Response to Reviewer 1:

I am very grateful to your comments for the manuscript. Thank you for your advice.
All your suggestions are very important. They have important guiding significance for
our paper and our research work. We have revised the manuscript according to your
comments. The response to each revision is listed as following:

General Comment

The manuscript entitled "Analysis of Borehole Strain Anomalies Before the 2017
Jiuzhaigou Ms7.0 Earthquake Based on Graph Neural Network" presents the results
of analyzing strain meter data from four sites prior to a large magnitude earthquake
aiming to identify pre-seismic signal using Neural network technique.

My general feeling reading the manuscript is that is well organized, interesting work
providing some new useful information of exploiting graph neural network approach
to estimate/define pre-seismic signal on strain time series. I think that the manuscript
require some small modifications and some of its parts to be improved in order to be
more explanatory and understandable but in any case, it is considered, in my opinion,
as a nice work. However, not being very familiar with the neural networks I would
like to see some more detail information concerning the analysis in some of the
manuscript paragraphs.

As a first remark I would like to mention that although I am not a native English
person, in several cases the text has to be reformatted, to be "easier" for the reader.

Another general comment that I have is that the text and the processing focus on the
pre-seismic period and ignores completely the post seismic period. Of course, it is
well explained by the authors, that the manuscript examines the possible anomalies on
the preparatory stage of a strong earthquake, but since the earthquake occurred in
2017, and a long time passed since this event, it would be interesting to see if the
area, and the strain data from the same stations, shows any similar behavior as
during the pre-seismic period. In other words, as a validation of this processing it
could be interesting to examine the years after the earthquake if there was another
period that these 4 stations show anomalous days (as in Figure 9) without the
occurrence of an earthquake. The authors used data only 1 year before the
earthquake ... using longer period is it possible that there is and another "anomalous"
"S" shape period? Of course I can understand that the authors focus on the technique
as a tool for extracting pre-seismic signals of an earthquake, but I would like to see
some comment on this issue.

Response:

Thanks for your suggestion.

(1) Thank you for pointing out that the text may need reformatting in certain areas.
We understand the importance of clear and accessible language for the reader. We will
carefully review and revise the manuscript to ensure that the content is more fluid and



easier to understand. Additionally, we will seek the assistance of a native English
speaker to help polish the language and improve the overall readability and accuracy
of the text.

(2) First of all, I apologize for the limitation that our data only extends up to August
2017, making it impossible to verify whether similar anomalies occurred in the years
following the earthquake. However, reviewers can refer to our previously published
article, Pre-earthquake Anomaly Extraction from Borehole Strain Data Based on
Machine Learning (Chi et al., 2023). In that study, we analyzed data from the Guza
station (one of the stations studied in this manuscript) in relation to the 2008
Wenchuan Ms 8.0 earthquake and the 2013 Lushan Ms 7.0 earthquake. We found that
a distinct "anomalous" S-shaped period appeared before and after both of these large
earthquakes, as shown in Figure 1A. To further investigate whether similar
"anomalous" S-shaped periods occurred during other timeframes, we conducted a
cumulative analysis of anomalies from 2009 to 2011. The results, shown in Figure 1B,
indicate that no "anomalous" S-shaped period was observed during this time.
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Figure 1: Accumulated results of the abnormal days of borehole strain data at Guza station from 2007 to
2013 (Chi et al., 2019).

Based on the above analysis, we believe that the "anomalous" S-shaped period
identified in the manuscript before the earthquake is reasonable. Furthermore, the
method we employed demonstrates its effectiveness as a tool for extracting
pre-seismic anomaly signals.

Some more detail comments:
Comment 1
Line 16 "pro-seismic", I think that is more common the use of the term "pre-seismic".
Response:
Thanks for your suggestion.
Modified "pro-seismic". It is modified to "pre-seismic".

Comment 2
Line 19 "...such as volcanic eruptions..." I am not so sure that earthquakes trigger
volcanic eruptions, if so please add a reference.



Response:

Thanks for your suggestion.
Modified "...such as volcanic eruptions...". It is modified to
eruptions (Nishimura, 2017)...".
Nishimura used the data of large earthquakes and volcanic eruptions with a global
magnitude of 7.5 or above as the research object, and analyzed the cumulative
quantitative changes of volcanic eruptions at different distances within 5 years before
and after these large earthquakes. Their results show that within 5 years after a major
earthquake, the probability of volcanic eruptions within 200 km from the epicenter
increases by about 50 % (Nishimura, 2017).

"

...such as volcanic

Comment 3

Line 41 "...the use of a GNN can mine additional hidden information between
nodes..." this is a very general statement, please provide some examples.
Response:

Thanks for your suggestion.

