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Abstract. Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its 

importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather 

models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using artificial neural 

network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is 

trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from 15 

the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 

pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature and geopotential exhibit the 

highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows 

excellent performance and the predicted RHi in the UT has a mean absolute error MAE of 5.7% and a coefficient of 

determination R² of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8%; R² of 0.66). The ANN 20 

model also improves the prediction skill for all sky UT/LS and cloudy UTLS and removes the peak at RHi = 100%. The 

contrail predictions are in better agreement with MSG observations of ice optical thickness than the results without humidity 

correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve 

humidity predictions and to support aviation and climate research applications. 

1 Introduction 25 

The atmospheric region of the upper troposphere and lower stratosphere (UTLS) in the tropics (Dessler and Sherwood, 2009) 

and the extratropics (Gettelman et al., 2011) plays a crucial role in the climate system. Within the UTLS, atmospheric humidity 

significantly influences the radiation budget at the top-of-atmosphere (TOA) (Riese et al., 2012). In fact, water vapor is the 

dominant atmospheric long-wave absorber in the context of the global greenhouse effect (Schmidt et al. 2010).  Further, 

observed increases in stratospheric water vapor (Hegglin et al., 2014) contribute to both stratospheric cooling and tropospheric 30 

warming (Forster and Shine, 2002), and act as positive feedback to surface temperature (Tao et al., 2023). Relative humidity 
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(RH) over ice (RHi) > 100% or ice supersaturation is of major importance for the formation and persistence of natural cirrus 

and aircraft-induced contrail cirrus (Kärcher, 2018). Cirrus in this region can survive for hours if ambient conditions are ice 

supersaturated (Zhao et al., 2023) and they can have a positive cloud radiative effect on climate (Gazparini et al., 2020). Hence, 

accurate observations and representations of UTLS water vapor (Hegglin et al., 2014) are essential for climate and weather 35 

research. 

During the past decades, many humidity measurements from aircraft in situ (Krämer et al., 2009; Diao et al., 2015; Kaufmann 

et al., 2018), lidar (Groß et al., 2014; Krüger et al., 2022), balloon-borne (Heymsfield et al., 1998; Dickson et al., 2010; Rollins 

et al., 2014) and polar orbiting satellite instruments (Lamquin et al., 2012; Hegglin et al., 2013) show that high RHi may often 

occur in the UT. However, these observations are limited in space and time, and the uncertainties are relatively high (Gierens 40 

et al., 2020). Important in situ humidity data can also be provided by in-service passenger aircraft (Petzold et al., 2020; Reutter 

et al., 2020), but three-dimensional fields of RHi and dynamics for large geographic regions are currently only available from 

numerical weather prediction (NWP) models, for instance the Integrated Forecasting System (IFS) at the European Centre for 

Medium-Range Weather Forecasts (ECMWF, 2016) and ICOsahedral Non-hydrostatic (ICON, Zängl et al., 2015; Seifert and 

Siewert, 2024) at the German Weather Service. A wet bias in the RHi of the extratropical LS has been identified in the 45 

operational ECMWF IFS forecast and analysis data, as observed in comparison with in situ measurements from research 

aircraft (Kaufmann et al., 2018) and from Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument 

Container (CARIBIC) passenger aircraft flights (Dyroff et al., 2015). In contrast, a dry bias of RHi is observed in the cloudy 

UT when compared with aircraft measurements in the In-Service Aircraft for Global Observing System (IAGOS) (Teoh et al., 

2022). The utilization of the saturation adjustment process (Tompkins et al., 2007), wherein supersaturation relaxes to 50 

saturation upon cloud formation, results in a systematic underestimation of both the frequency and magnitude of ice 

supersaturation at cruise altitudes within NWPs and global climate models (Sperber and Gierens, 2023). 

There is ongoing debate on the physical explanations of the NWP humidity bias in the UTLS, which is a crucial factor to 

consider for the improvement of atmospheric humidity prediction. According to Kunz et al. (2014), the influences of dynamical 

transport processes are challenging for the simulations of ULTS humidity distribution. Backward trajectory analyses reveal a 55 

positive relationship between the moist bias at the aircraft flight level and air masses originating from high northern latitudes 

in the LS (Dyroff et al., 2015). The relationships between uncertainty in atmospheric mixing and the simulated composition 

of water vapor in the LS, as well as the radiative consequences in the UTLS, are highlighted by Krüger et al. (2022) and Riese 

et al. (2012), respectively. Small-scale stratospheric intrusions, which are frequently observed in the UTLS but are unsolved 

by the NWP model, are another possible source of moisture bias (Dyroff et al., 2015). Numerical diffusion, which can easily 60 

smoothen the gradients of humidity across the hydropause, is also a possible reason for the moist bias in the LS (Stenke et al., 

2008). Interestingly, Woiwode et al. (2020) show that there is little dependency of the moist bias on temporal or vertical model 

resolution in the ECMWF IFS analysis and forecast data.  

The assimilation of observations into NWP models is the state-of-the-art way to improve weather forecast (Lawrence et al., 

2019; van der Linden et al., 2020). While as the primary data source for the assimilation system, calibrating RH instruments 65 
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at temperatures below 0°C is challenging, with the difficulty increasing as temperatures drop further. A great deal of effort has 

also been focused on post-processing of NWP data to improve the accuracy of atmospheric humidity and ice supersaturation 

prediction, as well as contrail cirrus, utilizing long-term aircraft measurements from IAGOS (Teoh et al., 2020; Wolf et al., 

2023). Teoh et al. (2022) employ in situ measurements from IAGOS to formulate a correction method for ERA5 RHi fields. 

With this method, the probability density function (PDF) of ERA5-corrected RHi inside ice supersaturation closely aligns with 70 

IAGOS measurements. Another humidity bias correction, also aiming to achieve consistency between IAGOS and ERA5 

through a multivariate quantile approach, results in a notable reduction of the RHi bias (Wolf et al., 2023).  

Gierens and Brinkop (2012) investigate the distributions of the dynamical quantities - divergence, relative vorticity, and 

vertical velocity from ECMWF IFS within and outside ice supersaturated regions and notice distinct patterns. Gierens et al. 

(2020) postulate that a more accurate prediction of ice supersaturation in NWP models may be achievable by further 75 

incorporating dynamical atmospheric fields with ERA5 RHi in a general regression method. Wilhelm et al. (2022) also suggest 

a possibility to base an improved forecast of persistent contrails not only on the traditional quantities of temperature and RHi, 

but also on these dynamical proxies as well. In a recent study, Hofer et al. (2024) show that dynamical proxies taken only at 

the time and location of the forecast are insufficient for an improved prediction of ice supersaturation. However, they note the 

potential for improving RHi predictions by incorporating additional forecast data from earlier time points and upstream areas.  80 

When improving the quality of meteorological data, machine learning techniques have been widely used nowadays. Kadow et 

al. (2020) have demonstrated the skill of artificial intelligence in reconstructing surface temperatures when combined with 

climate model data. A machine learning-based approach trained directly from historical NWP reanalysis data is introduced by 

Lam et al. (2023) to predict hundreds of weather variables at a remarkable speed. It outperforms the most accurate operational 

systems on 90% of the verification tests, even without special consideration of vertical transport. Teoh et al. (2020) also suggest 85 

in their outlook on RHi correction that further effort can be made to explore machine learning techniques to improve the 

accuracy of the ERA5 humidity fields. 

