
Responses to Reviewer #1 
This manuscript presents how a simple off-line snow temperature index model (B-TIM) can be 
considered to highlight discrepancies between snow water equivalent (SWE) products from three 
reanalysis (JRA-55, ERA5 and MERRA-2) and an additional product (ERA5Snow) for historical 
period (1980-2020). The authors used either biased, or adjusted temperature and precipitation 
from reanalysis as input data for B-TIM. The SWEs produced with B-TIM and various sets of 
input data were then compared to the SWEs produced by the reanalysis. Climatological 
characteristics and interannual variability were investigated. To carry out this study, they 
improved and translated the previous version of B-TIM and made it publicly available. This 
manuscript opens up the possibility of using a simple off-line model for large-scale snow cover 
studies. 

We thank the reviewer for the helpful suggestions and overall supportive comments. The author 
responses to each point are included here. Line references refer to the revised manuscript.  

Some modifications in the structure could lighten the text and focus more on the results and the 
contribution of using a simple off-line model like B-TIM. For example, a large part of section 2.1 
would have a more appropriate place in the SI. After all, this is not a paper about improving B-
TIM, but more about using it. If this is not the case, please change the title and specify this 
aspect more clearly in the objectives. 

The primary objective of the model description section is to thoroughly document the settings of 
the B-TIM before analyzing its output and using it. When model decisions are not defined 
explicitly, it can be challenging for others to reproduce those decisions and/or compare across 
datasets fairly. We moved Tables 1 and 2 to the SI while maintaining the written text describing 
the time evolution of the modeled snow. This way, the section is shortened without breaking up 
the model description. 

It would be useful to remind the reader of the context in the results. For example, simply add a 
sentence to remind us that ERA5 and ERA5Snow have the same meteorology, which explains 
why we don't have BrE5S. 

Thank you for the suggestion to clarify this point; it is a good reminder. The following text has 
been added to L279: Two of the reanalysis datasets, ERA5 and ERA5Snow, share the same 
temperature and precipitation inputs (“meteorology”). Therefore, there is only one BrE5 dataset 
that is produced. 

Methodological choices (e.g., bias adjustment) could be justified in greater detail, with more 
references where possible. 

The methodological choices stem from the hypothesis that major differences in SWE across 
reanalyses are consequences of the mean bias in the temperature and precipitation, as was 
previously described in L currently described in L364-365. We have made edits to strengthen 
this motivation.  



We have added the following to L365-369: If biases in mean meteorological conditions are the 
primary source of snow bias, a correction toward similar climatological conditions should yield 
more similar modeled snow. We implement a first-order correction which relies on monthly 
correction values derived from climatological temperature and precipitation conditions (see SI).  

In the literature, correction factors similar to ours are typically derived from in-situ observations 
for the purpose of model calibration, validation, or sensitivity testing (e.g. Cho et al., 2022 or 
Raleigh et al., 2015), however these are not our objectives.  

This is now discussed in L73-85: In this work, we use a fixed version of the B-TIM without 
further calibration or tuning. Therefore, one parameter set for the model is used and the results 
may still contain model bias. Quantifying this bias for the B-TIM model can be done thorough 
analysis of parameter and error sensitivity (Essery, 2015; Raleigh et al., 2015). However, our aim 
is to investigate reanalysis snow biases; each offline snow product will have the same model 
bias, whereas the coupled reanalysis snow does not. Comparing offline snow products therefore 
narrows down the sources of discrepancy without requiring a re-run of the complex snow 
modeling and data assimilation process. 
 
The results focus on very large domains (Northern Hemisphere, Eurasia, North America). It 
would have been interesting to look at these results more regionally. 

Regional studies are of major interest, especially with respect to a breakdown according to land 
type. The purpose of this paper is to characterize snow over simplified terrain and at large scales, 
but the two accompanying papers Mudryk et al. (in discussion) and Mortimer et al. (in 
discussion) provide some regional results and perhaps should be more clearly highlighted here.  

