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Abstract: In recent years, the intensification of global climate change and
environmental pollution has led to a marked increase in pollen-induced allergic
diseases. This study leverages 16 years of continuous pollen monitoring data,
alongside meteorological factors and plant functional type data, to construct a pollen
emissions model using phenology and random forests (RF). This model is then
employed to simulate the emission characteristics of three primary types of autumn
pollen (Artemisia, Chenopod, and total pollen concentration), elucidating the emission
patterns throughout the seasonal cycle in Beijing. Phenology and RF precisely
simulate the start and end day of year of pollen, as well as the annual pollen
production. There are significant spatiotemporal differences among the three types of
pollen. On average, pollen dispersal begins around August 10, peaks around August
30, and concludes by September 25, with a dispersal period lasting approximately 45
days. Furthermore, the relationship between pollen emissions and meteorological
factors is investigated, revealing that temperature, relative humidity (RH), and
sunshine hours (SSH) significantly influence annual pollen emissions. Specifically,
temperature and RH exhibit a strong positive correlation with annual pollen emissions,
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while SSH shows a negative correlation. Different pollen types display varied
responses to meteorological factors. Finally, the constructed pollen emissions model is
integrated into Regional Climate Model (RegCM) and validated using pollen
observation data, confirming its reliability in predicting pollen concentrations. This
study not only enhances the understanding of pollen release mechanisms but also
provides scientific evidence for the selection and planting of urban greening plants.

Keywords: Pollen Emissions Model, Phenology, Random Forests, RegCM

1. Introduction

Pollen are microscopic particles, typically ranging from 5 to 100 micrometers in
diameter, released by plants to transfer male genetic material for reproduction. These
particles, significant allergens, disperse into the atmosphere via wind, contributing to
atmospheric particulate matter, interacting with clouds and radiation, and playing a
pivotal role in plant fertilization and gene dissemination (Damialis et al., 2011; Lei et
al., 2023). Additionally, pollen is linked to allergic diseases such as allergic rhinitis
and asthma and may even elevate the risk of gastrointestinal and neurological
disorders (Guzman et al., 2007; Krishna et al., 2020; Chen et al., 2021; Stas et al.,
2021). In China, the incidence of pollen allergies has surged from 5 % to 17.8 % and
continues to rise rapidly (Lou et al., 2017). Pollen-induced respiratory allergic
symptoms, such as allergic rhinitis (AR), affect up to 30 % of the global population,
particularly children under 18 (Mir et al., 2012; Wang et al., 2016; Zhang and Steiner,
2022; Zhao et al., 2023). It is generally believed that these respiratory allergic
diseases are more prevalent in developed countries (Emanuel, 1988; Ibrahim et al.,
2021). However, the International Study of Asthma and Allergies in Childhood
(ISAAC) global reports indicate that these diseases are equally or even more prevalent
in some developing countries compared to developed ones (Asher et al., 2006; Mallol
et al., 2013). Children, as a vulnerable population, are particularly susceptible to AR
and its complications (Cingi et al., 2017). Without effective early intervention, allergic
symptoms in children can persist throughout their lives, imposing a substantial

economic burden on families and healthcare systems (Ahmed et al., 2018) and
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potentially posing a life-threatening risk (Schmidt, 2016). In China, a densely
populated developing country, the proportion of pediatric allergic diseases within the
spectrum of childhood illnesses is increasing annually, leading to significant
economic and health losses due to medical expenses, impacts on human life, and
premature death (National Cooperative Group on Childhood Asthma, 1993, 2003,
2013). Furthermore, since pollen release is closely linked to environmental factors,
climate change may influence pollen release, thereby affecting the incidence of
allergic diseases (Wang et al., 2018; Bishan et al., 2020). In recent decades, the pollen
season has exhibited a trend of becoming longer and more intense, which may
exacerbate the conditions of allergic rhinitis and asthma (D’Amato et al., 2016; Lake
et al., 2017a; Aerts et al., 2020; Kurganskiy et al., 2021).

With the improvement in living standards and heightened health awareness,
airborne pollen diseases, such as hay fever, have garnered widespread attention. As a
typical seasonal epidemic (Yin et al., 2005; Lei et al., 2023), hay fever significantly
impacts global health. Existing studies have demonstrated that the incidence of
airborne pollen diseases is closely associated with the concentration of airborne
allergenic pollen, particularly during peak pollen seasons (Frei and Gassner, 2008;
Bastl et al., 2018; Kurganskiy et al., 2021). Due to the regional nature of airborne
pollen, the types and concentrations of pollen vary geographically. Although the
annual variation trend of total pollen amount generally exhibits a similar bimodal
pattern, increasing annual climatic variability amidst global warming has led to
significant changes in the pollen seasons of various plants, with discrepancies of more
than 20 days in some years. This variability poses practical challenges for conducting
pollen monitoring research and providing public meteorological services (He et al.,
2001; Gu and Liao, 2003; Bai et al., 2009; Lei et al., 2023). Therefore, studying
pollen concentration and distribution is crucial for understanding the pathogenesis of
airborne pollen diseases, conducting effective pollen monitoring research, and
delivering accurate public meteorological services.

However, compared to regions such as Europe and the United States, China faces
significant challenges in pollen monitoring due to fewer monitoring stations, shorter
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monitoring histories, and a lower prevalence of automated facilities. These limitations
have resulted in China's pollen simulation research remaining primarily at the level of
simple statistical methods, focusing only on basic statistical studies of the impact of
meteorological conditions on pollen concentration. In contrast, numerical models are
rarely employed for regional simulation of pollen concentration. This situation
reflects the relative lag in China's pollen monitoring and research system, hindering a
deeper understanding of pollen dispersion patterns and the scientific study of related
health issues (Wu et al., 2011; Meng et al., 2016; Guan et al., 2021; Gao et al., 2022).

Although numerical models play a crucial role in simulating pollen concentration,
they require a clear understanding of pollen emissions. Numerical models are broad
mathematical frameworks used to simulate various physical processes through
numerical approximations, including atmospheric dynamics and climate systems. In
contrast, a pollen emission model specifically estimates the release and distribution of
pollen into the atmosphere, taking into account factors such as pollen phenology,
vegetation types, and environmental conditions. Pollen emissions are influenced not
only by meteorological factors but also by vegetation types, land use changes, and
human activities (Sofiev et al., 2006; Wozniak and Steiner, 2017; Zhang and Steiner,
2022; He et al., 2023; Lei et al., 2023). Particularly in the context of accelerated
urbanization, the selection and layout of urban greening plants have a significant
impact on pollen emissions. The complex interactions of these factors pose significant
challenges to accurately simulating pollen emissions.

Since 2004, various pollen prediction models have been developed to enhance
the accuracy of pollen emission estimates. Helbig et al. (2004) introduced a
parameterization method for calculating pollen release and resuspension fluxes,
implemented in the KAMM/DRAIS mesoscale model, although it relied on
assumptions due to limited observational data. Subsequently, Sofiev et al. (2006)
analyzed the feasibility of large-scale atmospheric migration of allergenic pollen,
validating existing dispersion models and providing key parameterizations for dry and
wet deposition, which were applied in Finland's SILAM system. However, this direct
simulation of pollen concentration based on numerical models has significant
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complexity and uncertainty. Wozniak and Steiner (2017) developed the Pollen
Emission Prediction Model (PECM1.0), which simulates seasonal pollen counts based
on geography, vegetation, and meteorology. The model establishes empirical
relationships between historical average temperatures and pollen season timings for
four vegetation types. It captures up to 57% of seasonal variations, allowing for
analysis of climate change impacts on wind-driven pollen emissions. Building on this,
Zhang and Steiner (2022) introduced PECM2.0, which incorporates precipitation and
CO2 factors while refining the linear relationship between annual pollen production
and temperature, ultimately predicting the temperature effects by the end of the
century. However, the linear relationships based on historical temperatures have
significant uncertainties, limiting their applicability for regional studies. Therefore,
the challenge of constructing a pollen emission model that is better suited for regional
scales and has broader applicability warrants careful consideration and further
research. Such advancements could significantly enhance our understanding of pollen
dynamics and improve the accuracy of related health risk assessments.

Given the importance of accurately modeling pollen emissions, validation of
numerical models for pollen emissions is necessary. These models not only provide a
framework for simulating atmospheric processes but also allow for a more nuanced
understanding of how various factors influence pollen dynamics. RegCM is the
pioneering regional climate model system used for climate downscaling, originating
in the late 1980s and early 1990s at the National Center for Atmospheric Research
(NCAR) in the USA. It has since undergone several development iterations and is
currently maintained at the International Centre for Theoretical Physics (ICTP) in
Italy. This open-source system is widely utilized by numerous research teams,
forming an extensive network for regional climate research. The model can be applied
globally and is evolving into a fully coupled regional earth system model,
incorporating ocean, lake, aerosol, desert dust, chemistry, hydrology, and land surface
processes. The version used in this study is RegCM4.7.1.

