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Abstract: In recent years, the intensification of global climate change and13

environmental pollution has led to a marked increase in pollen-induced allergic14

diseases. This study leverages 16 years of continuous pollen monitoring data,15

alongside meteorological factors and plant functional type data, to construct a pollen16

emissions model using phenology and random forests (RF). This model is then17

employed to simulate the emission characteristics of three primary types of autumn18

pollen (Artemisia, Chenopod, and total pollen concentration), elucidating the emission19

patterns throughout the seasonal cycle in Beijing. Phenology and RF precisely20

simulate the start and end day of year of pollen, as well as the annual pollen21

production. There are significant spatiotemporal differences among the three types of22

pollen. On average, pollen dispersal begins around August 10, peaks around August23

30, and concludes by September 25, with a dispersal period lasting approximately 4524

days. Furthermore, the relationship between pollen emissions and meteorological25

factors is investigated, revealing that temperature, relative humidity (RH), and26

sunshine hours (SSH) significantly influence annual pollen emissions. Specifically,27

temperature and RH exhibit a strong positive correlation with annual pollen emissions,28
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while SSH shows a negative correlation. Different pollen types display varied29

responses to meteorological factors. Finally, the constructed pollen emissions model is30

integrated into Regional Climate Model (RegCM) and validated using pollen31

observation data, confirming its reliability in predicting pollen concentrations. This32

study not only enhances the understanding of pollen release mechanisms but also33

provides scientific evidence for the selection and planting of urban greening plants.34
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1. Introduction36

Pollen are microscopic particles, typically ranging from 5 to 100 micrometers in37

diameter, released by plants to transfer male genetic material for reproduction. These38

particles, significant allergens, disperse into the atmosphere via wind, contributing to39

atmospheric particulate matter, interacting with clouds and radiation, and playing a40

pivotal role in plant fertilization and gene dissemination (Damialis et al., 2011; Lei et41

al., 2023). Additionally, pollen is linked to allergic diseases such as allergic rhinitis42

and asthma and may even elevate the risk of gastrointestinal and neurological43

disorders (Guzman et al., 2007; Krishna et al., 2020; Chen et al., 2021; Stas et al.,44

2021). In China, the incidence of pollen allergies has surged from 5 % to 17.8 % and45

continues to rise rapidly (Lou et al., 2017). Pollen-induced respiratory allergic46

symptoms, such as allergic rhinitis (AR), affect up to 30 % of the global population,47

particularly children under 18 (Mir et al., 2012; Wang et al., 2016; Zhang and Steiner,48

2022; Zhao et al., 2023). It is generally believed that these respiratory allergic49

diseases are more prevalent in developed countries (Emanuel, 1988; Ibrahim et al.,50

2021). However, the International Study of Asthma and Allergies in Childhood51

(ISAAC) global reports indicate that these diseases are equally or even more prevalent52

in some developing countries compared to developed ones (Asher et al., 2006; Mallol53

et al., 2013). Children, as a vulnerable population, are particularly susceptible to AR54

and its complications (Cingi et al., 2017). Without effective early intervention, allergic55

symptoms in children can persist throughout their lives, imposing a substantial56

economic burden on families and healthcare systems (Ahmed et al., 2018) and57
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potentially posing a life-threatening risk (Schmidt, 2016). In China, a densely58

populated developing country, the proportion of pediatric allergic diseases within the59

spectrum of childhood illnesses is increasing annually, leading to significant60

economic and health losses due to medical expenses, impacts on human life, and61

premature death (National Cooperative Group on Childhood Asthma, 1993, 2003,62

2013). Furthermore, since pollen release is closely linked to environmental factors,63

climate change may influence pollen release, thereby affecting the incidence of64

allergic diseases (Wang et al., 2018; Bishan et al., 2020). In recent decades, the pollen65

season has exhibited a trend of becoming longer and more intense, which may66

exacerbate the conditions of allergic rhinitis and asthma (D’Amato et al., 2016; Lake67

et al., 2017a; Aerts et al., 2020; Kurganskiy et al., 2021).68

With the improvement in living standards and heightened health awareness,69

airborne pollen diseases, such as hay fever, have garnered widespread attention. As a70

typical seasonal epidemic (Yin et al., 2005; Lei et al., 2023), hay fever significantly71

impacts global health. Existing studies have demonstrated that the incidence of72

airborne pollen diseases is closely associated with the concentration of airborne73

allergenic pollen, particularly during peak pollen seasons (Frei and Gassner, 2008;74

