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Abstract Current global reanalyses show marked discrepancies in snow mass and snow cover extent for the 

Northern Hemisphere. Here, benchmark snow datasets are produced by driving a simple offline snow model, the 10 

Brown Temperature Index Model (B-TIM), with temperature and precipitation from each of three reanalyses. B-

TIM offline snow performs comparably to or better than online (coupled land-atmosphere) reanalysis snow when 

evaluated against in situ snow measurements. Sources of discrepancy in snow climatologies, which are difficult 

to isolate when comparing online reanalysis snow products amongst themselves, are partially elucidated by 

separately bias-adjusting temperature and precipitation in B-TIM. Interannual variability in snow mass and snow 15 

spatial patterns is far more self-consistent amongst offline B-TIM snow products than amongst online reanalysis 

snow products, and the self-consistent products validate better compared to observations. Specific artifacts related 

to temporal inhomogeneity in snow data assimilation are revealed in the analysis. B-TIM, released here as an 

open-source, self-contained Python package, provides a simple benchmarking tool for future updates to more 

sophisticated online and offline snow datasets. 20 

1 Introduction 

Terrestrial snow is a highly variable component of the cryosphere that responds to and feeds back on 

anthropogenic global warming via snow albedo (e.g. Betts et al., 2014; Thackeray et al., 2018). At its maximum, 

snow covers up to 50% of the Northern Hemisphere land surface (Robinson & Frei, 2000) and it controls a wide 

range of hydrological, ecological, and socio-economic systems (Bokhorst et al., 2016). Snow variability and trends 25 

have been monitored over several decades (Doesken & Judson, 1997; Mudryk et al., 2020; Robinson, 1989) with 

regular reporting, such as in the annual National Oceanic and Atmospheric Administration (NOAA) Arctic Report 

Card. Despite this attention to snow, there are marked discrepancies in historical snow estimates from available 

products, leading to gaps in our understanding of snow across a range of spatial scales, from point to watershed 

to hemispheric (Magnusson et al., 2015; Mudryk et al., 2015). Many factors lead to these discrepancies, making 30 

it a challenge to identify a single authoritative dataset for historical snow water equivalent or related variables. 

Furthermore, the simplest snow models can perform comparably to the most complex snow models against the 

available in situ observations (Boone & Etchevers, 2001; Essery et al., 2013; Magnusson et al., 2015; Menard et 

al., 2021). For this reason, “offline” datasets generated with Temperature Index Models (TIMs), snow models 

forced only by air temperature and precipitation that do not represent coupling of snow to the land-atmosphere 35 

system, are still maintained (e.g., Hock, 2003; Ohmura, 2001; Sturm, 2015, Walter et al., 2005). Recent studies 
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have advocated for the use of multi-product ensembles spanning a range of complexity (including offline snow 

models, land surface data assimilation systems, and coupled atmosphere-land reanalysis systems) and a range of 

snow schemes from single-layer to multilayer snow modules embedded inside comprehensive land surface 

models. These ensembles can then be used to characterize snow climatology and trends (e.g. Mudryk et al., in 40 

discussion), evaluate new snow datasets, or to quantify uncertainties (Essery, 2015; Kim et al., 2021; Mudryk et 

al., 2015). Methods to evaluate the quality of potential ensemble members are actively being explored. 

 

In this study, we use an offline TIM to investigate the discrepancies in snow water equivalent (SWE) and snow 

cover extent (SCE) in online reanalysis snow products. We use an updated version of the Brown et al. (2003) 45 

TIM, hereafter called the “B-TIM”, whose broad applicability and extensive legacy at Environment and Climate 

Change Canada (ECCC) motivate its use. The model was initially developed to provide a first guess field for a 

gridded snow analysis using forcing from the European Centre for Medium-range Weather Forecasting (ECMWF) 

Reanalysis 15 (ERA-15). The snow analysis was used to evaluate global climate model output from AMIP II. 

Later, using forcing from numerical weather forecasts to run the B-TIM, the model was incorporated into the 50 

Canadian Meteorological Centre’s (CMC’s) daily snow depth analysis (Brown & Brasnett, 2010). This dataset 

continues to be used as a validation product for other studies (Kim et al., 2021, Zhang et al., 2021). Until recently, 

the standalone version of B-TIM that is internally available at ECCC was coded in Fortran 77 and forced with 

temperature and precipitation forcing from ERA-Interim (Dee et al., 2011). The ERA-Interim version participated 

in several ensemble studies (e.g. Brown et al., 2010; Brown & Robinson, 2011; Mortimer et al., 2020), provided 55 

hemispheric snow mass estimates for the NOAA Arctic Report Card (2017 edition to 2020 edition; e.g., Mudryk 

et al., 2020), but has been superseded by a version forced with ERA5. In addition to updated forcing, following 

ECCC’s push to provide transparent and reproducible open-source climate assessment tools based on FAIR 

principles (Environment and Climate Change Canada, 2021), we are motivated to release B-TIM as an open-

source code following updated coding standards.  60 

 