Therefore, this study constructs a pollen emissions model for the Beijing area,
leveraging pollen concentration and meteorological monitoring data, combined with
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pollen phenology and the RF algorithm. It conducts a simulation study on the
emission phenology of three types of pollen in Beijing (Artemisia, Chenopod, and
total pollen concentration) to calculate the pollen emissions potential. The study also
investigates the seasonal and spatiotemporal distribution characteristics of pollen in
Beijing and its potential correlations with meteorological factors and climatic
conditions. Additionally, the constructed pollen emissions parameterization method is
applied to the RegCM and evaluated for accuracy using 15 years of pollen
observation data. This comprehensive study will enhance the understanding of pollen
sources, provide innovative guidance for the selection and planting of greening plants,

and promote sustainable development in ecological protection and urban planning.

2. Methodology

2.1 Model description
2.1.1 Parameterization method for pollen emissions

This study's pollen emissions potential integrates geographical parameters,
vegetation types, and meteorological data, and incorporates autumn pollen phenology
and RF to enhance the simulation of pollen phenology (Wozniak and Steiner, 2017;
Zhang and Steiner, 2022). This approach is used to predict pollen concentration and

distribution within the seasonal cycle. The specific calculation formula is as follows:

(t-p)?

El(t): f; .pannual,i .e_ 207 (l)

In the formula, E;(?) represents the pollen emissions potential for pollen type i on

day ¢ of the year (DOY), ¢ represents a specific day of the year, and i represents the
i-th type of pollen. f; represents the vegetation land cover fraction, which is the
percentage of different vegetation types within a unit area, measured in %. Pannuari
represents the production factor of the i-th vegetation type, which is the number of

pollen grains released during the pollen season, measured in Grain m™ year!. In this

(t-p)?

study, Pawmual; is calculated based on the RF algorithm (Sect. 2.1.3). e 2

represents the phenological evolution of pollen emissions, controlling the pollen
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release process. The formula indicates that pollen emissions during the pollen season

follows a Gaussian distribution, where x4 and 6 are the mean and standard

deviation of the Gaussian distribution. These parameters are calculated from sDOY

(start Day of Year) and eDOY (end Day of Year) of the pollen season, as follows:

sDOY +eDOY
== @
S— eDOY —sDOY 3)
a

In this context, sDOY and eDOY are optimized using autumn pollen phenology
(Sect. 2.1.2). The parameter a represents a fitting parameter that explains the
conversion between the empirical phenological dates based on pollen count thresholds
and the equivalent width of the emission curve. In this study, the value of a is set to 4.

This equation can be applied to a specific type of pollen or to the calculation of
pollen concentration over the entire pollen season, depending mainly on the land
cover type. The emission can be calculated offline using this equation or applied in
online calculations.

2.1.2 Autumn pollen phenology model

In this study, we used three different calculation methods (Rsi, Rs2, Rssig) for the
autumn phenology model to simulate sDOY and eDOY of autumn pollen (Meier &
Bigler, 2023). Each model is related to temperature and SSH. The specific calculation

formulas are as follows:

RS — (TEWS@ - T;)x X (Ll /Lbase)y’z < ];)ase A Li < Lbase (4)
1 O ’T;' 2 T;)ase vV Li 2 Lbase
RS = (Tbase - ]:)x x (1 - L[ /Lbase)y > ]: < Tbase A Li < Lbase (5)
! 0 ’T:' 2 T;)ase Vv L[ 2 Lbase
1 6

Rsg, = 1+ T LD ©)
t’l

D Rsz>2Y @
fy

In the above equations, Rs;, Rsy and Rssig represent three different autumn

phenology model categories. 7; and L; represent the temperature and SSH on a given
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day, respectively, while 7Thuse and Lpase represent the thresholds for temperature and
SSH, respectively. In the Rsi and Rs; models, when the temperature and SSH are
below the threshold or the date exceeds a fixed DOY, Rs starts accumulating. In the
Rssig model, temperature and SSH accumulate inversely in an exponential form. The
day #,, when the cumulative amount exceeds the threshold Y, represents the final
simulated pollen start/end date. #p represents the start day of accumulation, which is
the first day when Ti<Tpase and Li<Lpase. The parameters that need to be adjusted are Y,
Thase, Lbase, X, y and start_day. In this study, the simulated annealing (SA) algorithm is
used for parameter adjustment. The principle of the SA is to simulate the random
optimization process of the annealing process in solid-state physics, which can accept
non-optimal solutions with a certain probability to avoid falling into local optima and
eventually achieve the global optimum.

2.1.3 Random Forests

Random Forests (RF) is an ensemble learning algorithm introduced by Breiman
(2001) for classification and regression tasks. This algorithm enhances model
prediction performance and robustness by constructing multiple decision trees and
combining their outputs. The core principle involves drawing multiple sample sets
with replacement from the original training set, training a decision tree for each
sample set, and randomly selecting a subset of features at each node split to reduce
correlation between the trees. Ultimately, RF generates the final prediction by
averaging (for regression) or voting (for classification) the outputs of these trees. The
advantages of this method include high prediction accuracy, strong resistance to
overfitting, suitability for high-dimensional data, and efficient training processes. The
RF algorithm has been widely applied across various fields (Virro et al., 2022; Li et
al., 2023; Chen et al., 2024; Valipour Shokoubhi et al., 2024).

In this study, the RF algorithm is employed to simulate annual pollen production.
Each pollen dataset is divided into training and testing sets in a 4:1 ratio, with the
training set used for model training and the testing set for accuracy validation.
Additionally, a grid search with cross-validation is applied to optimize the
hyperparameters of each estimator. Key parameters for RF adjustment include
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n_estimators, max_depth, min_samples_split, and min_samples_leaf. Hyperparameter
optimization is a crucial step in enhancing model performance.
2.1.4 Implementation of pollen emissions in RegCM

In this model, a pollen emissions model based on phenology and RF calculates
the emission potential of different types of pollen offline, and then incorporated into
the RegCM model. The calculation of pollen concentration in this model follows the

method of Sofiev et al. (2013), with the formula as follows:

Epollen,i(t):Ei(t).fw.f;’.ﬁl (8)
f, =1.5—exp(—(u,,+u,,,)/5)
( 1, pr < pn,,
Plyigy — PF
f;’ = L’prlow < pr < prhigh
prhigh - prlow
0, pr> prig, 9)
Lrh<rh,,
vh, , —rh
S = L’Fhlow <rh<rh,,
rhhigh - rhlow
0,7h > rhy,,

Where fw, fr and fh represent the wind, precipitation, and RH factors,
respectively, influencing pollen emissions concentration. f,, is exponentially related to
the 10m wind speed u;0 and vertical turbulent wind speed uconv. pr and rh represent
precipitation and RH. When precipitation is below the threshold prow, the
precipitation factor is 1. When precipitation exceeds the threshold prign, the factor is 0.
When precipitation is between these thresholds, the factor is calculated as the ratio of
the difference between the high threshold and precipitation to the difference between
the thresholds, with default values prin=10° mm and prug=0.5 mm. Similarly, the
RH factor is related to RH and its thresholds, with default values r/,w=50 % and
rhnign=80 %. These factors explain the impact of wind, precipitation, and humidity on
pollen emissions. Given the significant influence of precipitation and RH on pollen
emissions, this study adjusts pruign  and rhnign values to 1 mm and 90 %, respectively.
Higher thresholds can prevent excessive suppression of pollen emissions under

frequent precipitation and high humidity conditions, thus more accurately simulating
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actual pollen concentration changes and better adapting the model to different climatic
conditions.
Moreover, the RegCM includes the pollen tracer transport equation (Solmon et al.

2006), as follows:

Z—Z=VV;(+FH+FV+TC+S—RWZS—RWC—D0, (10)
t

Where y represents the tracer, Fy and Fy represent horizontal and vertical
diffusion, 7¢ represents convective transport, RWls and RWc represent large-scale and
convective precipitation wet removal processes, respectively, and Dd represents dry
removal processes. This transport equation comprehensively considers various
physical processes and removal mechanisms of pollen in the atmosphere, allowing the
simulation of the entire process from pollen release to atmospheric dispersion and
deposition. This provides a foundation for fully describing the spatial distribution and
temporal evolution of pollen in the atmosphere, which is crucial for studying pollen
dispersion in the air, determining the spatial distribution of pollen concentration, and
predicting future changes in pollen concentration.

2.2 Data
2.2.1 Observed pollen concentrations

The daily pollen concentration data were collected from six monitoring stations
in Beijing: Changping (CP), Chaoyang (CY), Fengtai (FT), Haidian (HD),
Shijingshan (SJS), and Shunyi (SY), as shown in Fig. 1. The monitoring period
spanned from April to October each year from 2006 to 2021, covering the main pollen
season in Beijing. The gravitational settling method (Unit: 10° Grains m? d!) was
used for monitoring. The pollen concentration data included Total Pollen
Concentration (the sum of pollen concentrations from all taxa, abbreviated as TotalPC)
and the concentrations of pollen from 10 common allergenic plants. These species
included trees such as Pine, Poplar, Birch, Cypress, Ash, and Elm, as well as weeds
like Artemisia, Chenopod, Humulus, and Amaranthus. Although autumn pollen
concentrations are lower compared to spring, autumn weed pollen has a higher

allergenic potential (Zhao et al., 2023). Therefore, this study focuses on the analysis
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of autumn weed pollen. Due to significant data gaps in the pollen concentration of
specific species, we selected only the data that were more complete and of higher
allergenic potential, specifically Artemisia, Chenopod, and TotalPC. Table 1 provides
basic information, such as the number of effective sample years for these three types
of pollen across the six stations.

