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Abstract: In recent years, the intensification of global climate change and13

environmental pollution has led to a marked increase in pollen-induced allergic14

diseases. This study leverages 16 years of continuous pollen monitoring data,15

alongside meteorological factors and plant functional type data, to construct a pollen16

emissions model using phenology and random forests (RF). This model is then17

employed to simulate the emission characteristics of three primary types of autumn18

pollen (Artemisia, Chenopod, and total pollen concentration), elucidating the emission19

patterns throughout the seasonal cycle in Beijing. Phenology and RF precisely20

simulate the start and end day of year of pollen, as well as the annual pollen21

production. There are significant spatiotemporal differences among the three types of22

pollen. On average, pollen dispersal begins around August 10, peaks around August23

30, and concludes by September 25, with a dispersal period lasting approximately 4524

days. Furthermore, the relationship between pollen emissions and meteorological25

factors is investigated, revealing that temperature, relative humidity (RH), and26

sunshine hours (SSH) significantly influence annual pollen emissions. Specifically,27

temperature and RH exhibit a strong positive correlation with annual pollen emissions,28
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while SSH shows a negative correlation. Different pollen types display varied29

responses to meteorological factors. Finally, the constructed pollen emissions model is30

integrated into Regional Climate Model (RegCM) and validated using pollen31

observation data, confirming its reliability in predicting pollen concentrations. This32

study not only enhances the understanding of pollen release mechanisms but also33

provides scientific evidence for the selection and planting of urban greening plants.34
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1. Introduction36

Pollen are microscopic particles, typically ranging from 5 to 100 micrometers in37

diameter, released by plants to transfer male genetic material for reproduction. These38

particles, significant allergens, disperse into the atmosphere via wind, contributing to39

atmospheric particulate matter, interacting with clouds and radiation, and playing a40

pivotal role in plant fertilization and gene dissemination (Damialis et al., 2011; Lei et41

al., 2023). Additionally, pollen is linked to allergic diseases such as allergic rhinitis42

and asthma and may even elevate the risk of gastrointestinal and neurological43

disorders (Guzman et al., 2007; Krishna et al., 2020; Chen et al., 2021; Stas et al.,44

2021). In China, the incidence of pollen allergies has surged from 5 % to 17.8 % and45

continues to rise rapidly (Lou et al., 2017). Pollen-induced respiratory allergic46

symptoms, such as allergic rhinitis (AR), affect up to 30 % of the global population,47

particularly children under 18 (Mir et al., 2012; Wang et al., 2016; Zhang and Steiner,48

2022; Zhao et al., 2023). It is generally believed that these respiratory allergic49

diseases are more prevalent in developed countries (Emanuel, 1988; Ibrahim et al.,50

2021). However, the International Study of Asthma and Allergies in Childhood51

(ISAAC) global reports indicate that these diseases are equally or even more prevalent52

in some developing countries compared to developed ones (Asher et al., 2006; Mallol53

et al., 2013). Children, as a vulnerable population, are particularly susceptible to AR54

and its complications (Cingi et al., 2017). Without effective early intervention, allergic55

symptoms in children can persist throughout their lives, imposing a substantial56

economic burden on families and healthcare systems (Ahmed et al., 2018) and57
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potentially posing a life-threatening risk (Schmidt, 2016). In China, a densely58

populated developing country, the proportion of pediatric allergic diseases within the59

spectrum of childhood illnesses is increasing annually, leading to significant60

economic and health losses due to medical expenses, impacts on human life, and61

premature death (National Cooperative Group on Childhood Asthma, 1993, 2003,62

2013). Furthermore, since pollen release is closely linked to environmental factors,63

climate change may influence pollen release, thereby affecting the incidence of64

allergic diseases (Wang et al., 2018; Bishan et al., 2020). In recent decades, the pollen65

season has exhibited a trend of becoming longer and more intense, which may66

exacerbate the conditions of allergic rhinitis and asthma (D’Amato et al., 2016; Lake67

et al., 2017a; Aerts et al., 2020; Kurganskiy et al., 2021).68

With the improvement in living standards and heightened health awareness,69

airborne pollen diseases, such as hay fever, have garnered widespread attention. As a70

typical seasonal epidemic (Yin et al., 2005; Lei et al., 2023), hay fever significantly71

impacts global health. Existing studies have demonstrated that the incidence of72

airborne pollen diseases is closely associated with the concentration of airborne73

allergenic pollen, particularly during peak pollen seasons (Frei and Gassner, 2008;74

Bastl et al., 2018; Kurganskiy et al., 2021). Due to the regional nature of airborne75

pollen, the types and concentrations of pollen vary geographically. Although the76

annual variation trend of total pollen amount generally exhibits a similar bimodal77

pattern, increasing annual climatic variability amidst global warming has led to78

significant changes in the pollen seasons of various plants, with discrepancies of more79

than 20 days in some years. This variability poses practical challenges for conducting80

pollen monitoring research and providing public meteorological services (He et al.,81

2001; Gu and Liao, 2003; Bai et al., 2009; Lei et al., 2023). Therefore, studying82

pollen concentration and distribution is crucial for understanding the pathogenesis of83

airborne pollen diseases, conducting effective pollen monitoring research, and84

delivering accurate public meteorological services.85

However, compared to regions such as Europe and the United States, China faces86

significant challenges in pollen monitoring due to fewer monitoring stations, shorter87
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monitoring histories, and a lower prevalence of automated facilities. These limitations88

have resulted in China's pollen simulation research remaining primarily at the level of89

simple statistical methods, focusing only on basic statistical studies of the impact of90

meteorological conditions on pollen concentration. In contrast, numerical models are91

rarely employed for regional simulation of pollen concentration. This situation92

reflects the relative lag in China's pollen monitoring and research system, hindering a93

deeper understanding of pollen dispersion patterns and the scientific study of related94

health issues (Wu et al., 2011; Meng et al., 2016; Guan et al., 2021; Gao et al., 2022).95

Although numerical models play a crucial role in simulating pollen concentration,96

they require a clear understanding of pollen emissions. Numerical models are broad97

mathematical frameworks used to simulate various physical processes through98

numerical approximations, including atmospheric dynamics and climate systems. In99

contrast, a pollen emission model specifically estimates the release and distribution of100

pollen into the atmosphere, taking into account factors such as pollen phenology,101

vegetation types, and environmental conditions. Pollen emissions are influenced not102

only by meteorological factors but also by vegetation types, land use changes, and103

human activities (Sofiev et al., 2006; Wozniak and Steiner, 2017; Zhang and Steiner,104

2022; He et al., 2023; Lei et al., 2023). Particularly in the context of accelerated105

urbanization, the selection and layout of urban greening plants have a significant106

impact on pollen emissions. The complex interactions of these factors pose significant107

challenges to accurately simulating pollen emissions.108

Since 2004, various pollen prediction models have been developed to enhance109

the accuracy of pollen emission estimates. Helbig et al. (2004) introduced a110

parameterization method for calculating pollen release and resuspension fluxes,111

implemented in the KAMM/DRAIS mesoscale model, although it relied on112

assumptions due to limited observational data. Subsequently, Sofiev et al. (2006)113

analyzed the feasibility of large-scale atmospheric migration of allergenic pollen,114

validating existing dispersion models and providing key parameterizations for dry and115

wet deposition, which were applied in Finland's SILAM (System for Integrated116

modeLling of Atmospheric coMposition) system. However, this direct simulation of117
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pollen concentration based on numerical models has significant complexity and118

uncertainty. Wozniak and Steiner (2017) developed the Pollen Emission Prediction119