Discrepancies in snow from “online” coupled reanalysis arise from many sources, including inconsistencies of 

snow data assimilation schemes, underlying snow and land-surface component model differences, atmospheric 

model differences, differences in processes governing the coupled surface-energy balance, and interactions 

between all these factors. To highlight one example which we will discuss in more detail below, while the 65 

assimilation of snow data may improve instantaneous estimates of snow depth, there is evidence that significant 

time series discontinuities may result as data streams change (as in ERA5; Mortimer et al., 2020). Like any offline 

TIM, B-TIM does not assimilate snow data, does not capture surface energetics, and features no coupling between 

snow and the land-atmosphere state. B-TIM offline snow products, provided they are suitably validated, can thus 

isolate the role of meteorological driving from issues related to data assimilation, model bias, and errors arising 70 

from coupling, all of which can be sources of discrepancy for more sophisticated snow datasets. In this work, we 

use a fixed version of the B-TIM without further calibration or tuning. Therefore, one parameter set for the model 

is used and the results may still contain model bias. Quantifying this bias for the B-TIM model can be done 

thorough analysis of parameter and error sensitivity (Essery, 2015; Raleigh et al., 2015). However, our aim is to 

investigate reanalysis snow biases; each offline snow product will have the same model bias, whereas the coupled 75 
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reanalysis snow does not. Comparing offline snow products therefore narrows down the sources of discrepancy 

without requiring a re-run of the complex snow modeling and data assimilation process. 

 

We document an updated B-TIM algorithm (Sect. 2), which we release here as an open source, self-contained 

Python repository. We then use the B-TIM to generate offline SWE and snow cover extent using temperature and 80 

precipitation forcing from the global reanalyses ERA5, JRA-55, and MERRA-2 for 1980-2020. Through 

validation with in situ data, we compare the realism of offline B-TIM and online coupled reanalyses (Sect. 3). 

This study has as its focus hemispheric snow. Even at these large scales and excluding complexities tied to 

mountain snow modeling, there are discrepancies that should be characterized. For exploration into regional 

performance, two other studies have been prepared for publication: Mudryk et al. (in discussion) and Mortimer et 85 

al. (in discussion), which include all the datasets discussed here.  Mudryk et al. (in discussion) evaluate a suite of 

23 gridded SWE products, ranking them by performance and inter-dataset consistency. Mortimer et al (in 

discussion) present an expanded reference SWE dataset that combines in situ and airborne SWE measurement 

and assess snow dataset performance against that record. The same in situ data is used for this study. Our main 

scientific work here, which is described in Sect. 3, will be to use B-TIM to characterize and explain discrepancies 90 

amongst online reanalysis snow products’ climatological characteristics and interannual variability. This analysis 

will include the use of bias-adjusted temperature and precipitation forcing in B-TIM to elucidate sources of 

discrepancy. We discuss results and conclusions in Sect. 4. 

2 Data and Methods 

2.1 The B-TIM snow model 95 

The calculations described in this section, which can also be seen in the schematic in Figure 1, comprise version 

1.0.0 of the B-TIM (10.5281/zenodo.10044950). This is the first updated description in this model’s two decades 

of usage in many publications and applications. Relative to Brown et al. (2003), we provide updated 

documentation and changes to some constants, as reflected in the code and its parameters. Physical constants and 

parameter values can be found in Table S1. At a given time step, we denote the initial snow depth and density by 100 

𝐷! and 𝜌!. 𝑆𝑊𝐸! is the initial time step’s snow water equivalent, calculated as 𝑆𝑊𝐸! =	𝜌!𝐷! with units of kg m-

2. All densities have standard units (kg m-3), and snow depths have units of metres. 
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Fig. 1 Conceptual overview of the Brown Temperature Index Model (B-TIM). At every time step and location, 105 
temperature and precipitation values are used to compute either the density and depth of any new snow or the 
temperature of any rainfall. The snowpack state (snow depth and density) is affected by rain melt, melting due to air 
temperature, and one of two densification processes which cause both depth and density variables to evolve. 

 

Initialization, meteorological driving, and time stepping 110 

Each simulated snow year initializes from snow-free conditions on August 1 and runs until the following July 31. 

Two-metre temperature and total precipitation (frozen and solid) are the only inputs to the model; the specific 

variables we used from each reanalysis are listed in Table S2. A fixed 20% precipitation reduction is implemented 

at each model time step as a general loss parameter—this captures canopy interception, sublimation, and blowing 

snow for frozen precipitation. The variable	𝑃 represents the reduced precipitation in metres of water for a given 115 

time step and location. The model time step is one hour, but less frequent driving data can be handled. If needed, 

the model linearly interpolates temperature to hourly steps and divides accumulated precipitation by the duration 

of the driving data time step in hours. 
 

 120 

Determining precipitation phase 

At each model time step, the precipitation phase is classified as snow or rain using a 0°C threshold. Previous B-

TIM applications allowed mixed precipitation between 0° and 2°C following a linear relationship for the liquid 

fraction. For large scale study, there is little advantage to including mixed precipitation according to the linear 
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relationship as opposed to a fixed threshold, as both are coarse simplifications (Jennings & Molotch, 2019). The 125 

absence of mixed precipitation has a minimal impact on the aggregated variables, though it causes local 

differences in regions with ephemeral snow. 