Between L85-91, we added: This study has as its focus hemispheric snow. Even at these large 
scales and excluding the complicated case of mountain snow, there are discrepancies that should 
be characterized. For exploration into regional performance, there are two other studies prepared 
for publication, Mudryk et al. (in discussion) and Mortimer et al. (in discussion), which include 
all the datasets discussed in this paper. Mudryk et al. (in discussion) compares a suite of 23 snow 
datasets, ranks the performance of each one, and examines the inter-dataset consistency. 
Mortimer et al. (in discussion) presents an expanded SWE dataset that combines in-situ and 
airborne SWE measurements and assesses snow dataset performance when compared to the in-
situ record. This in-situ data is used across all three studies. Our main scientific work… 

Temperature and precipitation bias were corrected with a multiplicative factor. As precipitation 
is a zero-bound variable, it is generally corrected by a multiplicative method, whereas 
temperature is often corrected by an additive method. The choice of this method is not 
sufficiently justified. Can you explain thoroughly why you chose a multiplicative factor and why 
you apply it this way? 

The methodology requires some more explanation and we thank the reviewer for the opportunity 
to add more information.  



SI L40: Scaling factor values are bounded by 0.33 and 3 for precipitation and 0.99 and 1.01 for 
temperature. 

SI L42: Commonly, when correction factors are based on the bias between ground-truth and 
modeled data, normally distributed biases are corrected with an additive method, and 
lognormally distributed biases are corrected by multiplicative adjustment. This usually means 
temperature biases are corrected by adding a constant, while precipitation biases are scaled 
multiplicatively. This has the added benefit of maintaining the zero bound of precipitation. Given 
the small climatological temperature biases (no more than 2% of absolute temperature), 
multiplicative and additive methods yield similar results. We used a multiplicative method for 
both variables to simplify the experiment runs. 

L533-539: Large differences between a dataset and a chosen target may make the multiplicative 
scaling less suitable; for example, by changing the input variable distributions significantly. 
Additionally, other aspects that are not captured in mean conditions can influence SWE in 
models, such as the nature of the diurnal cycle in temperature and the distribution of precipitation 
intensity/duration (or a combination of the two). 

*Explicit comparison of the two methods: 

Given Dataset 1 (D1) and target Dataset 2 (D2), both of which are functions of location and time, 
let climatological temperature conditions for a given month be represented by C1 and C2. With a 
multiplicative bias correction as in the paper, the temperature at time step t is adjusted as in (1). 
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Meanwhile, an additive method corrects D1 following (2). 
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The correction terms differ because D1(t) and C1 are not identical. However, both methods yield 
the right climatology, 𝐷1+,, = 𝐷1!"#$ = 𝐶2. 

If we write D1 in terms of departures from the climatology C1, we can rewrite the scaling factor 
in equation (2). The two scaling factors are close as long as the sub-daily variations 𝛿𝐷1 are 
small compared to C1. 
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Figure captions contain results, whereas captions should only contain descriptions of the 
elements present in the figure (colors, symbols, etc.). Please remove the result part in the 
captions. 



The captions of Figs. 2, 3, 6, 7, 8, 9 have been edited to remove results. They were all already 
described in the text.  

L102: Did you perform tests regarding the 20% of precipitation reduction? 

This question came up in both reviews, and we agree that model development should continue to 
be a priority. Given some recent increases in the availability and quality of in situ SWE, snow 
depth, and snow density information, future B-TIM development may revisit this 20% reduction. 
However, it is outside the scope of our current study, and we did not test it.  

524-531: Future work should continue developing the B-TIM through systematic testing of 
parameter values. For example, the spatial variability of and sensitivity of the model to the 20% 
precipitation loss have not recently been characterized. This type of work is possible due to the 
recent increases in the availability and quality of in situ SWE, snow depth, and snow density 
information (Vionnet et al., 2021) for validation. Forcing biases and parameter changes both 
strongly influence modeled snow (Cho et al., 2022; Essery, 2015; Günther et al., 2019; Menard 
et al., 2021), and they should be characterized for the B-TIM. However, offline modeling can 
broadly be seen as a tool to investigate snow biases in products where additional simulations are 
not feasible, as is the case for reanalysis. 