In order to better understand "using GNN to mine additional hidden information
between nodes", we give an example of a traffic flow prediction task.

Add this example to line 43 of the original manuscript: For example, in the traffic
flow prediction task, nodes usually represent traffic monitoring points, and node
features can be divided into explicit and implicit features. Explicit features are data
that can be directly observed, e.g., the speed of vehicles passing through a node, while
implicit features are information indirectly obtained through model learning or data
mining methods, e.g., the congestion pattern of a specific node at different times of
the day is found by analysing historical and real-time data (Chen et al., 2023).

Comment 4
Lines 49-51. Please describe a bit more analytical the meaning of a "node" how a
node is defined? What is its characteristics and/or its physical meaning.
Response:

Thanks for your suggestion.
A definition of "node" has been added to line 49 of the original manuscript: For the
graphical data structure consisting of a network of seismic stations, we take the
monitoring stations at different locations as nodes, and the data directly observed by
each station as explicit features. By analysing the historical observation data of the
stations and the distances between the stations, we can mine the implicit features such
as the response patterns of different stations in different seismic events, the correlation
between stations, etc.

Comment 5

Figure 1. It would be nice to be added a map of the broad area (as inset) indicating the
position of your area so to be easier for readers not familiar with the area to orientate
themselves.

Response:



Thanks for your suggestion.
We have modified Figure 1 in the original manuscript by adding a map of the broad
area (as inset) and labelling the location of the study area.
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Figure 2: Topographic map of epicentre of Jiuzhaigou earthquake. Blue star indicates epicentre; red line

indicates fault zone. This map was generated by GMT software, v. 6.0.0rcS (https://gmt-china.org/).

Comment 6
Line 146 ".. preprocessing of the surface strain S." Why the authors choose only the
Sa. and not Si3 or S24? Please explain. A comment on this issue (selection) could be
added maybe in the end of Section 3.1 line 88.
Response:

Thanks for your suggestion.
In order to verify that our results are also applicable to Si3 or Sz, we selected the
shear strain Sy4 data from four stations, namely, Guza, Xiaomiao, Luzhou and
Zhaotong, and analysed them using the same method. The anomalous day
accumulation results of shear strain Sz4 data from the four stations are shown in Fig.
3.
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Figure 3: Fitting results for the accumulation of anomalous days of S:4 component at four stations. Red
dotted line represents time of earthquake; different types of dots indicate anomalous days at stations; curves

of different colours represent results of S-shaped fit of anomalous accumulation of stations.
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Figure 4: Fitting results for the accumulation of anomalous days of S. component at four stations. Red
dotted line represents time of earthquake; different types of dots indicate anomalous days at stations; curves

of different colours represent results of S-shaped fit of anomalous accumulation of stations.

We have processed the data of shear strain Sys by using the same method and the
results are shown in Fig. 3. The processing results of the surface strain S. are given in
Fig. 4. We compared Fig. 3 with Fig. 4 and found that the processing results of shear
strain Sz4 and surface strain S, were very similar, and both showed similar acceleration
scenarios at the same time period before the earthquake.

Qiu et al analyzed the borehole strain data of Guza station before Lushan Ms7.0
earthquake. It was found that due to the large fluctuation of the Dadu River flow, the
borehole strain observation curve also showed reverse large fluctuation synchronously.
However, for the observation components in different directions, the fluctuation
amplitude of the borehole strain observation curve is quite different, so the shear
strain converted by strain may not be able to fully receive the abnormal signal of all
components (Qiu et al., 2015). According to Eq. (2) in the manuscript, compared with
the shear strain Szs, the surface strain S, is more representative of the four components
measured by the YRY-4 borehole strain gauge, and we believe that the surface strain
S. represents the sum of the anomalous results of the four components, so we use the
characteristics of the data of the surface strain S, as the object of study in this paper.
An explanation was added at the end of Section 3.1, line 88, of the original
manuscript: Compared with shear strain S;3, the surface strain S, is more
representative of the four components measured by the YRY-4 borehole strain gauge,
so the data characteristics of surface strain S, are used in this paper as the object of
study.

Comment 7
Figure 4. It would be helpful the figure caption to be more analytic. Especially as



what it is presented in the final diagram.
Response:
Thanks for your suggestion.
We have revised Figure 4 in the original manuscript to provide a more detailed
description of the information in Figure 4.
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Figure 5: Plot of decomposition results of S, data using VMD method at Linxia station.