Bastl et al., 2018; Kurganskiy et al., 2021). Due to the regional nature of airborne75

pollen, the types and concentrations of pollen vary geographically. Although the76

annual variation trend of total pollen amount generally exhibits a similar bimodal77

pattern, increasing annual climatic variability amidst global warming has led to78

significant changes in the pollen seasons of various plants, with discrepancies of more79

than 20 days in some years. This variability poses practical challenges for conducting80

pollen monitoring research and providing public meteorological services (He et al.,81

2001; Gu and Liao, 2003; Bai et al., 2009; Lei et al., 2023). Therefore, studying82

pollen concentration and distribution is crucial for understanding the pathogenesis of83

airborne pollen diseases, conducting effective pollen monitoring research, and84

delivering accurate public meteorological services.85

However, compared to regions such as Europe and the United States, China faces86

significant challenges in pollen monitoring due to fewer monitoring stations, shorter87
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monitoring histories, and a lower prevalence of automated facilities. These limitations88

have resulted in China's pollen simulation research remaining primarily at the level of89

simple statistical methods, focusing only on basic statistical studies of the impact of90

meteorological conditions on pollen concentration. In contrast, numerical models are91

rarely employed for regional simulation of pollen concentration. This situation92

reflects the relative lag in China's pollen monitoring and research system, hindering a93

deeper understanding of pollen dispersion patterns and the scientific study of related94

health issues (Wu et al., 2011; Meng et al., 2016; Guan et al., 2021; Gao et al., 2022).95

Although numerical models play a crucial role in simulating pollen concentration,96

they require a clear understanding of pollen emissions. Numerical models are broad97

mathematical frameworks used to simulate various physical processes through98

numerical approximations, including atmospheric dynamics and climate systems. In99

contrast, a pollen emission model specifically estimates the release and distribution of100

pollen into the atmosphere, taking into account factors such as pollen phenology,101

vegetation types, and environmental conditions. Pollen emissions are influenced not102

only by meteorological factors but also by vegetation types, land use changes, and103

human activities (Sofiev et al., 2006; Wozniak and Steiner, 2017; Zhang and Steiner,104

2022; He et al., 2023; Lei et al., 2023). Particularly in the context of accelerated105

urbanization, the selection and layout of urban greening plants have a significant106

impact on pollen emissions. The complex interactions of these factors pose significant107

challenges to accurately simulating pollen emissions.108

Since 2004, various pollen prediction models have been developed to enhance109

the accuracy of pollen emission estimates. Helbig et al. (2004) introduced a110

parameterization method for calculating pollen release and resuspension fluxes,111

implemented in the KAMM/DRAIS mesoscale model, although it relied on112

assumptions due to limited observational data. Subsequently, Sofiev et al. (2006)113

analyzed the feasibility of large-scale atmospheric migration of allergenic pollen,114

validating existing dispersion models and providing key parameterizations for dry and115

wet deposition, which were applied in Finland's SILAM system. However, this direct116

simulation of pollen concentration based on numerical models has significant117
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complexity and uncertainty. Wozniak and Steiner (2017) developed the Pollen118

Emission Prediction Model (PECM1.0), which simulates seasonal pollen counts based119

on geography, vegetation, and meteorology. The model establishes empirical120

relationships between historical average temperatures and pollen season timings for121

four vegetation types. It captures up to 57% of seasonal variations, allowing for122

analysis of climate change impacts on wind-driven pollen emissions. Building on this,123