Model (PECM1.0), which simulates seasonal pollen counts based on geography,120

vegetation, and meteorology. The model establishes empirical relationships between121

historical average temperatures and pollen season timings for four vegetation types. It122

captures up to 57% of seasonal variations, allowing for analysis of climate change123

impacts on wind-driven pollen emissions. Building on this, Zhang and Steiner (2022)124

introduced PECM2.0, which incorporates precipitation and CO2 factors while refining125

the linear relationship between annual pollen production and temperature, ultimately126

predicting the temperature effects by the end of the century. However, the linear127

relationships based on historical temperatures have significant uncertainties, limiting128

their applicability for regional studies. Therefore, the challenge of constructing a129

pollen emission model that is better suited for regional scales and has broader130

applicability warrants careful consideration and further research. Such advancements131

could significantly enhance our understanding of pollen dynamics and improve the132

accuracy of related health risk assessments.133

Given the importance of accurately modeling pollen emissions, validation of134

numerical models for pollen emissions is necessary. These models not only provide a135

framework for simulating atmospheric processes but also allow for a more nuanced136

understanding of how various factors influence pollen dynamics. RegCM is the137

pioneering regional climate model system used for climate downscaling, originating138

in the late 1980s and early 1990s at the National Center for Atmospheric Research139

(NCAR) in the USA. It has since undergone several development iterations and is140

currently maintained at the International Centre for Theoretical Physics (ICTP) in141

Italy. This open-source system is widely utilized by numerous research teams,142

forming an extensive network for regional climate research. The model can be applied143

globally and is evolving into a fully coupled regional earth system model,144

incorporating ocean, lake, aerosol, desert dust, chemistry, hydrology, and land surface145

processes. The version used in this study is RegCM4.7.1.146

Therefore, this study constructs a pollen emissions model for the Beijing area,147



6

leveraging pollen concentration and meteorological monitoring data, combined with148

pollen phenology and the RF algorithm. It conducts a simulation study on the149

emission phenology of three types of pollen in Beijing (Artemisia, Chenopod, and150

total pollen concentration) to calculate the pollen emissions potential. The study also151

investigates the seasonal and spatiotemporal distribution characteristics of pollen in152

Beijing and its potential correlations with meteorological factors and climatic153

conditions. Additionally, the constructed pollen emissions parameterization method is154

applied to the RegCM and evaluated for accuracy using 15 years of pollen155

observation data. This comprehensive study will enhance the understanding of pollen156

sources, provide innovative guidance for the selection and planting of greening plants,157

and promote sustainable development in ecological protection and urban planning.158

2. Methodology159

2.1 Model description160

2.1.1 Parameterization method for pollen emissions161

This study's pollen emissions potential integrates geographical parameters,162

vegetation types, and meteorological data, and incorporates autumn pollen phenology163

and RF to enhance the simulation of pollen phenology (Wozniak and Steiner, 2017;164

Zhang and Steiner, 2022). This approach is used to predict pollen concentration and165

distribution within the seasonal cycle. The specific calculation formula is as follows:166
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represents the phenological evolution of pollen emissions, controlling the pollen175

release process. The formula indicates that pollen emissions during the pollen season176

follows a Gaussian distribution, where � and � are the mean and standard177

deviation of the Gaussian distribution. These parameters are calculated from sDOY178

(start Day of Year) and eDOY (end Day of Year) of the pollen season, as follows:179

2
eDOYsDOY 

� (2)
180

a
sDOYeDOY 

 (3)
181

In this context, sDOY and eDOY are optimized using autumn pollen phenology182

(Sect. 2.1.2). The parameter a represents a fitting parameter that explains the183

conversion between the empirical phenological dates based on pollen count thresholds184

and the equivalent width of the emission curve. In this study, the value of a is set to 4.185

This equation can be applied to a specific type of pollen or to the calculation of186

pollen concentration over the entire pollen season, depending mainly on the land187

cover type. The emission can be calculated offline using this equation or applied in188

online calculations.189

2.1.2 Autumn pollen phenology model190

In this study, we used three different calculation methods (Rs1, Rs2, Rssig) for the191

autumn phenology model to simulate sDOY and eDOY of autumn pollen (Meier &192

Bigler, 2023). Each model is related to temperature and SSH. The specific calculation193

formulas are as follows:194









baseibasei

baseibasei
y

basei
x

ibase

LLTT
LLTTLLTT

Rs
,0
,)/()(

1
(4)

195









baseibasei

baseibasei
y

basei
x

ibase

LLTT
LLTTLLTT

Rs
,0
,)/1()(

2
(5)

196

)(1
1

bLTasig iie
Rs 

 (6)
197

 
nt

t
i YRs

0

(7)
198

In the above equations, Rs1, Rs2 and Rssig represent three different autumn199



8

phenology model categories. Ti and Li represent the temperature and SSH on a given200

day, respectively, while Tbase and Lbase represent the thresholds for temperature and201

SSH, respectively. In the Rs1 and Rs2 models, when the temperature and SSH are202

below the threshold or the date exceeds a fixed DOY, Rs starts accumulating. In the203

Rssig model, temperature and SSH accumulate inversely in an exponential form. The204

day tn, when the cumulative amount exceeds the threshold Y, represents the final205

simulated pollen start/end date. t0 represents the start day of accumulation, which is206

the first day when Ti<Tbase and Li<Lbase. The parameters that need to be adjusted are Y,207

Tbase, Lbase, x, y and start_day. In this study, the simulated annealing (SA) algorithm is208

used for parameter adjustment. The principle of the SA is to simulate the random209

optimization process of the annealing process in solid-state physics, which can accept210

non-optimal solutions with a certain probability to avoid falling into local optima and211

eventually achieve the global optimum.212

2.1.3 Random Forests213

Random Forests (RF) is an ensemble learning algorithm introduced by Breiman214

(2001) for classification and regression tasks. This algorithm enhances model215

prediction performance and robustness by constructing multiple decision trees and216

combining their outputs. The core principle involves drawing multiple sample sets217

with replacement from the original training set, training a decision tree for each218

sample set, and randomly selecting a subset of features at each node split to reduce219

correlation between the trees. Ultimately, RF generates the final prediction by220

averaging (for regression) or voting (for classification) the outputs of these trees. The221

advantages of this method include high prediction accuracy, strong resistance to222

overfitting, suitability for high-dimensional data, and efficient training processes. The223

RF algorithm has been widely applied across various fields (Virro et al., 2022; Li et224

al., 2023; Chen et al., 2024; Valipour Shokouhi et al., 2024).225

In this study, the RF algorithm is employed to simulate annual pollen production.226

Each pollen dataset is divided into training and testing sets in a 4:1 ratio, with the227

training set used for model training and the testing set for accuracy validation.228

