could remain the same. For instance, sea surfaces,
certain salt deposits, and vegetated areas might all need additional treatment for a global
application. There are further excellent opportunities for snowcover and snowline detection

using machine learning or Al tools, which could be a future synergy with our tool.

Outcome: We will modify this text to highlight the need for further evaluation before application

at the global scale.



L385-387: Related to major comment 3, please add more discussion and/or future
challenges regarding effects of SLA variations on hydrological cycle (water resource
management, surface mass balance, etc.)

Thank you for this comment. Please see our answer to main comment 3.
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Responses to reviewers for Sasaki et al, submitted to The
Cryosphere

We'd like to thank both reviewers for their very valuable inputs and thorough reviews. Our
answers to each comment are indicated in blue below.

Reviewer 2:

The article, Contrasting patterns of change in snowline altitude across five Himalayan
catchments, represents a tremendous effort, deriving snowline line altitudes from the
Landsat and Sentinel-2 satellite missions for the period of 1999-2019. The findings are
important and will likely set the stage for future High Mountain Asia studies. | found the
article to be informative and well-written, but there were several areas throughout the text
that | believe should be addressed before publication. | have provided thoughts, questions,
and comments below.

Thank you to the reviewer for the positive and constructive comments and detailed suggestions,
which have greatly helped to improve the manuscript’s rigor and presentation. Our answers to
each comment are indicated in blue below.

Major Comments

1.

The Introduction seems to lack important details about previous findings of the SLA
or snow covered area that should frame the findings of this study. For example, the
discussion of MODIS in lines 31-40 focuses on the limitations of the technique and
thus largely seems to dismiss the findings of previous studies. | agree that coarser
resolutions make snow covered area and snowline altitudes more challenging to
interpret, but there is much that can be learned from these studies. | suggest adding
in a paragraph to inform readers of the current knowledge of HMA snow cover and
changing the language around the MODIS studies to better reflect their importance.
Consider adding in references to Hammond et al. (2018;
https://doi.org/10.1002/joc.5674), Lund et al. (2020;
https://doi.org/10.3389/feart.2019.00318), and other related studies.

Thank you for this helpful perspective. We agree that MODIS (and SAR methods, as you
note) has been an incredible tool for understanding regional snow changes and snowline
altitudes, setting a fantastic foundation of knowledge about snow phenology and surface
processes, and that this tool offers some incredible opportunities that compensate for
some of the limitations of higher-resolution sensors. We agree that our introduction may
have focused too much on the limitations of MODIS and previous studies, and we will
reframe this in the revised manuscript to focus on the opportunity that we embrace to
build upon this foundation. A very basic summary of our perspective:



MODIS has provided a suite of systematic regional (and global) snow and surface
albedo observations for over 20 years, and its daily acquisitions maximize the likelihood
of observations despite seasonal variations in cloud cover and illumination (Hall et al.,
2010). Due to the sensor’s observation strengths, the data have proven essential to
identify trends in snow phenology, including snow cover duration and extent (most
recently e.g. (Johnston et al., 2023; Notarnicola, 2022; Roessler & Dietz, 2023)). Within
High Mountain Asia, daily MODIS snow products have been further analyzed to examine
dynamics of glacier snowline altitudes (Tang et al., 2020), and snow-cover and snowline
phenology (Tang et al., 2022). These data have further been essential for the constraint
of snow reanalyses (Kraaijenbrink et al., 2021; Liu et al., 2021). Nevertheless, the
standard MODIS snow products typically overestimate snow cover in HMA and usually
need additional filtering or processing (Muhammad & Thapa, 2020). More refined
spectral unmixing techniques can be very successful (Painter et al., 2009; Rittger et al.,
2021). However, the spatial resolution of MODIS products limit their ability to identify fine
topographic controls on snow phenology (Girona-Mata et al, 2019), necessitating
analyses with finer spatial resolution to understand snow dynamics at the catchment
scale.

Outcome: We will modify the introduction text to integrate some of these points and
balance our discussion of the MODIS sensor and associated analyses.

. The Abstract and Conclusion of the manuscript seemingly present an overtly positive
perspective of the presented methodology and its potential for global applications.
While | take no issue with the positive tone and rhetoric, | think a thorough
discussion of the uncertainties is lacking, but is well-warranted. In particular, there
are three areas that | see as problematic: (1) the inter-satellite disagreement, (2)
cloud and shadow impacts on SLA accuracy, and perhaps most critically, (3) the
impact of image availability upon the calculated time series trends.

We thank the reviewer for their constructively critical thoughts on this topic, and agree to
better quantify and discuss the methodological uncertainties.

1. Section 4.1 presents the inter-satellite comparison (Lines 178-187). | found
this paragraph difficult to follow, particularly because there weren’t any
figures/tables to aid in the presentation of the numbers. | think one or two
supplemental figures would aid the reader here. | suggest including several
nearest temporal neighbor pairs for the Landsat-5 and Landsat-7 era (I
believe the orbits are offset by ~8 days?) and several pairs for the
Landsat-7/8 and Sentinel-2 era.

Thank you to the reviewer for this suggestion. Reviewer 1 also expressed
concerns about the comparability of the results from these different sensors, and
we agree to show temporal correspondence between snowlines of varying lag
times.