Comment 8
Sections 4.2.1 and 4.25.2 1 would like (personally) to see some more detail
description of this part. Actually, I would like to be more explicable and defines

maybe with examples) some of the terms used on it ... "layers", "gatin
y p y gating
mechanisms" etc.

Response:

Thanks for your suggestion.

Added a more detailed explanation and definition of "layer" in line 163 of the original
manuscript: In a neural network, a "layer" is a basic building block, and each layer
contains a set of neurons, which accepts input data, performs specific computational
operations, and then passes the results to the next layer. Different types of layers have
specific functions and characteristics, and by combining and configuring different
layers, powerful and flexible neural network models can be constructed to achieve a
variety of complex tasks.

Added a more detailed explanation and definition of "gating mechanism" in line 180
of the original manuscript: Gating mechanism is an important technique in neural
networks, and the core idea is to control the flow of information dynamically, so as to
efficiently capture and utilise long-dependent information. The gating mechanism
controls the flow of information through the design of a "gate", which is usually a
neural network layer with an activation function, whose output value is located
between 0 and 1, and decides what information should be "remembered" and what



information should be " forgotten " by the output value.

Comment 9
Equation 9. Define the parameter "T"
Response:
Thanks for your suggestion.
The parameter "T" is the output of the gated TCN module, and we have added the
definition of the parameter "T" to line 187 of the original manuscript.

Comment 10
Line 237 "...75% of the samples and labels." Please define what are the samples and
what are the labels.
Response:

Thanks for your suggestion.
A more detailed explanation and definition of "samples and labels" has been added to
line 236 of the original manuscript: the model learns patterns and relationships in the
data through samples and labels in the training set; the validation set is used to
evaluate the performance of the model in order to adjust and optimise the model to get
the best configuration and hyperparameters of the model. Our samples are the
pre-processed and sliced data segments, which have a length of 60 and represent one
hour of observations, and each sample contains strain data from four different stations
within one hour. Our labels refer to the target values corresponding to each sample,
which represent the strain data segments after one time step of the sample, and each
label also contains strain data from 4 different stations within 1 hour.

Comment 11
Section 5.2 and Figure 9. Concerning the results presented in this section, could the
authors comment on why the Haiyuan station shows this strong S shape anomalies,
with many points, while the other stations (Linxia and Guza), although it appear that
there are closer to the epicenter do not reveal a similar "strong" anomaly.
Response:

Thanks for your suggestion.
We have also noticed this phenomenon you mentioned. In earthquake precursor
studies, the reasons for the phenomenon that stations closer to the epicentre receive
fewer anomalous signals than stations farther away may be:
(1) Differences in geological structures: The propagation characteristics of seismic
waves in different geological structures are different. (Yu et al., 2021) calculated the
daily ApNe value of the corrected strain from January 1,2011 to January 1,2014,
constructed the threshold interval according to the ApNe mean and 2 times the
standard deviation, and accumulated the results exceeding the threshold. Their
experiments selected six stations : GZ, XM, ZT, YS, RH and TC. Among them, GZ
station is the closest to the epicenter, XM station is the second from the epicenter, and
ZT station is the third from the epicenter. The anomalous accumulation results of
ApNe values of surface strains at stations GZ, XM and ZT are given in the figure



below, from which it can be seen that the number of accumulations at the more distant
station ZT is more than that at station XM, and the number of accumulations at station
XM is more than that at station GZ, and the fitting results of the anomalous
accumulations of the three stations all show a strong S-shape anomaly. We believe
that it may be due to the fact that the geology near the epicenter may be relatively
hard or uniform, making it difficult for seismic precursor signals to be significantly
transmitted or captured by stations. The geological conditions of stations far away
may be more conducive to the propagation or amplification of signals, which makes it
easier to receive abnormal signals.
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Figure 6: Accumulation of ApNe anomalies at the GZ, XM, and ZT stations. The solid dots are the
cumulative ApNe anomaly counts from 2011-2014. The black, pink, and blue lines are the sigmoidal fits at
the GZ, XM, and ZT stations. The green line is the sigmoidal fit after the earthquake at the GZ station. The
vertical red line is the day of the 2013 Lushan earthquake.

(2) Locality of earthquake precursors : Some earthquake precursors (such as gas
release, electromagnetic anomalies, etc.) have strong locality, which may not be
significant near the epicenter, but more obvious at specific locations in the periphery
of the epicenter. Kumar et al., (2021) analyzed ionospheric anomalies associated with
the 2019 Indonesia earthquake (Mw=7.4) using GPS and VLF measurements from
multiple stations. They found that the disturbance observed at the place closest to the
epicenter is the smallest, and they believe that the ionospheric disturbance induced by
the earthquake depends not only on the distance between the observation and the
epicenter, but also on the direction of the observation point relative to the epicenter.
This may be due to local crustal fissures, stress concentration areas or other geological
features.

