
Response to anonymous reviewer #1 

We thank the reviewer for his/her positive judgement on the manuscript and the helpful comments, which 

we address in this revision. (1) We have provided more detailed explanations on distinguishing cloudy and 

clear-sky regions, the derivation and threshold of IWC in ERA5, and the relationship between RHi and 

temperature from both the ERA5 model and measurements. (2) We further explain for using CIRRUS-HL 

campaign measurements but no other data for model validations. To this end, we have included clear 

explanations regarding contrail formation threshold and satellite observation resolution.  

In the following we enumerate the referee’s comments (RC) and our replies (R) to each, referencing the 

corresponding tracked changes in the manuscript.  

RC: Summary of paper: 

Review of “Machine learning for improvement of upper tropospheric relative humidity in ERA5 weather 

model data”, by Wang and coauthors, EGUSphere-2024-2012.  

The goal of this study is to improve the estimations of the relative humidity with respect to ice in the upper 

troposphere/lower stratosphere from ERA5 fields using machine learning. To achieve this goal, the authors 

develop an artificial neural network model to correct relative humidity from ERA5, using thermodynamic 

conditions and dynamical quantities from ERA5, together with water vapor data from IAGOS commercial 

aircraft measurements. The model RHi is trained using these data. Overall, this is an excellent article, and, 

although I spent a lot of time thinking about different aspects of the model, I have relatively few 

comments. 

Comments: 

RC1: Line 64. You may want to mention that calibration of RH instruments at temperatures below 0° C are 

difficult, with increasing difficulty at decreasing temperatures. 

R1a) author’s response 

Thanks for pointing out this aspect. We have included the suggested explanation of the RH instrument 

calibration issue, as their measurements are a key source for assimilation in NWP models. 

R1b) manuscript changes 

L65-66: “While as the primary data source for the assimilation system, calibrating RH instruments at 

temperatures below 0°C is challenging, with the difficulty increasing as temperatures drop further.” 

RC2: 145. A brief mention of how ciwc is derived from ERA5, as it is so important a variable to differentiate 

cloudy and cloud-free regions, would be helpful. 

R2a): author’s response 

Thank you for your comment, which indeed warrants further explanation. Cloud fraction and cloud 

ice/water content in ERA5 are derived from the prognostic cloud scheme. The text has been revised, and 

the relevant references have been added. 

R2b) manuscript changes 



L151-153: “ciwc represents the mass of cloud ice particles per kilogram of moist air, averaged over a grid 

box. It is estimated using the prognostic equations of the cloud scheme (Tiedtke, 1993; Forbes and 

Tompkins, 2011; Forbes and Ahlgrimm, 2014), which account for cloud ice growth through deposition.” 
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RC3: 168. “accounts for” rather than “copes” 

R3a): author’s response 

Replaced “copes with” with “accounts for” in L177. 

RC4: 189. At temperatures below -40° C, RHi should not exceed 100%, even though it may be above that 

value for a short period of time. 

R4a) author’s response  

Thank you for your question regarding data validity. As you pointed out, RHi can exceed 100% even when 

temperatures (T) are below -40 °C for some time, due to the ice supersaturation required for cirrus ice 

crystals formation and other non-equilibrium processes in the atmosphere. Long-term observations show 

that there is plenty of ice supersaturation in the upper troposphere, where T are usually colder than -40° 

C. Therefore, we think there is no need to constrain the measurement range to T above -40°, as we are 

also interested in the typical cirrus regime where T <-40°. 

RC5: 202. contrail formation threshold. A sentence is needed here-how is the threshold met? The Schmidt-

Appleman criteria? 

R5a): author’s response 

Thank you for your comment. Contrails form when hot, humid exhaust mixes with colder ambient air 

below the critical temperature known as the Schmidt-Appleman criterion. The text has been revised to 

explain how this threshold is reached, and the relevant references have been added. 

R5b) manuscript changes 

L211-212: “When the ambient temperatures fall below the Schmidt-Appleman criterion threshold 

(Schumann, 1996) at two successive flight waypoints” … 

Reference 

Schumann, U.: On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 4–23, 

https://doi.org/10.1127/metz/5/1996/4, 1996.  



RC6: 217-218. What is the spatial resolution of the radiometer? 

R6a) author’s response 

Thank you for pointing out this detail. SEVIRI provides observations with a 3 km sampling distance at nadir. 

The text has been revised accordingly. 

RC7: Section 4. Model evaluation and results. An additional evaluation could be made by using collocated 

CALIPSO lidar data. 

R7a) author’s response 

Thank you for suggesting this approach to evaluate the improved RHi data with lidar data. Unfortunately, 

CALIPSO lidar provides cirrus optical thickness and other properties based on backscatter measurements, 

but it does not provide humidity data. Humidity retrieval requires temperature profiles, which are typically 

derived from weather model data. While AIRS satellite observations include water vapor measurements, 

they have coarse spatial resolution in the vertical direction with large altitude bins. Therefore, we refrain 

from an additional evaluation using for instance CALIPSO lidar data.  

RC8: Figure 5. You get cloudy skies from ERA5 when IWC is indicated? How accurate is this? 

R8a) author’s response 

Thank you for your questions. In this study, we use ice water content (IWC) to differentiate between cirrus 

clouds and cirrus-free regions within the ERA5 grid. For the IWC detection threshold, we reviewed the 

literature and found that while a threshold of 0.1 g/m³ is commonly used (e.g., Krämer et al., 2020), lower 

IWC values are also observed in cirrus cloud regions (see Table 1 in Hong and Liu, 2015). Therefore, we use 

a valid IWC (>0) as an indicator for cirrus cloud regions and acknowledge that different IWC thresholds 

could be applied for finer cirrus classifications, as discussed in the literature. 

Since this analysis relies on ERA5 data, it reflects model cloudiness rather than direct observations. We 

chose ERA5 IWC data because ERA5 include all necessary input quantities of our ANN models, such as RHi 

and atmospheric physics parameters. Although potential discrepancies between model and real clouds 

may exist, this approach agrees with the scope of our current research, and the mismatch can be further 

explored in future studies. 

R8b) manuscript changes 

L183-184: hence we differentiate between “model” clear (cloudy) conditions using ciwc equal to zero for 

all the current and ±2 pressure layers from ERA5… 

Reference 
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measurements, J. Climate, 28, 3880–3901, https://doi.org/10.1175/JCLI-D-14-00666.1, 2015.  
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and Sourdeval, O.: A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from 

observations, Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, 2020. 



RC9: Figures 4, 5, 6. Could you possibly partition by 5° C increments in supplemental information to see if 

RHi>100% at temperatures below -40° C, because it shouldn't. 

R9a) author’s response 

Thank you for your suggestions. The response provided here is the same as the one given to RC4. 

RC10: 408. You may want to mention that ECLIF3 was an experiment involving synthetic aviation fuel. The 

DLR Falcon jet research aircraft participated in the project, making some measurements simultaneously 

with the A350 aircraft. Could you use the ANN model in these situations as a test of the model? 

R10a) author’s response 

Thank you for highlighting this potential comparison. In Figure S6 of the supplement, we present RHi 

derived from ERA5 and the ANN model, along with the differences relative to AIMS measurement obtained 

from the HALO aircraft on July 21, 2021, during the CIRRUS-HL campaign. The CIRRUS-HL experiment 

involved the HALO research aircraft, satellites, and models to provide new insights into the effects of 

aviation on clouds and the climate impact of contrails over Central Europe and the North Atlantic flight 

corridor. These aircraft measurements are extensively used for model validation related to water vapor 

and are also utilized to improve humidity assimilation in weather forecasting models. I agree with your 

point that ECLIF3 focuses on measurements related to sustainable aviation fuel, which is somehow beyond 

the scope of model validation in this context. 