We have performed such a comparison between sensors for each site, as well as
for each sensor against itself at each site. Our results show that 1) snowlines can
be moderately variable, even over short timeframes and 2) this behaviour is
irrespective of sensor. Specifically, at all sites and for all sensors, snowlines
typically differ by 200-250m (median values) within 20 days, and this SLA
difference increases with increasing time periods. However, we find similar
correspondence between Landsat sensors (between sensors or comparing to
themselves) as for comparisons with Sentinel-2. We do note that S-2 data agrees
more closely with itself for shorter lag-times. However, as noted in the response
to Reviewer 1, we have revised our evaluation of the detected snowlines and find
that Sentinel-2 and Landsat-8 perform equally well in identifying the elevation of
the snowline boundary.

Examples for Langtang are displayed in Figure R8. Note that y-axis scales differ
between the panels. This suggests that the snowline data derived from distinct
sensors exhibits similar precision. From this analysis itself, it is difficult to ascribe
a number to this precision, and we prefer to evaluate this against the manual
snowlines. However, it is encouraging that the distinct sensors all show a similar
behaviour compared to themselves and one another. We will include a more
thorough description of this analysis in the manuscript, along with the full set of
figures in the supplementary material.
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Figure R8. Boxplots of snow line altitude difference for scene-pairs with varying
time lags, for different sensor combinations. For all sensors, snowlines typically
vary by ~200m within 10-20 days. The variance increases, but not so

dramatically, for longer lag times. Note that y-axis scales differ between panels.

Outcome: We will discuss the association of the agreement between sensors in
the Discussion section.

The impact of shadows and clouds are discussed in Section 5.3, but an
analysis of clouds/shadows is not presented in the results. Additionally, | felt
that the methods were unclear regarding how clouds in images were handled.
| suggest including a few figures in the supplement of cloudy and shadowy
imagery and presenting a formal analysis in the results that shows readers
how these image artifacts can affect SLAs.

Thank you; this is an entirely reasonable suggestion. The masking of clouds and
shadows was discussed in more detail in Girona-Mata et al (2019) but reviewer 1
also requested that some additional methodological details be included, as the

Google Earth Engine workflow differs slightly, although the approach is the same.



Outcome: We will include a revised version of Figure S2 in the main text to depict
our workflow. We will also provide some examples of the workflow and classified
results in the supplementary information.

. Critically, the number of available images per basin changed after the
Sentinel-2 constellation was launched. The 1999-2009 interval only saw two
satellites (Landsat-5/7) each with repeat orbits of 16-days, whereas the
2009-2019 interval saw five satellites (Landsat-5/7/8 and Sentinel-2A/2B).
The trends presented in the results are important and will likely be highly cited
in the future. But these trends should be presented in the context of the
image availability limitations, particularly given how cloudy these regions can
be. | suggest that the authors include a supplemental table or figure that
shows how many images were used in this analysis across time for each of
the regions. | also think a simple analysis on how the image availability may
affect the calculated trends is warranted.

We agree with the reviewer that this is a major challenge for the trend analysis,
and that we could have been clearer about this in the original manuscript. In
addition to the issues already mentioned by the reviewer, much of Landsat-7
ETM+ observation period was marred by a malfunction of the Scan-Line
Corrector mechanism, further limiting the observable area with this sensor after
2003.

We have produced figures to highlight the image availability, which will be
included in the revised Supplementary Material (Figure R9-R13). All sites show
reduced data availability for the earlier decade compared to the later decade, and
reduced image availability in the summer (due to the monsoon), as has been
found by diverse previous studies. Crucially, though, all sites experience a similar
pattern of monthly data availability, which is important for constraining the
harmonic regressions to a comparable degree, and for reducing any seasonal
bias in the trend analysis.



24K Observation Counts
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Figure R9. Depiction of monthly and annual snowline retrievals at 24K, including
interannual breakdown for different sensors and seasonal breakdown between
decades.

HiddenValley Observation Counts
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Figure R10. Depiction of monthly and annual snowline retrievals at Hidden Valley,
including interannual breakdown for different sensors and seasonal breakdown
between decades.



Langtang Observation Counts
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Figure R11. Depiction of monthly and annual snowline retrievals at Langtang,
including interannual breakdown for different sensors and seasonal breakdown
between decades.

Rolwaling Observation Counts
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Figure R12. Depiction of monthly and annual snowline retrievals at Rolwaling,
including interannual breakdown for different sensors and seasonal breakdown
between decades.



Satopanth Observation Counts
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Figure R13. Depiction of monthly and annual snowline retrievals at Satopanth,
including interannual breakdown for different sensors and seasonal breakdown
between decades.

We also thank the reviewer for the question with regards to the impact of image
availability on our trend derivation. To address this, we performed experiments
using our trend retrieval code with synthetic datasets. We started with a harmonic
snowline variation sampled to a weekly interval, then progressively added trends,
noise, and seasonal and interannual biases in sampling to reproduce the patterns
evident in our observations (Figures R14-18).

As you may recall from the text, our approach differs considerably from a basic
trend approach. It aggregates observations to monthly data, determines the
running mean of homogenized monthly data, then determines a seasonal pattern
of the deviations from the running mean. Basically, this entails a seasonal
decomposition of the observations, with the trend determined from the
seasonally-corrected variations.