Zhang and Steiner (2022) introduced PECM2.0, which incorporates precipitation and124

CO2 factors while refining the linear relationship between annual pollen production125

and temperature, ultimately predicting the temperature effects by the end of the126

century. However, the linear relationships based on historical temperatures have127

significant uncertainties, limiting their applicability for regional studies. Therefore,128

the challenge of constructing a pollen emission model that is better suited for regional129

scales and has broader applicability warrants careful consideration and further130

research. Such advancements could significantly enhance our understanding of pollen131

dynamics and improve the accuracy of related health risk assessments.132

Given the importance of accurately modeling pollen emissions, validation of133

numerical models for pollen emissions is necessary. These models not only provide a134

framework for simulating atmospheric processes but also allow for a more nuanced135

understanding of how various factors influence pollen dynamics. RegCM is the136

pioneering regional climate model system used for climate downscaling, originating137

in the late 1980s and early 1990s at the National Center for Atmospheric Research138

(NCAR) in the USA. It has since undergone several development iterations and is139

currently maintained at the International Centre for Theoretical Physics (ICTP) in140

Italy. This open-source system is widely utilized by numerous research teams,141

forming an extensive network for regional climate research. The model can be applied142

globally and is evolving into a fully coupled regional earth system model,143

incorporating ocean, lake, aerosol, desert dust, chemistry, hydrology, and land surface144

processes. The version used in this study is RegCM4.7.1.145

Therefore, this study constructs a pollen emissions model for the Beijing area,146

leveraging pollen concentration and meteorological monitoring data, combined with147
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pollen phenology and the RF algorithm. It conducts a simulation study on the148

emission phenology of three types of pollen in Beijing (Artemisia, Chenopod, and149

total pollen concentration) to calculate the pollen emissions potential. The study also150

investigates the seasonal and spatiotemporal distribution characteristics of pollen in151

Beijing and its potential correlations with meteorological factors and climatic152

conditions. Additionally, the constructed pollen emissions parameterization method is153

applied to the RegCM and evaluated for accuracy using 15 years of pollen154

observation data. This comprehensive study will enhance the understanding of pollen155

sources, provide innovative guidance for the selection and planting of greening plants,156

and promote sustainable development in ecological protection and urban planning.157

2. Methodology158

2.1 Model description159

2.1.1 Parameterization method for pollen emissions160

This study's pollen emissions potential integrates geographical parameters,161

vegetation types, and meteorological data, and incorporates autumn pollen phenology162

and RF to enhance the simulation of pollen phenology (Wozniak and Steiner, 2017;163

Zhang and Steiner, 2022). This approach is used to predict pollen concentration and164

distribution within the seasonal cycle. The specific calculation formula is as follows:165
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In the formula, Ei(t) represents the pollen emissions potential for pollen type i on167

day t of the year (DOY), t represents a specific day of the year, and i represents the168

i-th type of pollen. fi represents the vegetation land cover fraction, which is the169

percentage of different vegetation types within a unit area, measured in %. Pannual,i170

represents the production factor of the i-th vegetation type, which is the number of171

pollen grains released during the pollen season, measured in Grain m-2 year-1. In this172

study, Pannual,i is calculated based on the RF algorithm (Sect. 2.1.3). 2
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represents the phenological evolution of pollen emissions, controlling the pollen174
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release process. The formula indicates that pollen emissions during the pollen season175

follows a Gaussian distribution, where � and � are the mean and standard176

deviation of the Gaussian distribution. These parameters are calculated from sDOY177

(start Day of Year) and eDOY (end Day of Year) of the pollen season, as follows:178

2
eDOYsDOY 

� (2)
179

a
sDOYeDOY 

 (3)
180

In this context, sDOY and eDOY are optimized using autumn pollen phenology181

(Sect. 2.1.2). The parameter a represents a fitting parameter that explains the182

conversion between the empirical phenological dates based on pollen count thresholds183

and the equivalent width of the emission curve. In this study, the value of a is set to 4.184