 



Responses to anonymous reviewer #2 

We thank the referee for highlighting the importance of this study and for helpful advice and constructive 

comments about our paper. The suggestions have led to a revised manuscript with two main goals: (1) 

While we confirm the minimal autocorrelation in the IAGOS data, we have reconstructed the training, 

validation and test datasets to ensure that model building and testing do not occur on the same day or 

overlap in any way. We now give additional details on the selection of the study region, considering 

humidity uplift from lower atmospheric levels, and describe the RHi distribution within the dataset, as well 

as provide further information on the development procedure of the algorithm. (2) We offer further 

insights into humidity, dynamics and temporal dependence, along with updated contributions of input 

variables to humidity prediction, and refined explanations regarding the importance of dynamical variables 

in RHi prediction. Additionally, we have included additional maps presenting humidity patterns. To this 

end, we have written concise explanations and modified pictures accordingly.  

In the following we enumerate the referee’s comments (RC) and our replies (R) to each, referencing the 

corresponding tracked changes in the manuscript.  

RC: Summary of paper: 

In this study, the authors train an artificial neural network to predict the distribution of relative humidity 

over ice in the UTLS over Western Europe. The network is trained on a mixture of thermodynamical and 

dynamical variables, although the former explain most of the prediction skill. The network is better than 

ERA5 at predicting RHi, and its inputs lead to better contrail prediction from the Cocip model in one case 

study.  

The paper deals with an important topic. It is very well written. The introduction is excellent. The figures 

illustrate the discussion well, although I would have preferred to see more maps because scatterplots only 

give an incomplete indication of the ability of the network to reproduce patterns of humidity.  

Others have commented in the online discussion on the need to better separate the training dataset from 

the validation dataset. I will not elaborate further on that aspect but revisions to the method are clearly 

needed there. 

Ra) author’s response 

Thank you for the positive feedback on our proposed RHi improvement method. To better illustrate the 

accurate and enhanced spatial variability of RHi patterns over Western Europe, in addition to presenting 

the RHi distribution in the original Figure 6 of the manuscript, we have also added equidistant latitude-

longitude maps from ERA5 and ANN RHi data at 200 hPa, taken at 08:00 UTC on July 21, 2021, 

corresponding to the flight of the HALO aircraft during the CIRRUS-HL campaign on that date.  

Refer to Figure A1 below and Figure S5 in the revised supplement. 



 

Figure A1 (S5): Patterns of (a) 𝑅𝐻𝑖𝐸𝑅𝐴5 and (b) 𝑅𝐻𝑖𝐴𝑁𝑁 at 200 hPa at 08:00 UTC on 21 July 2021.  

The online discussion highlighted the needs to separate the training and validation datasets due to the 

autocorrelation present in the IAGOS data within a single ERA5 grid box during the IAGOS and ERA5 

collocation. We appreciate this feedback and calculated the autocorrelation function of the IAGOS data 

series following the method of Dotzek and Gierens (2008). The results, displayed in Figure A2 here, show 

that autocorrelation reaches up to 0.04 at the original resolution (4 s, 1 km) before gradually declining to 

near zero at a resolution of 0.25 degrees (25 km), which corresponds to the ERA5 grid box size. It can be 

explained by the nature that the water vapor field is quite chaotic with steep gradients. Diao et al (2014, 

2015) showed that in-situ RHi measurements taken with 1 Hz or 10 Hz instruments reveal small-scale 

structures in the RHi time series, in agreement with our finding. Therefore, we assume that autocorrelation 

can be disregarded for the averaged IAGOS RHi measurements within the ERA5 grid box. 

 

Figure A2: Autocorrelation function of the IAGOS measurement series (4s, 1km). 

In response, we have still revised our methodology to ensure that the training set consists of data from 

time periods that do not overlap with those used for either validation and testing. Specifically, we are now 

using 4 days of data for building the ANN model, followed by a 1-day gap, and then 1 day of data for 

validation or testing. The complexity of the ANN model has also been increased to better match the 

growing complicacy of the training data, including the addition of hidden layers and neurons, as well as 

weight initialization and batch normalization for each layer to enhance generalization. Revisions to the 

text, along with updated Figures 4, 5, 6, 7, and S6 for RHi using the new models, are provided below. 

Updates on the validation of 𝑇𝐼𝐴𝐺𝑂𝑆 and q predictions are presented in Figures S1, S3, and S4 in the revised 

supplement. 



Rb) manuscript changes 

L174-176: “To ensure that the training set consists of data from time periods that do not overlap with 

those used for either validation and testing, we now use 4 days of data to build the ANN model, followed 

by a 1-day gap, and then 1 day of data for validation or testing.” 

L291-294: “In Sect. 2.3, four consecutive days of samples from the ERA5-IAGOS collection are allocated for 

model training, with the following day excluded to avoid overlap with the continuous weather system, and 

another day reserved either for validation, to evaluate the model's generalization to unseen data during 

training, or for testing.” 

L43-45 in the supplement: To ensure model robustness “and construct an independent test data set, we 

now use a sequence-based split: four consecutive days of data are used to build the ANN model, followed 

by a 1-day gap, with the subsequent day's data reserved for validation or testing”. 

L286-287: “We use 3 hidden layers, each with 100 neurons and He weight initializer (He et al., 2015), along 

with batch normalization between layers to improve generalization. The humidity output is referred to as 

𝑅𝐻𝑖𝐴𝑁𝑁.” 

L298: “an ANN for q is implemented, with 300 neurons in each hidden layer and…” 

L18-20 in the Abstract: “The ANN shows excellent performance and the predicted RHi in the UT has a mean 

absolute error MAE of 5.7% and a coefficient of determination R² of 0.95, which is significantly improved 

compared to ERA5 RHi (MAE of 15.8%; R² of 0.66).” 

L348-350: “The MAE decreases significantly from 15.82% (ERA5) to 5.71% (ANN), the R2 values increase 

from 0.66 (ERA5) to 0.95 (ANN), and the root mean spare error RMSE decreases from 20.52% (ERA5) to 

7.88% (ANN).” 

 

Figure A3 (4): Distribution of (a) 𝑅𝐻𝑖𝐸𝑅𝐴5 and (b) 𝑅𝐻𝑖𝐴𝑁𝑁 versus 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the UT in all sky (clear and 

cloudy conditions) in the test data set. The number of data sets N, the mean absolute error MAE and the 

coefficient of determination R² are shown in the panels. 



L354-356: “In the cloudy (Fig. 5a-b) and clear sky (Fig. 5c-d) conditions in the UTLS, the MAE of the RHi 

decreases from 16.28% (11.21%) to 5.95% (4.28%), respectively. Also, the R² increases by 0.30 (0.23) to 

0.95 (0.95) for the two scenarios.” 

L361-363: “The ANN model also has strong skills of RHi correction in the LS, see Fig. 5e and f. R2 values 

increase from 0.59 (ERA5) to 0.95 (ANN), similar to the UT region in Fig. 4. The improvement of RHi 

prediction by the ANN is also documented by the decrease of MAE by 6.07%.” 

L377: “with a MAE of approximately 5.8%...” 