Overall, the code does an excellent job of retrieving the underlying trend in the
original data. Importantly, it does much better than a regression through the raw
(not undersampled) signal itself, which is very sensitive to the starting/ending
data. The code generally retrieves the underlying trend to within 2m/a, but



struggles if the random noise is too high (>200m noise between scenes).
examples for different settings are attached.
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Fig R14. Trend retrieval experiment for 6 synthetic datasets. 'True Trend' is the trend built into

the timeseries, 'Full Data Trend' is the regression of the full timeseries (positive bias!),

'Downsampled' is just a regression of the downsampled data, and 'Decomposed' is based on

our approach.



7000

6500

6000

5500

Value

5000

4500

40001

3500

6500

6000

5500

5000

Value

4500

4000

3500

Fig R15. Trend retrieval experiment for 6 synthetic datasets including a 100m random variation.
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timeseries (positive bias!), 'Downsampled' is just a regression of the downsampled data, and
'Decomposed' is based on our approach.
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Fig R16. Trend retrieval experiment for 6 synthetic datasets including a 200m random variation.
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Fig R17. Trend retrieval experiment for 6 synthetic datasets including a 200m random variation
and seasonal reductions in image availability (focused in the summer monsoon). 'True Trend' is
the trend built into the timeseries, 'Full Data Trend' is the regression of the full timeseries
(positive bias!), 'Downsampled' is just a regression of the downsampled data, and 'Decomposed'
is based on our approach.
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Fig R18. Trend retrieval experiment for 6 synthetic datasets including a 200m random variation,
seasonal reductions in image availability (focused in the summer monsoon), and interanual
variations in image availability (increased progressively at L8 and S2 launch years). 'True Trend'
is the trend built into the timeseries, 'Full Data Trend' is the regression of the full timeseries
(positive bias!), 'Downsampled' is just a regression of the downsampled data, and 'Decomposed'
is based on our approach.

Outcome: We will include Discussion of the limitation of image availability in the main text, and
will include depiction of the seasonal/annual available images for each site in the
Supplementary Material. We will also introduce Discussion of the approach’s ability to retrieve
trends from undersampled, noisy data in the main text, and the example synthetic tests in the
Supplementary Material.

3. Throughout the manuscript, | found the language that described the relative location
of the SLAs to be inconsistent and confusing. Terms describing the SLAs included
increasing vs. decreasing, maximum vs. minimum, peak vs. low peak, etc.
Inherently, SLAs are more complicated to discuss than snow covered area, but |
think the manuscript could still be improved. | suggest that the authors stick to one or
two pairs of descriptors and apply them consistently throughout the text.

Thank you for this helpful comment. In the revised manuscript, we will endeavour to
simplify and homogenize our choice of descriptive language. We will, for example, eliminate
‘peak’ and ‘low-peak’ in favor of ‘maximum’ and ‘minimum’.



Minor Comments

Line 10 — As stated in the methods, the algorithm closely follows the Girona-Mata et al.
(2019) algorithm. The primary difference appears to be a few parameters that were
changed and the implementation within Google Earth Engine. To me, “propose an
algorithm” implies originality. Consider using a different word or phrase.

Thank you. This is a fair criticism, and we will adjust this to ‘adapt’.

Lines 11-12 — The study reveals significant uncertainties with this method that are not fully
discussed in terms of the global implementation of this method. | think the uncertainties are
worth mentioning in the abstract.

Thank you, we will adapt the manuscript to explicitly identify the challenges of satellite sensor
compatibility and spatiotemporal inconsistency of observations due to cloud cover, deep
shadow, and satellite status.

Line 13 — Perhaps mention that the “meteorological factors” are defined by climate models.
Thank you, we will make this explicit in the revised manuscript.

Lines 17-19 — The phrasing here is a bit convoluted. Perhaps move the regions earlier in
the phrases. For example, “We suggest that the increase in SLA in Nepal was caused by...’

Thank you, we will adapt the sentences as suggested.

Line 33 —The reference to Lievens et al. (2019) is perhaps a bit misleading. Lievens et al.
(2019) used high resolution Sentinel-1 datasets to derive a coarser resolution snow depth
product. Since the study did not emphasize snow covered area or snowline altitudes, |
suggest removing. Additionally, the study was presented as more of a proof-of-concept and
its accuracy is still highly debated in the literature.

Thank you, we will remove this reference. We agree that the study of Lievens et al (2019) is a
very interesting concept, but is not important in this context.

Line 43 — For cloudy images, SLA may be less biased than snow covered area, but there
can still be significant biases. | suggest revising.

Agreed. We will rephrase this to ‘can be less biased’.

Lines 46-48 — Is there anything that can be learned from these previous SLA studies that
can better inform the interpretation of the results?