This equation can be applied to a specific type of pollen or to the calculation of185

pollen concentration over the entire pollen season, depending mainly on the land186

cover type. The emission can be calculated offline using this equation or applied in187

online calculations.188

2.1.2 Autumn pollen phenology model189

In this study, we used three different calculation methods (Rs1, Rs2, Rssig) for the190

autumn phenology model to simulate sDOY and eDOY of autumn pollen (Meier &191

Bigler, 2023). Each model is related to temperature and SSH. The specific calculation192

formulas are as follows:193
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In the above equations, Rs1, Rs2 and Rssig represent three different autumn198

phenology model categories. Ti and Li represent the temperature and SSH on a given199
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day, respectively, while Tbase and Lbase represent the thresholds for temperature and200

SSH, respectively. In the Rs1 and Rs2 models, when the temperature and SSH are201

below the threshold or the date exceeds a fixed DOY, Rs starts accumulating. In the202

Rssig model, temperature and SSH accumulate inversely in an exponential form. The203

day tn, when the cumulative amount exceeds the threshold Y, represents the final204

simulated pollen start/end date. t0 represents the start day of accumulation, which is205

the first day when Ti<Tbase and Li<Lbase. The parameters that need to be adjusted are Y,206

Tbase, Lbase, x, y and start_day. In this study, the simulated annealing (SA) algorithm is207

used for parameter adjustment. The principle of the SA is to simulate the random208

optimization process of the annealing process in solid-state physics, which can accept209

non-optimal solutions with a certain probability to avoid falling into local optima and210

eventually achieve the global optimum.211

2.1.3 Random Forests212

Random Forests (RF) is an ensemble learning algorithm introduced by Breiman213

(2001) for classification and regression tasks. This algorithm enhances model214

prediction performance and robustness by constructing multiple decision trees and215

combining their outputs. The core principle involves drawing multiple sample sets216

with replacement from the original training set, training a decision tree for each217

sample set, and randomly selecting a subset of features at each node split to reduce218

correlation between the trees. Ultimately, RF generates the final prediction by219

averaging (for regression) or voting (for classification) the outputs of these trees. The220

advantages of this method include high prediction accuracy, strong resistance to221

overfitting, suitability for high-dimensional data, and efficient training processes. The222

RF algorithm has been widely applied across various fields (Virro et al., 2022; Li et223

al., 2023; Chen et al., 2024; Valipour Shokouhi et al., 2024).224

In this study, the RF algorithm is employed to simulate annual pollen production.225

Each pollen dataset is divided into training and testing sets in a 4:1 ratio, with the226

training set used for model training and the testing set for accuracy validation.227

Additionally, a grid search with cross-validation is applied to optimize the228

hyperparameters of each estimator. Key parameters for RF adjustment include229
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n_estimators, max_depth, min_samples_split, and min_samples_leaf. Hyperparameter230

optimization is a crucial step in enhancing model performance.231

2.1.4 Implementation of pollen emissions in RegCM232

In this model, a pollen emissions model based on phenology and RF calculates233

the emission potential of different types of pollen offline, and then incorporated into234

the RegCM model. The calculation of pollen concentration in this model follows the235

method of Sofiev et al. (2013), with the formula as follows:236
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Where fw, fr and fh represent the wind, precipitation, and RH factors,239

respectively, influencing pollen emissions concentration. fw is exponentially related to240

the 10m wind speed u10 and vertical turbulent wind speed uconv. pr and rh represent241

precipitation and RH. When precipitation is below the threshold prlow, the242

precipitation factor is 1. When precipitation exceeds the threshold prhigh, the factor is 0.243

When precipitation is between these thresholds, the factor is calculated as the ratio of244

the difference between the high threshold and precipitation to the difference between245

the thresholds, with default values prlow=10-5 mm and prhigh=0.5 mm. Similarly, the246

