
Responses to Reviewer #2 
I echo the summary and comments of the first Reviewer, so I will not repeat them here.  This is a 
solid analysis, but there are some points that should be addressed. 

General comment: 

The goal of this work (from my understanding) is to create benchmark snow datasets using an 
offline model, which is potentially more consistent than reanalysis or coupled model snow 
products that can be affected by uncertainties and errors related to forcing, data assimilation, 
model bias, and coupling.  The authors assert that offline modeling can “isolate the role of 
meteorological driving” from these other issues. This is largely true.  However, I would caution 
the authors that the model they are using still has a number of parameters whose values they 
chose, and which affect the snow output from the model.  With a different set of parameters, the 
model could (or arguably will) provide a different indication of the amount of error introduced 
by meteorological forcing, because the model dynamics will change.  So, it’s not entirely 
possible to disentangle forcing uncertainty from model construction and parameter uncertainty, 
without an exhaustive analysis of model sensitivity.  I would recommend that the authors qualify 
their statements by noting that this is only one parameter set for this model, and their findings 
might be different if the parameters in Table 1 were changed. 

Thank you for the thoughtful consideration of this paper and the context in which we discussed 
the results. Studies of snow mass/SWE uncertainty are most frequently done by comparing (fixed 
versions of) various snow models, including output from reanalyses. Sometimes, this precludes 
investigation of forcing biases and structural biases caused by model choices.  

As noted, analyzing a model’s sensitivity to parameter (or process) changes can be and has been 
done systematically in some cases (e.g. Essery, 2015 or Raleigh et al., 2015). While it is outside 
of the scope of this study to develop the B-TIM, recent increases in the availability and quality of 
in situ SWE, snow depth, and snow density information may feed into future development. We 
will incorporate discussion of this structural/parameter uncertainty into the manuscript.  

“Isolat[ing] the role of meteorological driving” is meant in the sense that the offline inter-product 
differences are not a function of snow modeling differences, while the online inter-product 
differences are. These products may still be biased relative to ground-truth, which is explored in 
Fig. 3 and the new supplementary figure AC Fig. 3 included below.  

Specific comments: 

Lines 66-70: Past studies have attempted to assess the influence of various factors on snow 
model uncertainty, including forcing, and it would be appropriate to cite one or more here (e.g., 
Raleigh et al., 2015, https://doi.org/10.5194/hess-19-3153-2015). 

Thank you for this idea. The Raleigh et al., 2015 study and others (e.g. Cho et al., 2022, Essery, 
2015, Günther et al., 2019, and Menard et al., 2021) have explored these various factors. They 
find that snow modeling is sensitive to forcing biases and parameter changes, and provide 

https://doi.org/10.5194/hess-19-3153-2015


avenues to assessing these sensitivities. We will include some reference to this work around 
L442. Our method offers a way to decompose or investigate snow biases when it is impossible to 
run additional simulations or directly interact with the model. This is the case for reanalysis 
snow, as in this study. 

Fig. 1: The 20% of precipitation loss seems quite arbitrary.  I realize that this constant derives 
from the Brown et al. 2003 paper, but there is no reason to assume that this loss rate would be 
consistent across sites.  This parameter could have a strong influence on the magnitude of snow 
accumulation.  Can the authors give some indication of why a constant 20% is the best choice? 

This is an important open question. The 20% reduction does derive from previous studies and 
tuning that was done with respect to in-situ snow data at a limited number of sites. For some 
time, a varying loss parameter was used in the B-TIM for different snow classes (following 
Sturm et al., 2010). The 20% reduction was applied to tundra, prairie, and taiga snow-climate 
zones as the most likely regions where blowing snow and sublimation could dominate. This was 
simplified by extending the same reduction to the rest of the NH land, as these are the snow-
climate zones that take up most of the Northern Hemisphere. This practice has continued due to 
robust performance of the modeled snow, but regional performance is almost certainly affected.   