Thank you for this comment. We agree that we could have provided a clearer summary of
these studies’ results. Related to the reviewer’s comment about the results from MODIS, we
will expand the snowline derivation and results discussion, considering some of the aspects
below. (McFadden et al., 2011) highlighted the suitability of Landsat-scale multispectral
sensors to identify snowlines on glaciers, and to determine trends in snowlines (their study
area was in the Cordilleras Blanca, so the results themselves are less relevant). (Mernild et
al., 2013) used transient snowlines on glaciers determined from Landsat data to effectively
constrain their seasonal mass balance modelling results for two Arctic glaciers. (KrajCi et
al., 2014) proposed an effective method for statistically determining basin snowlines and
demonstrated its suitability for MODIS data. (Tang et al., 2020) determined end-of-summer
snowlines on glaciers from MODIS, and found increases in the central and eastern
Himalaya, with insignificant trends elsewhere, but did not characterize off glacier transient
snowlines. (Tang et al., 2022) used MODIS to examine snowcover duration and
onset/cessation changes, and highlighted three distinct characteristic patterns of snowcover
in High Mountain Asia, corresponding to distinct climatic domains (westerly, monsoon, and
transitional). Broadly, the results indicated trends towards shorter periods of snowcover,
excepting the western Himalaya, part of eastern Tibet, and part of the eastern Tien Shan.
Girona-Mata et al (2019) identified a new method to determine catchment snowlines from
Landsat data in the Langtang basin of the Himalayas and identified a clear dual-peak
seasonal pattern. Despite the challenge of working with these data, the high-resolution
snowline observations (1000s of values rather than an integrated catchment value) further
enabled the authors to identify the aspect-dependence of seasonal snowlines (with
deviations of several hundred meters) and to elucidate the seasonal meteorological factors
controlling snowline changes. That study proved the value of going beyond MODIS data for
the examination of snow phenology at small scales, but did not examine trends in snowlines
and only examined one site in a very broad region. It is thus essential to develop and apply
similar workflows at a broader set of sites, in order to provide refined insights into snowline
dynamics, as well as for constraint of advanced models (e.g. Buri et al, 2023; 2024). We
note that similar advances are being put forth for identifying snowlines on glaciers (Loibl et
al., 2025).

Line 53 — Given that this paper was submitted in 2024, | think it is misleading to use “past
20 years” when the period of study was 1999-2019.

Thank you, we will adjust this.

Figure 1 — While | think the flow and presentation of the figure is excellent, | find it difficult to
see the subplot labels a—e and the labels for the hypsometry in each of the subplots.

Line 71 — There is no mention of the hypsometry presented in the figure. Also, please state
the source for the elevation data.

Line 73 — Please state the sources for precipitation and air temperature.



Thank you. Referring to the three comments above together: we have reworked this figure
somewhat to make the captions and subpanels clearer, and to reference the source data in
these locations. The revised figure and caption appear below:
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Figure 1 (revised).Figure 1: Upper center figure shows the location of target catchments (from
west to east; Satopanth (SP), Hidden Valley (HV), Langtang (LT), Rolwaling (RW), Parlung
(PL)). Enlarged views of target catchments are shown in surrounding figures; (a) Satopanth
(SP), (b) Hidden Valley (HV), (c) Langtang (LT), (d) Rolwaling (RW), and (e) Parlung (PL).
Catchment outlines and glaciers are indicated by red and light blue polygons, which are sourced
from HydroSHEDS (Lehner and Grill, 2013) and GAMDAM (Sakai, 2019) databases,
respectively. Yellow dots denote representative villages. The background images of (a)-(e) are
composite images created using the Sentinel-2 images acquired between 2017 to 2020.

Line 78 — What is the significance of choosing watershed boundaries that have comparable
size to Girona-Mata et al. (2019)? Perhaps a short clause or sentence is warranted to
explain this significance.

This is a good question. In fact, this is an arbitrary decision, whereas the study of Girona-Mata
et al (2019) was focused on a particular catchment, which therefore defined the size. For our
purposes, it is more important that the catchment sizes be comparable to one another, but it
was practical for us to use the previous study’s approximate domain size.

Line 79 — Please provide an explanation for why TOA was used instead of the surface
reflectance. Most publicly available snow covered or fractional snow covered area products
use surface reflectance. | think the choice to use TOA is defensible, but it would be helpful
for readers to understand the reasoning.



Thank you for your question. The use of surface reflectance products is essential for estimation
of fractional snow-covered area, but robust processing of TOA data to surface reflectance
requires good knowledge or estimation of atmospheric conditions. This can be problematic in
the vicinity of extensive cloud coverage, in some cases introducing extra uncertainty.
Furthermore, operational processing to surface reflectances was at an early stage when we
completed the primary analyses for this work, so SR data archives were poorly populated. We
see that these archives are now (nearly) complete, including the harmonised S-2/Landsat
archive, with very little data dropout between processing levels, so an updated version of the
tool could leverage these data with slightly better radiometric consistency.

For our purposes, though, the objective is simply a discrimination between snow and no-snow
conditions at the pixel level (a binary classification), and we seek to make use of scenes with
considerable cloud contamination. An NDSI threshold is imperfect, but an established, robust
and accessible method for this in a variety of illumination and atmospheric conditions, and is
nearly equally applicable to both TOA and SR values. There is an extensive precedent for NDSI
as a practical method for identifying snow, although the precise threshold values are not always
transferable between settings or even seasonally (e.g. Burns & Nolin, 2014; Dozier, 1989;
Gascoin et al., 2019; Harer et al., 2018). As the evaluation of the snowlines shows (see
response to reviewer 1), the method succeeds to resolve the snowline that an independent
observer would identify with higher resolution data.

Outcome: We will more clearly justify the use of TOA data in the study, and indicate the future
extension to SR data as an opportunity.

Lines 80-81 — Was resolution rescaling performed for either the Landsat or Sentinel-2
datasets to make the datasets more comparable? If so, please state how this was done. If
not, please state why this choice was made.