This paper aims at improving predictions of atmospheric humidity, in particular RHi and ice supersaturation, in the UTLS 

region starting from ERA5 fields using machine learning. The previous humidity corrections of Teoh et al. (2022) and Wolf 

et al. (2023) for ERA5 model data were based on regression fitting methods using IAGOS observations but neglected the 90 

temporal evolution of dynamical quantities in the horizontal and vertical directions that led to the humidity bias. Targeting that 

gap, we develop an artificial neural network (ANN) model to correct relative humidity (and specific humidity in the 

supplement) from ERA5, leveraging thermodynamic conditions and dynamical quantities from ERA5, along with measured 

water vapor data from IAGOS above the Atlantic Ocean, Europe and Africa in 2020. The investigation is guided by three 

specific questions: 95 

1. To what extent do atmospheric states impact the subsequent evolution of humidity fields? 

2. Is it feasible to develop a dynamic-based machine learning method to correct the humidity bias in the UTLS? 

3. How do the outcomes of the new method influence the ability to forecast ice supersaturation? 
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Finally, we apply the improved humidity fields for computing the optical properties of contrail cirrus in a particular situation 

using the Contrail Cirrus Prediction model (CoCiP) and compare the simulation results to satellite observations. 100 

This paper is outlined as follows: Sect. 2 provides an overview of the IAGOS humidity measurements (Sect. 2.1), ERA5 and 

IFS data as input to the ANN model and for the application (Sect. 2.2), the collocation procedure of the measurement data with 

ERA5 (Sect. 2.3), and the initial comparison (Sect. 2.4), the contrail cirrus prediction model CoCiP (Sect. 2.5), and satellite 

remote sensing techniques for retrieving the microphysical properties of cirrus clouds (Sect. 2.6). In Sect. 3, the concept of the 

temporal dependence of RHi on the evolution of meteorological parameters, the development of the RHi improvement model, 105 

and the importance of the selected synoptic variables on RHi prediction are explained in detail. The evaluation of the RHi 

improvement model using different metrics is presented in Sect. 4. The corresponding information for specific humidity is 

provided in the supplement. Thereafter, Sect. 5 assesses the impact of the ANN humidity correction on the simulations of 

contrail cirrus in a case study. The conclusions are summarized in Sect. 6. 

2 Data and application approaches 110 

2.1 In-service Aircraft for a Global Observing System (IAGOS) 

The In-service Aircraft for a Global Observing System (IAGOS; Petzold et al., 2015) is a European Research Infrastructure 

that implements instruments on long-range aircraft of internationally operating airlines for providing long-term in situ 

measurements of trace gases and meteorological conditions. These measurements are very valuable for the purpose of this 

study as most flight tracks are situated at heights between 9 and 13 km in the UTLS region. All aircraft within IAGOS have 115 

been equipped with a platinum sensor for temperature measurements with an accuracy of ±0.5 K, and a collocated capacitive 

sensor for monitoring RHi with an uncertainty of 5% to 10% (Petzold et al., 2020). The temperature detected at the sensor is 

transferred to the air temperature 𝑇𝐼𝐴𝐺𝑂𝑆 by accounting for the (incomplete) adiabatic heating and the inlet heating. RHi is then 

derived using the measured water vapor mixing ratio, pressure, and 𝑇𝐼𝐴𝐺𝑂𝑆  based on the saturation water vapor pressure 

equation from Sonntag (1994). The uncertainty of RHi increases with decreasing temperature due to a slower response time. 120 

In the dry conditions (RHi<10%) of the LS, the sensor has only limited accuracy (Rolf et al., 2023), so these data have been 

excluded for further evaluation. The temporal resolution of IAGOS measurements amounts to 4 s.  
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Figure 1: Number of IAGOS measurements per 2° × 2° latitude-longitude grid box between 200 hPa and 400 hPa over the Atlantic 

Ocean, Europe and Africa for the year 2020. The measurements are filtered based on data quality, details see the text. 125 
The global distribution of IAGOS data is not uniform in every region since it is dependent on preferred flight routes and 

weather conditions. Western Europe and the eastern North Atlantic Region (NAR) show a high density in IAGOS data 

therefore we focus on this domain (Fig. 1, between 30°W and 50°E). We did not include the western regions of NAR, from 

where humid air is often advected, but instead focused on moisture originating and transported from lower atmospheric levels 

up to cruise altitude. In addition, we aim to cover the latitude range between 80°N and the equator because ice supersaturation 130 

occurs very frequently in the UT of the tropics. The geographic position of the aircraft, the time, data quality flags, ambient 

pressure, temperature 𝑇𝐼𝐴𝐺𝑂𝑆 (Berkes et al., 2017), and  𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 from IAGOS in the year 2020 are collected to produce the 

output humidity data set of the ANNs. We use only the IAGOS measurements that fulfill the following criteria: IAGOS quality 

flag is not “limited” or “invalid”, and measurements are located between 0 and 80°N, and 30°W and 50°E, and between 400 

and 200 hPa. The distribution of 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 shows high-density values that gradually decrease starting from 110% and drop 135 

significantly as they approach 150% (see Fig. S2 in the supplement), a trend consistent with findings in Wolf et al. (2023, Fig. 

3) and Teoh et al. (2024, Fig. S4). 

2.2 ECMWF reanalysis and forecast 

Meteorological data for the year 2020 in the same region in Sect. 2.1 is sourced from the ERA5 reanalysis data, obtained from 

the ECMWF Copernicus Climate Data Store (Hersbach et al., 2020). The assimilation system takes new observations and 140 

combines them with IFS forecast data from 12 hours before the given time to make the best estimate of the current state of the 

atmosphere. ERA5 data is on an equidistant latitude-longitude grid of 0.25° resolution with an hourly output on 37 pressure 

levels. Hourly atmospheric parameters on pressure levels between 200 and 250 hPa with a 25-hPa spacing and between 250 

and 400 hPa with a 50-hPa spacing are used for model training. The IFS forecast data (137 model levels) are used for predicting 
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contrail cirrus (see Sect. 5). Using pressure level data for ANN training reduces the size of the training dataset and saves model 145 

training time.  

We use the following thermodynamic parameters from ERA5: temperature 𝑇𝐸𝑅𝐴5, and 𝑅𝐻𝑖𝐸𝑅𝐴5 (in the main text) or specific 

humidity 𝑞𝐸𝑅𝐴5 (in the supplement) as the inputs for the ANN model. The saturation water vapor pressure equation from 

Alduchov and Eskridge (1996) is used here to calculate 𝑅𝐻𝑖𝐸𝑅𝐴5 from 𝑞𝐸𝑅𝐴5. In addition, specific cloud ice water content ciwc 

from ERA5 is utilized to differentiate between the cirrus- and cirrus-free regions. ciwc represents the mass of cloud ice particles 150 

per kilogram of moist air, averaged over a grid box. It is estimated using the prognostic equations of the cloud scheme (Tiedtke, 

1993; Forbes and Tompkins, 2011; Forbes and Ahlgrimm, 2014), which account for cloud ice growth through deposition. As 

shown in Table 1, this study also considers dynamical parameters, including geopotential (z) for adiabatic shifts, vertical 

velocity (w) in Pa/s representing vertical air mass motion, divergence (d) indicating air spread or convergence, horizontal wind 

speed (u and v) in m/s, and relative and potential vorticity (vo and pv) characterizing air rotation and stratosphere-troposphere 155 

exchanges. The use of pv specifically helps identify the dynamical tropopause and distinguish between UT and LS. 