L109: Table 2. Please find a more consistent way to present column “Model variable”. For 
example: « t2m (ID 167) » instead of « Parameter ID 167: "t2m" ». Add the model variable 
name for SWE in ERA5Snow. Also, this table could go in the SI, as it doesn't provide much 
relevant information to the text. 

Thank you for the suggestions. The intention was to copy the descriptions as directly as possible 
from the modeling centers, but a standardized approach is likely clearer. We updated Table 2 and 
moved it to the SI, with reference to it in L123. 

Table 2, L215, L268, L428 : Modify MERRA2 to MERRA-2. 

Thank you for identifying these, they have all been fixed.  

L232: To take advantage of the fact that you have an SI, it might be interesting to present the 
differences in domains used for the different reanalyses (land grid points, mountainous grid 
points, etc.). 

It is an interesting suggestion to look at different domains. We hope the new pointers to the 
evaluation papers Mudryk et al., (in discussion) and Mortimer et al., (in discussion) will be 
sufficient for interested readers to turn to for regional analysis. It is best to interpret the strengths 
and limitations of these products in a larger ensemble. (L85-91, as described above) 

Fig. 3 : Please describe colors used in the scatterplots in the caption; modify ERA5-Snow to 
ERA5Snow; consider using hatches for ERA5Snow in the right panel and present the legend in a 
neutral color. 



We have improved the clarity of Fig. 3 with consistent labeling and both colour and hatching to 
distinguish ERA5Snow and ERA5.  

Please note the following change: the values presented in this figure are slightly different 
from the previous version (no changes to discussion/conclusions). This resulted from 
mistakenly using Nov-May data to produce the figure in the original manuscript. This 
version correctly uses Nov-March data.  

 

Fig. 3 SWE product validation against snow course and gamma SWE measurements. Figs. 3a-f consist of scatterplots 
showing all valid data pairs (snow course, product) from November to March over 1980-2018. Summary statistics, including 
the bias, unbiased root mean squared error (uRMSE), and correlation, are included in the legend and are summarized in 
Figs. 3g-i. uRMSE is calculated by removing the mean from the reference SWE and each set of product SWE values, then 
calculating the RMSE with those datasets.  

In L316-318: The scatterplots (figs. a-f) are coloured as heatmaps to display the concentration of 
points, which is highest where the colour is red. Each scatterplot represents over 200 000 pairs of 
points.  

L374: Modify JRA55 to JRA-55. 

Fixed. 

L469 : Modify ERA5-Snow to ERA5Snow. 

Fixed. 

  



Responses to Reviewer #2 
I echo the summary and comments of the first Reviewer, so I will not repeat them here.  This is a 
solid analysis, but there are some points that should be addressed. 

General comment: 

The goal of this work (from my understanding) is to create benchmark snow datasets using an 
offline model, which is potentially more consistent than reanalysis or coupled model snow 
products that can be affected by uncertainties and errors related to forcing, data assimilation, 
model bias, and coupling.  The authors assert that offline modeling can “isolate the role of 
meteorological driving” from these other issues. This is largely true.  However, I would caution 
the authors that the model they are using still has a number of parameters whose values they 
chose, and which affect the snow output from the model.  With a different set of parameters, the 
model could (or arguably will) provide a different indication of the amount of error introduced 
by meteorological forcing, because the model dynamics will change.  So, it’s not entirely 
possible to disentangle forcing uncertainty from model construction and parameter uncertainty, 
without an exhaustive analysis of model sensitivity.  I would recommend that the authors qualify 
their statements by noting that this is only one parameter set for this model, and their findings 
might be different if the parameters in Table 1 were changed. 