Thank you for this comment. We did not perform any resolution rescaling, but derived
snowline estimates independently for Sentinel-2 and each Landsat sensor. As is shown in
the performance evaluation, these sensors have a comparable ability to resolve the
snowline seen in higher-resolution data, despite the slight resolution difference. However,
we preserve the resulting SLA measurements distinctly for each sensor.

Lines 82-83 — Given my major comment, | think a supplemental table or figure that shows
how many images for each study site were obtained per year or season would be helpful for
readers to better understand how image availability could bias the results.

We will be happy to include this information in a Figure in the supplementary material.

Line 84 — Perhaps state what the DEM is used for. From the methods, it seems that the
DEM was used for SLA extraction and calculation of the aspect.

Good suggestion, you are correct and we will include this information in the revised text.



Line 109 — Were clouds masked or removed from the images?

Yes, clouds were masked, but this was not clearly stated in the manuscript. We used a
combination of the methods: the cloud mask based on metadata provided by UGUS for
Landsat sensors and by Copernics for Sentinel-2. We will indicate this in the revised
Methods section.

Line 112 — Perhaps a citation for NDSI is warranted.

Yes, we are disappointed that we failed to include a reference to (Dozier, 1989) in the first
manuscript, and will be sure to credit this manuscript in the revised text.

Line 113 — Was 0.45 used as the threshold for both Landsat and Sentinel-2 NDSI products?
As mentioned in line 145, the Landsat satellites and Sentinel-2 satellites have different
radiometric resolutions. How might this choice have influenced the results presented in
Section 4.17?

Based on the revised evaluation of the SLA results at our specific study sites, we will
completely overhaul section 4.1 in the revised manuscript. Our results show very clearly
that for all test scenes, the automatically-derived snowlines closely corresponded in space
and elevation to those derived from manual inspection of higher-resolution satellite images.
Specifically, we determine NMAD values of 8.6m and 10.2m for the comparison against
manually-digitzed snowlines. We do find slightly improved performance with Sentinel-2
data, showing NMAD values of 5.8m and 7.2m as compared to 11.0 m and 12.1 m for
Landsat data, but this performance difference is nearly negligible for the detection of
changes over time.

Nevertheless, the reviewer raises an excellent point, as the spectral responses of Sentinel-2
sensors differ (both in terms of wavelength bandwidth and actual sensor sensitivity) from
Landsat sensors. Strictly-speaking, this is also true for the differences between Landsat
sensors. There has been considerable work to make Landsat and Sentinel-2 data more
comparable to one another have advanced considerably in recent years, and a harmonized
Landsat-Sentinel product is now available (Feng et al., 2024). This would be a better
product for future trend analyses, but did not include all relevant datasets over our study
areas at the time of our analysis. This is relevant because the slight band-specific
divergence between Landsat-8 and Sentinel-2 could lead to differentiation between NDSI
values between sensors, and therefore a different ‘optimal’ threshold to discriminate
between snow and non-snow. In fact, the differentiation of spectral responses varies
regionally and by land cover, which further complicates the issue. Still, past studies have
leveraged the two satellites as near-equivalent for operational snow-cover detection (e.g.
Gascoin et al, 2019), showing similar snowcover detection performance, as in our results
(above). We also note that the sensors agree very closely in terms of the seasonal cycle
that they resolve (as shown by the harmonic regressions). The key difference, from our
investigations, is that Sentinel-2 provides considerably more observations, allowing a better



overall constraint of the snowline elevation seasonal cycle. However, these additional
observations may induce bias for the later period, relative to the early period, so trend
analyses should examine the effect of their inclusion.

Outcome: We will include additional discussion in the text regarding the harmonization of
Landsat and Sentinel-2 datasets for future work, and additional figures in the manuscript
examining the effect of Sentinel-2 data inclusion on our seasonal cycle and interannual
trend results.

Line 116 — Perhaps a citation for improvements in Landsat-8 and Sentinel-2 is warranted.

Both Landsat-8 and Sentinel-2 show dramatic improvements in snow and ice mapping
capabilities as compared to Landsat TM and ETM+ sensors, in terms of radiometric
resolution, sensor stability, and acquisition schedule, but can use very similar snow/ice
mapping algorithms (Paul et al., 2016). We will happily add this reference in the revised
manuscript.

Line 120 — please describe a bit more about this multistage process. What are the key
stages in the process?

This comment refers to the Canny Edge detection, which is a commonly-used filtering
procedure for edge detection based on gradient thresholding. This involves first using a
Gaussian filter to reduce noise in an image. In a second step, the gradient of the pixel
values is computed. There is then an elimination of pixels whose gradient is lower than their
neighbours (ie focusing on the locally-high values to isolate the edge position). Next, a
double-thresholding based on the remaining data values is used to identify strong and weak
(intermediate) edges. Finally, the whole edge detection algorithm eliminates weak edges
that are not connected to strong edges, producing the result. This entire processing is
adaptable, but typically automated within most applications. As Canny Edge Detection is a
very established and accessible method in image processing and computer vision, we do
not think it is necessary to detail all these steps, and instead simplify the description.

Line 166 — Why were scenes from Landsat 5 and 7 not evaluated? | would expect Landsat
7 to be particularly important to evaluate, given the scan line artifacts.

Thank you for raising this question. In the earlier study by Girona-Mata et al (2019), upon
which our method was based, an evaluation of Landsat-7 results (both areas with and
without SLC-error problems) was performed against high-resolution images. Those results
showed very similar performance to that which we determine in this study, although the
evaluation is performed only against Landsat 8 and Sentinel-2 data in this study.