2.3 Data collocation 

Table 1: Overview of the variables used in this study. Spatial resolution of ERA5: 0.25°. Vertical resolution of ERA5 on pressure 
levels: 25-50 hPa. The original temporal resolution of ERA5 and IAGOS: 1 h and 4 s. Study regions: Atlantic, Europe and Africa. 

source variable (* RHi ANN) description unit 

ERA5 (7 conditions)  

• the current time and level 

• two time lags (-2h and -6h) 

• four ERA5 pressure levels 

surrounding the IAGOS cruise 

level (-2, -1, +1, +2) 

* TERA5 air temperature K 

ciwc specific cloud ice water content Kg/kg 

* RHiERA5 relative humidity w.r.t. ice % 

qERA5 specific humidity g/Kg 

* z geopotential m2/s2 

* w vertical velocity Pa/s 

* d divergency of wind s-1 

* u eastward component of wind m/s 

* v northward component of wind m/s 

* vo relative vorticity s-1 

pv  potential vorticity s-1 

time hour 1 

level pressure hPa 

IAGOS 

at the current time 

* RHiIAGOS relative humidity w.r.t. ice 1 

TIAGOS air temperature K 

pressure air pressure Pa 
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The ERA5 grid boxes that are closest to the IAGOS observations in both time and space are selected to align with the IAGOS 160 

measured humidity and temperature data sets between 400 hPa and 200 hPa. In contrast to other studies (Wolf et al., 2023; 

Hofer et al., 2024), this study also uses the temporal evolution of meteorological conditions before the IAGOS observation 

time. Specifically, RHi in the UTLS is influenced by horizontal and vertical air motions like air mass uplift (Diao et al., 2015) 

in convection or frontal systems, or stratospheric intrusions. To account for these, thermodynamic and dynamical data up to 6 

h prior to the IAGOS data acquisition time, with 1h intervals, and within two pressure levels above and below the IAGOS 165 

acquisition location, are linked with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 at the IAGOS acquisition time and location. These ERA5 variables are vertically 

interpolated to match the IAGOS location based on pressure levels. While the ERA5 data retains its original temporal and 

spatial resolution, the water vapor data measured by IAGOS, which includes several data points within a single ERA5 grid 

box, is averaged. This averaging reduces the autocorrelation in the measured data due to the response time of the sensor, 

accounts for internal ERA5 grid box variability, and maintains a proportion of ice supersaturation after averaging. This 170 

collocation of model meteorological variables and measured humidity values from the year 2020 comprises 3.99 million 

individual data points. To ensure that the training set consists of data from time periods that do not overlap with those used for 

either validation and testing, we now use 4 days of data to build the ANN model, followed by a 1-day gap, and then 1 day of 

data for validation or testing. This method accounts for considerable variability and sharp gradients in the humidity fields, and 

thus can help to estimate realistic atmospheric humidity distributions for comparisons and model application. 175 

2.4 Initial ERA5 RHi evaluation using IAGOS 

We first compare and quantify the difference between ERA5 and in situ measurements provided by IAGOS with respect to 

temperature, and specific and relative humidity. RHi in cirrus clouds in NWP can have a low bias due to the application of 

saturation adjustment in cloud parameterizations (ECMWF, 2016), hence we differentiate between model clear (cloudy) 

conditions using ciwc equal to zero for all the current and ±2 pressure layers from ERA5. We further distinguish between UT 180 

(LS) dependent on the threshold pv smaller than 2 PVU. This means, we consider the dynamical tropopause as done for instance 

in Reutter et al. (2020). In the following, we focus on RHi (for comparison of other parameters, see also Sect. S1 and S4 in the 

supplement). 
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Figure 2: Comparisons of 𝑹𝑯𝒊𝑬𝑹𝑨𝟓 against 𝑹𝑯𝒊𝑰𝑨𝑮𝑶𝑺 in (a) clear sky and cloudy UT, (b) cloudy UTLS, (c) clear sky UTLS, and (d) 185 
clear sky and cloudy LS in the test data set between 200 hPa and 400 hPa over the Atlantic, Europe and Africa for the year 2020. 

 

Figure 2 shows the comparison of 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 separated either between upper troposphere or lower stratospheric 

conditions or between cloudy or clear sky conditions, respectively. Here we use the test dataset from the ERA5-IAGOS 

collection created in Sect. 2.3, which is the same dataset used for verifying the ANN model in Sect. 4.1. In the all sky UT (Fig. 190 

2a) and in the cloudy UTLS (Fig. 2b), ERA5 RHi data show a considerably dry bias compared to IAGOS data, with mean 

absolute errors (MAEs) of 15.82% and of 16.28%, respectively. RHi and the magnitude of ice supersaturation in ERA5 are 

underestimated. In addition, a partially artificial occurrence accumulation peak exists in the ERA5 data set at 𝑅𝐻𝑖𝐸𝑅𝐴5  = 

100%. In 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 , a small peak is observed between 100% and 110% under cloudy conditions (Sanogo et al., 2024). 

However, much of the accumulation peak in the ERA5 data is attributed to the cloud saturation adjustment in NWP models. 195 

Nevertheless, 𝑅𝐻𝑖𝐸𝑅𝐴5 > 100% is also observed, either in partly cloudy model boxes or in clear sky boxes, where only a 

fraction of the box is cloudy (with 𝑅𝐻𝑖𝐸𝑅𝐴5=100%) and the clear sky part is supersaturated, due to the time required for the 
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ice nucleation process. Consequently, 𝑅𝐻𝑖𝐸𝑅𝐴5 values greater than 100% can occur in cloudy conditions as well. In the clear 

sky UTLS (Fig. 2c) and in the all sky LS (Fig. 2d) regions, MAEs are 11.21% and 9.78%, respectively. In the all sky LS (Fig. 

2d), few RHi data > 100% have been measured by IAGOS, with most observations concentrated at low RHi values. In general, 200 

the extent and the degree of ice supersaturation underestimated by ERA5 are in line with the findings by Dyroff et al. (2015) 

for ECMWF analysis and forecast data. The comparison of ERA5 and IAGOS RHi serves as the motivation for our study, 

aiming to improve the humidity prediction by NWPs. 

2.5 Contrail cirrus prediction model CoCiP 

The Contrail Cirrus Prediction Model (CoCiP) is used to predict the contrail cirrus cover and examine the contrail radiative 205 

forcing induced by individual flights (Schumann, 2012; Schumann et al., 2017, 2021b; Voigt et al., 2017, 2022; Teoh et al., 

2024). The contrail model uses traffic data from the North Atlantic Tracks for the Shanwick Oceanic Control Area. When the 

ambient temperatures fall below the Schmidt-Appleman criterion threshold (Schumann, 1996) at two successive flight 

waypoints, a contrail segment forms. Contrail initial water content, width, and depth are determined by aircraft properties and 

emissions (non-volatile particulate matter). Plume dispersion is a function of turbulence, wind shear, and induced heating. RHi 210 

inside contrail plumes is set at saturation, and ice water content of contrails grows or decreases in response to the ambient 

humidity. A Runge-Kutta integration simulates the contrail evolution until its end of life by ambient drying or particle losses 

from aggregation and sedimentation. The contrail life ends when the maximum contrail lifetime of 24 hours is reached, the ice 

number concentration is less than the background ice nuclei (< 103 m-3), or the ice optical thickness (IOT) is less than 10−6. 