RH factor is related to RH and its thresholds, with default values rhlow=50 % and247

rhhigh=80 %. These factors explain the impact of wind, precipitation, and humidity on248

pollen emissions. Given the significant influence of precipitation and RH on pollen249

emissions, this study adjusts prhigh​ and rhhigh values to 1 mm and 90 %, respectively.250

Higher thresholds can prevent excessive suppression of pollen emissions under251

frequent precipitation and high humidity conditions, thus more accurately simulating252
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actual pollen concentration changes and better adapting the model to different climatic253

conditions.254

Moreover, the RegCM includes the pollen tracer transport equation (Solmon et al.255

2006), as follows:256

dWcWlsCVH DRRSTFFV
t



  (10)

257

Where χ represents the tracer, FH and FV represent horizontal and vertical258

diffusion, TC represents convective transport, RWls and RWc represent large-scale and259

convective precipitation wet removal processes, respectively, and Dd represents dry260

removal processes. This transport equation comprehensively considers various261

physical processes and removal mechanisms of pollen in the atmosphere, allowing the262

simulation of the entire process from pollen release to atmospheric dispersion and263

deposition. This provides a foundation for fully describing the spatial distribution and264

temporal evolution of pollen in the atmosphere, which is crucial for studying pollen265

dispersion in the air, determining the spatial distribution of pollen concentration, and266

predicting future changes in pollen concentration.267

2.2 Data268

2.2.1 Observed pollen concentrations269

The daily pollen concentration data were collected from six monitoring stations270

in Beijing: Changping (CP), Chaoyang (CY), Fengtai (FT), Haidian (HD),271

Shijingshan (SJS), and Shunyi (SY), as shown in Fig. 1. The monitoring period272

spanned from April to October each year from 2006 to 2021, covering the main pollen273

season in Beijing. The gravitational settling method (Unit: 10³ Grains m-2 d-1) was274

used for monitoring. The pollen concentration data included Total Pollen275

Concentration (the sum of pollen concentrations from all taxa, abbreviated as TotalPC)276

and the concentrations of pollen from 10 common allergenic plants. These species277

included trees such as Pine, Poplar, Birch, Cypress, Ash, and Elm, as well as weeds278

like Artemisia, Chenopod, Humulus, and Amaranthus. Although autumn pollen279

concentrations are lower compared to spring, autumn weed pollen has a higher280

allergenic potential (Zhao et al., 2023). Therefore, this study focuses on the analysis281



11

of autumn weed pollen. Due to significant data gaps in the pollen concentration of282

specific species, we selected only the data that were more complete and of higher283

allergenic potential, specifically Artemisia, Chenopod, and TotalPC. Table 1 provides284

basic information, such as the number of effective sample years for these three types285

of pollen across the six stations.286

To prevent anomalies in the data, we excluded outliers in the pollen287

concentration data for each species and any data points where the concentration288

exceeded the 99th percentile. Furthermore, we applied a 5-day moving average to the289

pollen monitoring data to smooth it. This approach not only eliminates noise from the290

data (Li et al., 2019; Li et al., 2022) but also mitigates the influence of daily291

meteorological changes and advection diffusion on daily pollen emissions (To further292

analyze the impact of key factors such as meteorological factors and advection293

diffusion on daily pollen emissions, we used the RegCM in Sect. 3.3. This model294

accurately reflects the effects of daily meteorological factors such as temperature,295

precipitation, humidity, and wind speed on pollen emissions while also describing key296

physical processes such as advection diffusion, convective transport, and dry and wet297

deposition, thus providing a comprehensive analysis of the behavior of pollen in the298

atmosphere). This smoothing process allows us to more clearly explore the daily299

variation trends of pollen.300

Additionally, to better simulate the temporal and spatial distribution of pollen301

during the autumn pollen period, we defined the autumn pollen period based on302

observed pollen concentration data as DOY 215<DOY<280. Subsequently, we303

determined the sDOY and eDOY for the autumn pollen period for each station and304

year by identifying the day of year at which the cumulative pollen concentration305

reached 5 % (start) and 95 % (end) of the total for that period (Khwarahm et al., 2017;306

