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S1 Evaluation of ERA5 temperature using IAGOS in the UTLS 

Simmons et al. (2014) found a temperature uncertainty of 0.1 K near the tropopause in the tropics in the precursor of ERA5 

data, the ERA-Interim reanalysis. Figure S1 compares 𝑇𝐼𝐴𝐺𝑂𝑆 and 𝑇𝐸𝑅𝐴5for the same test data set used for further ANN model 

evaluation (10% samples randomly selected from all collected IAGOS waypoints around cruise altitudes between 200 hPa and 10 

400 hPa over the North Atlantic Region (NAR) in 2020). The good agreement between both temperatures is reflected in all 

tested scenarios - all sky UT, cloudy UTLS, clear sky UTLS, and all sky UT - indicated by high determination coefficients (R2 

of 0.96 - 0.98). The spread of the correlation corresponds to greater variability in 𝑇𝐼𝐴𝐺𝑂𝑆 when the aircraft flew through clouds 

or due to the interpolation of the gridded 𝑇𝐸𝑅𝐴5 to the aircraft’s vertical position. The MAE between 𝑇𝐼𝐴𝐺𝑂𝑆  and 𝑇𝐸𝑅𝐴5 varies 

between 0.72 K and 0.88 K across the entire data sets. 𝑇𝐸𝑅𝐴5 has a relatively more obvious cold bias in clear sky UTLS and all 15 

sky LS regions, with larger MAE and smaller R2 values among these four scenarios.  

 
Figure S1: Comparisons of 𝑻𝑬𝑹𝑨𝟓 against 𝑻𝑰𝑨𝑮𝑶𝑺 in (a) clear sky and cloudy UT, (b) cloudy UTLS, (c) clear sky UTLS, and (d) clear 

sky and cloudy LS in the test data set between 200 hPa and 400 hPa over the Atlantic, Europe and Africa for the year 2020. 

S2 Preparation of training and validation data 20 

Accounting for the typical time spans of water vapor transport mechanisms, including deep convection, warm conveyor belt 

uplift regimes, and slow ascending flows, the criteria for data combination involve a 2-hour and 6-hour time lag before IAGOS 

data acquisition, ±2 pressure layers from ERA5, and the current humidity measurements from IAGOS. Subsequently, a data 

set comprising 4 million samples is compiled for training, validation, and testing.  

To ensure model robustness, 10% of the samples are randomly excluded from the training set to construct an independent test 25 

data set. The remaining training sets of the ANN model, with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 or 𝑞𝐼𝐴𝐺𝑂𝑆 as the target output, are further subdivided 

into an 80% training subset and a 10% evaluation subset, respectively. While the primary focus is on improving predictions of 

higher RHi values and ice supersaturation, the complete range of RHi values supplied to the neural networks enhances the 

overall accuracy of the model.  
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Figure S2: Distributions of input variables including 𝑻𝑬𝑹𝑨𝟓 (K), z (m2/s2), w (Pa/s), d (s−1), u (m/s), v (m/s), and vo (s−1) from ERA5 

and target 𝑹𝑯𝒊𝑰𝑨𝑮𝑶𝑺 in the ANN model. The trend of 𝑹𝑯𝒊𝑬𝑹𝑨𝟓 for the test dataset (10% randomly selected from all samples) is 

shown in Fig. 6. 

 

Distributions of the input and target values in the training data sets are sketched in Fig. S2. Notably, they are not uniformly 35 

distributed due to the performed selections as well as the usage of different weather conditions. For instance, 𝑇𝐸𝑅𝐴5 spans a 

range from approximately 193 K to 252 K, and the geopotential z encompasses values between roughly 8000 m2/s2 and 12500 
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m2/s2. 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 values vary across the entire spectrum, ranging from 0 % to 275 %. For the derivation of 𝑞𝐼𝐴𝐺𝑂𝑆, the saturation 

water vapor pressure over ice, 𝑝𝑖𝑐𝑒 , is first calculated using the equation in Murphy and Koop (2005), 

𝑝𝑖𝑐𝑒 = 𝑒(9.550426−5723.265/𝑇𝐼𝐴𝐺𝑂𝑆+3.53968 ln(𝑇𝐼𝐴𝐺𝑂𝑆)−0.00728332𝑇𝐼𝐴𝐺𝑂𝑆)                                                                                                   (1) 40 

An earlier comparison between different parameterizations of 𝑝𝑖𝑐𝑒  showed that the differences are less than 0.5% for 

temperatures greater than -173.15 K (Schumann, 2012). In the next step, q is calculated from RHi according to, 