CoCiP simulations account for humidity exchange between contrails and the background air, and the overlap of contrails above 215 

or below clouds present in the meteorological data from the NWP forecast (Schumann et al., 2021a). The CoCiP limitation in 

comparison to general circulation models is its absence of atmospheric interaction and feedback (Chen et al., 2012; Burkhardt 

et al., 2018; Bickel et al., 2020). In Sect. 5 of this study, we present an exemplary application of the model for RHi correction 

derived in this paper to contrail simulations and show its effect on contrail properties. This is done by performing two CoCiP 

runs: for the reference run, we use NWP data from ECMWF IFS for the contrail case on 14 April 2021 over the NAR within 220 

the ECLIF3 campaign (Märkl et al., 2024), for the second run we correct the NWP humidity data with the ANN proposed in 

this work in the same situation.  

2.6 Satellite remote sensing 

CoCiP simulations are compared to spaceborne data from the SEVIRI radiometer (3 km sampling distance at nadir) aboard 

the geostationary Meteosat Second Generation (MSG) satellite in Sect. 5. To derive ice cloud properties, CiPS (Cirrus 225 

Properties from SEVIRI, Strandgren et al. 2017) is used. It consists of a set of ANNs trained on SEVIRI thermal observations, 

CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) cloud products, ECMWF ERA-Interim 

surface temperature data and auxiliary data, to retrieve IOT for identified cirrus clouds. Specifically developed for thin cirrus 

clouds, CiPS has been validated against CALIPSO, achieving detection rates of 20%, 70%, and 85% for ice clouds with IOT 
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values of 0.01, 0.1, and 0.2, respectively. For IOT between 0.35 and 1.8, CiPS demonstrates a MAE smaller than 50%, and 230 

MAE increases for IOT values between 0.07 and 0.35.  

3 ANN model development  

3.1 The temporal dependence of measured humidity on individual meteorological parameters 

Which meteorological parameters and at which time and pressure level should be chosen for training the RHi improvement 

model? To answer this question, the dependence of measured RHi on meteorological variables at preceding times and 235 

surrounding pressure levels is considered by reviewing the sources of RHi bias in the UTLS within ECMWF data. As outlined 

in Dyroff et al. (2015), this bias is linked to air masses residing near the aircraft's flight level of approximately 230 hPa in high 

northern latitudes, likely influenced by airmass vertical intrusions and horizontal transport. This points out the connection 

between RHi and the temporal evolution of meteorological parameters.  

Based on the physical definition of RHi, a negative correlation between 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 and 𝑇𝐸𝑅𝐴5 is expected because RHi is the 240 

ratio of the partial vapor pressure of water vapor to the saturation vapor pressure with respect to ice, the latter of which increases 

with temperature. For dynamical variables, the positive relationship between increased geopotential z values and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 is 

in accordance with the findings of Wilhelm et al. (2022). In addition, parameters such as vertical wind w, divergence d, 

horizontal wind speed components u and v, relative vorticity vo, and potential vorticity pv help represent the dynamical 

conditions at a given time and place that influence relative humidity in the model. For instance, an upward motion (negative 245 

values of w in ERA5) results in cooling and a decrease in RHi, and promotes ice supersaturation. A relatively strong horizontal 

airmass movement with large divergence is typical for ice supersaturation. Large negative values of vorticity in anticyclonic 

systems are again also typical for supersaturation (Gierens et al., 2020). These connections suggest the potential to improve 

the RHi prediction by considering not only traditional thermodynamic variables like temperature but also dynamical proxies 

and their temporal evolution. Further computations of the Pearson correlation coefficient between 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆  and temporal 250 

meteorological variables from ERA5, and the impact of including data distributions from hours before the current time on 

improving the network prediction, are explained in Sect. S2. 

To balance information richness and modeling efficiency, only the current IAGOS humidity fields, and ERA5 data at the 

current time of the IAGOS measurement, a 2-h and 6-h time lag prior to IAGOS data acquisition, as well as ±1, ±2 pressure 

layers from ERA5 are selected as input variables to account for the typical lifespans of water vapor transport mechanisms, 255 

including deep convection, warm conveyor belt uplift regimes, and slow ascending flows (Wang et al., 2024). Notably, pv is 

not provided in ECMWF model level data and subsequently excluded from the input data set during further training of the 

ANN model. Summarising, the ANN model is trained with the variables shown in Table1. The relevance of each input 

atmospheric variable to the RHi prediction model developed in Sect. 3.2 is discussed in Sect. 3.3. 
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3.2 Development and training of the ANN model for humidity improvement  260 

An ANN is composed of a large number of units that exchange information with each other, in a similar structure and function 

as neural networks in human brains. A basic ANN model contains three types of layers: an input layer, one or more hidden 

layer(s), and an output layer. Each layer is made up of neurons. Neurons receive the weighted sum of the results of the previous 

layer’s neurons, use it as the argument of an activation function, and forward the results to the following layer. The feed-

forward ANN used in this study employs a learning technique called back-propagation, where the outputs are compared to the 265 

target values to calculate the differences in the form of loss function. The error is then fed back to modify the weights and bias 

of each neuron based on the optimization method (see e.g. Ma et al., 2020).  

Here, the ANN model for RHi is trained using a large set of atmospheric variables obtained from ERA5 reanalysis and RHi 

measured from IAGOS as explained in the previous section. The ANN learns to reproduce the nonlinear statistical relationships 

between the selected series of meteorological variables and humidity fields iteratively adjusting its parameters until it can 270 

robustly and accurately predict RHi in the UTLS. This procedure does not only consider RHi>100% to investigate ice 

supersaturation but also the full range of RHi to provide sufficient data for model building.  

Based on the temporal dependence of measured humidity on individual meteorological parameters discussed in Sect. 3.1, the 

input variables for the ANN encompass 𝑅𝐻𝑖𝐸𝑅𝐴5, 𝑇𝐸𝑅𝐴5, and z, w, d, u, v, and vo. They are extracted from the ERA5 fields 

(Sect. 2.2) at the time of the IAGOS observation, as well as 2 h and 6 h prior, at the geographical and vertical location of the 275 

IAGOS measurement, along with ±1, ±2 ERA5 pressure levels. The output (target) variable of the ANN is 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆. The 

ANN model consists of 56 inputs, derived from 8 meteorological variables across 7 conditions: the current time and level, two 

time lags (-2 h and -6 h) for the current level and four ERA5 pressure levels surrounding the IAGOS cruise altitude (-2, -1, +1, 