We thank the reviewer for the thoughtful consideration of this paper and the context in which we 
discussed the results.  

Studies of snow mass/SWE uncertainty are most frequently done by comparing (fixed versions 
of) various snow models, including output from reanalyses. Sometimes, this precludes 
investigation of forcing biases and structural biases caused by model choices. As noted, 
analyzing a model’s sensitivity to parameter (or process) changes can be and has been done 
systematically in some cases (e.g. Essery, 2015 or Raleigh et al., 2015). While it is outside of the 
scope of this study to develop the B-TIM, recent increases in the availability and quality of in 
situ SWE, snow depth, and snow density information may feed into future development. We 
incorporated discussion of this structural/parameter uncertainty into the manuscript.  

L72-79: In this work, we use a fixed version of the B-TIM without further calibration or tuning. 
Therefore, one parameter set for the model is used and the results may still contain model bias. 
Quantifying this bias for the B-TIM model can be done thorough analysis of parameter and error 
sensitivity (Essery, 2015; Raleigh et al., 2015). However, our aim is to investigate reanalysis 
snow biases; each offline snow product will have the same model bias, whereas the coupled 
reanalysis snow does not. Comparing offline snow products therefore narrows down the sources 
of discrepancy without requiring a re-run of the complex snow modeling and data assimilation 
process. 
 
“Isolat[ing] the role of meteorological driving” is meant in the sense that the offline inter-product 
differences are not a function of snow modeling differences, while the online inter-product 
differences are. These products may still be biased relative to ground-truth, which is explored in 
Fig. 3 and the new figure SI Fig. 3.  



Specific comments: 

Lines 66-70: Past studies have attempted to assess the influence of various factors on snow 
model uncertainty, including forcing, and it would be appropriate to cite one or more here (e.g., 
Raleigh et al., 2015, https://doi.org/10.5194/hess-19-3153-2015). 

Thank you for this idea. The Raleigh et al., 2015 study and others (e.g. Cho et al., 2022, Essery, 
2015, Günther et al., 2019, and Menard et al., 2021) have explored these various factors. They 
find that snow modeling is sensitive to forcing biases and parameter changes, and provide 
avenues to assessing these sensitivities. Incorporated in the changes to L72-79 that were 
described above. 

Fig. 1: The 20% of precipitation loss seems quite arbitrary.  I realize that this constant derives 
from the Brown et al. 2003 paper, but there is no reason to assume that this loss rate would be 
consistent across sites.  This parameter could have a strong influence on the magnitude of snow 
accumulation.  Can the authors give some indication of why a constant 20% is the best choice? 

This is an important open question. The 20% reduction does derive from previous studies and 
tuning that was done with respect to in-situ snow data at a limited number of sites. For some 
time, a varying loss parameter was used in the B-TIM for different snow classes (following 
Sturm et al., 2010). The 20% reduction was applied to tundra, prairie, and taiga snow-climate 
zones as the most likely regions where blowing snow and sublimation could dominate. This was 
simplified by extending the same reduction to the rest of the NH land, as these are the snow-
climate zones that take up most of the Northern Hemisphere. This practice has continued due to 
robust performance of the modeled snow, but regional performance is almost certainly affected.   

While it is outside the scope of the current study, the spatial variability of and sensitivity to this 
precipitation loss factor have not been recently characterized.  

524-531: Future work should continue developing the B-TIM through systematic testing of 
parameter values. For example, the spatial variability of and sensitivity of the model to the 20% 
precipitation loss have not recently been characterized. This type of work is possible due to the 
recent increases in the availability and quality of in situ SWE, snow depth, and snow density 
information (Vionnet et al., 2021) for validation. Forcing biases and parameter changes both 
strongly influence modeled snow (Cho et al., 2022; Essery, 2015; Günther et al., 2019; Menard 
et al., 2021), and they should be characterized for the B-TIM. However, offline modeling can 
broadly be seen as a tool to investigate snow biases in products where additional simulations are 
not feasible, as is the case for reanalysis. 