Additionally, a grid search with cross-validation is applied to optimize the229
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hyperparameters of each estimator. Key parameters for RF adjustment include230

n_estimators, max_depth, min_samples_split, and min_samples_leaf. Hyperparameter231

optimization is a crucial step in enhancing model performance.232

2.1.4 Implementation of pollen emissions in RegCM233

In this model, a pollen emissions model based on phenology and RF calculates234

the emission potential of different types of pollen offline, and then incorporated into235

the RegCM model. The calculation of pollen concentration in this model follows the236

method of Sofiev et al. (2013), with the formula as follows:237

hrwiipollen ffftEtE  )()(, (8)
238









































high

highlow
lowhigh

high

low

h

high

highlow
lowhigh

high

low

r

convw

rhrh

rhrhrh
rhrh
rhrh

rhrh

f

prpr

prprpr
prpr
prpr

prpr

f

uuf

,0

,

,1

,0

,

,1

)5/)(exp(5.1 10

(9)
239

Where fw, fr and fh represent the wind, precipitation, and RH factors,240

respectively, influencing pollen emissions concentration. fw is exponentially related to241

the 10m wind speed u10 and vertical turbulent wind speed uconv. pr and rh represent242

precipitation and RH. When precipitation is below the threshold prlow, the243

precipitation factor is 1. When precipitation exceeds the threshold prhigh, the factor is 0.244

When precipitation is between these thresholds, the factor is calculated as the ratio of245

the difference between the high threshold and precipitation to the difference between246

the thresholds, with default values prlow=10-5 mm and prhigh=0.5 mm. Similarly, the247

RH factor is related to RH and its thresholds, with default values rhlow=50 % and248

rhhigh=80 %. These factors explain the impact of wind, precipitation, and humidity on249

pollen emissions. Given the significant influence of precipitation and RH on pollen250

emissions, this study adjusts prhigh​ and rhhigh values to 1 mm and 90 %, respectively.251

Higher thresholds can prevent excessive suppression of pollen emissions under252
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frequent precipitation and high humidity conditions, thus more accurately simulating253

actual pollen concentration changes and better adapting the model to different climatic254

conditions.255

Moreover, the RegCM includes the pollen tracer transport equation (Solmon et al.256

2006), as follows:257

dWcWlsCVH DRRSTFFV
t



  (10)

258

Where χ represents the tracer, FH and FV represent horizontal and vertical259

diffusion, TC represents convective transport, RWls and RWc represent large-scale and260

convective precipitation wet removal processes, respectively, and Dd represents dry261

removal processes. This transport equation comprehensively considers various262

physical processes and removal mechanisms of pollen in the atmosphere, allowing the263

simulation of the entire process from pollen release to atmospheric dispersion and264

deposition. This provides a foundation for fully describing the spatial distribution and265

temporal evolution of pollen in the atmosphere, which is crucial for studying pollen266

dispersion in the air, determining the spatial distribution of pollen concentration, and267

predicting future changes in pollen concentration.268

2.2 Data269

2.2.1 Observed pollen concentrations270

The daily pollen concentration data were collected from six monitoring stations271

in Beijing: Changping (CP), Chaoyang (CY), Fengtai (FT), Haidian (HD),272

Shijingshan (SJS), and Shunyi (SY), as shown in Fig. 1. The monitoring period273

spanned from April to October each year from 2006 to 2021, covering the main pollen274

season in Beijing. The gravitational settling method (Unit: 10³ Grains m-2 d-1) was275

used for monitoring. The pollen concentration data included Total Pollen276

Concentration (the sum of pollen concentrations from all taxa, abbreviated as TotalPC)277

and the concentrations of pollen from 10 common allergenic plants. These species278

included trees such as Pine, Poplar, Birch, Cypress, Ash, and Elm, as well as weeds279

like Artemisia, Chenopod, Humulus, and Amaranthus. Although autumn pollen280

concentrations are lower compared to spring, autumn weed pollen has a higher281
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allergenic potential (Zhao et al., 2023). Therefore, this study focuses on the analysis282

of autumn weed pollen. Due to significant data gaps in the pollen concentration of283

specific species, we selected only the data that were more complete and of higher284

allergenic potential, specifically Artemisia, Chenopod, and TotalPC. Table 1 provides285

basic information, such as the number of effective sample years for these three types286

of pollen across the six stations.287

To prevent anomalies in the data, we excluded outliers in the pollen288

concentration data for each species and any data points where the concentration289

exceeded the 99th percentile. Furthermore, we applied a 5-day moving average to the290

pollen monitoring data to smooth it. This approach not only eliminates noise from the291

data (Li et al., 2019; Li et al., 2022) but also mitigates the influence of daily292

meteorological changes and advection diffusion on daily pollen emissions (To further293

analyze the impact of key factors such as meteorological factors and advection294

diffusion on daily pollen emissions, we used the RegCM in Sect. 3.3. This model295

accurately reflects the effects of daily meteorological factors such as temperature,296

precipitation, humidity, and wind speed on pollen emissions while also describing key297

physical processes such as advection diffusion, convective transport, and dry and wet298

deposition, thus providing a comprehensive analysis of the behavior of pollen in the299

atmosphere). This smoothing process allows us to more clearly explore the daily300

variation trends of pollen.301

Additionally, to better simulate the temporal and spatial distribution of pollen302

during the autumn pollen period, we defined the autumn pollen period based on303

observed pollen concentration data as DOY 215<DOY<280. Subsequently, we304

determined the sDOY and eDOY for the autumn pollen period for each station and305

year by identifying the day of year at which the cumulative pollen concentration306

reached 5 % (start) and 95 % (end) of the total for that period (Khwarahm et al., 2017;307

Li et al., 2019; Li et al., 2022).308
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309
Fig. 1. Distribution map of geopotential height, pollen observation stations (triangle), and310

meteorological monitoring stations (circle) in Beijing area311

Table 1 Explanation of effective sample years for pollen monitoring stations in Beijing312

(2006-2021)313

Station
Effective Sample Years / Year

Artemisia Chenopod TotalPC

CP 16 16 16

CY 13 13 13

FT 10 8 15

HD 0 0 8

SJS 11 11 16

SY 12 9 16

Total 62 57 84

To better simulate sDOY and eDOY for pollen, this study first applied the314

Gaussian model to the autumn pollen data of each station and year. The Gaussian315

model was chosen for its effectiveness in capturing peaks in time series data, which316

are often reflected in pollen concentration data. Taking the CP station as an example,317

Gaussian fitting distribution was performed on the autumn Artemisia, Chenopod, and318

TotalPC for 2006-2021 (Supplementary Fig. S1-S3). The results indicated that the319

autumn pollen concentration exhibited a significant Gaussian distribution, confirming320

that the Gaussian model could aptly fit the time series changes of autumn pollen.321
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Therefore, by Gaussian fitting the pollen concentrations of each station, the autumn322

pollen sDOY and eDOY under the Gaussian model simulation were further323

determined. Comparing the sDOY and eDOY derived from observed pollen324

concentration data with those obtained via Gaussian model simulation325

(Supplementary Fig. S4), we found a high correlation coefficient (R) and a low root326

mean square error (RMSE) between the two. Thus, the sDOY and eDOY obtained327

from Gaussian model simulation were utilized to study the autumn pollen phenology.328