+2 levels) for the current time. They are summarised in Table 1. We apply min-max normalization to both input and output 

data, which prevents features with larger ranges from dominating and improves convergence speed during model training. We 280 

use 3 hidden layers, each with 100 neurons and He weight initializer (He et al., 2015), along with batch normalization between 

layers to improve generalization. The humidity output is referred to as 𝑅𝐻𝑖𝐴𝑁𝑁 . The Rectified Linear Unit (Relu) serves as the 

activation function for the hidden layers, while a linear function is used for the output layer. The mean squared error (MSE) is 

adopted as a loss function, and the ANN model is optimized using stochastic gradient descent with a learning rate of 0.001, 

decay of 10−5, and momentum of 0.99 after several tests. Training of the ANN model is executed with batch sizes of 1024 and 285 

100 epochs. In Sect. 2.3, four consecutive days of samples from the ERA5-IAGOS collection are allocated for model training, 

with the following day excluded to avoid overlap with the continuous weather system, and another day reserved either for 

validation, to evaluate the model's generalization to unseen data during training, or for testing. The trained model is validated 

against the test data set of ERA5 and IAGOS, which was previously used for comparative analysis in Sect. 2.4. To test the 

model’s predictions, the results were transformed back to their original scale by applying the inverse of the normalization 290 

using the previously saved scaler. 
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Details on the preparation of training and validation data particularly for specific humidity q are provided in Sect. S3 of the 

supplement. Similarly, an ANN for q is implemented, with 300 neurons in each hidden layer and RHi replaced by q everywhere 

in the both input and output layers (refer to the supplement for more information). The ANN model can then be applied to 

ERA5 data for humidity correction in the UTLS region. The computational time required for each scene in Fig. 1 is approx. 5 295 

seconds on a standard laptop (Intel I5 8250U CPU; 8G memory). This technique incorporates thermodynamic and dynamical 

meteorological values to account for the vertical and horizontal transport of water vapor and its temporal evolution, and takes 

advantage of numerous humidity measurements. 

3.3 Importance of the individual variables for the quality of ANN RHi prediction 

The ANN model is interpreted with an investigation of the relative contributions of input variables to the predicted 𝑅𝐻𝑖𝐴𝑁𝑁 . 300 

𝐾𝑥 is the relative change in loss when one input, i.e. one feature of ERA5 is set to its mean value for the complete input data 

set but the rest of the input features is kept unchanged: 

𝐾𝑥 =
𝐿𝑥 − 𝐿0

𝐿0

                                                                                                                                                                                                  (1)  

where 𝐿𝑥 is the loss (MSE) for the test data set compared with IAGOS when setting one ERA feature input to its average value, 

and 𝐿0 is the loss for the full test data set. Low values of 𝐾𝑥 indicate a small impact of the change in input quantity on the 305 

output accuracy, or vice versa.      

 
Figure 3: Relative importance of the individual variables to the ANN model for predicting RHi. 

 

In Fig. 3, the importance (𝐾𝑥) analysis for all input variables (the current time and level, i.e. -2 or -6 h, and -2, -1, +1, +2 levels 310 

above/below) in the ANN model reveals that 𝑅𝐻𝑖𝐸𝑅𝐴5 , 𝑇𝐸𝑅𝐴5 , and z hold the highest level of significance and carry 

considerable weight among all parameters. The particular relevance of these three variables can be explained by the inherent 
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relationship wherein RHi typically rises in regions with decreasing temperature at higher geopotential z in the troposphere. 

Water vapor is carried to upper altitudes with the accompanying adiabatic cooling, which increases RHi. Thus, the ANN model 

already captures the 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 effectively using 𝑅𝐻𝑖𝐸𝑅𝐴5, 𝑇𝐸𝑅𝐴5 and z. However, although the other (dynamical) variables are 315 

less important for the prediction of 𝑅𝐻𝑖𝐴𝑁𝑁 , they provide a moderate and non-negligible contribution to the accuracy of the 

RHi prediction model. In fact, w and d show 𝐾𝑥 of 0.29 and 0.26 and those for u, v, and vo even higher, which are 0.98, 0.75, 

and 0.74. There is generally less importance in the contributions of the variables representing dynamical quantities, aligning 

with the findings in Hofer et al. (2024) based on meteorological variables from the given time.  

The fact that dynamical variables for instance particularly u, v, vo are closely as important as 𝑅𝐻𝑖𝐸𝑅𝐴5, 𝑇𝐸𝑅𝐴5, and z  for the 320 

description of the physical processes that lead to the decrease/increase of relative humidity in Sect. S2 in the supplement but 

at the same time show only a moderate importance in the ANN model, could be attributed to the correlation with other variables 

and the significant overlap between the conditional distributions of 𝑅𝐻𝑖𝐸𝑅𝐴5 on ice supersaturation determined by 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 

or not (Hofer et al., 2024). Hofer et al. (2024) shows that 𝑅𝐻𝑖𝐸𝑅𝐴5 is the most influential predictor for humidity predictions, 

while the explanatory power of dynamical proxies is insufficient when only using data from the current time and level. 325 

However, our updated analysis confirms that incorporating a broader vertical region and the historical time into the dynamical 

variables has a more significant impact on the ANN model and contributes to the understanding of humidity evolution.  

4 Model evaluation and results  

4.1 Validation of ANN RHi in clear and cloudy conditions in the UTLS 

This study aims to use the ANN model to resolve biases inherent in NWP model output evaluated in Sect. 2.4. To quantify the 330 

accuracy of the ANN model, 𝑅𝐻𝑖𝐴𝑁𝑁  (and 𝑞𝐴𝑁𝑁  in the supplement) is evaluated based on the test data set under four 

conditions: all sky UT, cloudy UTLS, clear sky UTLS, and all sky LS. Validation results of 𝑅𝐻𝑖𝐴𝑁𝑁 are shown in Figs. 4, 5, 

and 6 and of 𝑞𝐴𝑁𝑁   in Sect. S4, respectively.  
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Figure 4: Distribution of (a) 𝑹𝑯𝒊𝑬𝑹𝑨𝟓 and (b) 𝑹𝑯𝒊𝑨𝑵𝑵 versus 𝑹𝑯𝒊𝑰𝑨𝑮𝑶𝑺 in the UT in all sky (clear and cloudy conditions) in the test 335 
data set. The number of data sets N, the mean absolute error MAE and the coefficient of determination R² are shown in the panels. 

 

In the UT all sky condition important for cirrus clouds and contrails, a high number of measurements, comprising 21031 data 

points, are used for the inter-comparison between ERA5 and the outputs of the ANN model. 𝑅𝐻𝑖𝐴𝑁𝑁  (Fig. 4b) demonstrates a 

better agreement with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 compared to 𝑅𝐻𝑖𝐸𝑅𝐴5 (Fig. 4a). In particular. 𝑅𝐻𝑖𝐴𝑁𝑁  shows consistent values to 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 at 340 

RHi>100% which is a major improvement in comparison to the ERA5 data set. 𝑅𝐻𝑖𝐴𝑁𝑁  exhibits a significant higher 

correlation with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 for all uncertainty parameters (mean absolute error MAE, coefficient of determination R²) compared 

to ERA5. The MAE decreases significantly from 15.82% (ERA5) to 5.71% (ANN), the R2 values increase from 0.66 (ERA5) 

to 0.95 (ANN), and the root mean spare error RMSE decreases from 20.52% (ERA5) to 7.88% (ANN). Notably, the ANN 

model also effectively corrects the existing peak at 𝑅𝐻𝑖𝐸𝑅𝐴5 = 100% in Fig. 4a, and does not show a peak at RHi ~100%, 345 

similar to the IAGOS measurements. Hence the ANN exhibits a significant improvement of RHi that would be beneficial for 

cirrus and cloud predictions. For other scenarios, such as the cloudy UTLS, the clear sky UTLS and the all sky LS between 