Fig. 1: What are delta rho_c and delta rho_w?  I do not see them mentioned anywhere else in the 
text? 

Thank you for catching this omission. These two variables represent the change in snowpack 
density under “cold” and “warm” compaction processes. Equations 7a, 7c, and 8 are corrected. 

Δ𝜌( = 𝐶) (SWE∗)	exp[	𝐶+	(𝑇,-./ − 𝑇0123)	] exp[	−𝐶4𝜌∗	] , 𝑇 < 𝑇,-./    (7a) 



Δ𝜌3 = (𝜌,56 − 𝜌∗)(1 − 𝑒758/), 𝑇 ≥ −1°𝐶.      (7c) 

𝜌9 = 𝜌∗ + Δ𝜌3 if 𝑇 ≥ −1°𝐶 else 𝜌9 = 𝜌∗ + Δ𝜌(,      (8) 

 

Lines 279-280:  The authors state that ERA5 outperforms JRA-55 and MERRA-2, based on 
uRMSE and correlation.  However, Figure 3g seems to show that the bias is higher for 
ERA5.  Shouldn’t the bias be important here as well?  What about raw RMSE (without removing 
the bias)?  I would guess that most users of these datasets are unlikely to unbias them before 
using them. 

The bias is important, but because it is calculated as the sum of differences, positive and negative 
differences can cancel and yield a small bias. The RMSE measures the average magnitude of the 
error (weighting larger errors more heavily), so it avoids the cancellation problem. However, 
RMSE and bias are not independent pieces of information, as any bias that exists contributes to 
the RMSE. That is why we report uRMSE instead.  

𝑅𝑀𝑆𝐸 = √𝑢𝑅𝑀𝑆𝐸& + 𝑏𝑖𝑎𝑠&         (1) 

Generally, the products considered here have small bias compared to uRMSE, as provided in the 
table below.  

 

 

 

 

 

L326-327: Low bias does not necessarily mean good performance, as individual positive and 
negative differences can cancel. 

L329-330: The RMSE (calculated as the bias and uRMSE added in quadrature) of each offline 
snow product is less than that of its reanalysis counterpart. 

L330-331: Each B-TIM product has a lower RMSE than its reanalysis counterpart and the 
greatest RMSE arises from the JRA-55 online snow product. 

Line 345: The authors find that the “B-TIM products provide more consistent descriptions of key 
snowpack climatology metrics”.  This is true, but consistency does not necessarily mean 
accuracy.  It’s possible that one of the reanalyses is a more accurate reflection of reality. The 
authors could use their in-situ data to evaluate this, but have not yet sufficiently done so in this 
manuscript. 

 
BIAS URMSE RMSE 

BRE5 -11 32 34 
BRJ55 10 33 34 
BRM2 8 36 37 
ERA5 -9 38 39 
JRA55 4 61 61 
MERRA2 9 46 47 



Thank you for requesting further clarification of these statements. We have done some additional 
assessments with the in-situ data to supplement these claims (SI Fig. 3).  

Line 366:  Why did the authors not use a more robust trend method, like Theil-Sen slope (which 
is less influenced than OLS by outliers, and the start and end of time series), for detrending? 

The Theil-Sen estimator gives a robust linear regression. As was noted, it is less influenced by 
outliers and the start/end of time series than the OLS minimization method. To the authors’ 
knowledge, Theil-Sen slope is well defined, but there are several definitions of the y-intercept in 
the literature. The definition of y-intercept that we used to produce the figure below is the one 
implemented in the scipy stats Python module. 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑦) − 𝑇ℎ𝑒𝑖𝑙𝑆𝑒𝑛𝑆𝑙𝑜𝑝𝑒 × 	𝑚𝑒𝑑𝑖𝑎𝑛	(𝑥)       (2) 

Regardless of detrending method, the same qualitative results are seen. All the B-TIM datasets 
display the same variability and diverge notably from JRA-55 (throughout 1980-2020) and 
ERA5 (after 2004).  