(3) Non-linear propagation of signals: Seismic precursor signals may be affected by a
variety of factors during propagation, such as wave scattering, attenuation, and
reflections and refractions between different strata. These non-linear propagation
phenomena may lead to a weakening or complication of the signal near the epicentre,
thus making it difficult for close stations to receive it effectively.

(4) Effect of depth of source and type of earthquake: The depth of the source and the
type of earthquake also affect the distribution of precursor signals. Precursor signals
from deep earthquakes may be more difficult to capture at shallow stations near the
epicentre, and different types of earthquakes (e.g., strike-slip, backlash, etc.) may also



result in different propagation characteristics of the precursor signals.

So it is reasonable that this phenomenon occurs. In this paper, we pay more attention
to the similarity of the anomalies received by each station for the same earthquake
before the earthquake, and we will further explore the reasons for this phenomenon in
the next study.

Response to Reviewer 2:

I am very grateful to your comments for the manuscript. Thank you for your advice.
All your suggestions are very important. They have important guiding significance for
our paper and our research work. We have revised the manuscript according to your
comments. The response to each revision is listed as following:

Comment 1
While their manuscript provides a comprehensive overview of the techniques used,
such as Variational Mode Decomposition (VMD) and Graph Wavenet Neural Network
(GWN), it lacks a detailed justification for the choice of these specific methods over
more traditional approaches. The manuscript would benefit from a clearer explanation
of why these complex techniques were chosen and what specific advantages they
offer when analysing borehole strain data, especially compared to simpler methods
such as band filtering or traditional statistical models. For example, the use of VMD
could be replaced by simpler signal processing methods, and the rationale for using a
neural network for prediction, which could be achieved using conventional signal
processing methods, is not convincingly presented.
Response:

Thanks for your suggestion.
Borehole strain observation is the observation of crustal strain by installing strain
sensors in boreholes, which has the advantages of high accuracy, wide bandwidth and
strong anti-interference ability, and its observation data are widely used in the
research of earthquake precursors and other aspects. Seismic signal is a typical
non-stationary, non-linear time series data. Due to the complexity of the earth's
structure, seismic signals are accompanied by various kinds of noise at the stages of
generation, propagation and acquisition, and the band difference between the weak
useful signals and the noise from the deep underground is very small and difficult to
distinguish, and the extraction of effective microseismic signals from contaminated
microseismic signals is a prerequisite for the subsequent analyses and researches,
which will affect the final analysis of the whole seismic event.
There are many processing methods for seismic signals, including many common and
effective methods. (Ma et al., 2011) used digital filtering techniques to study the body
strain and barometric pressure data from Yixian station from 2002 to 2007, removed
the long-period components in the raw data, and analysed the high-frequency spectral
characteristics of the body strain with the fast Fourier transform. (Deng et al., 2015)



used the Fourier transform to generate a spectral decomposition method for
high-resolution seismic images based on information such as the frequency-amplitude
spectrum of the signal, which was applied in the extraction of weak signals from deep
reflection earthquakes. However, the Fourier transform is insufficient for non-smooth
signals, and the Fourier transform-based filtering method for non-smooth signals will
have problems such as signal distortion. (Zhang, 2018) used continuous wavelet
transform to analyse the time-frequency analysis of the strain data of the borehole at
Guza, extracted the strain anomalies in the time-frequency spectra, and analysed the
correlation between the strain anomalies and the anomalies of the seismic precursors.
However, the wavelet transform has the problems of wavelet base selection,
frequency domain overlap and threshold uncertainty, which is not suitable for
analysing nonlinear smooth signals whose frequency varies with time, and is also not
suitable for local analysis of signals. Unlike wavelet decomposition, EMD can
represent the signal as an extension of basis functions which come directly from the
signal itself, without defining the wavelet bases by itself, and the decomposition done
is based on the intrinsic characteristics of the signal. The EMD method can smooth a
non-smooth signal to obtain a series of components with different frequencies (IMFs),
and by such a method a non-smooth, non-linear signal can be decomposition into
smooth signals with different time scales (Lei et al., 2022). The Hilbert-Huang
transform (HHT), which consists of EMD and Hibert transform, is an adaptive signal
processing method that performs modal decomposition based on the characteristics of
the data itself, and it has clear physical significance for the processing of nonlinear
smooth signals. (Yang et al., 2014) used HHT to analyse the marginal spectral features
of the unexplained large tensile jumps recorded in the borehole body strain at the
Qianling seismic station in February-June 2012, and judged that the main cause of this
strain anomaly was a power supply problem. However, EMD also has drawbacks,
such as the presence of mode aliasing, endpoint effects, and difficulty in determining
the stopping conditions. In order to overcome these drawbacks, Konstantin
Dragomiretskiy and Dominique Zosso proposed VMD(Dragomiretskiy and Zosso,
2014). VMD is a theoretically well-founded technique and is more resistant to
sampling and noise compared to EMD. Compared with the recursive decomposition
mode of EMD, VMD turns the signal decomposition into a variational decomposition
mode, which is in essence a set of multiple adaptive Wiener filters, VMD can achieve
adaptive segmentation of each component in the signal frequency domain, and is able
to effectively overcome the pattern aliasing phenomenon generated in EMD
decomposition, with stronger noise robustness and weaker endpoint effects than EMD.
Therefore, the VMD method is suitable for analysing nonlinear nonsmooth signals
such as step, glitch and burr. The VMD method has been widely used in fields such as
geosciences, and the results of processing seismic signals are significantly better than
the other signal processing methods mentioned above(Zhang et al., 2022; Rao et al.,
2024; Liu et al., 2016; Li et al., 2018).