400 and 200 hPa, the comparison of RHi is shown in Fig. 5. Notably, also in the cloudy UTLS, 𝑅𝐻𝑖𝐴𝑁𝑁  results (Fig. 5b) exhibit 

a closer correlation with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 than those in the cloudy region of 𝑅𝐻𝑖𝐸𝑅𝐴5 (Fig. 5a). In the cloudy (Fig. 5a-b) and clear sky 

(Fig. 5c-d) conditions in the UTLS, the MAE of the RHi decreases from 16.28% (11.21%) to 5.95% (4.28%), respectively. 350 

Also, the R² increases by 0.30 (0.23) to 0.95 (0.95) for the two scenarios. Again, the peak at 100% in the 𝑅𝐻𝑖𝐸𝑅𝐴5 distribution 

in the cloudy UTLS disappears in the 𝑅𝐻𝑖𝐴𝑁𝑁 , in line with the IAGOS observations. In particular, the ANN model shows a 

very good performance in the cloudy UTLS, and 𝑅𝐻𝑖𝐴𝑁𝑁  and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 align close to the 1:1 line. While the majority of data 

in the cloudy UTLS is allocated at RHi>80%, some clouds were observed in ice sub-saturated conditions, or ice particles had 

sedimented into dryer air.  355 
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The ANN model also has strong skills of RHi correction in the LS, see Fig. 5e and f. R2 values increase from 0.59 (ERA5) to 

0.95 (ANN), similar to the UT region in Fig. 4. The improvement of RHi prediction by the ANN is also documented by the 

decrease of MAE by 6.07%. The ANN model successfully learns interconnections within the data, as evident by its more 

accurate 𝑅𝐻𝑖𝐴𝑁𝑁 . 

Figure 6 presents a detailed relative comparison (mean bias error MBE) of either 𝑅𝐻𝑖𝐸𝑅𝐴5  or 𝑅𝐻𝑖𝐴𝑁𝑁  as a function of 360 

𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆. In Fig. 6a, the occurrences of 𝑅𝐻𝑖𝐸𝑅𝐴5 > 105% are underestimated compared to the distribution of 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆. In 

Fig. 6b, the distribution of 𝑅𝐻𝑖𝐴𝑁𝑁  closely resembles 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆, showing a smoother distribution around RHi of 100%. In Fig. 

6c, 𝑅𝐻𝑖𝐸𝑅𝐴5 shows an increasing dry bias in the UT, reaching 37% at RHi > 120%. The few data points at RHi > 120% even 

exhibit larger deviations by more than 60% within ERA5. As opposed to this, Fig. 6d shows that 𝑅𝐻𝑖𝐴𝑁𝑁  and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 have 

a closer agreement, with an MBE of about ±11% for all UT measurements up to 140%. The RHi between 80% and 130% in 365 

the important range for cirrus clouds is well represented by the ANN with an MBE better than +/- 7%. This suggests that the 

saturated region of RHi, which presents a requisite environmental condition for new ice crystal nucleation and subsequent 

growth, can be more accurately parametrized.  

Wolf et al. (2023) developed a humidity correction technique for 𝑅𝐻𝑖𝐸𝑅𝐴5 using IAGOS measurements through a multivariate 

quantile method. The differences between the corrected ERA5 data and 𝑅𝐻𝑖𝐸𝑅𝐴5 in cloudy regions are documented in their 370 

Table 3, with the mean absolute difference ranging from -2.2% to 12.08% depending on cloud fraction. Although not directly 

comparable within the same timeframe, 𝑅𝐻𝑖𝐴𝑁𝑁  also shows a good performance, with a MAE of approximately 5.8% in the 

same region of all sky UT and cloudy UTLS.  

𝑅𝐻𝑖𝐴𝑁𝑁  also shows better agreement with independent airborne measurements compared to ERA5 data. For detailed 

information on the humidity data on 21 July 2021 during the CIRRUS-HL campaign, please refer to Sect. S5 in the supplement, 375 

which includes measured data from AIMS (Atmospheric Ionization Mass Spectrometer, Kaufmann et al., 2016) instrument 

and 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐴𝑁𝑁 . 

The investigations related to validating ANN q in clear and cloudy conditions in the ULTS are shown in Sect. S4 in the 

supplement.  
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 380 
Figure 5: Comparison of 𝑹𝑯𝒊𝑬𝑹𝑨𝟓 (left column) and 𝑹𝑯𝒊𝑨𝑵𝑵 (right column) against 𝑹𝑯𝒊𝑰𝑨𝑮𝑶𝑺 in the (a) and (b) cloudy UTLS, (c) 

and (d) clear sky UTLS, and (e) and (f) clear sky and cloudy (or all sky) LS regions in the test data set. The number of data sets N, 

the mean absolute error MAE and the coefficient of determination R² are indicated in the individual panels. 
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Figure 6: Frequency distribution (a and c) and overall mean biased error MBE (%) (b and d) of 𝑹𝑯𝒊𝑬𝑹𝑨𝟓 and 𝑹𝑯𝒊𝑨𝑵𝑵 against 385 
𝑹𝑯𝒊𝑰𝑨𝑮𝑶𝑺 in the clear and cloudy UT (grey) in the test data set. 

4.2 Skill of ANN and ERA5 prediction of RHi>100% versus IAGOS data 

For cirrus clouds and contrails, accurately representing RHi>100%, and thus ice supersaturation, is of great importance. Hence, 

we focus here on the data sets with RHi>100%. The skill of ice supersaturation prediction from 𝑅𝐻𝑖𝐸𝑅𝐴5  and 𝑅𝐻𝑖𝐴𝑁𝑁  is 

evaluated based on the equitable threat score (ETS), as described in Gierens et al. (2020). The ETS measures forecasting 390 

performance by assessing the proportion of correctly forecasted events and is often used in weather forecast verification (Wang, 

2014). First, events are labeled according to the contingency table, with a (𝑌𝐼𝐴𝐺𝑂𝑆/𝑌𝐸𝑅𝐴5 or 𝑌𝐼𝐴𝐺𝑂𝑆/𝑌𝐴𝑁𝑁 , ice supersaturation 

predicted and observed), b (𝑌𝐼𝐴𝐺𝑂𝑆/𝑁𝐸𝑅𝐴5 or 𝑌𝐼𝐴𝐺𝑂𝑆/𝑁𝐴𝑁𝑁 , no ice supersaturation predicted but observed), c (𝑁𝐼𝐴𝐺𝑂𝑆/𝑌𝐸𝑅𝐴5 or 

𝑁𝐼𝐴𝐺𝑂𝑆/𝑌𝐴𝑁𝑁 , ice supersaturation predicted but not observed), and d (𝑁𝐼𝐴𝐺𝑂𝑆/𝑁𝐸𝑅𝐴5  or 𝑁𝐼𝐴𝐺𝑂𝑆/𝑁𝐴𝑁𝑁  ice supersaturation 

neither predicted nor observed). 𝑌𝐼𝐴𝐺𝑂𝑆  indicates that the waypoint is in ice supersaturation based on the IAGOS measurements, 395 

while 𝑁𝐼𝐴𝐺𝑂𝑆 indicates the absence of ice supersaturation. The same notations are applied when analyzing the statistics for 