 

Updating snow depth and density 

Following Hedstrom & Pomeroy (1998), frozen precipitation during a time step is assigned a “new snow” density,  130 

𝜌"#$ = 𝐴 + 𝐵𝑒%/' , 𝑇 < 0°𝐶,         (1) 

where 𝑇 is the air temperature (values of the constants are listed in Table 1).  

 

Intermediate values for snow depth and density are assigned to the model’s single snow layer.  

𝐷∗ = 𝐷! + 𝑃 3
)!
)"#!

4           (2a) 135 

𝜌∗ = (+$)$	-	.)!	)
+∗

	           (2b) 

 

Three densification/melting steps are then applied to evolve 𝜌∗ and 𝐷∗.  

1. Snow melt is computed at each model time step using a melt factor, 𝛾 (mm w.e. K-1	hr-1), which is based 

on the intermediate snow layer density, 𝜌∗. The relationship used to calculate 𝛾 is based on Kuusisto 140 

(1984): 

𝛾 = 𝑀0𝜌∗ −𝑀1.          (3) 

Lower and upper bounds of 4.1 × 1023  and 0.23 , respectively, are enforced on 𝛾 . Hourly melt, 

represented as the change in snow depth Δ𝐷4, follows a standard temperature index approach:  

Δ𝐷4 =	 B−
(%2%&#'()

)∗
𝛾	, 𝑇 > 𝑇4#56

0, 𝑇 ≤ 𝑇4#56
        (4) 145 

where 𝑇4#56 = −1°𝐶 is the threshold air temperature used for snow melt. 

The leading coefficient in Eq. 3, 𝑀0, has been halved relative to and Brown et al. (2003) to reduce the 

rate of snow melt during the ablation season. This has been implemented for the CMC snow product.  

2. Snow melt caused by rainfall on the snowpack is computed using 

Δ𝐷7 =	−
8)!'!(%!2%)*##+#)

9))∗
.        (5) 150 

𝐶$ is the heat capacity of water (J kg-1 K−1), 𝑅 is the total rainfall (m), 𝑇$ is the rainfall temperature (°C), 

and 𝐿: is the latent heat of fusion for ice (J kg-1). Rain temperature is taken to be equal to air temperature, 

as in Brown et al. (2003), and the snowpack is assumed to be isothermal and 0°C, implying instant 

melting of the snowpack when it is warmed.  

3. A second intermediate snow depth is computed based on these first two steps. 155 

𝐷∗∗ = 𝐷∗ + Δ𝐷4 + Δ𝐷7         (6) 

Depending on air temperature, one of two possible densification processes is implemented. Both 

processes initially affect density (Equations 7a and 7b), and then snow depth is adjusted to conserve total 

water.  

Cold: When temperatures are below 𝑇4#56, cold snow aging is implemented as follows:  160 

Δ𝜌; = 𝐶0 (SWE∗)	exp[	𝐶3	(𝑇4#56 − 𝑇<"=$)	] exp[	−𝐶1𝜌∗	] , 𝑇 < 𝑇4#56    (7a) 
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𝑆𝑊𝐸∗ is the snow water equivalent (kg m-2, calculated as the product 𝜌∗𝐷∗∗). 𝐶0 and 𝐶1 are empirically 

derived constants. This formulation was proposed in Anderson (1976) and the parameters used in the B-

TIM are in the accepted range. 𝑇<"=$ is the snow temperature, taken to be equal to air temperature in this 

step. Snowpack density is allowed to vary between 200 and 550 kg m-3. The densification process does 165 

not vary seasonally.  

Warm: When temperatures are above -1°C, the snowpack undergoes a warm settling process, which 

increases the density more rapidly. A maximum density is first defined with dependence on the 

intermediate snow depth: 

𝜌4>? = 𝑊4>? −
@,
+∗∗
31 − exp Q	− +∗∗

@-
R	4,       (7b) 170 

and then adjusted by the intermediate density: 

Δ𝜌$ = (𝜌4>? − 𝜌∗)(1 − 𝑒2>A6), 𝑇 ≥ −1°𝐶.      (7c) 

The value of 𝑎 is such that in a one model time step (Δ𝑡 = 3600	𝑠), the density difference is adjusted by 

1% of (𝜌4>? − 𝜌∗), which constitutes a change in density of a few percent for typical values of 𝜌∗. 

The final density is calculated as  175 

𝜌: = 𝜌∗ + Δ𝜌$ ,			𝑇 ≥ −1°𝐶   else   𝜌: = 𝜌∗ + Δ𝜌;      (8) 

 and the final depth is calculated after the densification process in the following manner to conserve water: 

 𝐷: = 𝐷∗∗ X)
∗

))
Y.	          (9) 

The final snow depth and density values are carried to the next model time step and new meteorological forcing 

is read in. The values of the prognostic variables are recorded at daily frequency and saved in monthly files. 180 

Annual total SWE and maximum SWE are tracked over the model year and the values are saved at the end of the 

run.  