L485-486: “Using this ANN humidity correction, the MAE of 𝑅𝐻𝑖𝐴𝑁𝑁 when comparing to 𝑅𝐻𝑖𝐸𝑅𝐴5 both 

against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 is reduced from 15.82% to 5.71%, 16.28% to 5.95%, 11.21% to 4.28%, and 9.78% to 

3.71%...” 

 

Figure A4 (5): Comparison of 𝑅𝐻𝑖𝐸𝑅𝐴5 (left column) and 𝑅𝐻𝑖𝐴𝑁𝑁 (right column) against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the 

(a) and (b) cloudy UTLS, (c) and (d) clear sky UTLS, and (e) and (f) clear sky and cloudy (or all sky) LS regions 

in the test data set. The number of data sets N, the mean absolute error MAE and the coefficient of 

determination R² are indicated in the individual panels. 



L369-371: “As opposed to this, Fig. 6d shows that 𝑅𝐻𝑖𝐴𝑁𝑁 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 have a closer agreement, with an 

MBE of about ±11% for all UT measurements up to 140%. The RHi between 80% and 130% in the important 

range for cirrus clouds is well represented by the ANN with an MBE better than +/- 7%.” 

 

Figure A5 (6): Frequency distribution (a and c) and overall mean biased error MBE (%) (b and d) of 𝑅𝐻𝑖𝐸𝑅𝐴5 

and 𝑅𝐻𝑖𝐴𝑁𝑁 against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the clear and cloudy UT (grey) in the test data set. 



 

Figure A6 (7): Distributions of IOT for contrails and cirrus retrieved from (a) MSG observations using the 

CiPS algorithm, and simulated using the CoCiP model with (b) 𝑞𝐴𝑁𝑁 or (c) 𝑞𝐼𝐹𝑆 at 10:00 UTC on 14 April 

2021. The IOT distribution for contrails from CoCiP simulations is shown in (e) and (f). The IOT frequencies 

(histograms) for contrail cirrus and contrails are shown in (d) and (g), respectively.  

 

Figure A7 (S6): RHi derived from (a) ERA5 or (c) the ANN model and the differences relative to AIMS 

measurements in (b) and (d) obtained from the HALO aircraft on 21 July 2021 during the CIRRUS-HL 

campaign. 
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I have a couple of additional comments that would need to be addressed before the study is published. 

RC1: First, I am surprised by the selection of the study region, as shown in Figure 1. Why doesn’t it extend 

further west? Given that the network relies on the temporal evolution of humidity it seems it would make 

sense to include the regions where most of the humid regions are either formed or advected from. There 

is plenty of IAGOS data over the North Atlantic and Eastern US too. 

R1a) author’s response 

Thank you for highlighting this aspect. In selecting the study region, we aimed to account for both 

horizontal advection and vertical air mass transport, as these factors contribute significantly to the 

inclusion of humid regions. The moisture formed and transported from lower atmospheric levels to cruise 

altitude is also represented in our analysis. The distribution of 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 is already included in Figure S2 of 

the supplement, showing that RHi density remains high, decreasing gradually from 100% and notably only 

as it approaches 150%, a trend consistent with findings in Wolf et al. (2023, Fig. 3) and Teoh et al. (2024, 

Fig. S4). 

Our focus on the Eastern Atlantic, Europe, and Africa stems from the higher density of air traffic in these 

regions compared to others. This includes the concentrated morning eastbound and afternoon westbound 

transatlantic flights between the U.S. and Europe, which result in uneven sampling times over a 24-h 

period over the Atlantic Ocean (Schumann and Graf, 2012). Our regional selection enables us to establish 

more precisely the relationships between meteorological input variables and measured humidity across 

Europe, capturing temporal and regional variations effectively. 

R1b) manuscript changes 

L129-131: “We did not include the western regions, from where humid air is often advected, but instead 

focused on moisture originating and transported from lower atmospheric levels up to cruise altitude.” 

L136-138: “The distribution of 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 shows high-density values, which gradually decrease significantly 

as they approach 150% from 100% (see Fig. S2 of the supplement), a trend consistent with findings in Wolf 

et al. (2023, Fig. 3) and Teoh et al. (2024, Fig. S4).” 



References 

Schumann, U. and Graf, K.: Aviation-induced cirrus and radiation changes at diurnal timescales, J. Geophys. 

Res.-Atmos., 118, 2404–2421, https://doi.org/10.1002/jgrd.50184, 2013.  

Teoh, R., Engberg, Z., Schumann, U., Voigt, C., Shapiro, M., Rohs, S., and Stettler, M. E. J.: Global aviation 

contrail climate effects from 2019 to 2021, Atmos. Chem. Phys., 24, 6071–6093, 

https://doi.org/10.5194/acp-24-6071-2024, 2024. 

Wolf, K., Bellouin, N., Boucher, O., Rohs, S., and Li, Y.: Correction of temperature and relative humidity 

biases in ERA5 by bivariate quantile mapping: Implications for contrail classification, EGUsphere [preprint], 

https://doi.org/10.5194/egusphere-2023-2356, 2023. 

RC2: Second, the lack of importance of the dynamical variables in explaining the prediction is surprising. 

The explanation proposed by the authors, that of a strong correlation between thermodynamical and 

dynamical variables, is plausible. But time scales are crucial in that correlation, so I wonder whether the 

study design somehow maximises the correlation. By the choice of the study region for example, which 

excludes the North Atlantic where dynamics might affect the evolution of humidity more clearly? Or by 

the choice of lead times? On that point, the question on temporal dependence asked in Section 3.1 on 

lines 227-228 is never really answered. How much does including distributions 6hr before current time 

improve the network prediction, for example?  

R2a): author’s response 

Thank you very much for your insightful questions and for raising the issue of the limited apparent 

importance of dynamical variables in the RHi prediction model. Based on further investigation, we now 

provide a clearer explanation of their impact. 

1. Updated 𝐾𝑥 values for thermodynamic and dynamical variables in RHi prediction 

After ensuring the separation of training, validation, and test data on different days, we recalculated 

the relative contributions of variables to the new prediction of RHi (denoted as 𝐾𝑥, equation (1) in the 

manuscript, not necessarily less than 1). Following the suggestion from community comment #4, we set 

the investigated ERA5 feature to its mean value while keeping the other variables unchanged for the 

computation of 𝐾𝑥. The importance of the dynamical variables - vertical velocity (w), divergence (d), and 

especially horizontal wind components (u, v) and relative vorticity (vo) - has now increased. 

For instance, the 𝐾𝑥 values for RHi, temperature (T), and geopotential (z) remain high, at 1.85, 1.24, 

and 1.39. 𝐾𝑥 values for w and d have now risen to 0.29 and 0.26, respectively, and for u, v, and vo to 0.98, 

0.75, and 0.74. We acknowledge that thermodynamic variables (e.g., RHi, T) may inherently capture some 

of the dynamical trends.  Hofer et al. (2024) also shows that the predictor 𝑅𝐻𝑖𝐸𝑅𝐴5 has the greatest impact 

on humidity predictions, while the explanatory power of the dynamical proxies is insufficient when only 

using data from the current time and level. However, this updated analysis confirms that incorporating a 

broader vertical region and the historical (2 and 6h) times into the dynamical variables do indeed play a 

more prominent impact in the ANN model than previously thought, contributing to the understanding of 

humidity evolution. Revisions to the text and Figure A8 (updated Figure 3) are provided below. 