Li et al., 2019; Li et al., 2022).307
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308
Fig. 1. Distribution map of geopotential height, pollen observation stations (triangle), and309

meteorological monitoring stations (circle) in Beijing area310

Table 1 Explanation of effective sample years for pollen monitoring stations in Beijing311

(2006-2021)312

Station
Effective Sample Years / Year

Artemisia Chenopod TotalPC

CP 16 16 16

CY 13 13 13

FT 10 8 15

HD 0 0 8

SJS 11 11 16

SY 12 9 16

Total 62 57 84

To better simulate sDOY and eDOY for pollen, this study first applied the313

Gaussian model to the autumn pollen data of each station and year. The Gaussian314

model was chosen for its effectiveness in capturing peaks in time series data, which315

are often reflected in pollen concentration data. Taking the CP station as an example,316

Gaussian fitting distribution was performed on the autumn Artemisia, Chenopod, and317

TotalPC for 2006-2021 (Supplementary Fig. S1-S3). The results indicated that the318

autumn pollen concentration exhibited a significant Gaussian distribution, confirming319

that the Gaussian model could aptly fit the time series changes of autumn pollen.320
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Therefore, by Gaussian fitting the pollen concentrations of each station, the autumn321

pollen sDOY and eDOY under the Gaussian model simulation were further322

determined. Comparing the sDOY and eDOY derived from observed pollen323

concentration data with those obtained via Gaussian model simulation324

(Supplementary Fig. S4), we found a high correlation coefficient (R) and a low root325

mean square error (RMSE) between the two. Thus, the sDOY and eDOY obtained326

from Gaussian model simulation were utilized to study the autumn pollen phenology.327

2.2.2 Meteorological observation and land cover data328

The meteorological data for this study were sourced from the China Surface329

Climate Daily Dataset, encompassing observations from all benchmark and basic330

meteorological stations in China. Specifically, we utilized data from 66 valid331

meteorological stations in Beijing and its surrounding areas (39-41.5° N, 115-118° E)332

covering the period from 2006 to 2020 (Fig. 1). This dataset includes meteorological333

observations corresponding to the pollen monitoring stations (our meteorological data334

extends only up to 2020). The variables incorporated in this study comprise average335

temperature (TEM_Avg), maximum temperature (TEM_Max), minimum temperature336

(TEM_Min), sunshine hours (SSH), station altitude (Alti), average pressure337

(PRS_Avg), maximum pressure (PRS_Max), minimum pressure (PRS_Min),338

maximum wind speed (WIN_S_Max), extreme wind speed (WIN_S_Inst_Max),339

average 2-minute wind speed (WIN_S_2mi_Avg), ground surface temperature340

(GST_Avg_Xcm, X=5, 10, 15, 20, 40, 80, 160, 320cm), average ground surface341

temperature (GST_Avg), minimum ground surface temperature (GST_Min),342

maximum ground surface temperature (GST_Max), average relative humidity343

(RHU_Avg), minimum relative humidity (RHU_Min), average vapor pressure344

(VAP_Avg), precipitation from 20:00 to 20:00 (PRE_Time_2020), and precipitation345

from 08:00 to 08:00 (PRE_Time_0808). The first four meteorological factors were346

utilized to simulate the autumn phenology model of pollen, predicting various pollen347

sDOY and eDOY. All meteorological factors served as training datasets for the RF348

algorithm to simulate annual pollen production.349

For land use data, this study employed the Community Land Model 4 (CLM4)350



14

dataset (Oleson et al., 2010), which includes 25 plant functional types such as351

needleleaf forests, broadleaf forests, shrubs, grasses (C3 and C4), and crops, with a352

spatial resolution of 0.05°. As Artemisia and Chenopod primarily fall under the C3353

plant category (Yorimitsu et al., 2019; Septembre-Malaterre et al., 2020; Qiao et al.,354

2023), the simulation of pollen utilization for Artemisia and Chenopod used plant355

functional C3 grass, while the TotalPC simulation incorporated both C3 and C4356

grasses. The distribution of these two plant functional types in Beijing is illustrated in357