2.2.2 Meteorological observation and land cover data329

The meteorological data for this study were sourced from the China Surface330

Climate Daily Dataset, encompassing observations from all benchmark and basic331

meteorological stations in China. Specifically, we utilized data from 66 valid332

meteorological stations in Beijing and its surrounding areas (39-41.5° N, 115-118° E)333

covering the period from 2006 to 2020 (Fig. 1). This dataset includes meteorological334

observations corresponding to the pollen monitoring stations (our meteorological data335

extends only up to 2020). The variables incorporated in this study comprise average336

temperature (TEM_Avg), maximum temperature (TEM_Max), minimum temperature337

(TEM_Min), sunshine hours (SSH), station altitude (Alti), average pressure338

(PRS_Avg), maximum pressure (PRS_Max), minimum pressure (PRS_Min),339

maximum wind speed (WIN_S_Max), extreme wind speed (WIN_S_Inst_Max),340

average 2-minute wind speed (WIN_S_2mi_Avg), ground surface temperature341

(GST_Avg_Xcm, X=5, 10, 15, 20, 40, 80, 160, 320cm), average ground surface342

temperature (GST_Avg), minimum ground surface temperature (GST_Min),343

maximum ground surface temperature (GST_Max), average relative humidity344

(RHU_Avg), minimum relative humidity (RHU_Min), average vapor pressure345

(VAP_Avg), precipitation from 20:00 to 20:00 (PRE_Time_2020), and precipitation346

from 08:00 to 08:00 (PRE_Time_0808). The first four meteorological factors were347

utilized to simulate the autumn phenology model of pollen, predicting various pollen348

sDOY and eDOY. All meteorological factors served as training datasets for the RF349

algorithm to simulate annual pollen production.350

For land use data, this study employed the Community Land Model 4 (CLM4)351
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dataset (Oleson et al., 2010), which includes 25 plant functional types such as352

needleleaf forests, broadleaf forests, shrubs, grasses (C3 and C4), and crops, with a353

spatial resolution of 0.05°. As Artemisia and Chenopod primarily fall under the C3354

plant category (Yorimitsu et al., 2019; Septembre-Malaterre et al., 2020; Qiao et al.,355

2023), the simulation of pollen utilization for Artemisia and Chenopod used plant356

functional C3 grass, while the TotalPC simulation incorporated both C3 and C4357

grasses. The distribution of these two plant functional types in Beijing is illustrated in358

Fig. 2.359

360

Fig. 2. The distribution of plant functional type C3 (a) and GRASS (b) in Beijing area361

3. Results and Discussion362

3.1 Pollen Phenology Simulation363

In this study, we analyzed the phenological changes of three types of364

pollen—Artemisia, Chenopod, and TotalPC—during the autumn season based on365

three different autumn pollen phenology calculation methods (Rs1, Rs2, and Rssig).366

Specifically, we examined the seasonal phenological simulations of these pollen367

concentrations under three different temperature conditions (TEM_Avg, TEM_Max,368

and TEM_Min) (Mo et al., 2023), with a primary focus on sDOY and eDOY.369

Additionally, the annual pollen production (Pannual) was simulated using the RF370

algorithm.371

3.1.1 Simulation of sDOY and eDOY based on autumn phenology model372

Table 2 presents the statistical indicators for simulating the phenology of373
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Artemisia using different phenological methods and temperature conditions. For374

simulating the sDOY for Artemisia, the Rs1, Rs2, and Rssig methods demonstrated high375

accuracy when TEM_Avg and TEM_Min were employed as temperature conditions.376

The R values for both the training and testing sets exceeded 0.45, with some R values377

in the testing set surpassing 0.7, and the RMSE values were relatively low. This378

indicates that these three methods effectively capture the phenological characteristics379

of Artemisia at the onset of autumn. Notably, the Rssig method, when using TEM_Avg380

as the condition, achieved R values of 0.53 and 0.80 for the training and testing sets,381

respectively, with RMSE values of 6.61 days and 4.86 days, showing the best382

simulation performance. However, when TEM_Max was used as the temperature383

condition, the simulation performance of all three methods declined. The R value of384

the Rs1 method fell below 0.2, and the RMSE values were high, exceeding 8 days.385

Comparatively, the Rssig method performed slightly better but still yielded inferior386

results compared to TEM_Avg and TEM_Min, indicating lower model stability when387

predicting Artemisia sDOY with TEM_Max. For the simulation of Artemisia eDOY,388

the performance of the three methods was relatively close, with R values in the389

training and testing sets generally ranging from 0.3 to 0.5, and similar RMSE values.390

Among them, the Rs1 method performed better when TEM_Min and TEM_Avg were391

used as temperature conditions, with R values of 0.66 and 0.51 in the testing set and392

RMSE values of 3.32 days and 3.9 days, respectively. Compared to the Rs1 method,393

the Rs2 and Rssig methods were relatively weaker in predicting eDOY, indicating that394

the Rs1 method better captures the phenological trends of Artemisia at the end of395

autumn. Additionally, when comparing the simulation results of sDOY and eDOY,396

sDOY generally had higher R values, but eDOY had lower overall RMSE values.397

The statistical indicators for simulating the phenology of Chenopod under398

different phenological methods and temperature conditions are shown in Table S1. For399

the simulation of the sDOY for Chenopod, the Rs1 and Rs2 methods demonstrated400

high accuracy when using TEM_Min and TEM_Avg as temperature conditions. The R401

values for both the training and testing sets were around 0.5, and the RMSE values402

were relatively low. It is clear that using TEM_Avg as the temperature condition403
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yields higher R values and lower RMSE (in the case of the Rs1 method) compared to404

TEM_Min, indicating that these two methods effectively capture the phenological405

changes of Chenopod at the onset of autumn when using TEM_Avg as the406

temperature condition. However, when TEM_Max was used as the temperature407

condition, the simulation performance of all three methods declined, particularly for408

Rs1, which had an R value of -0.1 and an RMSE greater than 9 days in the testing set.409

The Rssig method, when using TEM_Avg, achieved an R value of 0.51 in the training410

set but only 0.28 in the testing set, with a high RMSE of 5.32 days, indicating poor411

model stability in this scenario. In contrast to TotalPC and Artemisia, the simulation412

of the eDOY for Chenopod was not satisfactory for any of the three methods. The R413

values for both the training and testing sets were all below 0.42. Particularly when414

using TEM_Max as the temperature condition, the simulation performance of all three415

methods was poor, with the testing set R value reaching only 0.1. This indicates that416

the models have limited ability to capture the end of the autumn season for Chenopod.417