2. Moisture uplift rather than advection from the North Atlantic 



You rightly point out that our study region does not include the whole North Atlantic, where dynamical 

processes could have a clear influence on humidity evolution. As stated in response to your suggestion in 

RC1, we instead focused on moisture uplift from lower atmospheric levels rather than horizontal advection 

from the North Atlantic. 

3. Temporal dependence of RHi on meteorological variables 

As for the temporal dependence mentioned in Sect. 3.1, we now provide a more detailed analysis of 

the impact of past meteorological variables on RHi predictions. We have before calculated the Pearson 

correlation coefficients between thermodynamic and dynamical variable from ERA5 at various lead times 

(up to 24 hours prior) and measured 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 at the time and location of IAGOS data acquisition, but 

wasn’t explained in the discussion version of the manuscript.  

Based on our calculations, for this 6-hour lag range, the correlation between 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 

decreases by about 5.4% from 0.49 from 6 hours prior to the current time, while 𝑇𝐸𝑅𝐴5 and z show constant 

significant correlations with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 (around -0.5 and 0.4). w consistently demonstrates negative 

correlations with RHi, with an absolute correlation decreases of 86% from -0.11 from the 6-hour lag to the 

current time. For horizontal winds (u, v), correlations fluctuate around 0.34 and 0.44, while d exhibits the 

higher correlation at the 6-hour lag, decreasing from 0.18 to the current time by about 83%. In contrast, 

vo continues to exhibit negative correlations with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆, with an increasing absolute correlation 

coefficient that approaches -0.2. These results demonstrate the correlation between current RHi and 

meteorological conditions at preceding times and have been added as the new Sect. S2 in the revised 

supplement. 

4. Effect of including lead times on model performance 

We have tried before that including meteorological distributions from 6h before current time slightly 

improves the performance of the RHi prediction model, as seen in a reduction of both MAE (from 2.31% 

to 2.21%) and RMSE (from 4.01% to 3.64%) in the validation test. Additionally, we assessed the influences 

of introducing different time lags (1h, 2h, 3h, 6h), and observed that the degree of the MAE and RMSE 

decrease increases with larger time lags. We then chose to include data from current time, 2h, and 6h 

intervals to balance prediction accuracy and computational efficiency. These results, along with supporting 

metrics, are presented in Table A1 below and Table S1 in the new Sect. S2 in the supplement. 

5. Literature about airmass transport on humidity evolution from trajectory analysis 

We have also referred to the trajectory analysis in Dyroff et al. (2015) to indicate that the RHi bias is 

linked to air masses from approximately 230 hPa in high northern latitudes, likely affected by both vertical 

intrusions and horizontal transport. Thank you for your feedback, we now add more detailed explanations 

mentioned above. 

Reference 

Hofer, S., Gierens, K., and Rohs, S.: How well can persistent contrails be predicted? An update, Atmos. 

Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, 2024. 

R2b) manuscript changes 

L18 in the Abstract: “while other dynamical variables are of low to moderate or high importance.” 



L321-323: “they provide a moderate and non-negligible contribution to the accuracy of the RHi prediction 

model. In fact, w and d show 𝐾𝑥 of 0.29 and 0.26 and those for u, v, and vo even higher, which are 0.98, 

0.75, and 0.74. There is generally less importance in the contributions of the variables representing 

dynamical quantities…” 

L325-326: “The fact that dynamical variables for instance particularly u, v, vo are closely as important as 

𝑅𝐻𝑖𝐸𝑅𝐴5, 𝑇𝐸𝑅𝐴5, and z for the description of the physical processes that lead to the decrease/increase of 

relative humidity in Sect. S2 in the supplement...” 

L329-332: “Hofer et al. (2024) shows that 𝑅𝐻𝑖𝐸𝑅𝐴5 is the most influential predictor for humidity 

predictions, while the explanatory power of dynamical proxies is insufficient when only using data from 

the current time and level. However, our updated analysis confirms that incorporating a broader vertical 

region and the historical time into the dynamical variables has a more significant impact on the ANN model 

and contributes to the understanding of humidity evolution.” 

L483-484: “while other meteorological variables, including horizontal wind speed, relative vorticity, 

vertical velocity, and divergence, have a high or moderate to low but measurable influence.” 

 

Figure A8 (3): Relative importance of the individual variables to the ANN model for predicting RHi. 

L254-256: “Further computations of the Pearson correlation coefficient between 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 and temporal 

meteorological variables from ERA5, and the impact of including data distributions from hours before the 

current time on improving the network prediction, are explained in Sect. S2.” 

New Sect. S2 in the supplement: “The correlation between 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 and ERA5 temporal meteorological 

variables”. 

“We have determined the temporal dependence of measured 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 at the time and location of IAGOS 

data acquisition on meteorological variables at the preceding time up to 24 hour prior through the 

calculation of the Pearson correlation coefficient. Based on the calculations, compared to the time 6 hour 

before, the correlation of 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 from 0.49 decreases by about 5.4% at the current time. 

The correlations for 𝑇𝐸𝑅𝐴5 and z with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 are also statistically significant and almost constant, with 

coefficients of about -0.5 and 0.4. w consistently demonstrates negative correlations with upward motion, 

resulting in cooling and an increase in RHi. The absolute correlation decreases from the 6-h time lags to 



the current time from -0.11 by about 86%. The correlation for u and v tends to fluctuate around 0.34 and 

0.44. d generally exhibits positive correlations, with the highest value occurring around the 4-h to 5-h time 

lag, are 0.18 at the 6-h time lag higher than that of 0.03 at the current time by about 83%. In contrast, vo 

continues to exhibit negative correlations with 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆, with an increasing absolute correlation 

coefficient that approaches -0.2. 

Including meteorological data from 6 hour prior improves the accuracy of the RHi prediction model on the 

validation dataset, reducing the MAE from 2.31% to 2.21% and the RMSE from 4.01% to 3.64%. The effect 

of time lags on model accuracy is calculated and presented in Table S1. As meteorological variables from 

1, 2, 3, and 6 hours before the current time are introduced, the decrease in MAE and RMSE gradually 

becomes more significant. To balance information richness with computational efficiency, we choose the 

combination of current time, 2 hour, and 6 hour.” 

Table A1 (S1): Impact of including data distributions from 6 hours prior on network prediction accuracy. 

Scenarios MAE (%) RMSE (%) R2 

current 2.31 4.01 0.99 
current, -1 h 2.21 4.17 0.98 
current, -2 h 2.3 4.01 0.98 
current, -3 h 2.33 4.01 0.98 
current, -6 h 2.21 3.64 0.98 

current, -2h, -6h 2.23 3.78 0.99 

 

Other comments: 

RC3: Lines 188-189: I am not sure that the RHi peak is always artificial. Sanogo et al. (2024) 

https://doi.org/10.5194/acp-24-5495-2024 suggest that the peak is seen in IAGOS in cloudy conditions. 

See their Figures 4 and 5 

R3a): author’s response 

Thank you for pointing out this ambiguous description. The RHi peak reported by Sanogo et al. (2024) 

indeed reflects the maximum observed RHi values from IAGOS, as you suggested. Meanwhile, the RHi = 

100% threshold in ERA5 data results from saturation adjustments inherent in numerical weather 

prediction models. We agree with your feedback and have revised "artificial" to "partially artificial" for 

clarity. 

R3b) manuscript changes 

L197-199: In addition, a “partially” artificial occurrence accumulation peak exists in the ERA5 data set at 

𝑅𝐻𝑖𝐸𝑅𝐴5  = 100%, “which is influenced by both the cloud saturation adjustment in NWPs and the maximum 

observed RHi values from IAGOS (Sanogo et al., 2024)”.  