𝑞 =
𝑅𝐻𝑖 × 𝑝𝑖𝑐𝑒 × 𝑅0

𝑝 × 𝑅1

                                                                                                                                                                                      (2) 

where p is the pressure altitude (Pa), R0 (287.05 Jkg−1K−1) and R1 (461.51 Jkg−1K−1) are the real gas constants for air and water 

vapor, respectively. 45 

S3 Validation of ANN specific humidity in clear and cloudy conditions in the ULTS 

𝑞𝐴𝑁𝑁  exhibit increased correlations with 𝑞𝐼𝐴𝐺𝑂𝑆 (R2 ≥ 0.74) and decreased bias (MAE ≤ 0.06 g/kg) across all scenarios, as 

evidenced in Fig. S3, when evaluated on its test dataset. In the all sky UT (cloudy UTLS) areas, the bias is reduced for 𝑞𝐴𝑁𝑁  

compared to 𝑞𝐸𝑅𝐴5, with an increase of R2 by 0.13/0.08 and a decrease of MAE by 0.03/0.02 g/kg. In the clear UTLS (all sky 

LS) regimes, the increase of R2 is 0.20/0.28, and the decrease of MAE is 0.03/0.02 g/kg). 50 

The assessment of specific humidity compared to 𝑞𝐼𝐴𝐺𝑂𝑆 reveals a noticeably higher dispersion concerning the results with 

respect to 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐴𝑁𝑁 . This increased uncertainty can be attributed to biases arising from the transition process 

between 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 and 𝑞𝐼𝐴𝐺𝑂𝑆. The presence of ’vertical points’ in each plot, deviating from the regression line, indicates 

limited data points and infrequent measurements under extreme conditions. This, in turn, contributes to the abnormal values 

in these instances. 55 

The consistency between 𝑞𝐴𝑁𝑁  and 𝑞𝐼𝐴𝐺𝑂𝑆 in Fig. S4b is better than that between 𝑞𝐸𝑅𝐴5 and 𝑞𝐼𝐴𝐺𝑂𝑆 in Fig. S4a. In Fig. S4c, 

the MBE of 𝑞𝐸𝑅𝐴5 compared with 𝑞𝐼𝐴𝐺𝑂𝑆 is always negative, with the bias increasing up to 0.4 g/kg when 𝑞𝐼𝐴𝐺𝑂𝑆 reaches 2 

g/kg. In Fig. S4d, the ANN model improves the accuracy of q predictions, showing a minor overestimation for lower water 

vapor concentrations and an underestimation compared to 𝑞𝐼𝐴𝐺𝑂𝑆 that is rarely smaller than that of 𝑞𝐸𝑅𝐴5.  
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Figure S3: Comparison of 𝒒𝑬𝑹𝑨𝟓 (left column) and 𝒒𝑨𝑵𝑵 (right column) against 𝒒𝑰𝑨𝑮𝑶𝑺 in the (a) and (b) clear sky and cloudy UT, 

(c) and (d) cloudy UTLS, (e) and (f) clear sky UTLS, and (g) and (h) clear sky and cloudy (or all sky) LS regions in the test data set. 
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Figure S4: Frequency distribution (a and c) and overall mean biased error MBE (%) (b and d) of 𝒒𝑬𝑹𝑨𝟓 and 𝒒𝑨𝑵𝑵 against 𝒒𝑰𝑨𝑮𝑶𝑺 in 

the clear sky and cloudy UT (grey) in the test data set. 65 

S4 Comparisons with independent aircraft measurements  

The water vapor measurement from AIMS (Atmospheric Ionization Mass Spectrometer) instrument using a backward heated 

inlet has been evaluated and shown to be in good agreement with other high-quality water vapor data (Kaufmann et al., 2018). 

Therefore, in addition to the IAGOS measurements, this study uses the independent humidity data records from AIMS 

(Kaufmann et al., 2016) aboard the HALO aircraft in special weather situations during the CIRRUS-HL campaign to validate 70 

the accuracy of RHi prediction from the ANN model. 

On 21 July 2021, HALO departed from Germany in the early morning and detected one strong contrail case over the Iberian 

Peninsula at cruise level. Figure S5a and c present 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐴𝑁𝑁  along the HALO flight track from 06:11 UTC to 

09:08 UTC within the pressure levels of 161 to 262 hPa. Compared with AIMS measured 𝑅𝐻𝑖𝐴𝐼𝑀𝑆, the wet bias of 𝑅𝐻𝑖𝐸𝑅𝐴5 

can reach up to 40% (reddish points) in Fig. S5b. In contrast, the ANN model can reduce the RHi overestimation in the UTLS 75 

region within the range of ± 10% (cyan or green points in Fig. S5d). 
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Figure S5: RHi derived from (a) ERA5 or (c) the ANN model and the differences relative to AIMS measurements in (b) and (d) 

obtained from the HALO aircraft on 21 July 2021 during the CIRRUS-HL campaign. 
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