ERA5 and ANN. The ETS is then calculated using the following equations: 
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𝐸𝑇𝑆 =
𝑎 − 𝑟

𝑎 + 𝑏 + 𝑐 − 𝑟
                                                                                                                                                                                   (2)  

with 

𝑟 =
(𝑎 + 𝑏)(𝑎 + 𝑐)

𝑎 + 𝑏 + 𝑐 + 𝑑
                                                                                                                                                                                       (3)  400 

The ETS value gets larger when the ice supersaturation prediction is closer to the measured values (here IAGOS data). ETS = 

1 indicates that all 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 perfectly agree with 𝑅𝐻𝑖𝐸𝑅𝐴5 or 𝑅𝐻𝑖𝐴𝑁𝑁 . ETS = 0 means a completely random distribution, while 

negative ETS implies a negative correlation. 
Table 2: ETS values for the prediction of RHi>100% from 𝑹𝑯𝒊𝑬𝑹𝑨𝟓 and 𝑹𝑯𝒊𝑨𝑵𝑵 in the test data set between 200 hPa and 400 hPa 
over the Atlantic, Europe and Africa in 2020. 405 

Scenarios YIAGOS/YERA5 YIAGOS/NERA5 NIAGOS/YERA5 NIAGOS/NERA5 ETS 

clear and cloudy UT 66.34% 3.31% 19.42% 10.94% 0.23 

cloudy UTLS 54.61% 4.99% 24.06% 16.34% 0.21 

clear and cloudy LS 97.48% 0.21% 1.96% 0.36% 0.14 

clear sky UTLS 95.43% 0.05% 4.23% 0.28% 0.06 

 

Scenarios YIAGOS/YANN YIAGOS/NANN NIAGOS/YANN NIAGOS/NANN ETS 

clear and cloudy UT 67.07% 2.57% 4.57% 25.79% 0.71 

cloudy UTLS 56.26% 3.34% 4.95% 35.44% 0.70 

clear and cloudy LS 97.29% 0.40% 0.89% 1.42% 0.52 

clear sky UTLS 94.99% 0.49% 2.07% 2.44% 0.47 

 

Table 2 shows ETS values for both the ERA5 and the ANN predicted ice supersaturation across all test data set in Sect. 2.4. 

The scores for ERA5 in all sky UT, cloudy UTLS, and all sky LS classes are 0.23, 0.21, and 0.14, respectively, indicating 

limited predictive skill, particularly in the all sky LS region. In contrast, the ANN model significantly enhances the ice 410 

supersaturation prediction, yielding scores of 0.71, 0.70, and 0.52 for the respective regions. This represents an approximate 

0.44 increase in ETS across all classes, thereby facilitating related studies on the formation and persistence of cirrus clouds. 

The clear sky UTLS region is not discussed here, as we are focusing on RHi > 100%. According to Fig. 5c, few ERA5 data 

points fall within the ice supersaturation region in the clear sky data sets. 

Teoh et al. (2022) developed a statistical approach to correct the ERA5 humidity fields in particular for ice supersaturation, 415 

with the aim of adjusting the PDF of 𝑅𝐻𝑖𝐸𝑅𝐴5 in order to achieve a similar PDF as 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆. After applying this humidity 

correction method, the ETS for ice supersaturation in the all-sky UTLS reached a value of 0.424 when compared to IAGOS 

measurements in 2019, as shown in their Table S4. This statistical method outperforms 𝑅𝐻𝑖𝐸𝑅𝐴5  in predicting ice 

supersaturation, as the latter achieves an ETS of approximately 0.2. In a recent study, Hofer et al. (2024) use 𝑅𝐻𝑖𝐸𝑅𝐴5, 𝑇𝐸𝑅𝐴5 
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and dynamical proxies only from the given time in several regression models to predict RHi>100%, and find the best regression 420 

with an ETS of 0.378 for 16588 flights of the Measurement of Ozone and Water Vapour on Airbus In-service Aircraft 

(MOZAIC) between 2000 and 2009. While not directly comparable within the same time frame, 𝑅𝐻𝑖𝐴𝑁𝑁  excels in forecasting 

ice supersaturation relative to ERA5 and methods from Teoh et al. (2022) and Hofer et al. (2024), demonstrating a higher 

accuracy with an ETS as high as 0.71.  

5 CoCiP predictions and MSG contrail cirrus observations 425 

As an application, this section investigates the impact of improved humidity prediction in the UT on the estimation of contrail 

cirrus optical thickness using CoCiP simulations (Sect. 2.5) and compares the results with retrieved IOT from MSG 

observations using the CiPS algorithm (Sect. 2.6). The selected case is from 10 UTC on 14 April 2021 (during the ECLIF3 

campaign) over the North Atlantic Region (NAR, Sect. 2.1), representing typical contrail cirrus situation just off the coast of 

Ireland. The MSG observation scene is from 09:45 UTC, as SEVIRI scans from the south, taking about 12 minutes per scene 430 

and reaching the upper edge (near the NAR) around 09:56 UTC, which is more consistent with the CoCiP simulation time. 

For the CoCiP simulations, specific humidity 𝑞𝐼𝐹𝑆 and other atmospheric trace gas profiles from the ECMWF IFS model level 

data between level 73 (about 190 hPa) and level 90 (about 400 or 410 hPa) are used as input to the ANN model to produce 

𝑞𝐴𝑁𝑁  profiles. We perform two CoCiP experiments: the 𝑞𝐼𝐹𝑆  and the resulting 𝑞𝐴𝑁𝑁  profiles serve as input for CoCiP, 

respectively, while other parameters, particularly cloud liquid water content and ciwc, are kept constant using IFS values to 435 

include the same natural cloud effects in both CoCiP simulations.  

Figure 7 provides a comparison of the spatial distributions and frequency of occurrence (histogram) of CoCiP-simulated and 

MSG-observed IOT. In the MSG scene (Fig. 7a), contrails and contrail cirrus, represented by linear structures with IOT ~ 0.3-

0.5, are situated above the Atlantic Ocean, extending from west to east and surrounded by thicker cirrus clouds with higher 