To prevent anomalies in the data, we excluded outliers in the pollen
concentration data for each species and any data points where the concentration
exceeded the 99th percentile. Furthermore, we applied a 5-day moving average to the
pollen monitoring data to smooth it. This approach not only eliminates noise from the
data (Li et al., 2019; Li et al., 2022) but also mitigates the influence of daily
meteorological changes and advection diffusion on daily pollen emissions (To further
analyze the impact of key factors such as meteorological factors and advection
diffusion on daily pollen emissions, we used the RegCM in Sect. 3.3. This model
accurately reflects the effects of daily meteorological factors such as temperature,
precipitation, humidity, and wind speed on pollen emissions while also describing key
physical processes such as advection diffusion, convective transport, and dry and wet
deposition, thus providing a comprehensive analysis of the behavior of pollen in the
atmosphere). This smoothing process allows us to more clearly explore the daily
variation trends of pollen.

Additionally, to better simulate the temporal and spatial distribution of pollen
during the autumn pollen period, we defined the autumn pollen period based on
observed pollen concentration data as DOY 215<DOY<280. Subsequently, we
determined the sDOY and eDOY for the autumn pollen period for each station and
year by identifying the day of year at which the cumulative pollen concentration
reached 5 % (start) and 95 % (end) of the total for that period (Khwarahm et al., 2017;
Lietal., 2019; Li et al., 2022).
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Fig. 1. Distribution map of geopotential height, pollen observation stations (triangle), and
meteorological monitoring stations (circle) in Beijing area
Table 1 Explanation of effective sample years for pollen monitoring stations in Beijing

(2006-2021)

Effective Sample Years / Year

Station
Artemisia Chenopod TotalPC

CP 16 16 16
CY 13 13 13
FT 10 8 15
HD 0 0 8
SJS 11 11 16
SY 12 9 16

Total 62 57 84

To better simulate sDOY and eDOY for pollen, this study first applied the
Gaussian model to the autumn pollen data of each station and year. The Gaussian
model was chosen for its effectiveness in capturing peaks in time series data, which
are often reflected in pollen concentration data. Taking the CP station as an example,
Gaussian fitting distribution was performed on the autumn Artemisia, Chenopod, and
TotalPC for 2006-2021 (Supplementary Fig. S1-S3). The results indicated that the
autumn pollen concentration exhibited a significant Gaussian distribution, confirming

that the Gaussian model could aptly fit the time series changes of autumn pollen.
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Therefore, by Gaussian fitting the pollen concentrations of each station, the autumn
pollen sDOY and eDOY under the Gaussian model simulation were further
determined. Comparing the sDOY and eDOY derived from observed pollen
concentration data with those obtained via Gaussian model simulation
(Supplementary Fig. S4), we found a high correlation coefficient (R) and a low root
mean square error (RMSE) between the two. Thus, the sDOY and eDOY obtained
from Gaussian model simulation were utilized to study the autumn pollen phenology.
2.2.2 Meteorological observation and land cover data

The meteorological data for this study were sourced from the China Surface
Climate Daily Dataset, encompassing observations from all benchmark and basic
meteorological stations in China. Specifically, we utilized data from 66 valid
meteorological stations in Beijing and its surrounding areas (39-41.5° N, 115-118° E)
covering the period from 2006 to 2020 (Fig. 1). This dataset includes meteorological
observations corresponding to the pollen monitoring stations (our meteorological data
extends only up to 2020). The variables incorporated in this study comprise average
temperature (TEM_ Avg), maximum temperature (TEM_Max), minimum temperature
(TEM_Min), sunshine hours (SSH), station altitude (Alti), average pressure
(PRS_Avg), maximum pressure (PRS Max), minimum pressure (PRS Min),
maximum wind speed (WIN S Max), extreme wind speed (WIN S Inst Max),
average 2-minute wind speed (WIN S 2mi Avg), ground surface temperature
(GST_Avg Xcm, X=5, 10, 15, 20, 40, 80, 160, 320cm), average ground surface
temperature (GST Avg), minimum ground surface temperature (GST Min),
maximum ground surface temperature (GST Max), average relative humidity
(RHU Avg), minimum relative humidity (RHU Min), average vapor pressure
(VAP_Avg), precipitation from 20:00 to 20:00 (PRE Time 2020), and precipitation
from 08:00 to 08:00 (PRE Time 0808). The first four meteorological factors were
utilized to simulate the autumn phenology model of pollen, predicting various pollen
sDOY and eDOY. All meteorological factors served as training datasets for the RF
algorithm to simulate annual pollen production.

For land use data, this study employed the Community Land Model 4 (CLM4)

13



351

352

353

354

355

356

357

358

359
360

361

362

363

364

365

366

367

368

369

370

371

372

dataset (Oleson et al., 2010), which includes 25 plant functional types such as
needleleaf forests, broadleaf forests, shrubs, grasses (C3 and C4), and crops, with a
spatial resolution of 0.05°. As Artemisia and Chenopod primarily fall under the C3
plant category (Yorimitsu et al., 2019; Septembre-Malaterre et al., 2020; Qiao et al.,
2023), the simulation of pollen utilization for Artemisia and Chenopod used plant
functional C3 grass, while the TotalPC simulation incorporated both C3 and C4
grasses. The distribution of these two plant functional types in Beijing is illustrated in

Fig. 2.

PFT_GRASS

41.0°N

40.5°N

40.0°N

39.5°N

1155°E  116.0°E 116.5°E 117.0°E 117.5°E 115.5°E 116.0°E 116.5°E 117.0°E 117.5°E
f f
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Fig. 2. The distribution of plant functional type C3 (a) and GRASS (b) in Beijing area

3. Results and Discussion

3.1 Pollen Phenology Simulation

In this study, we analyzed the phenological changes of three types of
pollen—Artemisia, Chenopod, and TotalPC—during the autumn season based on
three different autumn pollen phenology calculation methods (Rsi, Rsz, and Rsgig).
Specifically, we examined the seasonal phenological simulations of these pollen
concentrations under three different temperature conditions (TEM_Avg, TEM Max,
and TEM Min) (Mo et al., 2023), with a primary focus on sDOY and eDOY.
Additionally, the annual pollen production (Pumua) was simulated using the RF
algorithm.
3.1.1 Simulation of sDOY and eDOY based on autumn phenology model

Table 2 presents the statistical indicators for simulating the phenology of
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Artemisia using different phenological methods and temperature conditions. For
simulating the sDOY for Artemisia, the Rsi, Rsz, and Rss; methods demonstrated high
accuracy when TEM_Avg and TEM_Min were employed as temperature conditions.
The R values for both the training and testing sets exceeded 0.45, with some R values
in the testing set surpassing 0.7, and the RMSE values were relatively low. This
indicates that these three methods effectively capture the phenological characteristics
of Artemisia at the onset of autumn. Notably, the Rssi; method, when using TEM_Avg
as the condition, achieved R values of 0.53 and 0.80 for the training and testing sets,
respectively, with RMSE values of 6.61 and 4.86, showing the best simulation
performance. However, when TEM_Max was used as the temperature condition, the
simulation performance of all three methods declined. The R value of the Rs; method
fell below 0.2, and the RMSE values were high, exceeding 8 days. Comparatively, the
Rssig method performed slightly better but still yielded inferior results compared to
TEM_Avg and TEM_Min, indicating lower model stability when predicting Artemisia
sDOY with TEM_Max. For the simulation of Artemisia eDOY, the performance of the
three methods was relatively close, with R values in the training and testing sets
generally ranging from 0.3 to 0.5, and similar RMSE values. Among them, the Rs;
method performed better when TEM_Min and TEM Avg were used as temperature
conditions, with R values of 0.66 and 0.51 in the testing set and RMSE values of 3.32
days and 3.9 days, respectively. Compared to the Rs; method, the Rs> and Rssig
methods were relatively weaker in predicting eDOY, indicating that the Rs; method
better captures the phenological trends of Artemisia at the end of autumn. Additionally,
when comparing the simulation results of sDOY and eDOY, sDOY generally had
higher R values, but eDOY had lower overall RMSE values.