2.2 Reanalysis products 

In this work, we use three current generation reanalyses which produce snow variables for 40 years or more for 

the Northern Hemisphere. We use the ECMWF Reanalysis, version 5, “ERA5” (Dutra et al., 2012; Hersbach et 185 

al., 2020), the second-generation Modern-Era Retrospective analysis for Research and Applications from the 

National Aeronautics and Space Administration, “MERRA-2” (Gelaro et al., 2017; Reichle et al., 2017), and the 

Japanese Meteorological Agency’s 55-year Reanalysis, “JRA-55” (Kobayashi et al., 2015). These products differ 

from one another with respect to data assimilation schemes as well as their component atmospheric and land 

models. All three global reanalyses assimilate conventional atmospheric measurements, but ERA5 and JRA-55 190 

additionally assimilate snow depth observations and satellite derived snow extent information.  

 

The different techniques used to constrain ERA5 and JRA-55 SWE using snow cover observations are described 

below in more detail. Additional comparisons of the reanalyses are documented in the Supplementary Information 

(SI) Sect. 1. 195 

 

Beginning in 2004, ERA5 assimilates the Interactive Multisensor Snow and Ice Mapping System (IMS) snow 

cover product wherever the model first guess indicates snow free conditions (de Rosnay et al., 2015). In the IMS 

snow cover product, grid cells are either snow covered or snow-free. Snow-free observations are treated as 
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observations of 0 cm snow depth, while observations of full snow cover are treated as 5 cm of snow depth. These 200 

observations, together with the in situ snow depth measurements, enter the 2D-OI scheme to update the snow 

depth. The inclusion of IMS snow cover in the data stream reduces overall snow amounts and is associated with 

a discontinuity in ERA5 snow (Mortimer et al., 2020). We highlight this effect through comparison with 

ERA5Snow, a data product produced by an offline run of the ECMWF land model. ERA5Snow is produced with 

the same land surface data assimilation as ERA5 except the IMS satellite snow product [de Rosnay, private access 205 

to data]. It is distinct from the offline ERA5-Land product produced by ECMWF.  

 

JRA-55 constrains snow using passive microwave observations from 1987 to the present, and climatological snow 

cover fills any gaps back to 1980. Though the microwave data processing methods are not fully documented in 

the peer reviewed literature, Kobayashi et al. (2015) say the estimates of snow cover extent come from comparing 210 

brightness temperature at different frequencies (37 GHz and 19 GHz at both horizontal and vertical polarization) 

to regionally and seasonally varying thresholds. All the snow is removed from grid cells where the land surface 

analysis indicates the presence of snow and the satellite observations do not. Snow is added to grid cells where 

the land surface analysis does not indicate snow but the satellite observations do. Unlike the fixed relationship 

between snow cover and snow depth used in ERA5, when the algorithm adds snow in JRA-55, it is a variable 215 

snow depth that would reduce land surface temperatures to freezing if it were to melt. Wherever the satellite and 

land surface analyses agree (both report snow covered conditions or both report no-snow conditions), no 

adjustment is made.  

2.3 Temperature and precipitation biases 

Biases in temperature and precipitation directly impact both online and offline snow products, and our aim is to 220 

separately characterize their effects. Briefly comparing temperature and precipitation fields from the three 

reanalysis products, MERRA-2 exhibits the lowest hemispheric mean land temperatures for most of the year, and 

JRA-55 the highest (Fig. 2a). In the winter months, the JRA-55 mean temperature exceeds that of ERA5 by 2.15 

K and MERRA-2 by nearly 3 K, with the largest temperature difference occurring in January. In addition to being 

the coldest on average, MERRA-2 has the largest land area capable of sustaining snow, diagnosed as regions with 225 

𝑇 < 0°𝐶 (Fig. 2b). This frozen land area exceeds that of ERA5 by 1 million km2 or more during the shoulder 

seasons of autumn and spring. 

 

With respect to total precipitation, JRA-55 is about 10% wetter than the other two products across all months (Fig. 

2c). MERRA-2 and ERA5 agree more closely, with differences of just 1% in autumn and spring. ERA5 is 4% 230 

wetter in the winter, and MERRA-2 is about 6% wetter in the summer months. We investigate the roles of these 

forcing biases in SWE biases by implementing a simple climatological bias correction (method is described in SI 

Sect. 2). 

 
  235 



8 
 

 

Fig. 2 Climatologies of mean temperature, frozen area, and total precipitation over Northern Hemisphere land areas, 
excluding mountains, computed twice monthly using 14-day windows centred on the 1st and 15th of each month. 

2.4 Topography, land mask, and regional definitions 

Mountain regions are excluded from our analysis using a mask derived from the Global Earth Topography 240 

and Sea Surface Elevation at 30 arc second resolution digital elevation model (GETASSE30 DEM). Locations in 

the DEM with local slope greater than 2° are defined as mountainous. After coarsening the slope mask (to 

0.25°x0.25°, the ERA5 resolution), grid cells that are more than 95% mountainous are recorded in a binary 

mountain mask file which is coarsened as needed using a nearest neighbour algorithm (for the MERRA-2 or JRA-

55 grids). 245 

 