Fig. 2.358

359

Fig. 2. The distribution of plant functional type C3 (a) and GRASS (b) in Beijing area360

3. Results and Discussion361

3.1 Pollen Phenology Simulation362

In this study, we analyzed the phenological changes of three types of363

pollen—Artemisia, Chenopod, and TotalPC—during the autumn season based on364

three different autumn pollen phenology calculation methods (Rs1, Rs2, and Rssig).365

Specifically, we examined the seasonal phenological simulations of these pollen366

concentrations under three different temperature conditions (TEM_Avg, TEM_Max,367

and TEM_Min) (Mo et al., 2023), with a primary focus on sDOY and eDOY.368

Additionally, the annual pollen production (Pannual) was simulated using the RF369

algorithm.370

3.1.1 Simulation of sDOY and eDOY based on autumn phenology model371

Table 2 presents the statistical indicators for simulating the phenology of372
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Artemisia using different phenological methods and temperature conditions. For373

simulating the sDOY for Artemisia, the Rs1, Rs2, and Rssig methods demonstrated high374

accuracy when TEM_Avg and TEM_Min were employed as temperature conditions.375

The R values for both the training and testing sets exceeded 0.45, with some R values376

in the testing set surpassing 0.7, and the RMSE values were relatively low. This377

indicates that these three methods effectively capture the phenological characteristics378

of Artemisia at the onset of autumn. Notably, the Rssig method, when using TEM_Avg379

as the condition, achieved R values of 0.53 and 0.80 for the training and testing sets,380

respectively, with RMSE values of 6.61 and 4.86, showing the best simulation381

performance. However, when TEM_Max was used as the temperature condition, the382

simulation performance of all three methods declined. The R value of the Rs1 method383

fell below 0.2, and the RMSE values were high, exceeding 8 days. Comparatively, the384

Rssig method performed slightly better but still yielded inferior results compared to385

TEM_Avg and TEM_Min, indicating lower model stability when predicting Artemisia386

sDOY with TEM_Max. For the simulation of Artemisia eDOY, the performance of the387

three methods was relatively close, with R values in the training and testing sets388

generally ranging from 0.3 to 0.5, and similar RMSE values. Among them, the Rs1389

method performed better when TEM_Min and TEM_Avg were used as temperature390

conditions, with R values of 0.66 and 0.51 in the testing set and RMSE values of 3.32391

days and 3.9 days, respectively. Compared to the Rs1 method, the Rs2 and Rssig392

methods were relatively weaker in predicting eDOY, indicating that the Rs1 method393

better captures the phenological trends of Artemisia at the end of autumn. Additionally,394

when comparing the simulation results of sDOY and eDOY, sDOY generally had395

higher R values, but eDOY had lower overall RMSE values.396

The statistical indicators for simulating the phenology of Chenopod under397

different phenological methods and temperature conditions are shown in Table S1. For398

the simulation of the sDOY for Chenopod, the Rs1 and Rs2 methods demonstrated399

high accuracy when using TEM_Min and TEM_Avg as temperature conditions. The R400

values for both the training and testing sets were around 0.5, and the RMSE values401

were relatively low. It is clear that using TEM_Avg as the temperature condition402
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yields higher R values and lower RMSE (in the case of the Rs1 method) compared to403

TEM_Min, indicating that these two methods effectively capture the phenological404

changes of Chenopod at the onset of autumn when using TEM_Avg as the405

temperature condition. However, when TEM_Max was used as the temperature406

condition, the simulation performance of all three methods declined, particularly for407

Rs1, which had an R value of -0.1 and an RMSE greater than 9 days in the testing set.408

The Rssig method, when using TEM_Avg, achieved an R value of 0.51 in the training409

set but only 0.28 in the testing set, with a high RMSE of 5.32, indicating poor model410

stability in this scenario. In contrast to TotalPC and Artemisia, the simulation of the411

eDOY for Chenopod was not satisfactory for any of the three methods. The R values412

for both the training and testing sets were all below 0.42. Particularly when using413