Outcome: We will present this evaluation more clearly, as well as the reporting of the
Girona-Mata results, which we match very closely.

Line 185 — Seasonal snow, by definition, has large variability by season. Thus, this
statement does not seem particularly meaningful to me and seems to minimize the
importance of the inter-satellite variability in snowline detection. Perhaps it is sufficient to
state the inter-satellite variability. This is a common problem for most studies that use
multiple satellite platforms.

Thank you for this comment. Our results show that the satellites actually have nearly the
same ability to retrieve the snowlines, and in fact the seasonal variations retrieved by
different sensors are nearly identical. The major change that we see by including multiple
satellites is the variation in seasonal image availability, particularly after the launch of
Sentinel-2, which retrieves images with the same seasonal pattern and biases, but has a
much higher likelihood of successful acquisition for any given month than any of the
Landsat sensors. We can add some of this discussion to the manuscript.

Lines 197-199 — The use of the word “peak” is a bit confusing. | understand that the “peak”
refers to the period when snow covered area is at its greatest extent/SLA is at its lowest
elevation, but this is not intuitive when looking at the plots on Figure 2, where peak
conventionally refers to the time period when SLA is at its highest elevation. Please see
major comments for more details.

Thank you for this comment. We will revise and homogenize our language to describe the
snowline variability, in response to your main comment.

Figure 2 — | am struck by the variability of the derived snow line altitude within the months.
For example, the range in January for Figure 2d is nearly 2000 m. | think that Hammond et
al. (2018) may be worth reviewing and discussing — they suggest an average snowline of
~3000 m for these catchments. Their methods and definition of snowline also differs from
yours, but may be worth a brief mention/discussion. In these study regions, Hammond et al.
(2018) seems to suggest relatively low snow persistence, so | am wondering if much of the
variability in these derived snowlines can be attributed to snow storms that deposit snow at
lower elevations but then melt out shortly after.

Thank you for the comments. The study of (Hammond et al., 2018) is an excellent point of
comparison. We believe that the reviewer may have misunderstood their continental
average snowlines (Figure 3), however, which correspond to the lower limit of observed
snow (given in their study by a snow persistence or frequency of coverage of 7%). In fact, in
their Figure 2, it is clear that the approximate average snowline, indicated by a 50% snow
persistence (Krajci et al, 2014) for these catchments (located between 28N and 31N), is
approximately 4500-5500m. Indeed, that study suggests that snow is occasionally evident
as low as 3000m, and more often (20-30% persistence) at 4000m elevation (values for
31N). We absolutely agree that the strong variability of snowlines in the winter months



(although please note that this plot combines the full 20 years) is due to occasional storms
that deposit relatively light snow to very low elevations, which then ablate to the seasonal
freezing line. The cumulative likelihood of such a storm having occurred increases
throughout the winter, such that the seasonal snowline eventually converges to
approximately the freezing line before the monsoon. These processes were discussed in
Girona-Mata et al, 2019 for the Langtang catchment, and we expect that similar overall
seasonal dynamics play out in the five study catchments, as they are all somewhat
influenced by the monsoon. We note, as well, than Hammond also points at increased snow
persistence in the Indian Himalaya (Satopanth site). However, while the Hammond et al
(2019) study provides a good general assessment of snowcover persistence and change
(and at the global scale), our study provides much more precise detail for the study
catchments by identifying the dominant seasonal patterns with high-precision data. We also
highlight that MODIS snowcover seasonal patterns can be problematic due to the large
pixel sizes (e.g. Figure S6) for studies of smaller domains.

Outcome: We have adapted some of this discussion into the main text.

Line 217 — Please see major comments. Could this trend be influenced by image
availability?

Thank you, we have replied to this following your main comment.
Line 224 — | did not see these trends presented in any of the tables or Table S1.

Thank you for highlighting this surprising oversight, which we have now rectified by
including the regression information directly into Figure 6.

Figure 4f — | presume the rose diagram intervals are by 25%?
These are 45 degree increments; we will indicate this in the figure caption.

Line 242 — Per major comments, it would be helpful to share some metric for readers to
better understand how image availability may be at play here.

Thank you, we have replied to this following your main comment.

Line 249 — the use of “lowering” and “decrease” to describe SLA in the same sentence is a
bit confusing. Please see major comments.

Thank you for this comment. We will revise and homogenize our language to describe the
snowline variability, in response to your main comment.

Lines 249-262 — Much of this paragraph reads as discussion rather than results to me,
mostly due to the connection to the snow/rain transition zone. In particular, the snow/rain
transition zone was not defined in this study and its discussion here seems a bit



unsupported to me. Further, the monsoon period is when the least number of images were
available (figure 2), thus any firm claims about patterns during the monsoon season seem
difficult to make without including a brief discussion of the uncertainties.

Thank you for your comment. We have relocated this discussion and make a more cautious
discussion to interpret the results.

Line 274 — Since air temperature is not statistically significant, does this mean that the air
temperatures tend to be below 0°C or are they poorly modeled?

Referring to the case of Satopanth glacier, as this is simply a statistical correlation. As can
be seen in Figure 6, temperatures are below zero, but they are below zero at all sites; this is
simply a temperature index from the reanalysis data, representing the variations of
temperature over the study period, rather than the true temperature itself. Indeed, as the
catchments span several 1000m elevation, one would expect positive and negative
temperatures somewhere in each catchment at nearly all points in the study period.