To define land grid cells, we use the land-sea masks associated with each reanalysis. The land fraction is used to 

scale grid cell land area when computing total snow mass, which depends on SWE and land area. When possible, 

computations are done on a dataset’s native grid, and conservative regridding is applied to the SWE data, 

conserving total snow mass, before calculating grid-dependent metrics. 250 



9 
 

2.5 In situ validation of SWE datasets 

We evaluate the SWE from (offline) B-TIM and (online) reanalysis by comparing them to a combined historical 

snow course and airborne gamma derived SWE dataset. These data are independent from snow data assimilated 

in JRA-55 and ERA5. Snow course observations involve manual measurements of snow depth and density along 

a predefined transect, with measurements averaged to obtain a single SWE value for each transect on a specific 255 

date (WMO, 2018). The measurement frequency for snow courses varies by jurisdiction, ranging from monthly 

measurements in Alaska, the western continental US, and most of Finland, to measurements every five days during 

the spring snowmelt period in Russia. The Russian network has the highest sampling frequency and is well-

distributed across the landscape, while dense networks with lower sampling frequency are found in Finland, the 

northeast US, and parts of southern Canada. Airborne gamma SWE estimates are calculated by differencing snow-260 

free and snow-covered measurements after accounting for background soil moisture. Flights are 15-20km long 

with a 300m wide footprint. Data are available for the United States and southern parts of some Canadian 

provinces. There is broad consistency between snow courses and airborne gamma observations (Mortimer et al. 

in discussion), so we are confident in using both types of information together to evaluate the two types of 

products.  265 

 

Using the method in Mortimer et al. (in discussion), reference SWE data are matched in space and time with the 

gridded product data. Data are then spatially aggregated and summarized using bias, unbiased root mean squared 

error (uRMSE), and correlation. We compare data pairs for November through March for all years between 1980 

and 2020, aiming to include as many measurements as possible before the snow melt period. The validation is 270 

performed on non-mountainous points with non-zero SWE values below 500 mm that are simultaneously 

available for the reference data and all the estimates. The latter condition excludes some snow courses in coastal 

areas due to differing land/ice/water masks and is consistent with our snow mass calculations. In this study, there 

is no spatial aggregation by land type. 

3 Results 275 

We compare snow from global reanalyses (ERA5, ERA5Snow, MERRA-2, and JRA-55) to snow from offline B-

TIM runs. The offline snow products are named BrE5, BrM2, and BrJ55, reflecting the use of distinct reanalysis 

meteorology for each version, but the same B-TIM snow model to produce snow. Two of the reanalysis datasets, 

ERA5 and ERA5Snow, share the same temperature and precipitation inputs (“meteorology”). Therefore, there is 

only one BrE5 dataset produced. Standardizing through using a single model means that differences between the 280 

offline B-TIM runs primarily reflect differences in the forcing data. 

3.1 B-TIM compares well to in situ observations. 

Comparing modeled snow to in situ observations is one way to assess the realism and performance of each 

product. In general, we find a much broader spread in modeled SWE for high reference SWE values, showing 

overall decreasing model skill with increasing snow depth (Figs. 3a-f). The scatterplots are coloured as heatmaps 285 

to display the concentration of data points, which is highest where the colour is red. Each scatterplot contains over 

200 000 data points. In some products (JRA-55 and MERRA-2), there is a cluster of points where the modeled 
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snow is shallow, but reference SWE indicates deep snow. The B-TIM products have greater absolute bias than 

their respective reanalysis products, but they are of comparable magnitude. When mountain points are included, 

the B-TIM products have lower absolute bias than the reanalyses (not shown). Low bias does not necessarily mean 290 

good performance, as individual positive and negative differences can cancel. Of the reanalyses, ERA5 and 

ERA5Snow have the lowest uRMSE and highest correlation compared to the reference values, so they outperform 

JRA-55 and MERRA-2 overall. The RMSE (calculated as the bias and uRMSE added in quadrature) of each 

offline snow product is less than that of its reanalysis counterpart. By these measures, all three B-TIM products 

have comparable skill to ERA5/ERA5Snow. Finally, unlike their reanalysis counterparts, BrJ55 and BrM2 do not 295 

display the cluster of false low snow values. 

 

Fig. 3 SWE product validation against snow course and gamma SWE measurements. Figs. 3a-f consist of scatterplots 
showing all valid data pairs (snow course, product) from November to March over 1980-2018. Summary statistics, 
including the bias, unbiased root mean squared error (uRMSE), and correlation, are included in the legend and are 300 
summarized in Figs. 3g-i. 

These validation results show two things. First, the offline products capture realistic snow patterns when compared 

to ground measurements, even in the context of snow from more complex coupled reanalyses. Second, we see 

that snow data assimilation does not guarantee skilful snow modeling by these measures. In particular, 

ERA5/ERA5Snow and JRA-55 are both produced with snow cover data assimilation (see Section 2.2), but while 305 

the former two are the best performing products, the latter performs poorly (with high uRMSE and low correlation) 

and struggles both with false low snow values and large overestimates relative to ground truth. MERRA-2 does 

not assimilate snow data but also performs moderately by the comparison metrics. Additionally, model complexity 

does not guarantee skilful snow modelling. The offline products generated with the B-TIM, with neither snow 

data assimilation nor coupled interactions between snow and the land-atmosphere system, perform comparably to 310 

each other and to the relatively more complex ERA5/ERA5Snow, despite differences in the forcing data.  