The statistical indicators for simulating the phenology of Chenopod under
different phenological methods and temperature conditions are shown in Table S1. For
the simulation of the sDOY for Chenopod, the Rs; and Rs> methods demonstrated
high accuracy when using TEM_Min and TEM_Avg as temperature conditions. The R
values for both the training and testing sets were around 0.5, and the RMSE values
were relatively low. It is clear that using TEM Avg as the temperature condition
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yields higher R values and lower RMSE (in the case of the Rs; method) compared to
TEM_ Min, indicating that these two methods effectively capture the phenological
changes of Chenopod at the onset of autumn when using TEM Avg as the
temperature condition. However, when TEM Max was used as the temperature
condition, the simulation performance of all three methods declined, particularly for
Rsi, which had an R value of -0.1 and an RMSE greater than 9 days in the testing set.
The Rssig method, when using TEM Avg, achieved an R value of 0.51 in the training
set but only 0.28 in the testing set, with a high RMSE of 5.32, indicating poor model
stability in this scenario. In contrast to TotalPC and Artemisia, the simulation of the
eDOY for Chenopod was not satisfactory for any of the three methods. The R values
for both the training and testing sets were all below 0.42. Particularly when using
TEM_Max as the temperature condition, the simulation performance of all three
methods was poor, with the testing set R value reaching only 0.1. This indicates that
the models have limited ability to capture the end of the autumn season for Chenopod.

Table S2 shows the phenological simulation statistical indicators of TotalPC
under different phenological methods and temperature conditions. From the data in
the table, it can be seen that for the simulation of the sDOY of TotalPC, all three
phenological methods (Rsi, Rsz, and Rssig) performed with high accuracy (R > 0.5)
and relatively low RMSE when using TEM Min. This indicates that these three
methods, when using TEM_Min, can effectively capture the trend of the sDOY of
TotalPC during the autumn season. Meanwhile, the Rs; method also showed good
simulation performance when using TEM_Avg as the temperature condition, with R
reaching 0.54 for both the training and testing sets. The Rssig method, using TEM_Avg,
had good simulation performance in the training set, but the R in the testing set only
reached 0.38. Compared to TEM_Min and TEM Avg, the Rs> and Rssi; methods
showed slightly inferior simulation performance when using TEM Max as the
temperature condition. Surprisingly, the Rs; method's simulation of the sDOY showed
a negative correlation when using TEM Max, indicating the worst performance. For
the simulation of the eDOY of TotalPC, the overall simulation performance was
worse in terms of R compared to sDOY, but the RMSE values were generally better.
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433 Specifically, using TEM Avg as the temperature condition, the Rsz and Rssig methods
434  showed relatively good simulation performance and lower RMSE. However, the Rs>
435  method performed much worse on the testing set compared to the training set, with
436  the R on the testing set being only 0.32.

437 Overall, different pollen types exhibit varying sensitivity to different
438  phenological models and temperature conditions. TEM_Avg is generally the best
439  temperature condition for predicting the sDOY of the three pollen types, providing
440  higher R values and lower RMSE. This suggests that TEM Avg can effectively
441  predict the start of the autumn pollen season. At the same time, TEM_ Min also
442 performs well in predicting the sDOY of TotalPC and Artemisia, whereas TEM_Max
443  generally shows the poorest prediction performance. For predicting eDOY, different
444  pollen types show different sensitivities to temperature conditions, but overall, the
445  models perform worse for eDOY compared to sDOY, especially in the simulation of

446  Chenopod.

447 Table2 Statistical indicators of Artemisia phenology under different phenological methods and
448 temperature conditions
Rsi(R) Rsx(R) Rs.ig(R) Rsi(RMSE) Rso(RMSE)  Rs.o(RMSE)
Artemisia

Train Test Train Test Train Test Train Test Train Test Train Test

TEM Min 047  0.66* 0.52° 0.77% 045 0.59%  6.61 593 6.29 4.99 6.63 6.57

§ TEM_Avg 045 0.63* 0.50 0.71*  0.53" 0.80" 6.67 6.18 6.78 5.44 6.61 4.86
©?
TEM_Max 0.16 0.17 044 0.47 0.45 0.58%  8.87 9.58 8.21 7.51 6.52 6.32
TEM_Min 0.38 0.66* 0.38 0.44 0.36 0.37 4.19 3.32 4.19 3.97 4.02 4.07
§ TEM_Avg 0.46 0.51"  0.38 0.29 0.44 0.44 3.92 39 4.16 4.23 3.85 4.07
[}

TEM_Max 0.31 0.43 0.05 0.07 0.33 0.27 5.59 4.65 6.84 6.47 3.98 4.32

449  Note: Bold represents the best model performance, * Indicates significance levels at P < 0.001, *
450  Indicates significance levels at P < 0.005

451 Based on the above discussion, we selected the most suitable phenological and
452  temperature conditions for the three types of pollen (bold parts in Table 2 and Table

453  S1-S2), simulated their sDOY and eDOY, and generated line and scatter plots (Fig. 3).
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According to the line plots in Fig. 3 (top), the predicted results for Artemisia are the
closest to the actual observed results. The predictions for TotalPC follow, while the
predictions for Chenopod show some deviation, particularly in eDOY, indicating the
need for a more suitable phenological model to accurately simulate the phenology of
Chenopod. The scatter plots in Fig. 3 (bottom) illustrate that for sDOY predictions,
Artemisia exhibited the strongest correlation between predicted and observed pollen
phenology, with an R value of 0.69 and an RMSE of 5.77 days. In contrast, Chenopod
had the lowest correlation, with an R value of 0.49 and an RMSE of 4.98 days. It can
also be observed that higher R values are associated with higher overall RMSE,
possibly due to the models being more sensitive to noise or outliers in the data, which
increases the overall error. For high-correlation predictions like those for Artemisia,
the model may be more affected by random fluctuations in the data, leading to
increased error. Additionally, different pollen types may exhibit varying
characteristics or response patterns in phenological models, resulting in a non-linear
or inconsistent relationship between correlation and error. For eDOY predictions, the
correlation between predicted and observed is highest for Artemisia, with an R value
of 0.53 and an RMSE of 3.77 days. Chenopod has the lowest correlation for eDOY
predictions, with an R value of only 0.26 and an RMSE of 4.57 days. The poorer
performance in simulating eDOY for Chenopod may be due to lower data quality
compared to Artemisia and TotalPC, as well as the smallest sample size, resulting in
insufficient information and samples for the model to learn and predict accurately.
Additionally, Table 3 shows the proportion of simulations with errors less than 5
days and 3 days for sDOY and eDOY across the three pollen types. It can be seen that
the proportion of eDOY simulations with errors less than 5 days and 3 days is higher
than that for sDOY, indicating that eDOY simulations generally have better accuracy
in terms of error. Specifically, for Chenopod eDOY simulations, although the R value
is poor, 76.79 % of simulations have errors less than 5 days, and 55.36 % have errors
less than 3 days, meaning that more than half of the eDOY simulations have errors
within 3 days. This performance is comparable to the other two pollen types (64.41 %
and 68.12 %, respectively). Compared to Mo et al. (2023), which simulated the spring
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season start pollen season (SPS) using 17 phenological models, this study has slightly
lower R values but much lower RMSE (around 11 days in their study). Li et al. (2022)
used satellite data to simulate the SPS for Birch, Oak, and Poplar, achieving RMSE
values between 4.26 and 8.77 days. Furthermore, this study's process-based
phenological models for sDOY and eDOY show smaller errors and higher
correlations compared to empirical linear models based solely on temperature used by
Wozniak and Steiner (2017) and Zhang and Steiner (2022).

Therefore, from an error analysis perspective, the simulation performance of
Chenopod eDOY maintains a relatively low error while also demonstrating some
stability, indicating that the autumn phenological model can accurately capture the
seasonal variation trend of Chenopod. This makes the simulation results reliable.
Overall, the autumn phenological models provide good simulation performance for
the phenology of the three pollen types, laying a solid foundation for further analysis
of pollen temporal characteristics.

Artemisia Chenopod TotalPC
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Fig. 3. Comparison of pollen sDOY and eDOY in autumn phenology: simulation vs. observation.
Line plots of three different pollen sDOY and eDOY (a-c) and scatter plot comparison of the same
(d-f). Specific comparisons for Artemisia (a, d), Chenopod (b, e), and TotalPC (c, f). The
horizontal axis of (a-c) represents the sequential distribution of effective sample counts for the
three types of pollen.

Table3 Statistics on the proportion of errors between simulation and observation of three different

19



505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

types of pollen sDOY and eDOY within 5 and 3 days

DOY Artemisia (%) Chenopod (%) TotalPC (%)

sDOY 68.97 73.21 71.83
<5D

eDOY 86.44 76.79 82.61

sDOY 48.28 44.64 53.52
<3D

eDOY 64.41 55.36 68.12

Based on the temperature and SSH observational station data from the Beijing
area, we interpolated the station data into a grid dataset with a horizontal resolution of
0.1°. Using the selected autumn phenological models, we then performed gridded
simulations of the sDOY and eDOY for three pollen types. This approach enabled us
to map the regional distribution of autumn pollen sDOY and eDOY in Beijing from
2006 to 2020, thereby laying the groundwork for further simulations of autumn pollen
emissions potential.