The lack of correlation could be due to poor reanalysis modelling or because the 12-month
temperature changes are not the major driver for snowline change. Without a detailed
investigation using in-situ data, it is not technically possible to disentangle these aspects.
We can make an interpretation based on the reanalysis data, but there is certainly the
possibility that the reanalysis data are wrong. As Satopanth is susceptible to winter westerly
precipitation (unlike the other study sites), and past studies have highlighted a stronger
advection and deposition of snow as a cause of the Karakoram Anomaly (references in
(Farinotti et al., 2020)), leading also to increased glacier albedo over this period (Ren et al.,
2024), we expect that the changes in snowlines over this period are attributable to changes
in solid precipitation, rather than temperature. The statistics support this interpretation, with
the important caveat about reanalysis data.

Figure 6 — | suggest keeping consistent y-axes for each of the variables. For example, it is
difficult to compare solar radiation across the different sites.

The purpose of the figure is not to compare between sites, but to visualize and substantiate
the correlations of distinct variables with the snowline altitudes. Changing the y-axes to the
same range obscures this. We have therefore retained the original axes (which have the
same scale) but drawn readers’ attention to this in the figure caption.

Lines 294-295 — Given the relatively low number of images obtained during the monsoon
period, this statement seems difficult to support.

We agree with the reviewer that there are relatively fewer images available during the
monsoon, and we will be careful not to overinterpret the dynamics during the period most
affected by cloud cover. However, for all sites, all observations during this period are in the
top percentiles of observed snowlines (contrasting with the large spread of values observed



in all other seasons, nearly all of which are also below the monsoon values). Consequently
we have very high confidence that the maximum SLA is consistently reached during the
monsoon. For the interpretations, we will make it clearer that we rely on the interpretation of
Girona-Mata et al (2019) as applying to all five sites during this period.

Line 302 — what does it mean for SLA to have a low peak — the rest of the sentence seems
to indicate that this was when the elevation line was lowest? But this is a confusing way to
describe it.

We appreciate that this was confusing nomenclature, and have adjusted the text to
‘seasonal minimum’.

Line 304 — I'm not sure that the solar radiation from Figure 5a or Figure 6a supports this
statement. Even Figure 4f seems to suggest approximately equal distribution between N
and S aspects and NE and SE aspects.

This statement is not related to Figure 5a or 6a, both of which are indicative of the
multiannual or decadal changes in meteorology and SLA, but does relate to Figure 4, where
there is, indeed, very little aspect differentiation of SLA for Satopanth, as compared to all
other sites. This is due to the heavier winter snowfalls, which deposit more snow than can
be easily ablated by shortwave radiation. We appreciate that this was not clear from the
sentence and have revised it accordingly.

Line 305-306 — Please provide a citation for the westerly winds and the snow storms. Many
readers are likely not as familiar with this area as the authors and could benefit from the
citations.

The studies of (Cannon et al., 2015; Maussion et al., 2014) are a very good introduction to
these dynamics, and we will be happy to refer to them in the text.

Line 313 — “Therefore” makes it seem as though this is a continuation of the previous
sentence discussing the Satopanth Catchment, but | am not sure that another paragraph is
warranted.

Thank you, we will modify this in the revision.

Line 333 — What does declining SLA mean? Does it mean that the SLA is moving up or
down in elevation?

Per your main comment, we have homogenized and simplified our terminology around SLA
changes.

Lines 347-348 — | think this statement deserves a bit more analysis due to the cloudy nature
of HMA. Please see major comments.



As is highlighted in the new evaluation section and results, this was the worst-performing
scene out of 15 test scenes, and we think it exemplifies the worst case scenario. We are
happy to add some discussion of this challenge to the text.

This particular comparison is made exceptionally difficult because of the cloud cover, and
(unlike the other evaluation scenes) it is readily apparent that the snow-free rock outcrops
identified automatically had, only 1 day prior, been covered by a thin veneer of snow. The
distinct scene extents also pose a problem for this site, and are exacerbated by the variable
cloud cover. Despite these difficulties, the automatic SLAs showed median absolute
deviations of 82m and 16m relative to the SLA derived by operator 1 and 2, respectively.
The relatively large apparent disagreement in catchment-wide values is thus due to different
undersampling problems with both the Landsat and PlanetScope scene. The Landsat scene
has much of the lower-bound of snowcover obscured by clouds, rendering the
normally-negligible rock outcrops to significantly impact the statistical snowline altitude. The
PlanetScope scene, by contrast, misses much less of the lower-bound snowline due to
clouds (but is still somewhat affected) but does not cover the entire catchment, including
some of the upper rock outcrops which the automatic method detects as a snowline from
the Landsat image. We highlight that this is a worst-case scenario, as the scenes exhibit
relatively few clouds, as controlled by our scene selection filter, yet the clouds occur directly
over the snowline. We have some ideas to mitigate this in future analyses, but note that this
is a severe minority of scenes.

Line 351 — But the study does not cover the globe, only a portion of HMA. Surely this would
be an issue in almost every mountainous region. Thus, would each region need to have a
unique elevation masking parameter?