3.2 Using B-TIM to assess discrepancies between reanalysis snow products  

3.2.1 Discrepancies in reanalysis snow climatologies are caused by forcing data biases 

Marked differences appear in the magnitude of total snow mass and snow covered area for the products considered 

here. Among the online (the B-TIM) datasets, JRA-55 (BrJ55) has the highest peak snow mass, exceeding the 315 

maximum value from MERRA-2 (BrM2) by about 0.15 x 1015 kg (0.17 x 1015 kg) and the maximum value from 
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ERA5 (BrE5) by 0.73 x 1015 kg (0.77 x 1015 kg), as seen in Fig. 4. The relative rankings of these products and the 

biases in the peak snow mass are closely reproduced by the offline model; since the offline model can reproduce 

the biases, we explore the possibility that they are directly caused by the forcing biases discussed in Sect. 2.3, 

which can equally affect both types of products. We test if these inter-product biases can be manipulated – in 320 

particular, minimized – by bias correcting the meteorological fields used to drive the B-TIM. If biases in mean 

meteorological conditions are the primary source of snow bias, a correction toward more similar climatological 

conditions should yield more similar offline modeled snow. We implement a basic multiplicative correction for 

each month using climatological temperature and precipitation conditions (see SI). Then, for each possible pair 

(e.g. ERA5 targeting MERRA-2 climatology), three experiments are run: one with adjusted temperature, one with 325 

adjusted precipitation, and one with both variables adjusted. This yields 18 datasets in addition to the three 

unadjusted B-TIM datasets, the three reanalysis datasets, and ERA5Snow.  
 

 

Fig. 4 (a) Snow mass climatology over Northern Hemisphere land, with grid cells exceeding 500 mm capped at 500 mm. 330 
4 (b) Snow-covered area climatology, calculated using areas of grid cells with more than 4 mm SWE. 

Comparing the bias-adjusted versions of BrE5 and BrM2 (Fig. 5) indicates that temperature biases are the main 

driver for the differences between ERA5 and MERRA-2 snow mass and snow cover shown in Fig. 4; in the 

experiments where the ERA5 and MERRA-2 temperature climatologies are bias adjusted, the resulting snow 

fields are also much more similar.  Precipitation biases play a smaller role and correcting the precipitation 335 

modestly decreases the snow mass biases over the whole season. Snow covered area is not very sensitive to the 

precipitation correction, though the best agreement in both cases comes from rescaling both variables. However, 

mean biases in forcing variables do not explain all the difference in SWE. For the pairs involving JRA-55 (Figs. 

S1 and S2), the precipitation correction improves the agreement between a dataset and a chosen target, but not at 

the level observed for the ERA5-MERRA-2 pair; the temperature scaling sometimes degrades the agreement. 340 

However, JRA-55 is several degrees warmer and about 10% wetter than the other two reanalyses on average over 

the region of interest (Fig. 2), constituting more substantial differences than exist between ERA5 and MERRA-2.  
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Fig. 5 (a, b) NH snow mass and (c, d) snow cover extent differences for MERRA-2 and ERA5 calculated as original 
minus target. Each panel shows the difference between the original and target snow mass climatologies (black) and the 345 
coloured lines represent the datasets generated by adjusting temperature (pink), precipitation (blue), or both (yellow) 
to the target dataset’s climatology.  

To summarize, the B-TIM products (BrE5, BrM2, BrJ55) retain the relative biases present in the reanalyses. 

Motivated by this, we have explored the potential use of bias correction on the meteorological forcing to elucidate 

the drivers of these snow biases or to correct them to first order. This approach isolates a subset of drivers and 350 

gives insight into the dominant sources of snow biases but requires more refinement to explain biases (see 

discussion in Sect. 4) more fully. 

3.2.2 B-TIM versions of SWE fields show consistency in seasonal cycle, interannual variability. 

Aside from JRA-55, which has delayed snow accumulation but an early peak SWE, all the other datasets agree 

that the snow mass maximum occurs within a two-week period centred on March 15. For snow covered area, all 355 

datasets except MERRA-2 peak during the 14-day period centred on Feb 1; the MERRA-2 maximum occurs two 

weeks earlier. Thus, unlike the reanalyses, the B-TIM products provide more consistent descriptions of key 

snowpack climatology metrics. 
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Figure 6 shows the September-October-November (SON) mean snow mass time series, calculated over land 360 

regions from 40-90N (excluding mountains), with the same 500 mm maximum imposed as before to exclude high 

SWE values over isolated grid cells. Figure 7 shows the December-January-February (DJF) time series of mean 

snow mass. In these figures, dashed lines are used for reanalysis snow, and the solid lines show offline snow. 

Even without detrending and removing the mean, it is clear that the solid lines are highly consistent with each 

other (for both continents and both seasons; panels a and c), while there is much more disagreement between 365 

reanalysis products. This highlights the role that factors other than forcing biases play in introducing inter-product 

differences. We quantify the consistency in the offline-offline and reanalysis-reanalysis pairs by calculating 

correlation coefficients after removing the least-squares linear fit (Fig. 8). Detrending by other methods yields 

similar results (e.g. using the Thiel-Sen estimator, which is robust to outliers and shifts to the start and end of the 

time series, not shown). Across all regions and all seasons, the B-TIM products are strongly correlated with one 370 

another (r > 0.85), whereas the reanalysis r-values are lower in general and greatly depend on the pair. 