3.1.2 Simulation of annual pollen production based on RF

The simulation of annual pollen production (Paumual, referring to the cumulative
pollen concentration during each autumn pollen season) was conducted using the RF
algorithm. The training data comprised all station-observed pollen data from Table 1
and the corresponding meteorological observation data from Sect. 2.2.2. Four-fifths of
the station data were randomly selected as the training set to train the RF algorithm,
while the remaining one-fifth was used as the test set to validate the accuracy of the
RF's Pumuar simulation. Fig. 4 presents the scatter plots of observed versus simulated
Panmuar for three different pollen types (Artemisia, Chenopod, and TotalPC) based on
the RF in the test set. The R between simulated and observed values for the three
pollen types were all above 0.5, with Chenopod reaching 0.65. The calculated RMSE
was around 0.2 x 10° Grains m year!' (with TotalPC having an RMSE of 2.12 x 10°
Grains m year!). This indicates that the prediction performance of the RF varies
among different pollen types, with the best performance for Chenopod and the poorest

for TotalPC annual production. Compared to the temperature-based empirical linear
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models for Puumua by Zhang and Steiner (2022), the machine learning algorithm-based
simulations in this study have smaller errors and higher correlations. Overall, the RF
effectively simulates Punnuai.

Based on meteorological observation data from stations in and around Beijing,
the station data were interpolated into a gridded dataset with a horizontal resolution of
0.1°. Subsequently, all station data for each pollen type were used as the training set,
with 12 stations in the gridded dataset cyclically selected as the test set for gridded
simulations. This ultimately resulted in the spatial distribution of Puma in Beijing
from 2006 to 2020, laying the foundation for further simulation of autumn pollen

emissions potential.
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Fig. 4. Scatter plots of simulated and observed annual pollen (Puumuar) based on RF. Comparisons
for Artemisia (a), Chenopod (b), and TotalPC (c).

3.2 Simulation of Pollen Emissions in Beijing Area

Based on the simulation results of autumn pollen phenology (sDOY, eDOY, and
Panmiar) from Sect. 3.1 and the pollen emissions potential parameterization method
from Sect. 2.1.1, this study calculated the pollen emissions potential in the Beijing
area. Fig. 5 and Fig. S5-S6 present a comparison between the observed and simulated
average site values of Artemisia, Chenopod, and TotalPC in Beijing from 2006 to
2020. In these figures, blue dots represent the actual daily observed pollen counts, and
red lines represent the simulated pollen emissions. To assess the consistency between
the simulated and observed data, we calculated R and RMSE. As illustrated in the
figures, the simulated data closely match the actual observations in most years, with
correlation coefficients around 0.9. Specifically, the Artemisia emissions in 2010,
Chenopod emissions in 2016, and TotalPC emissions in 2007, 2009, 2018, and 2019
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show R values as high as 0.98 and relatively low RMSE levels, demonstrating the
high accuracy of this study in simulating pollen emissions potential.

Additionally, the simulation results for sDOY and eDOY were also satisfactory,
though there were slight advances in the start of the pollen season in certain years,
such as 2017 and 2018 for Artemisia and Chenopod. While the peak pollen emissions
simulations were highly accurate in most years, there were instances of
overestimation and underestimation in some years. For example, the peak emissions
of Artemisia in 2008, 2009, and 2020, Chenopod in 2007, and TotalPC in 2013 and
2020 were significantly underestimated. Conversely, the peak simulations of TotalPC
in 2011 and 2012 were slightly overestimated. This indicates that, despite the high
accuracy of the annual pollen production simulations based on the RF, there is still
room for improvement

Overall, this study achieved significant results in simulating pollen emissions,
demonstrating the potential application of autumn phenological models and the RF
algorithm in simulating pollen emissions. However, to further enhance the accuracy of
these simulations, future research needs to investigate and address the instances of

overestimation and underestimation in greater detail.
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Fig. 5. Time series of observation and simulation of average Artemisia emissions at stations in
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Beijing from 2006 to 2020. The red solid line represents the simulation of pollen emissions model,
while blue dots depict observations

To further investigate the spatial distribution of annual pollen production, we
simulated the spatial distribution of annual Artemisia, Chenopod, and TotalPC
production in Beijing from 2006 to 2020 (Fig. 6 and Fig. S7-S8). The results reveal
significant spatial and temporal variations in annual pollen production. Spatially,
Artemisia production is predominantly concentrated in the southeastern, northeastern,
and certain northwestern regions of Beijing, with occasional occurrences in the central
urban area during specific years (2008 and 2013). Chenopod production is highest in
the southern part of Beijing and lowest in the northern parts and surrounding areas.
Notably, from 2006 to 2008, the southern region exhibited high concentrations of
Chenopod production. TotalPC is mainly distributed in the southeastern plains of
Beijing, forming a strip-like pattern, while lower production is observed in the
northwestern mountainous areas, indicating a possible influence of geographical
location on TotalPC distribution. Temporally, the annual production of these three
pollen types demonstrates distinct interannual variations. Artemisia shows little
change in both distribution area and production concentration over time. In contrast,
Chenopod and TotalPC exhibit a general declining trend, reaching their lowest levels
between 2016 and 2018, which may be attributed to recent climatic changes,
vegetation shifts, and human activities in the Beijing area.

The simulation results for annual pollen production of Artemisia, Chenopod, and
TotalPC in Beijing from 2006 to 2020, based on autumn phenology and the RF pollen
emissions model, indicate pronounced spatial differences and temporal variation
characteristics. Analyzing the spatial distribution and temporal variation of annual
pollen production in Beijing enhances our understanding of the spatiotemporal
patterns of pollen in the region, providing crucial insights for the control and

mitigation of pollen allergies.
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Fig. 6. Distribution of Artemisia in Beijing from 2006 to 2020 based on pollen emissions model

To more intuitively reflect the temporal variation trends in the annual production
of three types of pollen, we further analyzed the interannual variation of the regional
average cumulative concentration of these pollen types during the autumn pollen
season in Beijing from 2006 to 2020 (Fig. 7). The annual production of Artemisia,
Chenopod, and TotalPC in Beijing averages between 0.8-1.6, 0.5-1.4, and 6.5-9 grains
m-2 year-1, respectively. The annual production of Artemisia and Chenopod are
notably similar. Over time, the regional annual production of these pollen types in
Beijing exhibits significant fluctuations. Nonetheless, Artemisia remains relatively
stable, whereas Chenopod and TotalPC production demonstrate a discernible
declining trend, particularly in TotalPC. The annual production of all three pollen
types reached a local nadir in 2012. Following a surge in 2013, production steadily
declined from 2014 to 2017, reaching the lowest levels observed in nearly 15 years
(with TotalPC being the lowest in 2018). Subsequently, from 2018 to 2020, an
increasing trend was observed. Overall, the annual pollen production in Beijing
appears to follow a minor cyclical pattern, intimately linked to the impacts of climate
change. Building on this analysis, it suggest that interannual variations in pollen
production may be influenced by multiple climate-related factors, such as temperature,
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precipitation, and SSH. These climatic elements can influence the phenology and
growth cycles of pollen-producing plants, thereby affecting their annual production
levels. For example, higher temperatures may lead to earlier flowering times,
potentially shifting the timing and duration of pollen release. Variations in
precipitation impact soil moisture, which can affect plant health and, consequently,
pollen output. The observed trends in Beijing’s pollen production, including the
declining patterns in Chenopod and TotalPC, could correspond to climate shifts that
are less favorable for these species. Thus, these fluctuations in pollen production
underscore the sensitivity of pollen phenology to both local and broader climate
variations.

To further explore the meteorological factors influencing average annual pollen
production in Beijing, we selected six meteorological variables during the autumn
pollen season from 2006 to 2020 for temporal and regional average calculations.
These factors include maximum temperature (TEM Max), average temperature
(TEM_Avg), minimum temperature (TEM Min), average relative humidity
(RHU_Avg), sunshine hours (SSH), and precipitation time (PRE Time 0808). The
annual variations of these meteorological factors were analyzed, and their correlations
with annual pollen production variations were calculated (Fig. 8).

The trends in annual variations of each meteorological factor and the calculated
correlations reveal that for Artemisia, TEM_Min and RHU Avg have a significant
positive correlation with its production, especially RHU Avg, which shows a
correlation of 0.79. This indicates that an increase in relative humidity promotes
Artemisia production. Conversely, SSH has a correlation of -0.8 with Artemisia,
indicating that longer sunshine hours inhibit its production. Meanwhile, TEM_Avg
and PRE Time 0808 have minor promoting effects on Artemisia production, while
TEM_Max has a slight inhibitory effect. For Chenopod, TEM Min is the most
significant promoting factor, while SSH has an inhibitory effect, although its negative
correlation is lower than that for Artemisia, indicating a limited inhibitory effect on
Chenopod production. For TotalPC, similar to Artemisia, increases in TEM_Min and
RHU_ Avg promote production, while increases in SSH and TEM Max inhibit
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production. Notably, the three types of pollen reached local minimum concentrations
in 2012, 2017, and 2018, when TEM_ Min and SSH respectively reached local
minimum and maximum values, further demonstrating the promoting effect of
TEM_Min and the inhibitory effect of SSH on annual average pollen concentration.
Rahman et al. (2020) and Lei et al. (2023) indicated that temperature is the main
factor affecting the interannual variation of pollen and is positively correlated with
pollen production. Our findings are largely consistent with these conclusions,
although they did not consider the effect of SSH on interannual changes in pollen
concentration. In summary, the annual production of pollen in Beijing is significantly
influenced by meteorological conditions, particularly temperature, relative humidity,
and sunshine hours. Different meteorological factors exhibit distinct promoting and

inhibiting effects on pollen production.
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Fig. 7. Time series variation chart of regional average annual production of three types of pollen in
Beijing from 2006 to 2020. Due to the different magnitudes of pollen concentrations, the left
y-axis represents the concentrations of Artemisia and Chenopod, while the right y-axis represents
TotalPC. Plotting the time series distributions of the three pollen concentrations on a single graph

allows for a clearer observation of the trends in their variations over time.
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Fig. 8. Time series variation chart of average values of different meteorological factors in Beijing
from 2006 to 2020. (The correlation coefficient between the average meteorological factors and
the regional average annual production of three types of pollen is calculated in the figure)

Fig. 9 and Fig. S9-S10 illustrate the spatial distribution of the average
concentrations of Artemisia, Chenopod, and TotalPC during the autumn pollen season
in Beijing from 2006 to 2020. During this period, the concentration of all three pollen
types initially increases and then decreases. The pollen season begins around August
10 each year and concludes around September 25. The peak concentrations for
Artemisia and Chenopod pollen occur around August 30, while the peak concentration
for TotalPC is observed around September 5. The entire pollen season lasts
approximately 45 days.