Table S2 shows the phenological simulation statistical indicators of TotalPC418

under different phenological methods and temperature conditions. From the data in419

the table, it can be seen that for the simulation of the sDOY of TotalPC, all three420

phenological methods (Rs1, Rs2, and Rssig) performed with high accuracy (R > 0.5)421

and relatively low RMSE when using TEM_Min. This indicates that these three422

methods, when using TEM_Min, can effectively capture the trend of the sDOY of423

TotalPC during the autumn season. Meanwhile, the Rs1 method also showed good424

simulation performance when using TEM_Avg as the temperature condition, with R425

reaching 0.54 for both the training and testing sets. The Rssig method, using TEM_Avg,426

had good simulation performance in the training set, but the R in the testing set only427

reached 0.38. Compared to TEM_Min and TEM_Avg, the Rs2 and Rssig methods428

showed slightly inferior simulation performance when using TEM_Max as the429

temperature condition. Surprisingly, the Rs1 method's simulation of the sDOY showed430

a negative correlation when using TEM_Max, indicating the worst performance. For431

the simulation of the eDOY of TotalPC, the overall simulation performance was432

worse in terms of R compared to sDOY, but the RMSE values were generally better.433
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Specifically, using TEM_Avg as the temperature condition, the Rs2 and Rssig methods434

showed relatively good simulation performance and lower RMSE. However, the Rs2435

method performed much worse on the testing set compared to the training set, with436

the R on the testing set being only 0.32.437

Overall, different pollen types exhibit varying sensitivity to different438

phenological models and temperature conditions. TEM_Avg is generally the best439

temperature condition for predicting the sDOY of the three pollen types, providing440

higher R values and lower RMSE. This suggests that TEM_Avg can effectively441

predict the start of the autumn pollen season. At the same time, TEM_Min also442

performs well in predicting the sDOY of TotalPC and Artemisia, whereas TEM_Max443

generally shows the poorest prediction performance. For predicting eDOY, different444

pollen types show different sensitivities to temperature conditions, but overall, the445

models perform worse for eDOY compared to sDOY, especially in the simulation of446

Chenopod.447

Table2 Statistical indicators of Artemisia phenology under different phenological methods and448

temperature conditions. (Unit of RMSE: day)449

Artemisia
Rs1(R) Rs2(R) Rssig(R) Rs1(RMSE) Rs2(RMSE) Rssig(RMSE)

Train Test Train Test Train Test Train Test Train Test Train Test

sD
O
Y

TEM_Min 0.47 0.66# 0.52* 0.77# 0.45 0.59# 6.61 5.93 6.29 4.99 6.63 6.57

TEM_Avg 0.45 0.63# 0.50 0.71# 0.53* 0.80# 6.67 6.18 6.78 5.44 6.61 4.86

TEM_Max 0.16 0.17 0.44 0.47 0.45 0.58# 8.87 9.58 8.21 7.51 6.52 6.32

eD
O
Y

TEM_Min 0.38 0.66# 0.38 0.44 0.36 0.37 4.19 3.32 4.19 3.97 4.02 4.07

TEM_Avg 0.46 0.51* 0.38 0.29 0.44 0.44 3.92 3.9 4.16 4.23 3.85 4.07

TEM_Max 0.31 0.43 0.05 0.07 0.33 0.27 5.59 4.65 6.84 6.47 3.98 4.32

Note: Bold represents the best model performance, # Indicates significance levels at P < 0.001, *450

Indicates significance levels at P < 0.005451

Based on the above discussion, we selected the most suitable phenological and452

temperature conditions for the three types of pollen (bold parts in Table 2 and Table453

S1-S2), simulated their sDOY and eDOY, and generated line and scatter plots (Fig. 3).454



18

According to the line plots in Fig. 3 (top), the predicted results for Artemisia are the455

closest to the actual observed results. The predictions for TotalPC follow, while the456

predictions for Chenopod show some deviation, particularly in eDOY, indicating the457

need for a more suitable phenological model to accurately simulate the phenology of458

Chenopod. The scatter plots in Fig. 3 (bottom) illustrate that for sDOY predictions,459

Artemisia exhibited the strongest correlation between predicted and observed pollen460

phenology, with an R value of 0.69 and an RMSE of 5.77 days. In contrast, Chenopod461

had the lowest correlation, with an R value of 0.49 and an RMSE of 4.98 days. It can462

also be observed that higher R values are associated with higher overall RMSE,463

possibly due to the models being more sensitive to noise or outliers in the data, which464

increases the overall error. For high-correlation predictions like those for Artemisia,465

the model may be more affected by random fluctuations in the data, leading to466

increased error. Additionally, different pollen types may exhibit varying467

characteristics or response patterns in phenological models, resulting in a non-linear468

or inconsistent relationship between correlation and error. For eDOY predictions, the469

correlation between predicted and observed is highest for Artemisia, with an R value470

of 0.53 and an RMSE of 3.77 days. Chenopod has the lowest correlation for eDOY471

predictions, with an R value of only 0.26 and an RMSE of 4.57 days. The poorer472

performance in simulating eDOY for Chenopod may be due to lower data quality473

compared to Artemisia and TotalPC, as well as the smallest sample size, resulting in474

insufficient information and samples for the model to learn and predict accurately.475

Additionally, Table 3 shows the proportion of simulations with errors less than 5476

days and 3 days for sDOY and eDOY across the three pollen types. It can be seen that477

the proportion of eDOY simulations with errors less than 5 days and 3 days is higher478

than that for sDOY, indicating that eDOY simulations generally have better accuracy479

in terms of error. Specifically, for Chenopod eDOY simulations, although the R value480

is poor, 76.79 % of simulations have errors less than 5 days, and 55.36 % have errors481

less than 3 days, meaning that more than half of the eDOY simulations have errors482

within 3 days. This performance is comparable to the other two pollen types (64.41 %483

and 68.12 %, respectively). Compared to Mo et al. (2023), which simulated the spring484
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season start pollen season (SPS) using 17 phenological models, this study has slightly485

lower R values but much lower RMSE (around 11 days in their study). Li et al. (2022)486

used satellite data to simulate the SPS for Birch, Oak, and Poplar, achieving RMSE487

values between 4.26 and 8.77 days. Furthermore, this study's process-based488

phenological models for sDOY and eDOY show smaller errors and higher489

correlations compared to empirical linear models based solely on temperature used by490

Wozniak and Steiner (2017) and Zhang and Steiner (2022).491

Therefore, from an error analysis perspective, the simulation performance of492

Chenopod eDOY maintains a relatively low error while also demonstrating some493

stability, indicating that the autumn phenological model can accurately capture the494

seasonal variation trend of Chenopod. This makes the simulation results reliable.495

Overall, the autumn phenological models provide good simulation performance for496

the phenology of the three pollen types, laying a solid foundation for further analysis497

of pollen temporal characteristics.498

499

Fig. 3. Comparison of pollen sDOY and eDOY in autumn phenology: simulation vs. observation.500

Line plots of three different pollen sDOY and eDOY (a-c) and scatter plot comparison of the same501

(d-f). Specific comparisons for Artemisia (a, d), Chenopod (b, e), and TotalPC (c, f). The502

horizontal axis of (a-c) represents the sequential distribution of effective sample counts for the503

three types of pollen.504

Table3 Statistics on the proportion of errors between simulation and observation of three different505
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types of pollen sDOY and eDOY within 5 and 3 days506

DOY Artemisia (%) Chenopod (%) TotalPC (%)

<5D
sDOY 68.97 73.21 71.83

eDOY 86.44 76.79 82.61

<3D
sDOY 48.28 44.64 53.52

eDOY 64.41 55.36 68.12

Based on the temperature and SSH observational station data from the Beijing507

area, we interpolated the station data into a grid dataset with a horizontal resolution of508

0.1°. Using the selected autumn phenological models, we then performed gridded509

simulations of the sDOY and eDOY for three pollen types. This approach enabled us510

to map the regional distribution of autumn pollen sDOY and eDOY in Beijing from511