 
 

 
Fig. 6 Time series of total snow mass for SON by continent. Lower row has linear trends removed. 375 
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Fig. 7 Time series of total snow mass for DJF by continent. Lower row has linear trends removed. 

 

Fig. 8 (a) Correlation coefficients for B-TIM dataset pairs. Individual values are shown with black points, and the mean 
is represented by the height of the bar to summarize the group. Similar information is shown in Fig. 8 (b) for the 380 
reanalysis dataset pairs. The ERA5 and JRA-55 pair is represented by the triangle, ERA5 and MERRA-2 by the 
square, and JRA-55 and MERRA-2 with the x. 

The reanalysis JRA-55 snow mass is unique, characterized by large decadal variations. Positive anomalies are 

most common from 1980-1994 and 2010-2020, while negative anomalies occur from 1995-2009 (Fig. 7d). These 

inconsistencies are not as extreme over Eurasia, as JRA-55 captures positive and negative anomalies that are 385 

mostly in agreement with the remaining datasets, but its variations have the greatest magnitude (e.g., 1991, 2014). 
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The disagreement is substantial in terms of snow mass amount. Over North America, especially before 1995, the 

reanalysis JRA-55 dataset has as much as 50% more snow mass than the other reanalyses. This behaviour is not 

present in BrJ55. Additional comparison with in situ data indicates that the version of JRA-55 that has less 

interannual variability (BrJ55, solid orange) also has significantly lower RMSE and higher correlation with the 390 

in-situ data than the native JRA-55 (dashed orange; SI Fig. 3). 

 

We now return to consider the two versions of the ERA5 reanalysis: ERA5 and ERA5Snow (dashed, blue in two 

shades, Figs. 6 and 7). The two timeseries diverge due to a change to the snow cover extent data assimilation in 

2004. The mean difference in DJF snow mass over North America between these two products is five times greater 395 

after 2004 compared to before 2004 (9 × 1003 kg and 1.8 × 1003 kg, respectively) and three times greater after 

2004 for Eurasia (7.7 × 1003 kg compared with 2.4 × 1003 kg). This step change is problematic for trend and 

correlation assessments, so we use ERA5Snow in Figure 9 below. As an offline product, BrE5 does not display 

the step change in 2004.  

 400 

These two examples show that B-TIM snow datasets can generate reasonably performing benchmark datasets 

which are useful to contrast against native snow data. The comparison between reanalysis and the offline product 

forced with the same meteorology can highlight spurious variability, as in the case of JRA-55, or point to temporal 

inhomogeneities, as with ERA5. 

 405 

The consistency found for the offline products extends to spatial patterns. The time series of the DJF spatial pattern 

correlation between dataset pairs is shown in Fig. 9, with SON values shown in Figure S4. For both seasons, 

offline-offline pairs are the most consistent with each other (with the highest r-values), despite different 

meteorological forcing. There is also evidence of spatial disagreement between some of the reanalysis products. 

Notably, JRA-55 is very different from all the other datasets. This can be seen by the ERA5Snow-JRA-55 and 410 

MERRA-2-JRA-55 pairs (different model, different forcing), which have the weakest spatial correlations, or by 

the BrJ55-JRA-55 pair (different model, same forcing), which has a much lower correlation compared to the other 

same-forcing pairs. These pattern correlations appear stable across the 40-year period for all pairs, although those 

involving JRA-55 have larger year-to-year variability. Additionally, reanalysis and offline versions of JRA-55 

snow have low spatial correlation across all seasons and both continents compared to the ERA5 and MERRA-2 415 

(Fig. S5). Broadly, reanalysis and offline patterns are less similar over Eurasia for a given season, and the 

correlation decreases over the year. 
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 420 
 
Fig. 9 Spatial correlations for DJF calculated between pairs of datasets with the same meteorology (a) and between 
pairs of similar type (b; either offline-offline or reanalysis-reanalysis). 

4 Discussion and conclusions 

To summarize our key points: 425 

• An updated and more complete description of the B-TIM offline snow model has been provided for the 

first time since 2003, accompanied by an open-source code release of the model implemented in Python.  

• Offline B-TIM snow generated using meteorological forcing from three reanalysis products validates 

well against an independent set of in situ snow observations (Sect. 2.5). The offline products perform 

generally as well as (online coupled) reanalysis snow. Based on this result, datasets generated with the 430 

B-TIM are treated as reasonably performing benchmark estimates of historical snow and used to 

investigate discrepancies in reanalysis SWE.  

• Compared to online reanalysis snow, offline B-TIM snow yields far more consistent interannual 

variability both for aggregate and spatially resolved snow metrics. This suggests the potential utility of 

the B-TIM as an offline tool for simplified snow modelling in seasonal to decadal prediction systems 435 

and climate downscaling for impacts analysis.  