Regarding the average pollen concentration distribution, Artemisia is primarily
concentrated in the southwest, northeast, and parts of the northwest of Beijing, with
lower concentrations in the southeast. In contrast, Chenopod and TotalPC are mainly
distributed in the southeastern plains. The maximum average concentrations for
Artemisia, Chenopod, and TotalPC reach 81.1x10° Grains m? d!, 42.0x10° Grains

m2 d"!, and 351.8x10° Grains m d’!, respectively.
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Fig. 9. Temporal and spatial distribution of Artemisia in Beijing (average from 2006 to 2020)
3.3 Simulation of Pollen Emissions in Regional Climate Models

To evaluate the pollen emissions model based on autumn pollen phenology and
RF, this study integrates the offline calculated pollen emissions into the regional
climate model RegCM. By comparing the simulated atmospheric pollen
concentrations with data from ground-based pollen monitoring stations, we assess the
performance of this pollen emissions potential model.

3.3.2 Evaluation of pollen simulation accuracy in RegCM

Fig. 10 and Fig. S11-S12 depict the time series distribution of the concentrations
of three pollen types simulated by the RegCM compared to observed concentrations
from 2006 to 2020. The RegCM successfully captures the temporal variation trends of
pollen concentrations during the autumn pollen season, generally showing an initial
increase followed by a decrease. Daily pollen concentrations fluctuate significantly
due to meteorological factors such as temperature, precipitation, and RH, as well as
key physical processes like advection, convection, and dry and wet deposition.
Overall, the simulated pollen concentrations by the RegCM align well with the
observed trends, though some discrepancies remain.

In the simulation of Artemisia (Fig. 10), the sDOY and pollen production vary
annually due to meteorological conditions and key physical processes. The annual
peak pollen concentrations generally range from 20-70x10° Grains m d!, while in
2019-2020, observed pollen concentrations exceeded 100x10* Grains m? d-!, with

notable spikes and drops likely due to abrupt meteorological changes or possible
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issues with the quality of observation data. The RegCM accurately simulates the
sDOY and eDOY, displaying a similar frequency to observations. For peak pollen
simulations, years such as 2006, 2007, 2010, 2012, 2015, and 2016 show good
performance, with R above 0.7, particularly in 2006 and 2016, where R exceeds 0.85
and RMSE is only 4x10° Grains m* d!. However, for other years, peak simulations
are underestimated to varying degrees. For 2011, although the trend is consistent, the
observed peak is near 50x10* Grains m? d"!, while the simulated peak is only 12x10?
Grains m* d’!, indicating a significant underestimation. This underestimation is also
noticeable in 2008, 2013, and 2017-2020. In 2019, although the peak concentrations
align, the trend correlation is low (R=0.49), and RMSE is high. The variability in
observation station data quality and quantity could influence these results, with some
years having fewer than six effective stations (minimum of two), impacting the
average and peak values. Box plots (Fig. 11) reveal that Artemisia concentrations in
2019-2020 are more dispersed, suggesting possible anomalies in observation data.
Overall, the R for RegCM simulations ranges from 0.69 to 0.86 (except 2019), with
RMSE between 3.05-15.38x10? Grains m d-!.

For Chenopod simulations (Fig. S11), the overall performance is similar to
Artemisia. The annual peak concentrations are generally lower, around 20-50 x 103
Grains m? d!, except for 2007, which reaches 120 x 10° Grains m? d-'. The years
2006, 2008-2009, 2012-2013, 2015, and 2019 show good simulation performance,
accurately reflecting peak concentrations, particularly in 2016 (R=0.84,
RMSE=3.11x10? Grains m* d!). However, 2007, 2010, 2017-2018, and 2020 exhibit
underestimation, with the exceptionally high observed concentrations in 2007 likely
causing the model’s underestimation. Fig. 11 indicates increasing peak concentrations
in recent years (2017-2020) for both Artemisia and Chenopod, with room for
improvement in peak simulations by the RegCM. Despite the lower concentrations
compared to spring pollen, autumn pollen significantly impacts pollen-induced
diseases (pollinosis), prompting more attention and efforts in pollen management,
which contributes to the decreasing trend in monitored pollen concentrations.

TotalPC generally exhibits higher concentration levels compared to Artemisia
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and Chenopod (Fig. S12). Annual peak TotalPC can reach 150-500x10* Grains m d-!,
with the highest observed concentration in 2020 at 745x10* Grains m™ d'!. Due to the
higher quality and completeness of TotalPC monitoring data, the simulation results
are more accurate, with R generally above 0.76 (except 2015, R=0.64). Over 60 % of
the years have R above 0.8, with fewer years showing significant underestimation of
peak concentrations (e.g., 2013). This highlights the critical role of high-quality
pollen monitoring data for accurate simulations. High-quality data enable precise
capturing of pollen concentration trends and peaks, providing robust support for
regional pollen phenology research.

In summary, the RegCM demonstrates high accuracy in simulating the
concentrations of the three pollen types, especially TotalPC. Accurate simulations of
pollen concentrations and peaks enhance the effectiveness of pollen emissions models,
improve health risk warnings, and provide a scientific basis for urban planning and

environmental management.
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Fig. 10. Time-series distribution of Artemisia under RegCM simulation compared to observations
(averaged across effective pollen monitoring sites). The red solid line represents model

simulations, while blue dots depict observations
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Fig. 11. Box plot statistics of pollen concentration under RegCM simulation compared to observed
values. Each subplot features box plots denoted by red dashed lines: on the left side, representing
Artemisia and Chenopod concentrations with values referenced on the left y-axis; on the right side,
depicting TotalPC with values referenced on the right y-axis. In each box plot, from bottom to top,
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values (extending up to 1.5 times the interquartile range, IQR). Black circles denote outliers
exceeding 1.5 times IQR. Orange numbers annotated in the subplot indicate the maximum values

unseen within the box, while black numbers denote unseen outliers

4. Conclusion

This study utilized years of autumn pollen concentration data from Beijing,
alongside meteorological and land use data, to develop an autumn pollen emissions
model using autumn phenology and the RF algorithm. We conducted an in-depth
analysis of the spatiotemporal distribution characteristics of Artemisia, Chenopod, and
TotalPC in Beijing and examined their relationships with meteorological factors.
Finally, we validated the accuracy and reliability of the constructed pollen emissions
model using the RegCM. Through a series of simulations and validations, several
significant conclusions and findings were obtained.

(1) Construction of the Pollen Emissions Model: By incorporating phenology
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and the RF algorithm, we calculated autumn pollen emissions, thereby avoiding the
poor simulation results of sDOY, eDOY, and annual pollen production based solely on
temperature linear simulations. The study demonstrates that using a phenology model
for sDOY and eDOY simulations captures the temporal variations of pollen release
more accurately, effectively reducing simulation errors. The RF algorithm excels in
handling multivariate and nonlinear relationships, significantly improving the
simulation accuracy of the pollen emissions model. The optimized annual pollen
production simulations better reflect seasonal changes in pollen, showcasing the
applicability and reliability of the RF algorithm in processing meteorological and
environmental data.

(2) Spatiotemporal Distribution Characteristics of Pollen Concentration: The
study found significant spatial and temporal variations in pollen concentration in
Beijing. The autumn pollen peak occurs between DOY 215-280, with considerable
differences in peak times and concentrations among monitoring stations. These
differences are closely related to the vegetation types, topographical features, and
local climatic conditions around each station. Optimized simulations of pollen
concentration data further reveal the spatiotemporal variation patterns of pollen
concentrations.

(3) Impact of Meteorological Factors on Annual Pollen Emissions:
Meteorological factors significantly influence pollen concentrations. The study
reveals that temperature, RH, and SSH are crucial factors affecting annual pollen
emissions in Beijing. There is a positive correlation between temperature and RH with
annual pollen emissions, while SSH has a negative correlation. The response of
different pollen types to meteorological factors varies due to their distinct biological
characteristics and ecological environments. This comprehensive analysis provides a
scientific basis for predicting future changes in pollen concentrations.