2006 to 2020, thereby laying the groundwork for further simulations of autumn pollen512

emissions potential.513

3.1.2 Simulation of annual pollen production based on RF514

The simulation of annual pollen production (Pannual, referring to the cumulative515

pollen concentration during each autumn pollen season) was conducted using the RF516

algorithm. The training data comprised all station-observed pollen data from Table 1517

and the corresponding meteorological observation data from Sect. 2.2.2. Four-fifths of518

the station data were randomly selected as the training set to train the RF algorithm,519

while the remaining one-fifth was used as the test set to validate the accuracy of the520

RF's Pannual simulation. Fig. 4 presents the scatter plots of observed versus simulated521

Pannual for three different pollen types (Artemisia, Chenopod, and TotalPC) based on522

the RF in the test set. The R between simulated and observed values for the three523

pollen types were all above 0.5, with Chenopod reaching 0.65. The calculated RMSE524

was around 0.2 × 106 Grains m-2 year-1 (with TotalPC having an RMSE of 2.12 × 106525

Grains m-2 year-1). This indicates that the prediction performance of the RF varies526

among different pollen types, with the best performance for Chenopod and the poorest527

for TotalPC annual production. Compared to the temperature-based empirical linear528
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models for Pannual by Zhang and Steiner (2022), the machine learning algorithm-based529

simulations in this study have smaller errors and higher correlations. Overall, the RF530

effectively simulates Pannual.531

Based on meteorological observation data from stations in and around Beijing,532

the station data were interpolated into a gridded dataset with a horizontal resolution of533

0.1°. Subsequently, all station data for each pollen type were used as the training set,534

with 12 stations in the gridded dataset cyclically selected as the test set for gridded535

simulations. This ultimately resulted in the spatial distribution of Pannual in Beijing536

from 2006 to 2020, laying the foundation for further simulation of autumn pollen537

emissions potential.538

539
Fig. 4. Scatter plots of simulated and observed annual pollen (Pannual) based on RF. Comparisons540

for Artemisia (a), Chenopod (b), and TotalPC (c).541

3.2 Simulation of Pollen Emissions in Beijing Area542

Based on the simulation results of autumn pollen phenology (sDOY, eDOY, and543

Pannual) from Sect. 3.1 and the pollen emissions potential parameterization method544

from Sect. 2.1.1, this study calculated the pollen emissions potential in the Beijing545

area. Fig. 5 and Fig. S5-S6 present a comparison between the observed and simulated546

average site values of Artemisia, Chenopod, and TotalPC in Beijing from 2006 to547

2020. In these figures, blue dots represent the actual daily observed pollen counts, and548

red lines represent the simulated pollen emissions. To assess the consistency between549

the simulated and observed data, we calculated R and RMSE. As illustrated in the550

figures, the simulated data closely match the actual observations in most years, with551

correlation coefficients around 0.9. Specifically, the Artemisia emissions in 2010,552

Chenopod emissions in 2016, and TotalPC emissions in 2007, 2009, 2018, and 2019553
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show R values as high as 0.98 and relatively low RMSE levels, demonstrating the554

high accuracy of this study in simulating pollen emissions potential.555

Additionally, the simulation results for sDOY and eDOY were also satisfactory,556

though there were slight advances in the start of the pollen season in certain years,557

such as 2017 and 2018 for Artemisia and Chenopod. While the peak pollen emissions558

simulations were highly accurate in most years, there were instances of559

overestimation and underestimation in some years. For example, the peak emissions560

of Artemisia in 2008, 2009, and 2020, Chenopod in 2007, and TotalPC in 2013 and561

2020 were significantly underestimated. Conversely, the peak simulations of TotalPC562

in 2011 and 2012 were slightly overestimated. This indicates that, despite the high563

accuracy of the annual pollen production simulations based on the RF, there is still564

room for improvement565

Overall, this study achieved significant results in simulating pollen emissions,566

demonstrating the potential application of autumn phenological models and the RF567

algorithm in simulating pollen emissions. However, to further enhance the accuracy of568

these simulations, future research needs to investigate and address the instances of569

overestimation and underestimation in greater detail.570

571

Fig. 5. Time series of observation and simulation of average Artemisia emissions at stations in572
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Beijing from 2006 to 2020. The red solid line represents the simulation of pollen emissions model,573

while blue dots depict observations574

To further investigate the spatial distribution of annual pollen production, we575

simulated the spatial distribution of annual Artemisia, Chenopod, and TotalPC576

production in Beijing from 2006 to 2020 (Fig. 6 and Fig. S7-S8). The results reveal577

significant spatial and temporal variations in annual pollen production. Spatially,578

Artemisia production is predominantly concentrated in the southeastern, northeastern,579

and certain northwestern regions of Beijing, with occasional occurrences in the central580

urban area during specific years (2008 and 2013). Chenopod production is highest in581

the southern part of Beijing and lowest in the northern parts and surrounding areas.582

Notably, from 2006 to 2008, the southern region exhibited high concentrations of583

Chenopod production. TotalPC is mainly distributed in the southeastern plains of584

Beijing, forming a strip-like pattern, while lower production is observed in the585

northwestern mountainous areas, indicating a possible influence of geographical586

location on TotalPC distribution. Temporally, the annual production of these three587

pollen types demonstrates distinct interannual variations. Artemisia shows little588

change in both distribution area and production concentration over time. In contrast,589

Chenopod and TotalPC exhibit a general declining trend, reaching their lowest levels590

between 2016 and 2018, which may be attributed to recent climatic changes,591

vegetation shifts, and human activities in the Beijing area.592

The simulation results for annual pollen production of Artemisia, Chenopod, and593

TotalPC in Beijing from 2006 to 2020, based on autumn phenology and the RF pollen594

emissions model, indicate pronounced spatial differences and temporal variation595

characteristics. Analyzing the spatial distribution and temporal variation of annual596

pollen production in Beijing enhances our understanding of the spatiotemporal597

patterns of pollen in the region, providing crucial insights for the control and598

mitigation of pollen allergies.599
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600

Fig. 6. Distribution of Artemisia in Beijing from 2006 to 2020 based on pollen emissions model601

To more intuitively reflect the temporal variation trends in the annual production602

of three types of pollen, we further analyzed the interannual variation of the regional603

average cumulative concentration of these pollen types during the autumn pollen604

season in Beijing from 2006 to 2020 (Fig. 7). The annual production of Artemisia,605

Chenopod, and TotalPC in Beijing averages between 0.8-1.6, 0.5-1.4, and 6.5-9 grains606

m-2 year-1, respectively. The annual production of Artemisia and Chenopod are607

notably similar. Over time, the regional annual production of these pollen types in608

Beijing exhibits significant fluctuations. Nonetheless, Artemisia remains relatively609

stable, whereas Chenopod and TotalPC production demonstrate a discernible610

declining trend, particularly in TotalPC. The annual production of all three pollen611

types reached a local nadir in 2012. Following a surge in 2013, production steadily612

declined from 2014 to 2017, reaching the lowest levels observed in nearly 15 years613