We have also removed terms such as "artificial" when describing the occurrence peak in the following text. 

Reference 

Sanogo, S., Boucher, O., Bellouin, N., Borella, A., Wolf, K., and Rohs, S.: Variability in the properties of the 

distribution of the relative humidity with respect to ice: implications for contrail formation, Atmos. Chem. 

Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, 2024. 



RC4: Lines 308-311: Can you clarify how that statement relates to the statement on correlation made 

earlier in the paragraph? 

R4a) author’s response  

Thank you for highlighting this ambiguous description. The statement about connections between ANN 

layers relates only to the calculation of importance metrics and not to the correlation between different 

meteorological variables mentioned earlier in the paragraph. We have removed the statement you 

pointed out and expanded the discussion on the impacts of dynamical variables on RHi predictions, 

incorporating insights from the literature and our analysis. The text has been revised accordingly for clarity, 

and please refer to our responses to RC2 for further details. 

 



Responses to community 

We thank the community for their helpful advice and constructive comments on our paper. Their 

suggestions have led to a revised manuscript focusing on three main objectives: (1) While the 

autocorrelation of IAGOS data is verified to be minimal, we have reconstructed the training, validation and 

test datasets to ensure no overlap or same-day usage between model building and testing. This approach 

supports the model’s application in both retrospective analyses and real-time forecasting. (2) We included 

additional contingency table metrics beyond ETS to validate our improved ice supersaturation prediction 

(3) We also provide additional details on model construction and interpretation. For instance, the model 

inputs encompass meteorological variables across multiple conditions (current and prior times as well as 

surrounding pressure levels), normalization of input and output data during training, and a refined 

approach for calculating the relative importance of meteorological variables in RHi prediction by assessing 

changes in loss when each variable is set to its mean value. To this end, we have also added clear 

explanations and updated pictures accordingly.  

Response to community #1 Kevin McCloskey 

We thank Kevin McCloskey for highlighting the importance of the study and for helpful comments on 

further separating training set and validation/test sets before model construction, which we address in 

the revision of the manuscript. 

In the following we number the community’s comments (CC) and our replies (R) to each, referencing the 

corresponding tracked changes in the manuscript.  

CC: Hello, this could be a very impactful finding if the ANN model generalizes well to weather conditions 

that it hasn't seen. I notice though in your Supplemental S2 section you describe randomly splitting the 

IAGOS waypoints into train/validation/test sets. Doing your cross validation in this way has a risk that your 

ANN model is overfitting. This is likely not a problem if you restrict your usage of the trained ANN to 

retrospective studies where the model inference is only applied to ERA5 data in the same times/places the 

model was trained on. However, if you attempted to apply an ANN trained in this way to a forecast of 

weather which has not happened in the real world yet, you would likely see a drop in metrics. To report 

metrics that are predictive of how the model will perform when applied to a weather forecast, it is best 

practice to train the ANN on an archived weather forecast (eg, ECMWF HRES) and use a chronological cross 

validation split: ie, the train set is comprised of data from time periods that are disjoint from the time 

periods used for the validation and test sets. For example, don't include in your validation/test sets any 

data from days that were included in your training set. This type of cross validation setup avoids the risk 

of the ANN 'memorizing' specific datapoints from the training set which are effectively also present in the 

validation/test sets, in a way that would not be the case when you apply the ANN to real weather forecast 

data. This is especially a concern here given the IAGOS waypoints occur once every 4 seconds and so 

adjacent datapoints (having extremely similar model inputs and target outputs) will frequently be 

randomly split across the train/test boundary. With the current cross validation setup, the impact of this 

model still seems strong, but limited to use in retrospective analyses.  

Ra) author’s response 

Thank you for emphasizing the importance of this humidity prediction approach and acknowledging the 

potential limitation of using the trained ANN solely for retrospective studies, as it may be overfitted to the 

specific times and locations it was trained on, limiting its applicability for real-time weather forecasting. 



In response, we have revised our methodology to ensure that the training set consists of data from time 

periods that do not overlap with those used for validation and testing. Here, we continue to use ERA5-

IAGOS collocation data rather than ECMWF HRES, as ERA5 provides greater accuracy by incorporating past 

observational data. Referring to the cross-validation setup, specifically, we are now using 4 days of data 

for building the ANN model, followed by a 1-day gap, and then 1 day of data for either validation or testing. 

The complexity of the ANN model has also been increased to better match the growing complicacy of the 

training data, including the addition of hidden layers and neurons, as well as weight initialization and batch 

normalization for each layer to enhance generalization. Revisions to the text, along with updated Figures 

4, 5, 6, 7, and S6 for RHi using the new models, are provided below. Updates on the validation of 𝑇𝐼𝐴𝐺𝑂𝑆 

and q predictions are presented in Figures S1, S3, and S4 in the revised supplement. 

The ANN, trained in this way, was further tested on real weather forecast data from a separate test set, 

showing no drop in MAE and R² metrics thanks to the refinement of the ANN model settings. 

In response to your concerns that adjacent IAGOS data points could result in highly similar model inputs 

and target outputs for the ANN, we calculated the autocorrelation function of the IAGOS data series 

following the method of Dotzek and Gierens (2008). The results, displayed in Figure A1 below, show that 

autocorrelation reaches up to 0.04 at the original resolution (4 s, 1 km) before gradually declining to near 

zero at a resolution of 0.25 degrees (25 km), which corresponds to the ERA5 grid box size. It can be 

explained by the nature that the water vapor field is quite chaotic with steep gradients. Diao et al (2014, 

2015) showed that in-situ RHi measurements taken with 1 Hz or 10 Hz instruments reveal small-scale 

structures in the RHi time series, in agreement with our finding. Therefore, we assume that autocorrelation 

can be disregarded for the averaged IAGOS RHi measurements within the ERA5 grid box. However, we 

have revised our method according to your suggestions as described before. 

 

Figure A1: Autocorrelation function of the IAGOS measurement series (4s, 1km). 

Based on the suggested cross-validation setup, test results, and statistical evidence of minimal 

autocorrelation in the input and output data, we believe the model's effectiveness remains robust. This 

approach supports its application not only in retrospective analyses but also in real-time forecasting. 

Rb) manuscript changes 

L174-176: “To ensure that the training set consists of data from time periods that do not overlap with 

those used for either validation and testing, we now use 4 days of data to build the ANN model, followed 

by a 1-day gap, and then 1 day of data for validation or testing.” 



L291-294: “In Sect. 2.3, four consecutive days of samples from the ERA5-IAGOS collection are allocated for 

model training, with the following day excluded to avoid overlap with the continuous weather system, and 

another day reserved either for validation, to evaluate the model's generalization to unseen data during 

training, or for testing.” 

L43-45 in the supplement: To ensure model robustness “and construct an independent test data set, we 

now use a sequence-based split: four consecutive days of data are used to build the ANN model, followed 

by a 1-day gap, with the subsequent day's data reserved for validation or testing”. 

L286-287: “We use 3 hidden layers, each with 100 neurons and He weight initializer (He et al., 2015), along 

with batch normalization between layers to improve generalization. The humidity output is referred to as 

𝑅𝐻𝑖𝐴𝑁𝑁.” 

L298: “an ANN for q is implemented, with 300 neurons in each hidden layer and…” 

L18-20 in the Abstract: “The ANN shows excellent performance and the predicted RHi in the UT has a mean 

absolute error MAE of 5.7% and a coefficient of determination R² of 0.95, which is significantly improved 

compared to ERA5 RHi (MAE of 15.8%; R² of 0.66).” 