• Climatological characteristics of offline B-TIM snow are generally more consistent with one another for 

various measures than reanalysis snow, despite differences in the meteorological forcing data. Using B-

TIM with bias-adjusted forcing, climatological SWE differences between ERA5 and MERRA-2 are 

found to primarily come from temperature biases (MERRA-2 is colder, resulting in more SWE 440 

throughout the snow season). Attribution of discrepancies of JRA-55 with the other two reanalyses is not 

as straightforward, as we discuss next. 
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Offline modelling has allowed us to understand some of the components contributing to the spread in SWE 

estimates across these three reanalyses. In general, nonlinearities inherent to snow modeling mean that it is unclear 445 

how exactly meteorological biases will impact modeled SWE fields both for historical and modeled future snow 

conditions (Evan & Eisenman, 2021; Räisänen, 2023; Sospedra-Alfonso & Merryfield, 2017). Interpreting the 

causes of SWE differences is further complicated when comparing products produced using different snow 

models and different data assimilation schemes. In this sense, the B-TIM can easily generate simplified benchmark 

datasets (no data assimilation, and a single, simple model) alongside more complex products of interest. Here, we 450 

have attempted to attribute climatological SWE biases to climatological meteorological biases by adjusting each 

of the two forcing variables and calculating the effect on the SWE. We have taken advantage of B-TIM’s speed, 

which has allowed us to perform many cross-tests.  

 

Future work should continue developing the B-TIM through systematic testing of parameter values. For example, 455 

the spatial variability of and sensitivity of the model to the 20% precipitation loss have not recently been 

characterized. This type of work is possible due to the recent increases in the availability and quality of in situ 

SWE, snow depth, and snow density information (Vionnet et al., 2021) for validation. Forcing biases and 

parameter changes both strongly influence modeled snow (Cho et al., 2022; Essery, 2015; Günther et al., 2019; 

Menard et al., 2021), and they should be characterized for the B-TIM. However, offline modeling can broadly be 460 

seen as a tool to investigate snow biases in products where additional simulations are not feasible, as is the case 

for reanalysis. 

 

The simple bias adjustment methodology we use requires more refinement to fully explain the biases. Large 

differences between a dataset and a chosen target may make the multiplicative scaling less suitable; for example, 465 

by changing the input variable distributions significantly. Additionally, other aspects that are not captured in mean 

conditions can influence SWE in models, such as the nature of the diurnal cycle in temperature and the distribution 

of precipitation intensity/duration (or a combination of the two). Multiplicative rescaling can affect these aspects 

when adjusting a dataset to a chosen target, with the greatest impact coming from adjusting both driving variables 

at once. These effects are most relevant at the shoulder seasons and for areas with ephemeral snow.  470 

 

Using reference in situ data and inter-dataset consistency arguments, we have shown that terrestrial SWE taken 

directly from the JRA-55 reanalysis is problematic and should not be used for climate analysis. Unlike the BrJ55 

product, which performs comparably to the BrE5 and BrM2 products, the reanalysis JRA-55 terrestrial snow 

product is the least accurate with respect to the in situ validation. Furthermore, the interannual variability of the 475 

JRA-55 snow mass anomaly time series (Figs. 5 and 6) and corresponding SWE field patterns (Fig. 7) differ 

greatly from all the other datasets. The strong performance of BrJ55 suggests that the problem with JRA-55 snow 

arises from the JRA-55 snow model and data assimilation. 

 

Snow is a critical component of the climate system, influencing a range of environmental and societal processes. 480 

Accurate snow modeling is needed for applications that require a long time series (e.g. trend analysis) and the 

best instantaneous estimates of SWE (e.g. numerical weather prediction). We have here demonstrated the value 

of a simple model like B-TIM to help assess new products against self-consistent benchmarks as they are released. 
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These considerations will continue to be important as we look ahead to the next generation of global reanalyses, 

including the JMA Reanalysis for Three Quarters of a Century, which is now available (JRA-3Q; Kosaka et al., 485 

2024), and ERA6 (Balsamo et al., 2023). 

Code and Data Availability 

ERA5 data were retrieved from the Copernicus Climate Data Store (single levels: https://doi-

org.myaccess.library.utoronto.ca/10.24381/cds.adbb2d47). ERA5Snow data are available on request from 

patricia.rosnay@ecmwf.int. JRA-55 data were retrieved from the NCAR Research Data Archive (all collections: 490 

https://rda.ucar.edu/datasets/ds628.0/dataaccess/). MERRA-2 data were retrieved from the Goddard Space Flight 

Center Distributed Active Archive Center (GSFC DAAC).  

 

The description of the combined snow reference dataset is in Mortimer et al. (2024) 

 495 

Processed output from the B-TIM runs and reanalysis data, required to reproduce the figures, are archived at 

https://doi.org/10.5683/SP3/IV6SVJ.  

 

Snow output modeled by the B-TIM with all three forcings is also archived.  

BrE5: https://doi-org.myaccess.library.utoronto.ca/10.5683/SP3/HHIRBU 500 

BrM2: https://doi-org.myaccess.library.utoronto.ca/10.5683/SP3/C5I5HN 

BrJ55: https://doi-org.myaccess.library.utoronto.ca/10.5683/SP3/X5QJ3P 
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