(with TotalPC being the lowest in 2018). Subsequently, from 2018 to 2020, an614

increasing trend was observed. Overall, the annual pollen production in Beijing615

appears to follow a minor cyclical pattern, intimately linked to the impacts of climate616

change. Building on this analysis, it suggest that interannual variations in pollen617

production may be influenced by multiple climate-related factors, such as temperature,618
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precipitation, and SSH. These climatic elements can influence the phenology and619

growth cycles of pollen-producing plants, thereby affecting their annual production620

levels. For example, higher temperatures may lead to earlier flowering times,621

potentially shifting the timing and duration of pollen release. Variations in622

precipitation impact soil moisture, which can affect plant health and, consequently,623

pollen output. The observed trends in Beijing’s pollen production, including the624

declining patterns in Chenopod and TotalPC, could correspond to climate shifts that625

are less favorable for these species. Thus, these fluctuations in pollen production626

underscore the sensitivity of pollen phenology to both local and broader climate627

variations.628

To further explore the meteorological factors influencing average annual pollen629

production in Beijing, we selected six meteorological variables during the autumn630

pollen season from 2006 to 2020 for temporal and regional average calculations.631

These factors include maximum temperature (TEM_Max), average temperature632

(TEM_Avg), minimum temperature (TEM_Min), average relative humidity633

(RHU_Avg), sunshine hours (SSH), and precipitation time (PRE_Time_0808). The634

annual variations of these meteorological factors were analyzed, and their correlations635

with annual pollen production variations were calculated (Fig. 8).636

The trends in annual variations of each meteorological factor and the calculated637

correlations reveal that for Artemisia, TEM_Min and RHU_Avg have a significant638

positive correlation with its production, especially RHU_Avg, which shows a639

correlation of 0.79. This indicates that an increase in relative humidity promotes640

Artemisia production. Conversely, SSH has a correlation of -0.8 with Artemisia,641

indicating that longer sunshine hours inhibit its production. Meanwhile, TEM_Avg642

and PRE_Time_0808 have minor promoting effects on Artemisia production, while643

TEM_Max has a slight inhibitory effect. For Chenopod, TEM_Min is the most644

significant promoting factor, while SSH has an inhibitory effect, although its negative645

correlation is lower than that for Artemisia, indicating a limited inhibitory effect on646

Chenopod production. For TotalPC, similar to Artemisia, increases in TEM_Min and647

RHU_Avg promote production, while increases in SSH and TEM_Max inhibit648
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production. Notably, the three types of pollen reached local minimum concentrations649

in 2012, 2017, and 2018, when TEM_Min and SSH respectively reached local650

minimum and maximum values, further demonstrating the promoting effect of651

TEM_Min and the inhibitory effect of SSH on annual average pollen concentration.652

Rahman et al. (2020) and Lei et al. (2023) indicated that temperature is the main653

factor affecting the interannual variation of pollen and is positively correlated with654

pollen production. Our findings are largely consistent with these conclusions,655

although they did not consider the effect of SSH on interannual changes in pollen656

concentration. In summary, the annual production of pollen in Beijing is significantly657

influenced by meteorological conditions, particularly temperature, relative humidity,658

and sunshine hours. Different meteorological factors exhibit distinct promoting and659

inhibiting effects on pollen production.660

661

Fig. 7. Time series variation chart of regional average annual production of three types of pollen in662

Beijing from 2006 to 2020. Due to the different magnitudes of pollen concentrations, the left663

y-axis represents the concentrations of Artemisia and Chenopod, while the right y-axis represents664

TotalPC. Plotting the time series distributions of the three pollen concentrations on a single graph665

allows for a clearer observation of the trends in their variations over time.666
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667
Fig. 8. Time series variation chart of average values of different meteorological factors in Beijing668

from 2006 to 2020. (The correlation coefficient between the average meteorological factors and669

the regional average annual production of three types of pollen is calculated in the figure)670

Fig. 9 and Fig. S9-S10 illustrate the spatial distribution of the average671

concentrations of Artemisia, Chenopod, and TotalPC during the autumn pollen season672

in Beijing from 2006 to 2020. During this period, the concentration of all three pollen673

types initially increases and then decreases. The pollen season begins around August674

10 each year and concludes around September 25. The peak concentrations for675

Artemisia and Chenopod pollen occur around August 30, while the peak concentration676

for TotalPC is observed around September 5. The entire pollen season lasts677

approximately 45 days.678

Regarding the average pollen concentration distribution, Artemisia is primarily679

concentrated in the southwest, northeast, and parts of the northwest of Beijing, with680

lower concentrations in the southeast. In contrast, Chenopod and TotalPC are mainly681

distributed in the southeastern plains. The maximum average concentrations for682

Artemisia, Chenopod, and TotalPC reach 81.1×103 Grains m-2 d-1, 42.0×103 Grains683

m-2 d-1, and 351.8×103 Grains m-2 d-1, respectively.684
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685

Fig. 9. Temporal and spatial distribution of Artemisia in Beijing (average from 2006 to 2020)686

3.3 Simulation of Pollen Emissions in Regional Climate Models687

To evaluate the pollen emissions model based on autumn pollen phenology and688

RF, this study integrates the offline calculated pollen emissions into the regional689

climate model RegCM. By comparing the simulated atmospheric pollen690

concentrations with data from ground-based pollen monitoring stations, we assess the691

performance of this pollen emissions potential model.692

3.3.2 Evaluation of pollen simulation accuracy in RegCM693

Fig. 10 and Fig. S11-S12 depict the time series distribution of the concentrations694

of three pollen types simulated by the RegCM compared to observed concentrations695

from 2006 to 2020. The RegCM successfully captures the temporal variation trends of696

pollen concentrations during the autumn pollen season, generally showing an initial697

increase followed by a decrease. Daily pollen concentrations fluctuate significantly698

due to meteorological factors such as temperature, precipitation, and RH, as well as699

key physical processes like advection, convection, and dry and wet deposition.700

Overall, the simulated pollen concentrations by the RegCM align well with the701

observed trends, though some discrepancies remain.702

In the simulation of Artemisia (Fig. 10), the sDOY and pollen production vary703

annually due to meteorological conditions and key physical processes. The annual704

peak pollen concentrations generally range from 20-70×10³ Grains m-2 d-1, while in705

2019-2020, observed pollen concentrations exceeded 100×10³ Grains m-2 d-1, with706

notable spikes and drops likely due to abrupt meteorological changes or possible707
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issues with the quality of observation data. The RegCM accurately simulates the708

sDOY and eDOY, displaying a similar frequency to observations. For peak pollen709

simulations, years such as 2006, 2007, 2010, 2012, 2015, and 2016 show good710

performance, with R above 0.7, particularly in 2006 and 2016, where R exceeds 0.85711

and RMSE is only 4×10³ Grains m-2 d-1. However, for other years, peak simulations712

are underestimated to varying degrees. For 2011, although the trend is consistent, the713

observed peak is near 50×10³ Grains m-2 d-1, while the simulated peak is only 12×10³714

Grains m-2 d-1, indicating a significant underestimation. This underestimation is also715

noticeable in 2008, 2013, and 2017-2020. In 2019, although the peak concentrations716

align, the trend correlation is low (R=0.49), and RMSE is high. The variability in717

observation station data quality and quantity could influence these results, with some718

years having fewer than six effective stations (minimum of two), impacting the719

average and peak values. Box plots (Fig. 11) reveal that Artemisia concentrations in720

2019-2020 are more dispersed, suggesting possible anomalies in observation data.721

Overall, the R for RegCM simulations ranges from 0.69 to 0.86 (except 2019), with722