While it is outside the scope of the current study, the spatial variability of and sensitivity to this 
precipitation loss factor have not been recently characterized. Given recent increases in the 
availability and quality of in situ SWE, snow depth, and snow density information, future B-TIM 
development should revisit this 20% reduction.  

Fig. 1: What are delta rho_c and delta rho_w?  I do not see them mentioned anywhere else in the 
text? 

Thank you for catching this omission. These two variables represent the change in snowpack 
density under “cold” and “warm” compaction processes. Equations 7a, 7c, and 8 will be 
corrected. 

Δ𝜌! = 𝐶" (SWE∗)	exp[	𝐶$	(𝑇%&'( − 𝑇)*+,)	] exp[	−𝐶-𝜌∗	] , 𝑇 < 𝑇%&'(    (7a) 

Δ𝜌, = (𝜌%./ − 𝜌∗)(1 − 𝑒0.1(), 𝑇 ≥ −1°𝐶.      (7c) 

𝜌2 = 𝜌∗ + Δ𝜌, if 𝑇 ≥ −1°𝐶 else 𝜌2 = 𝜌∗ + Δ𝜌!,      (8) 

 

Lines 279-280:  The authors state that ERA5 outperforms JRA-55 and MERRA-2, based on 
uRMSE and correlation.  However, Figure 3g seems to show that the bias is higher for 
ERA5.  Shouldn’t the bias be important here as well?  What about raw RMSE (without removing 
the bias)?  I would guess that most users of these datasets are unlikely to unbias them before 
using them. 

The bias is important, but because it is calculated as the sum of differences, positive and negative 
differences can cancel and yield a small bias. The RMSE measures the average magnitude of the 
error (weighting larger errors more heavily), so it avoids the cancellation problem. However, 



RMSE and bias are not independent pieces of information, as any bias that exists contributes to 
the RMSE. That is why we report uRMSE instead.  

𝑅𝑀𝑆𝐸 = √𝑢𝑅𝑀𝑆𝐸! + 𝑏𝑖𝑎𝑠!         (1) 

Generally, the products considered here have small bias compared to uRMSE, as provided in the 
table below. Each B-TIM product has a lower RMSE than its reanalysis counterpart and the 
greatest RMSE arises from the JRA-55 online snow product. A comment about this will be 
incorporated in the manuscript to supplement Fig. 2.  
 

BIAS URMSE RMSE 
BRE5 -11 32 34 
BRJ55 10 33 34 
BRM2 8 36 37 
ERA5 -9 38 39 
JRA55 4 61 61 
MERRA2 9 46 47 

 

Line 345: The authors find that the “B-TIM products provide more consistent descriptions of key 
snowpack climatology metrics”.  This is true, but consistency does not necessarily mean 
accuracy.  It’s possible that one of the reanalyses is a more accurate reflection of reality. The 
authors could use their in-situ data to evaluate this, but have not yet sufficiently done so in this 
manuscript. 

Thank you for requesting further clarification of these statements. We have done some additional 
assessments with the in-situ data to supplement these claims (AC Fig. 3).  

Line 366:  Why did the authors not use a more robust trend method, like Theil-Sen slope (which 
is less influenced than OLS by outliers, and the start and end of time series), for detrending? 

The Theil-Sen estimator gives a robust linear regression. As was noted, it is less influenced by 
outliers and the start/end of time series than the OLS minimization method. To the authors’ 
knowledge, Theil-Sen slope is well defined, but there are several definitions of the y-intercept in 
the literature. The definition of y-intercept that we used to produce the figure below is the one 
implemented in the scipy stats Python module. 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑦) − 𝑇ℎ𝑒𝑖𝑙𝑆𝑒𝑛𝑆𝑙𝑜𝑝𝑒 × 	𝑚𝑒𝑑𝑖𝑎𝑛	(𝑥)       (2) 

Regardless of detrending method, the same qualitative results are seen. All the B-TIM datasets 
display the same variability and diverge notably from JRA-55 (throughout 1980-2020) and 
ERA5 (after 2004).  