L421-423: Detrending by another method yields similar results (e.g. using the Theil-Sen 
estimator, which is robust to outliers and shifts to the start or end of the time series, not shown).  
 



 

AC Fig. 1: Same as Fig. 7 in the manuscript, but detrending in panels (b) and (d) was done based on Theil-Sen line fitting. 

Fig. 8: Interesting to make point that differences among reanalysis are greater than among B-
TIM.  Isn’t that kind of expected?  Wouldn’t it also be informative to compare B-TIM vs. 
reanalysis pairs (same forcing, different models), using more than just correlation (as in Fig. 9, 
but using bar charts as in figure 8, for example)? 

On one hand, it is reasonable to expect that differences among reanalyses are greater than among 
B-TIM datasets. However, model differences could theoretically be introducing snow biases of 
opposing sign (e.g. one model with too much melt and another with too little melt could increase 
or reduce the bias in the snow depending on the overall bias). Therefore, it is important to 
document the finding. 

The suggestion to look at same-forcing pairs is great. Spatial correlation is one aspect of their 
agreement that we show in Fig. 9, and rather than relying on the visual comparison (i.e. looking 
at the same-colour lines on Figs. 6 and 7), we included a figure in the supplementary information 
to address this question (SI Fig. 5). 

L479-482: Additionally, reanalysis and offline versions of JRA-55 snow have low spatial 
correlation across all seasons and both continents compared to the ERA5 and MERRA-2 (Fig. 



S5). Broadly, reanalysis and offline patterns are less similar over Eurasia for a given season, and 
the correlation decreases over the year. 
 

Lines 422-425 (section 4, 3rd bullet): The authors show that the B-TIM model results in “far 
more consistent interannual variability” than the reanalysis products.  However, this does not 
necessarily mean that the B-TIM interannual variability is more “correct” (i.e. a more accurate 
representation of the true interannual variability).  Can the authors show using their in-situ data 
that less (or more consistent) interannual variability results in greater accuracy? 

Discussion below. 

Lines 457-459: Similar comment as above. The authors suggest that there is a “problem” with 
JRA-55.  This is a strong statement to make.  It’s true that JRA is the least accurate by some 
metrics and different from the other reanalyses, so it’s possible that the authors’ suggestion is 
correct. However, the authors have not shown in this manuscript that the interannual variability 
of JRA-55 is wrong.  Maybe the interannual variability in the other reanalyses is too 
muted?  The authors have in-situ data available to back up their statement, but they have not yet 
sufficiently done so in the manuscript. 

Thank you for the suggestion to fold the in-situ data into the discussion of JRA-55. We have 
produced some additional analysis covering Dec-Feb that indicates poor performance of JRA-55 
compared to other datasets. SI Fig. 3 indicates that the version of JRA-55 that has less 
interannual variability (BrJ55, solid orange) also has significantly lower RMSE and higher 
correlation with the in-situ data than the native JRA-55 (dashed orange). All the products with 
similar interannual variability have lower RMSE and high correlation with in-situ data. 

Finally, further evidence can be found in Mudryk et al. (in discussion). In that comparison of 23 
snow products, JRA-55 is consistently among the lowest-ranking of them. This analysis breaks 
down mountainous, Arctic, and midlatitude regions.  

L454-456: Additional comparison with in situ data indicates that the version of JRA-55 that has 
less interannual variability (BrJ55, solid orange) also has significantly lower RMSE and higher 
correlation with the in-situ data than the native JRA-55 (dashed orange; SI Fig. 3). 

L547-L550: Complementary methods such as multi-model intercomparison also indicate poor 
performance for JRA-55. Across mountainous, Arctic, and midlatitude regions, it is consistently 
among the lowest-ranking products, while BrJ55 performs well (Mudryk et al., in discussion). 

 
 