To use this approach for the entire region or globally, yes, a solution would be needed for
this particular challenge. One option would be to use a different definition of the statistical
snowline, following e.g. Krajci et al (2014) as the lowest elevation with a 50% snowcover
likelihood. There are difficulties with this approach, as well (e.g. a bimodal snowline
elevation distribution) but this eliminates the challenge of high altitude rock outcrops. Other
options to better homogenize data would be to leverage temporal stacking of snowcover
maps (say, with a 2-week window, similar to Ren et al (2024)), or a data fusion approach.

Lines 354-355 — The usefulness of this technique is also dependent on image availability,
which has changed markedly with time and is affected by cloud cover.

Indeed, and we will indicate this explicitly in the text, including a depiction of the number of
images available per site over time.

Line 360 — The description of MODIS SLAs vs. derived SLAs should first be presented in
the results. Please include a description of the MODIS SLA calculation and comparison to
derived SLAs in the Methods.



We rather feel that this is simply a point of discussion and interest with regards to the
strengths and weaknesses of our method as compared to that derived from coarser data
products. However, we agree that a fuller description of the text here should be included.
We will therefore revise this text.

Line 375 — This is only the second mention of the term, “arid”. Please describe for readers
why arid regions are important in your study. i.e., Are the study areas considered arid?

We have rephrased this sentence to indicate that it would be worth extending these
investigations to regions with different climate dynamics in terms of seasonality and quantity
of precipitation.

Lines 388-392 — I'd like to see a few conclusions drawn on the limitations of the technique.
As presented, the conclusions are overtly positive, but the authors identified several key
uncertainties in the methods that should be considered before applying this algorithm to
other regions.

Thank you for your comment. We agree that we could be more explicit about the limitations
of this method, and will adapt the following text into the discussion:

There are three major limitations of importance, while there are some additional challenges
that have relatively little effect on our results. A major consideration is image availability,
which is improving due to the increased number of operational imagers, but could have a
strong impact on both the characterization of seasonal snow dynamics, especially for earlier
periods, as well as the robust detection of a trend. A second major limitation is the
prevalence of cloud cover, which further limits the usable area of affected images, and can,
in some cases, lead to biases in the detected snowline due to undersampling. This can be
mitigated with more stringent cloud coverage criteria, but will further reduce image
availability for severely cloud-affected regions. The combination of multiple datasets with
differing footprints, compounded by variable cloud cover, can lead scenes with short
temporal baselines to appear to differ in snowline due to spatial sampling biases (Figure
S5). Our cloud masking was largely successful for the evaluation scenes, but is likely to fail
in some situations, leading to false snowline detections. Furthermore, this study used
top-of-atmosphere radiances from multiple sensors to determine snowcover based on a
fixed NDSI threshold; the algorithm could, in the future, be applied to homogenized surface
reflectances with a fractional snow cover algorithm (Rittger et al., 2021). However, our tests
showed close correspondence with independent evaluation datasets, and the previous
study of Girona-Mata et al (2019) showed that a similar method produced reliable snow
cover at the Langtang site. Further adaptations to the method, to enable application more
broadly, could include temporal stacking, data fusion, or a different statistical definition of
the snowline, in order to further control for spatial sampling challenges.

Figure S3 — What do the vertical lines represent? Are those the basin-wide average? If so,
please include in legend and discuss in caption.



These lines correspond to the median value (the 50th centile from the cdf). However, this
figure will be removed from the manuscript as we have revised our evaluation of results.

Technical Corrections
Line 17 — Replace “while” with “whereas”.
Done, thank you.

Line 18 — Per the previous phrase in the sentence, “the decrease in SLA” is singular. Please
replace “were” with “was”.

Correct, thank you.

Line 23 — delete “(as Heading 1)”.

Done, thank you.

Line 73 — | believe this should be Table 1, not “Table 2.
Corrected, thank you.

Line 150 — “t-tests” instead of “T-tests™?

Corrected, thank you.

Line 200-201 — Having a colon and a semi-colon in the same sentence seems
unnecessarily complex. Consider revising to two sentences.

Thank you, we will split this sentence into two.

Line 209 — “snow line” is used here. Previously, “snowline”. Please check for consistency.
We will ensure that this is consistent throughout the revised manuscript.

Line 228 — “aspect dependence” instead of “SLA dependence”?

Yes, the suggested phrase is what was intended, and this will be adopted in the revised
manuscript.

Line 266 — Replace with “first half (1999-2009 in blue) and the second half (2010-2019 in
red) of the study period.”?

Corrected, thank you.

Line 305 — SLA has already been defined.



Corrected, thank you.

Line 307 — “...with more snow cover on the west-facing...” As it currently reads, “snow” is
arbitrary and could imply snow mass, which was not studied here.

Good point, we will indicate ‘snow cover’.

Line 320 — Replace “nearby regions” with “study catchments”? Nearby regions is fairly
arbitrary.

Thank you, we will take your suggestion.
Line 384 — “HMA”, not “HAM”? Also, HMA is previously defined on line 24.
Corrected, thank you.

Lines 400-401 — This is a link to the Landsat portion of the GEE catalogue. Perhaps update
to the more inclusive reference, or provide links for each of the HydroSHEDS data, Landsat
data, and AW3D30.

Great point and suggestion. We now provide...

Figure S4 — “Monsoon” instead of “Mnsoon” for figure labels? Also why are no data plotted
for Sentinel-2 in Satopanth and Langtang in pre-monsoon?
We will correct this plot, thank you.
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