We propose to include: Detrending by another method yields similar results (e.g. using the Theil-
Sen estimator, which is robust to outliers and shifts to the start or end of the time series, not 
shown).  

 

AC Fig. 1: Same as Fig. 7 in the original manuscript, but detrending in panels (b) and (d) was done based on Theil-Sen 
line fitting. 

Fig. 8: Interesting to make point that differences among reanalysis are greater than among B-
TIM.  Isn’t that kind of expected?  Wouldn’t it also be informative to compare B-TIM vs. 
reanalysis pairs (same forcing, different models), using more than just correlation (as in Fig. 9, 
but using bar charts as in figure 8, for example)? 

On one hand, it is reasonable to expect that differences among reanalyses are greater than among 
B-TIM datasets. However, model differences could theoretically be introducing snow biases of 
opposing sign (e.g. one model with too much melt and another with too little melt could increase 
or reduce the bias in the snow depending on the overall bias). Therefore, it is important to 
document the finding in this case.  

The suggestion to look at same-forcing pairs is a good one. Spatial correlation is one aspect of 
their agreement that we show in Fig. 9, and rather than relying on the visual comparison (i.e. 
looking at the same-colour lines on Figs. 6 and 7), we can include a figure in the supplementary 



information to address this question. A preliminary version of this figure is below (AC Fig. 2). 
The pair with JRA forcing (orange) is poorly correlated across all seasons and both continents. It 
is consistently worse over Eurasia for a given season, and the correlation drops over the snow 
season. The other pairs have higher correlations, with the MERRA pair being most similar. This 
lines up with the discussion of Fig. 9 that is based on spatial correlations.  

 

AC Fig. 2: Correlation between SON, DJF, and MAM snow mass time series with the same forcing. BrE5-ERA5 pair in 
blue, BrM2-MERRA2 pair in green, and BrJ55-JRA55 pair in orange. Values are split for two continents. 

Lines 422-425 (section 4, 3rd bullet): The authors show that the B-TIM model results in “far 
more consistent interannual variability” than the reanalysis products.  However, this does not 
necessarily mean that the B-TIM interannual variability is more “correct” (i.e. a more accurate 
representation of the true interannual variability).  Can the authors show using their in-situ data 
that less (or more consistent) interannual variability results in greater accuracy? 

Discussion below. 

Lines 457-459: Similar comment as above. The authors suggest that there is a “problem” with 
JRA-55.  This is a strong statement to make.  It’s true that JRA is the least accurate by some 
metrics and different from the other reanalyses, so it’s possible that the authors’ suggestion is 
correct. However, the authors have not shown in this manuscript that the interannual variability 
of JRA-55 is wrong.  Maybe the interannual variability in the other reanalyses is too 
muted?  The authors have in-situ data available to back up their statement, but they have not yet 
sufficiently done so in the manuscript. 

Thank you for the suggestion to fold the in-situ data into the discussion of JRA-55. We have 
produced some additional analysis covering Dec-Feb that indicates poor performance of JRA-55. 
AC Fig. 3 indicates that the version of JRA-55 that has less interannual variability (BrJ55, solid 
orange) also has significantly lower RMSE and higher correlation with the in-situ data than the 
native JRA-55 (dashed orange). All the products with similar interannual variability have lower 
RMSE and high correlation with in-situ data. 

Finally, further evidence can be found in Mudryk et al. (in discussion). In that comparison of 23 
snow products, JRA-55 is consistently among the lowest-ranking of them. This analysis breaks 
down mountainous, Arctic, and midlatitude regions. A discussion of this can also be included in 
the discussion.   



 
AC Fig. 3: Time series of validation metrics. DJF measurements only. Dashed lines are native SWE (ERA5, MERRA2, 
and JRA-55), while solid are B-TIM outputs (BrE5, BrM2, BrJ55). 

 