RMSE between 3.05-15.38×10³ Grains m-2 d-1.723

For Chenopod simulations (Fig. S11), the overall performance is similar to724

Artemisia. The annual peak concentrations are generally lower, around 20-50 × 10³725

Grains m-2 d-1, except for 2007, which reaches 120 × 10³ Grains m-2 d-1. The years726

2006, 2008-2009, 2012-2013, 2015, and 2019 show good simulation performance,727

accurately reflecting peak concentrations, particularly in 2016 (R=0.84,728

RMSE=3.11×10³ Grains m-2 d-1). However, 2007, 2010, 2017-2018, and 2020 exhibit729

underestimation, with the exceptionally high observed concentrations in 2007 likely730

causing the model’s underestimation. Fig. 11 indicates increasing peak concentrations731

in recent years (2017-2020) for both Artemisia and Chenopod, with room for732

improvement in peak simulations by the RegCM. Despite the lower concentrations733

compared to spring pollen, autumn pollen significantly impacts pollen-induced734

diseases (pollinosis), prompting more attention and efforts in pollen management,735

which contributes to the decreasing trend in monitored pollen concentrations.736

TotalPC generally exhibits higher concentration levels compared to Artemisia737
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and Chenopod (Fig. S12). Annual peak TotalPC can reach 150-500×10³ Grains m-2 d-1,738

with the highest observed concentration in 2020 at 745×10³ Grains m-2 d-1. Due to the739

higher quality and completeness of TotalPC monitoring data, the simulation results740

are more accurate, with R generally above 0.76 (except 2015, R=0.64). Over 60 % of741

the years have R above 0.8, with fewer years showing significant underestimation of742

peak concentrations (e.g., 2013). This highlights the critical role of high-quality743

pollen monitoring data for accurate simulations. High-quality data enable precise744

capturing of pollen concentration trends and peaks, providing robust support for745

regional pollen phenology research.746

In summary, the RegCM demonstrates high accuracy in simulating the747

concentrations of the three pollen types, especially TotalPC. Accurate simulations of748

pollen concentrations and peaks enhance the effectiveness of pollen emissions models,749

improve health risk warnings, and provide a scientific basis for urban planning and750

environmental management.751

752
Fig. 10. Time-series distribution of Artemisia under RegCM simulation compared to observations753

(averaged across effective pollen monitoring sites). The red solid line represents model754

simulations, while blue dots depict observations755
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756

Fig. 11. Box plot statistics of pollen concentration under RegCM simulation compared to observed757

values. Each subplot features box plots denoted by red dashed lines: on the left side, representing758

Artemisia and Chenopod concentrations with values referenced on the left y-axis; on the right side,759

depicting TotalPC with values referenced on the right y-axis. In each box plot, from bottom to top,760

the box and whiskers indicate the minimum, lower quartile, median, upper quartile, and maximum761

values (extending up to 1.5 times the interquartile range, IQR). Black circles denote outliers762

exceeding 1.5 times IQR. Orange numbers annotated in the subplot indicate the maximum values763

unseen within the box, while black numbers denote unseen outliers764

4. Conclusion765

This study utilized years of autumn pollen concentration data from Beijing,766

alongside meteorological and land use data, to develop an autumn pollen emissions767

model using autumn phenology and the RF algorithm. We conducted an in-depth768

analysis of the spatiotemporal distribution characteristics of Artemisia, Chenopod, and769

TotalPC in Beijing and examined their relationships with meteorological factors.770

Finally, we validated the accuracy and reliability of the constructed pollen emissions771

model using the RegCM. Through a series of simulations and validations, several772

significant conclusions and findings were obtained.773

(1) Construction of the Pollen Emissions Model: By incorporating phenology774
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and the RF algorithm, we calculated autumn pollen emissions, thereby avoiding the775

poor simulation results of sDOY, eDOY, and annual pollen production based solely on776

temperature linear simulations. The study demonstrates that using a phenology model777

for sDOY and eDOY simulations captures the temporal variations of pollen release778

more accurately, effectively reducing simulation errors. The RF algorithm excels in779

handling multivariate and nonlinear relationships, significantly improving the780

simulation accuracy of the pollen emissions model. The optimized annual pollen781

production simulations better reflect seasonal changes in pollen, showcasing the782

applicability and reliability of the RF algorithm in processing meteorological and783

environmental data.784

(2) Spatiotemporal Distribution Characteristics of Pollen Concentration: The785

study found significant spatial and temporal variations in pollen concentration in786

Beijing. The autumn pollen peak occurs between DOY 215-280, with considerable787

differences in peak times and concentrations among monitoring stations. These788

differences are closely related to the vegetation types, topographical features, and789

local climatic conditions around each station. Optimized simulations of pollen790

concentration data further reveal the spatiotemporal variation patterns of pollen791

concentrations.792

(3) Impact of Meteorological Factors on Annual Pollen Emissions:793

Meteorological factors significantly influence pollen concentrations. The study794

reveals that temperature, RH, and SSH are crucial factors affecting annual pollen795

emissions in Beijing. There is a positive correlation between temperature and RH with796

annual pollen emissions, while SSH has a negative correlation. The response of797

different pollen types to meteorological factors varies due to their distinct biological798

characteristics and ecological environments. This comprehensive analysis provides a799

scientific basis for predicting future changes in pollen concentrations.800

(4) Validation of Pollen Emissions Models Using the RegCM: The RegCM801

accurately reflects the daily impact of meteorological factors on pollen emissions.802

Key physical processes, such as advection, convection, and wet and dry deposition,803

play essential roles in simulating the atmospheric dispersion and deposition of pollen.804
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This study validated the accuracy and reliability of the optimized emission potential805

models for three pollen types using RegCM, effectively describing the daily variations806

in pollen concentrations influenced by meteorological factors and key physical807

processes. Furthermore, the pollen emissions model developed in this study can be808

applied to other regions, offering potential for wider application. These809

comprehensive results provide essential scientific support for pollen monitoring,810

allergy prevention, and the selection of urban greening plants. Future research can811

extend these methods and findings to larger-scale pollen emissions simulations and812

forecasts, enhancing responses to pollen-related public health issues.813

(5) Limitations and Future Prospects: Despite significant progress in814

constructing the pollen emissions model and analyzing the spatiotemporal distribution815

of pollen concentrations, some limitations persist. For broader application, more816

extensive observation stations are needed to verify the model's accuracy, considering817

the limited spatiotemporal resolution of current pollen concentration data. Simulating818

specific species' pollen concentrations requires detailed plant functional type819

distributions, which significantly impact the spatial distribution of pollen emissions820

potential. The current research utilizes static plant functional type data, but dynamic821

data would better reflect the impact of land use changes on pollen climates over822

various temporal and spatial scales. Additionally, the complex relationship between823

meteorological factors and pollen concentrations suggests that future research could824

introduce more environmental and meteorological variables and apply advanced825

machine learning algorithms to enhance the model's predictive capability.826

In conclusion, This study successfully constructed a pollen emissions potential827

model, systematically analyzed the spatiotemporal distribution of different pollen828

types in autumn in Beijing, and explored their relationship with meteorological factors.829

The model's accuracy and stability were validated using the RegCM, yielding notable830

research results. Future research can further validate and extend this approach on a831

larger scale and with higher resolution, providing comprehensive scientific support832

for ecological environment protection and public health.833
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