Deep learning is a branch of machine learning, which is a machine learning algorithm
based on neural networks. Unlike traditional time-series analysis methods, deep
learning can introduce more external information and is not limited to extrapolating



data based on historical trends and seasonality. Deep learning can automatically learn
features and patterns from raw data, and is able to learn multiple layers of abstract
features. By increasing the number of layers in the neural network, more complex and
abstract features can be learnt, leading to more accurate classification and prediction.
For the GWN graph neural network we used, the use of dilated causal convolutional
layers avoids the limitation of needing a large number of layers to process long time
sequences, enabling the model to effectively capture the dependencies of long time
sequences; through the adjacency matrix, it is able to learn the hidden spatial
dependencies through node embeddings; in contrast to recurrent neural network
(RNN)-based models, the GWN convolutional network architecture allows for
parallel computation , which solves the gradient vanishing/exploding problem of
RNN when dealing with long time sequences.

Modification:

A new paragraph was added to line 37 of the original manuscript: “There are many
processing methods for seismic signals, including many common and effective
methods. (Ma et al., 2011) used digital filtering techniques to study the body strain
and barometric pressure data from Yixian station from 2002 to 2007, removed the
long-period components in the raw data, and analysed the high-frequency spectral
characteristics of the body strain with the fast Fourier transform. (Deng et al., 2015)
used the Fourier transform to generate a spectral decomposition method for
high-resolution seismic images based on the frequency-amplitude spectrum of the
signal, which was applied in the extraction of weak signals from deep reflection
earthquakes. (Zhang, 2018) used the continuous wavelet transform method to analyse
the time-frequency analysis of the borehole strain data from Guza Station, extracted
the strain anomalies in the time-frequency spectrum, and analysed the correlation
between the strain anomalies and the seismic precursor anomalies. EMD method can
smooth the non-smooth signals to obtain a series of components with different
frequencies (IMF), by which the non-smooth, non-linear signals can be decomposed
into smooth signals with different time scales (Lei et al., 2022). (Yang et al., 2014)
used HHT to analyse the marginal spectral features of the unexplained large tensile
jumps recorded in the borehole body strain at the Qianling seismic station in
February-June 2012, and judged that the main cause of this strain anomaly was a
power supply problem. However, EMD suffers from mode aliasing phenomenon,
endpoint effect, and difficulty in determining the stopping condition. Compared with
the recursive decomposition mode of EMD, VMD transforms the signal
decomposition into a variational decomposition mode, which is essentially a set of
multiple adaptive Wiener filters, and VMD can realise the adaptive segmentation of
each component in the frequency domain of the signal, which can effectively
overcome the mode aliasing phenomenon generated by EMD decomposition, and has
a stronger noise robustness and a weaker end-point effect than EMD. Therefore, the
VMD method is suitable for analysing nonlinear nonsmooth signals such as step,
jumps and burr. The VMD method has been widely used in fields such as geosciences,
and the results of processing seismic signals are significantly better than the other
signal processing methods mentioned above (Zhang et al., 2022; Rao et al., 2024; Liu



et al., 2016; Li et al., 2018)”.