L348-350: “The MAE decreases significantly from 15.82% (ERA5) to 5.71% (ANN), the R2 values increase 

from 0.66 (ERA5) to 0.95 (ANN), and the root mean spare error RMSE decreases from 20.52% (ERA5) to 

7.88% (ANN).” 

 

Figure A2 (4): Distribution of (a) 𝑅𝐻𝑖𝐸𝑅𝐴5 and (b) 𝑅𝐻𝑖𝐴𝑁𝑁 versus 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the UT in all sky (clear and 

cloudy conditions) in the test data set. The number of data sets N, the mean absolute error MAE and the 

coefficient of determination R² are shown in the panels. 

L354-356: “In the cloudy (Fig. 5a-b) and clear sky (Fig. 5c-d) conditions in the UTLS, the MAE of the RHi 

decreases from 16.28% (11.21%) to 5.95% (4.28%), respectively. Also, the R² increases by 0.30 (0.23) to 

0.95 (0.95) for the two scenarios.” 

L361-363: “The ANN model also has strong skills of RHi correction in the LS, see Fig. 5e and f. R2 values 

increase from 0.59 (ERA5) to 0.95 (ANN), similar to the UT region in Fig. 4. The improvement of RHi 

prediction by the ANN is also documented by the decrease of MAE by 6.07%.” 



L377: “with a MAE of approximately 5.8%...” 

L485-486: “Using this ANN humidity correction, the MAE of 𝑅𝐻𝑖𝐴𝑁𝑁 when comparing to 𝑅𝐻𝑖𝐸𝑅𝐴5 both 

against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 is reduced from 15.82% to 5.71%, 16.28% to 5.95%, 11.21% to 4.28%, and 9.78% to 

3.71%...” 

 

Figure A3 (5): Comparison of 𝑅𝐻𝑖𝐸𝑅𝐴5 (left column) and 𝑅𝐻𝑖𝐴𝑁𝑁 (right column) against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the 

(a) and (b) cloudy UTLS, (c) and (d) clear sky UTLS, and (e) and (f) clear sky and cloudy (or all sky) LS regions 

in the test data set. The number of data sets N, the mean absolute error MAE and the coefficient of 

determination R² are indicated in the individual panels. 

L369-371: “As opposed to this, Fig. 6d shows that 𝑅𝐻𝑖𝐴𝑁𝑁 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 have a closer agreement, with an 

MBE of about ±11% for all UT measurements up to 140%. The RHi between 80% and 130% in the important 

range for cirrus clouds is well represented by the ANN with an MBE better than +/- 7%.” 



 

Figure A4 (6): Frequency distribution (a and c) and overall mean biased error MBE (%) (b and d) of 𝑅𝐻𝑖𝐸𝑅𝐴5 

and 𝑅𝐻𝑖𝐴𝑁𝑁 against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the clear and cloudy UT (grey) in the test data set. 

 



 

Figure A5 (7): Distributions of IOT for contrails and cirrus retrieved from (a) MSG observations using the 

CiPS algorithm, and simulated using the CoCiP model with (b) 𝑞𝐴𝑁𝑁 or (c) 𝑞𝐼𝐹𝑆 at 10:00 UTC on 14 April 

2021. The IOT distribution for contrails from CoCiP simulations is shown in (e) and (f). The IOT frequencies 

(histograms) for contrail cirrus and contrails are shown in (d) and (g), respectively.  

 

Figure A6 (S6): RHi derived from (a) ERA5 or (c) the ANN model and the differences relative to AIMS 

measurements in (b) and (d) obtained from the HALO aircraft on 21 July 2021 during the CIRRUS-HL 

campaign. 
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Responses to Community #2 Scott Geraedts 

We thank Scott Geraedts for the interest in the contingency table metrics used in our manuscript to 

evaluate ice supersaturation prediction and the helpful comments, which we address in the revision of the 

manuscript. 

In the following we number the community’s comments (CC) and our replies (R) to each, referencing the 

corresponding tracked changes in the manuscript.  

CC: In addition to the ETS, it would be nice to have the full contingency table used to evaluate the model 

(e.g. for the cases in Table 2), so that other metrics could be computed if readers are interested. 

Ra) author’s response 

Thank you for your interest in the complete contingency table metrics. The four events - whether ice 

supersaturation is predicted by ERA5 or the ANN model and observed by IAGOS – have already been 

explained in the discussion version of the manuscript. We have now added the relevant equations to the 

text, linking them to computed metrics based on the updated ANN model, which uses separate training, 

validation, and test data (see response letters to Anonymous Referee #2 and community #1, #3). 

Additionally, we have provided an updated table for the test data results. Please refer to Table A1 below, 

as well as Table S2 and the revised text in the manuscript. 

Rb) manuscript changes 

L396-400: “First, events are labeled according to the contingency table, with a (𝑌𝐼𝐴𝐺𝑂𝑆/𝑌𝐸𝑅𝐴5 or 

𝑌𝐼𝐴𝐺𝑂𝑆/𝑌𝐴𝑁𝑁, ice supersaturation predicted and observed), b (𝑌𝐼𝐴𝐺𝑂𝑆/𝑁𝐸𝑅𝐴5 or 𝑌𝐼𝐴𝐺𝑂𝑆/𝑁𝐴𝑁𝑁, no ice 

supersaturation predicted but observed), c (𝑁𝐼𝐴𝐺𝑂𝑆/𝑌𝐸𝑅𝐴5 or 𝑁𝐼𝐴𝐺𝑂𝑆/𝑌𝐴𝑁𝑁, ice supersaturation predicted 

but not observed), and d (𝑁𝐼𝐴𝐺𝑂𝑆/𝑁𝐸𝑅𝐴5 or 𝑁𝐼𝐴𝐺𝑂𝑆/𝑁𝐴𝑁𝑁 ice supersaturation neither predicted nor 

observed). 𝑌𝐼𝐴𝐺𝑂𝑆 indicates that the waypoint is in ice supersaturation based on the IAGOS measurements, 

while 𝑁𝐼𝐴𝐺𝑂𝑆 indicates the absence of ice supersaturation. The same notations are applied when analyzing 

the statistics for ERA5 and ANN.”  

L414-417: “The scores for ERA5 in all sky UT, cloudy UTLS, and all sky LS classes are 0.23, 0.21, and 0.14, 

respectively, indicating limited predictive skill, particularly in the all sky LS region. In contrast, the ANN 

model significantly enhances the ice supersaturation prediction, yielding scores of 0.71, 0.70, and 0.52 for 

the respective regions. This represents an approximate 0.44 increase in ETS across all classes…” 

L428-429:” demonstrating a higher accuracy with an ETS as high as 0.71.” 

L491-492:” The dynamic-based humidity correction leads to an increase in ETS from 0.23, 0.21, and 0.14 

(ERA5) to 0.71, 0.70, and 0.52 by the ANN, respectively...” 

Table A1 (2): ETS values for the prediction of RHi>100% from 𝑅𝐻𝑖𝐸𝑅𝐴5 and 𝑅𝐻𝑖𝐴𝑁𝑁  in the test data set 

between 200 hPa and 400 hPa over the Atlantic, Europe and Africa in 2020.  