(4) Validation of Pollen Emissions Models Using the RegCM: The RegCM
accurately reflects the daily impact of meteorological factors on pollen emissions.
Key physical processes, such as advection, convection, and wet and dry deposition,
play essential roles in simulating the atmospheric dispersion and deposition of pollen.
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This study validated the accuracy and reliability of the optimized emission potential
models for three pollen types using RegCM, eftfectively describing the daily variations
in pollen concentrations influenced by meteorological factors and key physical
processes. Furthermore, the pollen emissions model developed in this study can be
applied to other regions, offering potential for wider application. These
comprehensive results provide essential scientific support for pollen monitoring,
allergy prevention, and the selection of urban greening plants. Future research can
extend these methods and findings to larger-scale pollen emissions simulations and
forecasts, enhancing responses to pollen-related public health issues.

(5) Limitations and Future Prospects: Despite significant progress in
constructing the pollen emissions model and analyzing the spatiotemporal distribution
of pollen concentrations, some limitations persist. For broader application, more
extensive observation stations are needed to verify the model's accuracy, considering
the limited spatiotemporal resolution of current pollen concentration data. Simulating
specific species' pollen concentrations requires detailed plant functional type
distributions, which significantly impact the spatial distribution of pollen emissions
potential. The current research utilizes static plant functional type data, but dynamic
data would better reflect the impact of land use changes on pollen climates over
various temporal and spatial scales. Additionally, the complex relationship between
meteorological factors and pollen concentrations suggests that future research could
introduce more environmental and meteorological variables and apply advanced
machine learning algorithms to enhance the model's predictive capability.

In conclusion, This study successfully constructed a pollen emissions potential
model, systematically analyzed the spatiotemporal distribution of different pollen
types in autumn in Beijing, and explored their relationship with meteorological factors.
The model's accuracy and stability were validated using the RegCM, yielding notable
research results. Future research can further validate and extend this approach on a
larger scale and with higher resolution, providing comprehensive scientific support

for ecological environment protection and public health.

33



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

Data availability

Meteorological data were sourced from the China Surface Climate Daily Dataset
(https://data.cma.cn/data/cdcindex/cid/f0Ofb4b55508804ca.html),  which  requires
appropriate permissions for access. Pollen data were provided by the Beijing

Meteorological Bureau, and the authors do not have permission to share this data.

Authorship contributions

JL performed the analysis, investigation, methodology, software development,
validation, and original draft preparation. XA conceptualized the paper, provided
resources, acquired funding, and conducted the review and editing. ZS and CY
contributed resources, visualization, and data curation. HQ, YZ, and ZL were

involved in visualization. All authors contributed to manuscript revisions.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Key Research and Development
Program of China (grant number 2022YFC3701205), Science and Technology
Development Fund of the Chinese Academy of Meteorological Sciences (grant
number 20237026) and the National Natural Science Foundation of China (grant

number 41975173).

Reference

Aerts, R., M. Stas, N. Vanlessen, M. Hendrickx, N. Bruffaerts, L. Hoebeke, N. Dendoncker, S.
Dujardin, N. D. Saenen & A. Van Nieuwenhuyse (2020) Residential green space and seasonal
distress in a cohort of tree pollen allergy patients. International Journal of Hygiene and
Environmental Health, 223, 71-79.

Ahmed, A., A. Hakim & A. Becker (2018) Evaluation of eczema, asthma, allergic rhinitis and

34



859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

allergies among the Grade-1 children of Iqaluit. Allergy Asthma Clin. Immunol. 14, 9.

Asher, M.1., S. Montefort, B. Bj orkst’en, C.K. Lai, D.P. Strachan, S.K. Weiland & H. Williams
(2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat
multicountry cross-sectional surveys. Lancet 368, 733—743.

Bai, Y., X. Liu, M. Sun, G. Liu & Y. Meng (2009) Effect of Pollen Pollution on Human Health.
Journal of Anhui Agri. Sci., 37(5), 2220-2222. (in Chinese)

Bastl, K., M. Kmenta, M. Berger & U. Berger (2018) The connection of pollen concentrations and
crowd-sourced symptom data: new insights from daily and seasonal symptom load index data
from 2013 to 2017 in Vienna. World Allergy Organization Journal, 11, 1-8.

Bishan, C., L. Bing, C. Chixin, S. Junxia, Z. Shulin, L. Cailang, Y. Sigiao & L. Chuanxiu (2020)
Relationship between airborne pollen assemblages and major meteorological parameters in
Zhanjiang, South China. PLOS ONE, 15, ¢0240160.

Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.

Chen, H., J. Li, L. Cheng, Z. Gao, X. Lin, R. Zhu, L. Yang, A. Tao, H. Hong & W. Tang (2021)
China consensus document on allergy diagnostics. Allergy, Asthma & Immunology Research,
13,177.

Chen, J., S. Zhu, P. Wang, Z. Zheng, S. Shi, X. Li, C. Xu, K. Yu, R. Chen, H. Kan, H. Zhang & X.
Meng (2024) Predicting particulate matter, nitrogen dioxide, and ozone across Great Britain
with high spatiotemporal resolution based on random forest models. Science of The Total
Environment, 926, 171831.

Cingi, C., P. Gevaert, R. M"osges, C. Rondon, V. Hox, M. Rudenko, N.B. Muluk, G. Scadding, F.
Manole, C. Hupin, W.J. Fokkens, C. Akdis, C. Bachert, P. Demoly, J. Mullol, A. Muraro, N.
Papadopoulos, R. Pawankar, P. Rombaux, E. Toskala, L. Kalogjera, E. Prokopakis, P.W.
Hellings & J. Bousquet (2017) Multimorbidities of allergic rhinitis in adults: European
academy of allergy and clinical immunology task force report. Clin. Transl. Allergy 7, 17.

D’Amato, G., C. Vitale, M. Lanza, A. Molino & M. D’Amato (2016) Climate change, air pollution,
and allergic respiratory diseases: an update. Current opinion in allergy and clinical
immunology, 16, 434-440.

Damialis, A., C. Fotiou, J. M. Halley & D. Vokou (2011) Effects of environmental factors on

35



889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

pollen production in anemophilous woody species. Trees, 25, 253-264.

Emanuel, M.B. (1988) Hay fever, a post industrial revolution epidemic: a history of its growth
during the 19th century. Clin. Allergy 18, 295-304.

Frei, T. & E. Gassner (2008) Climate change and its impact on birch pollen quantities and the start
of the pollen season an example from Switzerland for the period 1969-2006. International
Journal of Biometeorology, 52, 667-674.

Gao, Q.Q., Q.Y. Gao, J. Li, F. Shen, S. Ji & L. Guan (2022) Preliminary Study on the Variation
Characteristics of Pollen Concentration and Pollen Allergy Grade in Langfang Area in Spring.
Journal of Agricultural Catastrophology. 12(10): 16-18.(in Chinese)

Gu, D. & K. Liao (2003) The relationship between urban pollen dispersal and meteorological
conditions. Hubei Meteorology, (03): 36-37. (in Chinese)

Guan, L., Q.Y. Gao, H. Li, J. Li & Q.Q. Gao (2021) Characteristics of Airborne Pollen Variation in
Langfang City and Its Relationship with Meteorological Factors. Agricultural technology
service. 38(6):93-98.(in Chinese)

Guzman, A., L. Tonelli, D. Roberts, J. Stiller, M. Jackson, J. Soriano, S. Yousufi, K. Rohan, H.
Komarow & T. Postolache. 2007. Mood-worsening with high-pollen-counts and seasonality:
a preliminary report. In Journal of affective disorders.

He, H., D. Zhang & B. Qiao (2001) Preliminary approach of the relationship between Airborne
pollen amount and meteorological factors in Beijing urban area. Chin J Microbiol Immunol.
(S2):36-38. (in Chinese)

He, X., D. Liu, Y. Pan, X. He, M. Zhang & S. Yang (2023) Distribution and sources of fluvial
pollen in the middle reaches of the Yellow River in China and their relationship with
vegetation and land use. Science of The Total Environment, 856, 159109.

Helbig, N., B. Vogel, H. Vogel, and F. Fiedler, 2004: Numerical modelling of pollen dispersion on
the regional scale. Aerobiologia, 20, 3-19.

Ibrahim, N.M., F.I. Almarzouqi, F.A. Al Melaih, H. Farouk, M. Alsayed & F.M. AlJassim (2021)
Prevalence of asthma and allergies among children in the United Arab Emirates: a
cross-sectional study. World Allergy Organ. J. 14, 100588.

Khwarahm, N. R., J. Dash, C. A. Skjeth, R. M. Newnham, B. Adams-Groom, K. Head, E. Caulton
& P. M. Atkinson (2017) Mapping the birch and grass pollen seasons in the UK using satellite

36



919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

sensor time-series. Science of The Total Environment, 578, 586-600.