Comment 2
Furthermore, while you mention that VMD was used to pre-process the data by
removing annual trends and tides, there is no explanation of how this pre-processing
specifically improves the performance of the GWN model. This gap makes it difficult
to assess the necessity and effectiveness of VMD within your analysis pipeline. A
more detailed description of the role and impact of VMD could help clarify its
contribution to your results.
Response:

Thanks for your suggestion.
Our idea of using VMD to do data preprocessing is due to the presence of step, glitch
and burr in the raw data, which are anomalous conditions due to the data monitoring
process, and may override the real information of seismic signals that we need. (Chi et
al., 2019) used VMD to do the processing of 1-month surface strain data. They
decomposed Sa into five components and found that IMF1 is the trend term. They did
the Fourier transform of IMF2 and found that the frequencies of the signal are mainly

concentrated in fi=1.157 x 10 Hz and £;=2.232 x 10~ Hz, which correspond to the

semi-diurnal and diurnal wave frequencies of the Earth's tides, respectively. It is
considered that IMF2 corresponds to the influence of the Earth's tides, and the
IMF3-IMF5 components all contain a large amount of strain signals, and the
remaining IMF3-IMF5 components are retained as the object of study. Thus the
reason we chose VMD is not to improve the model performance, but only to remove
the necessary influences.

Comment 3
In addition, while you report an increase in anomalous days 15-32 days prior to the
earthquake, with a significant acceleration observed in the 20 days prior, the
manuscript does not provide detailed statistical analyses or margins of error for these
observations. Such information is crucial for understanding the robustness of your
results. I suggest adding confidence intervals or error bars to make the reliability and
statistical significance of your results clearer.
Response:

Thanks for your suggestion.
The VMD-GWN model we used uses a dual output based on upper and lower bounds
at the output layer, and the output is a prediction interval which has nearly the same
effect as the confidence intervals you mentioned, so our prediction results already
come with a certain margin of error. However, as you said, Fig. 9 in the original
manuscript does not indeed convey the reliability and statistical significance of the
results in a completely clear way, so we have given the statistics of the anomaly rates.
For the judgement condition of anomalous days in the original manuscript, it is only a
judgement of whether each day is anomalous or not, and it is not clear the exact
number of anomalies. Therefore, according to your suggestion, we made a count of



the judgement results that met the conditions in each abnormal day, and took the
statistical results as the number of abnormalities per day, and calculated the abnormal
rate per day based on the number of abnormalities per day, and the statistical results of
the abnormal rate per day are shown in Fig. 1 below.

As shown in Fig. 1(a), in the time range from 60 days before the earthquake to 33
days before the earthquake, all four stations showed only a very small number of
anomalies until 32 days before the earthquake, when anomalies appeared at a number
of stations, and the anomalies also increased significantly, with Haiyuan station
showing the most significant number of anomalies. The dashed box in Fig. 1(a)
corresponds to the time period from 32 days before the earthquake to 15 days before
the earthquake, and the details are shown in Fig. 1(b). We find that there are several
stations with anomalies at the same time in the 32, 21, 20, and 17 days before the
earthquake, among which all four stations have anomalies on the 20th day before the
earthquake, and from the value of the anomaly rate, the anomaly rate on the 17th day
before the earthquake has a very obvious decrease, so we believe that a turning point
occurs on the 20th day before the earthquake, which corresponds to the time when the
accelerating effect of the S-shape fitting is the most obvious. After the 17th day before

the earthquake, there was a quiet period where no station detected anomalies until the
earthquake occurred.
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Figure 1. Daily anomaly rate statistics for four stations. Different coloured bars represent the daily anomaly
rates of different stations. (a) Daily anomaly rate statistics from 62 days before to 3 days after the

earthquake. (b) Daily anomaly rate statistics from 32 days before the earthquake to 15 days before the
earthquake.

The combination of Fig.1 and Fig.9 in the original manuscript can more fully present
the process of abnormal changes before the earthquake.

Modification:

Add a new paragraph after line 302: “For the judgement condition of abnormal days
in the original manuscript, it is only a judgement of whether each day is abnormal or
not, and it is not clear the specific number of abnormalities. Therefore, we made a



count of the judgement results that met the conditions in each abnormal day, and took
the statistical result as the number of abnormalities per day, and calculated the
abnormal rate per day based on the number of abnormalities per day, and the
statistical result of the abnormal rate per day is shown in Fig. 10 below.