Scenarios YIAGOS/YERA5 YIAGOS/NERA5 NIAGOS/YERA5 NIAGOS/NERA5 ETS 

clear and cloudy UT 66.34% 3.31% 19.42% 10.94% 0.23 
cloudy UTLS 54.61% 4.99% 24.06% 16.34% 0.21 

clear and cloudy LS 97.48% 0.21% 1.96% 0.36% 0.14 
clear sky UTLS 95.43% 0.05% 4.23% 0.28% 0.06 

 



Scenarios YIAGOS/YANN YIAGOS/NANN NIAGOS/YANN NIAGOS/NANN ETS 

clear and cloudy UT 67.07% 2.57% 4.57% 25.79% 0.71 
cloudy UTLS 56.26% 3.34% 4.95% 35.44% 0.70 

clear and cloudy LS 97.29% 0.40% 0.89% 1.42% 0.52 
clear sky UTLS 94.99% 0.49% 2.07% 2.44% 0.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Responses to community #3 #4 Olivier Boucher 

We thank Olivier Boucher for the helpful comments on separating the training, validation, and test 

datasets; on input data considerations including meteorological variables, prior times and pressure levels; 

on the normalization of input data; and on setting variables to their mean values to assess changes in loss 

for evaluating relative importance in RHi prediction. We have addressed these points in the revised 

manuscript. 

In the following we number the community’s comments (CC) and our replies (R) to each, referencing the 

corresponding tracked changes in the manuscript.  

CC1: The authors write that "This collocation of model meteorological variables and measured humidity 

values from the year 2020 comprises 3.99 million individual data points, from which 80%, 10%, and 10% 

are randomly selected for training, testing during the model development, and validating the ANNs, 

respectively." Presumably they refer to the full-resolution (i.e., 4s sampling) IAGOS data. Given the high 

sampling frequency, and if our understanding is correct, there is a strong autocorrelation in the data. Thus 

randomly selecting the training, testing and validation datasets implies that very similar conditions to 

those of the testing and validation datasets have been met in the training dataset. There is a well-known 

risk that this inflates artificially the model performance (see e.g. 

https://doi.org/10.1016/j.ophoto.2022.100018). At the very least the authors should select separate 

IAGOS flights in their training, testing and validation datasets. Even better they should consider dates that 

are at least one day apart for a given region.  

It is unclear if the testing or validation dataset are used in Section 4 as text on line 185 and in Section 4 

appears contradictory. In any case we would recommend the testing and validation datasets to be 

temporally disjoint from the training dataset at every location. 

R1a) author’s response 

Thank you for commenting on the potential autocorrelation in IAGOS measurements and suggesting a 

further separation of the training, validation, and test dataset and ensure that the dates are at least one 

day apart for each given region.  

We appreciate this feedback and calculated the autocorrelation function of the IAGOS data series 

following the method of Dotzek and Gierens (2008). The results, displayed in Figure A1 here, show that 

autocorrelation reaches up to 0.04 at the original resolution (4 s, 1 km) before gradually declining to near 

zero at a resolution of 0.25 degrees (25 km), which corresponds to the ERA5 grid box size. It can be 

explained by the nature that the water vapor field is quite chaotic with steep gradients. Diao et al (2014, 

2015) showed that in-situ RHi measurements taken with 1 Hz or 10 Hz instruments reveal small-scale 

structures in the RHi time series, in agreement with our finding. Therefore, we assume that autocorrelation 

can be disregarded for the averaged IAGOS RHi measurements within the ERA5 grid box. 



 

Figure A1: Autocorrelation function of the IAGOS measurement series (4s, 1km). 

In response, we have still revised our methodology to ensure that the training set consists of data from 

time periods that do not overlap with those used for either validation and testing. Specifically, we are now 

using 4 days of data for building the ANN model, followed by a 1-day gap, and then 1 day of data for 

validation or testing. The complexity of the ANN model has also been increased to better match the 

growing complicacy of the training data, including the addition of hidden layers and neurons, as well as 

weight initialization and batch normalization for each layer to enhance generalization. Revisions to the 

text, along with updated Figures 4, 5, 6, 7, and S6 for RHi using the new models, are provided below. 

Updates on the validation of 𝑇𝐼𝐴𝐺𝑂𝑆 and q predictions are presented in Figures S1, S3, and S4 in the revised 

supplement. 

Thank you for pointing out the ambiguous description. The validation dataset is only used during the 

training process to tune model hyperparameters and check how well the model generalize to data it hasn’t 

seen before. In the revised manuscript, we have changed the term in lines 193-194 from “validation 

dataset” to “test dataset.” 

R1b) manuscript changes 

L174-176: “To ensure that the training set consists of data from time periods that do not overlap with 

those used for either validation and testing, we now use 4 days of data to build the ANN model, followed 

by a 1-day gap, and then 1 day of data for validation or testing.” 

L291-294: “In Sect. 2.3, four consecutive days of samples from the ERA5-IAGOS collection are allocated for 

model training, with the following day excluded to avoid overlap with the continuous weather system, and 

another day reserved either for validation, to evaluate the model's generalization to unseen data during 

training, or for testing.” 

L43-45 in the supplement: To ensure model robustness “and construct an independent test data set, we 

now use a sequence-based split: four consecutive days of data are used to build the ANN model, followed 

by a 1-day gap, with the subsequent day's data reserved for validation or testing”. 

L286-287: “We use 3 hidden layers, each with 100 neurons and He weight initializer (He et al., 2015), along 

with batch normalization between layers to improve generalization. The humidity output is referred to as 

𝑅𝐻𝑖𝐴𝑁𝑁.” 

L298: “an ANN for q is implemented, with 300 neurons in each hidden layer and…” 



L18-20 in the Abstract: “The ANN shows excellent performance and the predicted RHi in the UT has a mean 

absolute error MAE of 5.7% and a coefficient of determination R² of 0.95, which is significantly improved 

compared to ERA5 RHi (MAE of 15.8%; R² of 0.66).” 

L348-350: “The MAE decreases significantly from 15.82% (ERA5) to 5.71% (ANN), the R2 values increase 

from 0.66 (ERA5) to 0.95 (ANN), and the root mean spare error RMSE decreases from 20.52% (ERA5) to 

7.88% (ANN).” 

 

Figure A2 (4): Distribution of (a) 𝑅𝐻𝑖𝐸𝑅𝐴5 and (b) 𝑅𝐻𝑖𝐴𝑁𝑁 versus 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the UT in all sky (clear and 

cloudy conditions) in the test data set. The number of data sets N, the mean absolute error MAE and the 

coefficient of determination R² are shown in the panels. 

L354-356: “In the cloudy (Fig. 5a-b) and clear sky (Fig. 5c-d) conditions in the UTLS, the MAE of the RHi 

decreases from 16.28% (11.21%) to 5.95% (4.28%), respectively. Also, the R² increases by 0.30 (0.23) to 

0.95 (0.95) for the two scenarios.” 

L361-363: “The ANN model also has strong skills of RHi correction in the LS, see Fig. 5e and f. R2 values 

increase from 0.59 (ERA5) to 0.95 (ANN), similar to the UT region in Fig. 4. The improvement of RHi 

prediction by the ANN is also documented by the decrease of MAE by 6.07%.” 

L377: “with a MAE of approximately 5.8%...” 

L485-486: “Using this ANN humidity correction, the MAE of 𝑅𝐻𝑖𝐴𝑁𝑁 when comparing to 𝑅𝐻𝑖𝐸𝑅𝐴5 both 

against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 is reduced from 15.82% to 5.71%, 16.28% to 5.95%, 11.21% to 4.28%, and 9.78% to 

3.71%...” 