IOT (even exceeding 1.0). The simulated IOTs (Figs. 7b and c) show patterns of higher IOT surrounded by lower IOT cirrus 440 

as in the MSG observations, although the single structures are not directly comparable. In addition, due to satellite detection 

limitations, CiPS cannot capture the thinnest ice clouds. For these reasons, a quantitative pixel-to-pixel comparison between 

the CoCiP simulations and the MSG observation is not meaningful in this context and we thus rather consider frequency 

distributions of IOT in the following. In general, the simulated IOT using 𝑞𝐴𝑁𝑁  (Fig. 7b) is closer to CiPS retrieved IOT 

compared to the CoCiP simulation with 𝑞𝐼𝐹𝑆 (Fig. 7c). The histogram (Fig. 7d) shows decreasing frequencies of occurrence 445 

with increasing IOT. The better agreement is also exhibited between IOT from CiPS and the CoCiP simulation using 𝑞𝐴𝑁𝑁  

than that using 𝑞𝐼𝐹𝑆. For natural cirrus, larger IOT (~0.75) is observed, while the smaller IOT (< 0.5) for contrails is of particular 

interest. In the lower panels showing only contrails, the simulation with increased humidity exhibits larger IOT (Fig. 7e) 

compared to that without humidity correction (Fig. 7f). Higher IOT up to 0.85 from CoCiP with 𝑞𝐴𝑁𝑁 , compared to IOT values 

below 0.5 with 𝑞𝐼𝐹𝑆, is due to the growth of contrail ice crystals from the increased amount of available water vapor in 𝑞𝐴𝑁𝑁  450 

and is also evident in the frequency analysis (Fig. 7g). 
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Figure 7: Distributions of IOT for contrails and cirrus retrieved from (a) MSG observations using the CiPS algorithm, and simulated 

using the CoCiP model with (b) 𝒒𝑨𝑵𝑵 or (c) 𝒒𝑰𝑭𝑺 at 10:00 UTC on 14 April 2021. The IOT distribution for contrails from CoCiP 

simulations is shown in (e) and (f). The IOT frequencies (histograms) for contrail cirrus and contrails are shown in (d) and (g), 455 
respectively.  

 

In general, the model results demonstrate increased consistency with MSG observations when 𝑞𝐴𝑁𝑁  is incorporated in CoCiP. 

Given that ice supersaturation typically exhibits large horizontal but shallow vertical extensions (Spichtinger et al., 2003), a 

minor adjustment in cruising altitude, avoiding regions of high humidity, can potentially reduce contrail radiative forcing. An 460 

improved representation of humidity thanks to an ANN approach is thus crucial for more accurate predictions of the contrail 

cirrus cover and radiative effect (Kaufmann et al., 2024).  

6 Summary and conclusions 

The distribution of relative humidity in the UTLS from NWP models, which plays a vital role in the parameterizations of 

natural cirrus and contrail cirrus properties, is subject to large uncertainties. In this study we propose a humidity bias correction 465 

method for relative humidity from ERA5, 𝑅𝐻𝑖𝐸𝑅𝐴5, particularly for ice supersaturation in the UT, using an ANN technique. 
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The novelty of this study lies in the incorporation of thermodynamic and dynamical atmospheric quantities for the given time 

and height together with atmospheric properties from previous times and nearby altitudes. The atmospheric humidity 

improvement method consists of an ANN developed using atmospheric variables from ERA5, along with collocated 

measurements of water vapor from IAGOS. The ERA5 data includes temporal and vertical dependencies of humidity on 470 

meteorological conditions, combining not only the historic data (-6 h, -2 h) and current time but also ±2 ERA5 pressure layers 

around the flight latitude of IAGOS. The target region covers the Atlantic, Europe and Africa, spanning 0 to 80°N and 30°W 

to 50°E and pressure levels from 400 to 200 hPa. 

The analysis of biases between collocated 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 reveals an underestimation of 𝑅𝐻𝑖𝐸𝑅𝐴5 within the UT and 

an RHi occurrence peak near 100% due to the cloud saturation adjustment by ECMWF NWP. The ERA5-IAGOS collocated 475 

data is processed and the variables for training the ANN model for humidity correction are selected based on the discussion of 

the temporal evolution of meteorological variables. Humidity, temperature, and geopotential (as a variable for the altitude) 

have a main impact on the 𝑅𝐻𝑖𝐴𝑁𝑁  results, while other meteorological variables, including horizontal wind speed, relative 

vorticity, vertical velocity, and divergence, have a high or moderate to minor but measurable influence.  

Using this ANN humidity correction, the MAE of 𝑅𝐻𝑖𝐴𝑁𝑁 when comparing to 𝑅𝐻𝑖𝐸𝑅𝐴5 both against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 is reduced from 480 

15.82% to 5.71%, 16.28% to 5.95%, 11.21% to 4.28%, and 9.78% to 3.71%, in all sky UT, cloudy UTLS, clear UTLS, and all 

sky LS regions, respectively, presenting remarkable improvements, particularly in the all sky UT and cloudy UTLS regions. 

A previously existing occurrence peak at RHi = 100 % in 𝑅𝐻𝑖𝐸𝑅𝐴5, which is caused by the cloud saturation adjustment in 

NWP, has been removed completely by the ANN.  

The representation of ice supersaturation in 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐴𝑁𝑁  with respect to 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 was assessed with the calculation 485 

of the ETS value. The dynamic-based humidity correction leads to an increase in ETS from 0.23, 0.21, and 0.14 (ERA5) to 

0.71, 0.70, and 0.52 by the ANN, respectively, in the all sky UT, cloudy UTLS, and all sky LS regions. The skill of ice 

supersaturation prediction improves considerably.  

The forecast of optical and radiative properties of cirrus and contrail cirrus, based on the ANN humidity correction, is 

exemplarily assessed with CoCiP simulations using IFS weather data and the ANN corrected data and MSG satellite 490 

observations for one case between 35°N and 60°N (over the NAR) at 10:00 UTC on 14 April 2021. The result shows better 

agreement in ice optical thickness between model simulations with humidity correction and satellite observations in this 

contrail situation.  

Teoh et al. (2022) and Wolf et al. (2023) utilize IAGOS measurements to correct 𝑅𝐻𝑖𝐸𝑅𝐴5 with statistical methods. Our study 

shows the potential of the emerging field of machine learning-based weather prediction post-processing, in which forecast 495 

outputs are improved using historical observations and analysis data. How the current atmospheric states influence the future 

development of humidity patterns has been highlighted. One issue in the existing model data, where the frequency and degree 

of ice supersaturation in the UT are consistently underestimated due to the practice of the cloud saturation adjustment has been 

successfully addressed by the ANN model. The method demonstrates competitive performance, as seen by the decreased MAE 

and larger ETS compared to the accuracy of the aforementioned statistical methods.  500 



22 
 

Incorporating more water vapor data from the fleet-wide observations of humidity within the UTLS can further improve this 

method. Our findings suggest potential applications for aircraft diversion strategies to avoid ice supersaturation regions and 

reduce contrail cirrus climate impact. Further research on applying humidity correction methods to weather forecasts is vital 

for improving our understanding of the global cloud radiation budget. Our improved humidity predictions could serve as 

benchmarks for the measurements of further aircraft campaigns, as the assimilation or reference data set for NWP or climate 505 

models for a better parameterization of ice supersaturation. The method could also be applied to other weather forecast models, 

including those from ECMWF and national Weather Services. Additionally, increased resolution of NWP models at the 

tropopause is required for better cirrus and contrail forecasting. Combining modelled meteorological conditions and their 

temporal changes, along with measured humidity from long-term data sets, is essential for a more realistic representation of 

RHi and the subsequent processes like cloud and contrail formation in the UTLS, and their climate impact. 510 

 

Data availability  

IAGOS measurements are available at https://iagos.aeris-data.fr/ (IAGOS database). The ERA5 and IFS atmospheric profiles 

are obtained from Climate Data Store (https://cds.climate.copernicus.eu/) or ECMWF directly. The SEVIRI data are provided 
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accessed from https://py.contrails.org/install.html. The machine learning technique implementation is based on the open-

source platform TensorFlow (https://www.tensorflow.org). The required software packages are Python 
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