As shown in Fig. 10(a), in the time range from 60 days before the earthquake to 33
days before the earthquake, all four stations showed only a very small number of
anomalies until 32 days before the earthquake, when anomalies appeared at a number
of stations, and the anomalies also increased significantly, with Haiyuan station
showing the most significant number of anomalies. The dashed box in Fig. 10(a)
corresponds to the time period from 32 days before the earthquake to 15 days before
the earthquake, and the details are shown in Fig. 10(b). We find that there are several
stations with anomalies at the same time in the 32, 21, 20, and 17 days before the
earthquake, among which all four stations have anomalies on the 20th day before the
earthquake, and from the value of the anomaly rate, the anomaly rate on the 17th day
before the earthquake has a very obvious decrease, so we believe that a turning point
occurs on the 20th day before the earthquake, which corresponds to the time when the
accelerating effect of the S-shape fitting is the most obvious. After the 17th day before
the earthquake, there was a quiet period where no station detected anomalies until the
earthquake occurred. The combined analysis of Fig. 9 and Fig. 10 gives a fuller
picture of the process of pre-seismic anomalous changes.”.
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Figure 10. Daily anomaly rate statistics for four stations. Different coloured bars represent the daily
anomaly rates of different stations (a) Daily anomaly rate statistics from 62 days before to 3 days after the

earthquake. (b) Daily anomaly rate statistics from 32 days before the earthquake to 15 days before the

earthquake.

Comment 4

I also noticed that you observed an increase in anomalous days one to three days after
the earthquake and attributed this to aftershocks. While this observation is interesting,
it seems to have little to do with the main focus of your study on earthquake



prediction. It would be helpful to clarify how this post-seismic analysis relates to the
main goal of earthquake prediction and to discuss its significance in the context of
your overall results.
Response:

Thanks for your suggestion.
You are right to raise the point that the focus of our research is really not on
post-earthquake analysis, so we have removed that part to ensure consistency of
thought in the article.
Modification:
Lines 308-314 in the original manuscript see were deleted: “(2) Anomalous days were
also observed at all four stations on August 9 and 10 after the earthquake. Zhong et al.,
(2020) studied the IR anomalies and ionospheric anomalies in the same area before
the Jiuzhaigou earthquake and found that the thermal radiation continued to increase
until August 14, and the ionospheric anomalies were detected on August 11 and 15
after the earthquake. Xu et al., (2021) studied the ionospheric TEC anomalies of the
Jiuzhaigou earthquake, and the anomalies were detected four days after the
earthquake using different methods. The results of our study are consistent with
current research, and anomalies were observed for several days after the earthquake.
We believe that the post-earthquake anomalies were more likely due to the frequent
occurrence of post-earthquake aftershocks.”.

Comment 5
In addition, the use of an S-shaped function to fit the cumulative results of anomalous
days is mentioned, but the manuscript does not adequately explain why this particular
fitting method was chosen or how it compares to other models. A more detailed
discussion of this choice and the associated findings would improve the reader’s
understanding of your analytical approach.
Response:

Thanks for your suggestion.
(Bufe and Varnes, 1993) and (Bufe et al., 1994) found that the clustering of
intermediate events prior to a large shock leads to a regional increase in the
cumulative Benioff strain (), which can be fitted by a power-law time-destruction
relationship:

=+ ( =) (D
where  and  are constants, 0 < < 1 is a constant for adjusting the power law,
and is the predicted mainshock time, i.e., the critical point in time at which the

process of accelerating cumulative Benioff strain (cumulative energy) takes place.
This behaviour has been interpreted as a critical process prior to the movement of a
large earthquake towards a critical point (i.e., the mainshock). (Bufe and Varnes, 1993)
justified Equation 1 using a simple damage mechanics model.

(De Santis, 2014) studied the 2009 L'Aquila and 2012 Emilia earthquakes based on
earthquake catalogues. Equation 2 is an inverse diffusion equation for the spatial



proximity of seismic events to the epicentre and is used to fit the distribution of
seismic distances over time within 200 km of the epicentre region:

O= (=)
e

where and 5 are constants and tf represents the critical point in space at which
seismic events are focused. Equation 3 fits the distribution of the time interval
between seismic events () over time:

O= - —-):? G)

where and 3 are constants and tf represents the critical point in time at which
seismic events are focused.

Equation 2 and Equation 3 specifically show the manifestation of this energy
accumulation in space and time, and this process in time and space is known as the
spatio-temporal focussing phenomenon before the mainshock. The research idea of
this paper is the extraction of multi-station pre-seismic anomalies based on
spatio-temporal features, and the fitting method proposed above has good results in
spatio-temporal and this fitting method has theoretical support and physical
significance, so for the anomalous results in our original manuscript, the fitting is
done by using the S-type function. De Santis et al., (2017) used Swarm
magnetosatellite data to study the 2015 Nepal earthquake and proposed an S-shaped
fitting function in anomalous cumulative analysis; they found that S-shaped fitting
was significantly superior to linear fitting.