 

Figure A3 (5): Comparison of 𝑅𝐻𝑖𝐸𝑅𝐴5 (left column) and 𝑅𝐻𝑖𝐴𝑁𝑁 (right column) against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the 

(a) and (b) cloudy UTLS, (c) and (d) clear sky UTLS, and (e) and (f) clear sky and cloudy (or all sky) LS regions 

in the test data set. The number of data sets N, the mean absolute error MAE and the coefficient of 

determination R² are indicated in the individual panels. 

L369-371: “As opposed to this, Fig. 6d shows that 𝑅𝐻𝑖𝐴𝑁𝑁 and 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 have a closer agreement, with an 

MBE of about ±11% for all UT measurements up to 140%. The RHi between 80% and 130% in the important 

range for cirrus clouds is well represented by the ANN with an MBE better than +/- 7%.” 



 

Figure A4 (6): Frequency distribution (a and c) and overall mean biased error MBE (%) (b and d) of 𝑅𝐻𝑖𝐸𝑅𝐴5 

and 𝑅𝐻𝑖𝐴𝑁𝑁 against 𝑅𝐻𝑖𝐼𝐴𝐺𝑂𝑆 in the clear and cloudy UT (grey) in the test data set. 

 



 

Figure A5 (7): Distributions of IOT for contrails and cirrus retrieved from (a) MSG observations using the 

CiPS algorithm, and simulated using the CoCiP model with (b) 𝑞𝐴𝑁𝑁 or (c) 𝑞𝐼𝐹𝑆 at 10:00 UTC on 14 April 

2021. The IOT distribution for contrails from CoCiP simulations is shown in (e) and (f). The IOT frequencies 

(histograms) for contrail cirrus and contrails are shown in (d) and (g), respectively.  

 

Figure A6 (S6): RHi derived from (a) ERA5 or (c) the ANN model and the differences relative to AIMS 

measurements in (b) and (d) obtained from the HALO aircraft on 21 July 2021 during the CIRRUS-HL 

campaign. 
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CC2: Line 268: it is not clear what the 56 inputs consist of.  8 times 2 times 5 makes 80 so presumably some 

variables have fewer times or pressure levels. Which ones? Table 1 does not really clarify this. Could the 

authors provide more details? 

R2a) author’s response 

Thank you for marking this unclear sentence. The 56 inputs consist of 8 meteorological variables across 7 

conditions: the current time and level, two time lags (-2h and -6h), and four ERA5 pressure levels 

surrounding the IAGOS cruise level (-2, -1, +1, +2). Additionally, we have revised the text and clarified the 

first explanatory column in Table A1(1) for better detail. 

R2b) manuscript changes 

L280-283: “The ANN model consists of 56 inputs, derived from 8 meteorological variables across 7 

conditions: the current time and level, two time lags (-2 h and -6 h) for the current level and four ERA5 

pressure levels surrounding the IAGOS cruise altitude (-2, -1, +1, +2 levels) for the current time.” 

 

 

 

 

 



Table A1(1): Overview of the variables used in this study. Spatial resolution of ERA5: 0.25°. Vertical 

resolution of ERA5 on pressure levels: 25-50 hPa. The original temporal resolution of ERA5 and IAGOS: 1 h 

and 4 s. Study regions: Atlantic, Europe and Africa. 

source variable (* RHi ANN) description unit 

ERA5 (7 conditions)  

• the current time and 

level 

• two time lags (-2h and -

6h) 

• four ERA5 pressure 

levels surrounding the 

IAGOS cruise level (-2, -

1, +1, +2) 

* TERA5 air temperature K 

ciwc 
specific cloud ice water 

content 
Kg/kg 

* RHiERA5 relative humidity w.r.t. ice % 

qERA5 specific humidity g/Kg 

* z geopotential m2/s2 

* w vertical velocity Pa/s 

* d divergency of wind s-1 

* u 
eastward component of 

wind 
m/s 

* v 
northward component of 

wind 
m/s 

* vo relative vorticity s-1 

pv  potential vorticity s-1 

time hour 1 

level pressure hPa 

IAGOS 
at the current time 

* RHiIAGOS relative humidity w.r.t. ice 1 

TIAGOS air temperature K 

pressure air pressure Pa 

 

CC3: ANN: were the input and output data normalized and how? I could not find the information neither 

in the main text nor in the Appendix (sorry if I missed it). Section 3.3 presents an ablation study where one 

ERA5 variable is set to zero at a time, so I assume the data have been centred (as usual practice is to set 

the variable to its mean value). 

R3a) author’s response 

Thank you for your questions regarding this completed normalization step but previously overlooked 

description. Yes, we apply min-max normalization to both input and output data in the deep learning pre-

processing stage. This data pre-processing approach rescales data features to a fixed range of [0, 1], 

preserving the relationships between data points. This approach not only improves model performance 

by preventing features with larger ranges from dominating but also enhances convergence speed in 

gradient-based algorithms, such as the neural networks used in our method. Certainly, the model 

prediction results were transformed back to their original scale for testing by applying the inverse of the 

normalization, using the previously saved scaler. We have added this explanation to the main text. 

Regarding the relative contributions of individual variables to the ANN's RHi predictions, we agree with 

your suggestion to set each variable to its mean value to assess its significance to RHi. Please refer to the 

updated Figure 3 in the manuscript or Figure A7 below. We have also revised the description of the 

changes in 𝐾𝑥 in the updated text. 

R3b) manuscript changes 



L285-286: “We apply min-max normalization to both input and output data, which prevents features with 

larger ranges from dominating and improves convergence speed during model training.” 

L295-296: “To test the model’s predictions, the results were transformed back to their original scale by 

applying the inverse of the normalization using the previously saved scaler.” 

L306-307: “𝐾𝑥 is the relative change in loss when one input, i.e. one feature of ERA5 is set to its mean 

value for the complete input data set” … 

L309-310: “where 𝐿𝑥 is the loss (MSE) for the test data set compared with IAGOS when setting one ERA 

feature input to its average value” … 

L18 in the Abstract: “while other dynamical variables are of low to moderate or high importance.” 

L321-323: “they provide a moderate and non-negligible contribution to the accuracy of the RHi prediction 

model. In fact, w and d show 𝐾𝑥 of 0.29 and 0.26 and those for u, v, and vo even higher, which are 0.98, 

0.75, and 0.74. There is generally less importance in the contributions of the variables representing 

dynamical quantities…” 

L325-326: “The fact that dynamical variables for instance particularly u, v, vo are closely as important as 

𝑅𝐻𝑖𝐸𝑅𝐴5, 𝑇𝐸𝑅𝐴5, and z for the description of the physical processes that lead to the decrease/increase of 

relative humidity in Sect. S2 in the supplement...” 

L329-332: “Hofer et al. (2024) shows that 𝑅𝐻𝑖𝐸𝑅𝐴5 is the most influential predictor for humidity 

predictions, while the explanatory power of dynamical proxies is insufficient when only using data from 

the current time and level. However, our updated analysis confirms that incorporating a broader vertical 

region and the historical time into the dynamical variables has a more significant impact on the ANN model 

and contributes to the understanding of humidity evolution.” 

L482-483: “while other meteorological variables, including horizontal wind speed, relative vorticity, 

vertical velocity, and divergence, have a high or moderate to minor but measurable influence.” 

 

Figure A7 (3): Relative importance of the individual variables to the ANN model for predicting RHi. 
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