Krishna, M. T., P. A. Mahesh, P. K. Vedanthan, V. Mehta, S. Moitra & D. J. Christopher (2020)
The burden of allergic diseases in the Indian subcontinent: barriers and challenges. The
Lancet Global Health, 8, e478-e479.

Kurganskiy, A., S. Creer, N. De Vere, G. W. Griffith, N. J. Osborne, B. W. Wheeler, R. N. McInnes,
Y. Clewlow, A. Barber & G. L. Brennan (2021) Predicting the severity of the grass pollen
season and the effect of climate change in Northwest Europe. Science Advances, 7,
eabd7658.

Lake, I. R., N. R. Jones, M. Agnew, C. M. Goodess, F. Giorgi, L. Hamaoui-Laguel, M. A.
Semenov, F. Solomon, J. Storkey & R. Vautard (2017a) Climate change and future pollen
allergy in Europe. Environmental health perspectives, 125, 385-391.

Lei, Y., Y. Miao, Y. Zhao, S. Zhang, H. Cao, X. Lan, Z. Zhang & H. Jin (2023) The effects of
meteorological conditions on allergenic airborne pollen in arid Northwest China.
Atmospheric Environment, 299, 119647.

Li, L., D. Hao, X. Li, M. Chen, Y. Zhou, D. Jurgens, G. Asrar & A. Sapkota (2022) Satellite-based
phenology products and in-situ pollen dynamics: A comparative assessment. Environmental
Research, 204, 111937.

Li, X., Y. Zhou, L. Meng, G. Asrar, A. Sapkota & F. Coates (2019) Characterizing the relationship
between satellite phenology and pollen season: A case study of birch. Remote Sensing of
Environment, 222, 267-274.

Li, Z., Y. Chen, Y. Tao, X. Zhao, D. Wang, T. Wei, Y. Hou & X. Xu (2023) Mapping the personal
PM2.5 exposure of China's population using random forest. Science of The Total
Environment, 871, 162090.

Lou, H., S. Ma, Y. Zhao, F. Cao, F. He, Z. Liu, J. Bousquet, C. Wang, L. Zhang & C. Bachert
(2017) Sensitization patterns and minimum screening panels for aeroallergens in
self-reported allergic rhinitis in China. Scientific reports, 7, 9286.

Mallol, J., J. Crane, E. von Mutius, J. Odhiambo, U. Keil & A. Stewart (2013) The international
study of asthma and allergies in childhood (ISAAC) phase three: a global synthesis. Allergol.
Immunopathol. 41, 73-85.

Meier, M. & C. Bigler (2023) Process-oriented models of autumn leaf phenology: ways to sound

37



949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

calibration and implications of uncertain projections. Geosci. Model Dev., 16, 7171-7201.
Meng, L., X. Wang, Z. Ouyang, Y. Ren & Q. Wang (2016) Seasonal Dynamics of Airborne Pollens
and Its Relationship with Meteorological Factors in Beijing Urban Area. Environmental

science. 37 (02): 452-458.(in Chinese)

Mir, E., C. Panjabi & A. Shah (2012) Impact of allergic rhinitis in school going children. Asia
Pacific Allergy, 2, 93-100.

Mo, Y., J. Zhang, H. Jiang & Y. H. Fu (2023) A comparative study of 17 phenological models to
predict the start of the growing season. Frontiers in Forests and Global Change, 5.

National Cooperative Group on Childhood Asthma, 1993. A nationwide surrey on the prevalence
of asthma among 0-14 year old population in China(1988~1990). Chin. J. Tuberc. Respir. Dis.
16, 64—68. https://doi.org/10.3760/cma.j.issn.1001- 0939.1993.71.143.

National Cooperative Group on Childhood Asthma, 2003. A nationwide survey in China on
prevalence of asthma in urban children. Chin. J. Pediatr. 41, 123—127. https://
doi.org/10.3760/cma.j.issn.0578-1310.2003.02.116.

National Cooperative Group on Childhood Asthma, Institute of Environmental Health and Related
Product Safety, Chinese Center for Disease Control and Prevention, Chinese Center for
Disease Control and Prevention, 2013. Third nationwide survey of childhood asthma in urban
areas of China. Chin. J. Pediatr. 51, 729-735.

Oleson, K., D. Lawrence, G. Bonan, M. Flanner & E. Kluzek (2010) Technical Description of
Version 4.0 of the Community Land Model (CLM), NCAR Technical Note
NCAR/TN-478+STR, NCAR, Boulder, USA, 257 pp.

Qiao, Y., L. Wu, S. Yang, Q. Wang, H. Gu, L. Wei, G. Liu, S. Zhou, P. Wang & M. Song (2023)
Metabolomic and transcriptomic analyses provide insights into variations in flavonoids
contents between two Artemisia cultivars. BMC Plant Biology, 23, 288.

Rahman, A., C. Luo, B. Chen, S. Haberle, M. H. R. Khan, W. Jiang, R. Xiang, J. Liu, L. Wang, G.
Lin, M. Yang & V. Thilakanayaka (2020) Regional and seasonal variation of airborne pollen
and spores among the cities of South China. Acta Ecologica Sinica, 40, 283-295.

Schmidt, C.W. (2016) Pollen overload: seasonal allergies in a changing climate. Environ. Health
Perspect. 124.

Septembre-Malaterre, A., M. Lalarizo Rakoto, C. Marodon, Y. Bedoui, J. Nakab, E. Simon, L.

38



979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

Hoarau, S. Savriama, D. Strasberg, P. Guiraud, J. Selambarom & P. Gasque (2020) Artemisia
annua, a Traditional Plant Brought to Light. International Journal of Molecular Sciences, 21.

Sofiev, M., P. Siljamo, H. Ranta & A. Rantio-Lehtimiki (2006) Towards numerical forecasting of
long-range air transport of birch pollen: theoretical considerations and a feasibility study.
International Journal of Biometeorology, 50, 392-402.

Sofiev, M., P. Siljamo, H. Ranta, T. Linkosalo, S. Jaeger, A. Rasmussen, A. Rantio-Lehtimaki, E.
Severova & J. Kukkonen (2013) A numerical model of birch pollen emissions and dispersion
in the atmosphere. Description of the emission module. International Journal of
Biometeorology, 57, 45-58.

Stas, M., R. Aerts, M. Hendrickx, A. Delcloo, N. Dendoncker, S. Dujardin, C. Linard, T. Nawrot,
A. Van Nieuwenhuyse & J.-M. Aerts (2021) Exposure to green space and pollen allergy
symptom severity: A case-crossover study in Belgium. Science of The Total Environment,
781, 146682.

Valipour Shokouhi, B., K. de Hoogh, R. Gehrig & M. Eeftens (2024) Estimation of historical daily
airborne pollen concentrations across Switzerland using a spatio temporal random forest
model. Science of The Total Environment, 906, 167286.

Virro, H., A. Kmoch, M. Vainu & E. Uuemaa (2022) Random forest-based modeling of stream
nutrients at national level in a data-scarce region. Science of The Total Environment, 840,
156613.

Wang, X. D., M. Zheng, H. Lou, C. Wang, Y. Zhang, M. Bo, S. Ge, N. Zhang, L. Zhang & C.
Bachert (2016) An increased prevalence of self-reported allergic rhinitis in major Chinese
cities from 2005 to 2011. Allergy, 71, 1170-1180.

Wang, X. Y., T. T. Ma, X. Y. Wang, Y. Zhuang, X. D. Wang, H. Y. Ning, H. Y. Shi, R. L. Yu, D.
Yan & H. D. Huang (2018) Prevalence of pollen-induced allergic rhinitis with high pollen
exposure in grasslands of northern China. Allergy, 73, 1232-1243.

Wozniak, M. C. & A. L. Steiner (2017) A prognostic pollen emissions model for climate models
(PECM1.0). Geosci. Model Dev., 10, 4105-4127.

Wu, Z., A. Liu, Y. Bai, B. Liu & C. Wang (2011) Study on Evaluation of Economic Benefitsfrom
Pollen Forecast and Service in Tianjin. Meteorological monthly. 37(5):626-632.(in Chinese)

Yin, J., F. Yue, L. Wang, H. He, T. Xu, H. Zhang, H. Li, L. Wen, J. Sun & J. Gu (2005) The

39



1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

clinical study of the relationship between allergic rhinitis and allergic asthma in the patients
with autumnal pollinosis. Zhonghua Yi Xue Za Zhi, 85, 1683-1687.

Yorimitsu, Y., A. Kadosono, Y. Hatakeyama, T. Yabiku & O. Ueno (2019) Transition from C3 to
proto-Kranz to C3-C4 intermediate type in the genus Chenopodium (Chenopodiaceae).
Journal of Plant Research, 132, 839-855.

Zhang, Y. & A. L. Steiner (2022) Projected climate-driven changes in pollen emissions season
length and magnitude over the continental United States. Nature Communications, 13, 1234.

Zhao, Y., Z. Sun, L. Xiang, X. An, X. Hou, J. Shang, L. Han & C. Ye (2023) Effects of pollen
concentration on allergic rhinitis in children: A retrospective study from Beijing, a Chinese

megacity. Environmental Research, 229, 115903.

40