Modification:

Add a new paragraph on line 276: “(Bufe and Varnes, 1993) and (Bufe et al., 1994)
found that the clustering of intermediate events prior to a large shock leads to a
regional increase in the cumulative Benioff strain (), which can be fitted by a
power-law time-destruction relationship:

=+ ( =) (10)
where  and  are constants, 0 < <1 is a constant for adjusting the power law,

is the predicted time of the mainshock, i.e., the critical point in time for the

acceleration process of the cumulative Benioff strain (cumulative energy). This
behaviour has been interpreted as a critical process preceding the movement of a large
earthquake towards a critical point (i.e., the mainshock). (Bufe and Varnes, 1993)
justify Equation 1 with a simple model of damage mechanics. (De Santis, 2014)
studied the 2009 L'Aquila and 2012 Emilia earthquakes based on seismic catalogues,
showing concretely how this accumulation of energy in space and time manifestations.
The research idea of this paper is the extraction of multi-station pre-earthquake
anomalies based on spatio-temporal features, and the fitting method proposed above
has good results in spatio-temporal and this fitting method has theoretical support and
physical significance, so for the anomalous results in our original manuscript, we use
the S-type function to do the fitting.”



Comment 6
Finally, the manuscript suggests that the pre-earthquake anomalies are due to strain
energy diffusion near the epicentre. This claim appears to have been made without a
solid empirical or theoretical basis in the text. It would be beneficial if you could
provide additional evidence or references to support this assumption or discuss
alternative explanations for the observed anomalies.
Response:

Thanks for your suggestion.
Add a new paragraph before line 302:“(Zhang et al., 2018) analysed the temporal and
spatial evolution characteristics of the precursor anomalies of the Jiuzhaigou
earthquake, and found that the short-term phases of the precursor anomalies of the
Jiuzhaigou earthquake are divided into two phases, yi and y», among which the
anomalies in the y, phase are deformation anomalies, which are manifested as the
expansion of anomalies from the near-source area to the outside of the epicentre.
(Wang et al., 1984) found that the extension of precursor anomalies to the periphery
of the epicentre was due to the subcritical extension of cracks, and justified their
conclusions based on the inversion results of the precursor observations of resistivity.
(Guo et al., 2020) analysed the deformation process in the unstable state of a fault and
defined the meta-stable (or sub-stable) state of a fault as the transition stage from peak
stress to fast destabilising critical stress throughout the slow loading and fast
unloading. At this stage, the accumulated strain energy starts to be released.”.

Comment 7
The manuscript is generally well written, but there are some areas where the English
could be improved (e.g., "This unique geographic location makes earthquakes a
common occurrence"). Also, some typographical errors need to be corrected (e.g.,
"sevesral" and "pro-seismic"). The figures, especially Figures 3, 4 and 7, are too small
and difficult to read, which makes them difficult to understand.
I hope that these comments will be helpful in revising your manuscript. Clarifying
these points will not only strengthen the scientific rigour of your study, but will also
make your results more accessible and meaningful to the research community.
Best regards.
Response:

Thanks for your suggestion.
Line 59-61. Modified “The Sichuan Basin is located at the junction of the
Asia-Europe Plate and the Indian Ocean Plate, and is influenced by neighboring
mountain ranges and plateaus, forming sevesral fracture zones. This unique
geographic location makes earthquakes a frequent event (Zhang, 2023). ” It is
modified to “The Sichuan Basin is at the junction of the Asia-Europe Plate and the
Indian Ocean Plate, and is influenced by the neighbouring mountain ranges and
plateaus, forming several fracture zones, and its unique geographic location has led to
frequent earthquakes within Sichuan(Zhang, 2023). .
Line 60. Modified “sevesral”. It is modified to “several”.



Line 16. Modified “pro-seismic”. It is modified to “pre-seismic”.
Modifications were made to Figures 3, 4 and 7 in the original manuscript. The results
of the modifications are shown below:
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Figure 3: Data sets of components for Linxia, Guza, Haiyuan, and Gaotai stations. (a) component
data of each station for training dataset; (b) component data of each station for test dataset. Red dotted

line indicates time of Jiuzhaigou earthquake.
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Figure 4: Plot of decomposition results of  data using VMD method at Linxia station.
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(a Total number of samples is 52548 1; total number of labels is 525481 (b) The total number of samples in the test set is 319561.
training set: validation set = 3:1 The number of samples in the prediction result is 319561.

Figure 7: Plot of data sliced to form samples and labels. (a) Data plot of samples and labels obtained from
slicing the training dataset. Green box represents generated sample data; blue box represents generated
label data. (b) Data graph of sample data and predicted result shapes based on test dataset slices. Green box

represents sample data; blue box represents predicted result shape.
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