TEM_Max as the temperature condition, the simulation performance of all three414

methods was poor, with the testing set R value reaching only 0.1. This indicates that415

the models have limited ability to capture the end of the autumn season for Chenopod.416

Table S2 shows the phenological simulation statistical indicators of TotalPC417

under different phenological methods and temperature conditions. From the data in418

the table, it can be seen that for the simulation of the sDOY of TotalPC, all three419

phenological methods (Rs1, Rs2, and Rssig) performed with high accuracy (R > 0.5)420

and relatively low RMSE when using TEM_Min. This indicates that these three421

methods, when using TEM_Min, can effectively capture the trend of the sDOY of422

TotalPC during the autumn season. Meanwhile, the Rs1 method also showed good423

simulation performance when using TEM_Avg as the temperature condition, with R424

reaching 0.54 for both the training and testing sets. The Rssig method, using TEM_Avg,425

had good simulation performance in the training set, but the R in the testing set only426

reached 0.38. Compared to TEM_Min and TEM_Avg, the Rs2 and Rssig methods427

showed slightly inferior simulation performance when using TEM_Max as the428

temperature condition. Surprisingly, the Rs1 method's simulation of the sDOY showed429

a negative correlation when using TEM_Max, indicating the worst performance. For430

the simulation of the eDOY of TotalPC, the overall simulation performance was431

worse in terms of R compared to sDOY, but the RMSE values were generally better.432
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Specifically, using TEM_Avg as the temperature condition, the Rs2 and Rssig methods433

showed relatively good simulation performance and lower RMSE. However, the Rs2434

method performed much worse on the testing set compared to the training set, with435

the R on the testing set being only 0.32.436

Overall, different pollen types exhibit varying sensitivity to different437

phenological models and temperature conditions. TEM_Avg is generally the best438

temperature condition for predicting the sDOY of the three pollen types, providing439

higher R values and lower RMSE. This suggests that TEM_Avg can effectively440

predict the start of the autumn pollen season. At the same time, TEM_Min also441

performs well in predicting the sDOY of TotalPC and Artemisia, whereas TEM_Max442

generally shows the poorest prediction performance. For predicting eDOY, different443

pollen types show different sensitivities to temperature conditions, but overall, the444

models perform worse for eDOY compared to sDOY, especially in the simulation of445

Chenopod.446

Table2 Statistical indicators of Artemisia phenology under different phenological methods and447

temperature conditions448

Artemisia
Rs1(R) Rs2(R) Rssig(R) Rs1(RMSE) Rs2(RMSE) Rssig(RMSE)

Train Test Train Test Train Test Train Test Train Test Train Test

sD
O
Y

TEM_Min 0.47 0.66# 0.52* 0.77# 0.45 0.59# 6.61 5.93 6.29 4.99 6.63 6.57

TEM_Avg 0.45 0.63# 0.50 0.71# 0.53* 0.80# 6.67 6.18 6.78 5.44 6.61 4.86

TEM_Max 0.16 0.17 0.44 0.47 0.45 0.58# 8.87 9.58 8.21 7.51 6.52 6.32

eD
O
Y

TEM_Min 0.38 0.66# 0.38 0.44 0.36 0.37 4.19 3.32 4.19 3.97 4.02 4.07

TEM_Avg 0.46 0.51* 0.38 0.29 0.44 0.44 3.92 3.9 4.16 4.23 3.85 4.07

TEM_Max 0.31 0.43 0.05 0.07 0.33 0.27 5.59 4.65 6.84 6.47 3.98 4.32

Note: Bold represents the best model performance, # Indicates significance levels at P < 0.001, *449

Indicates significance levels at P < 0.005450

Based on the above discussion, we selected the most suitable phenological and451

temperature conditions for the three types of pollen (bold parts in Table 2 and Table452

S1-S2), simulated their sDOY and eDOY, and generated line and scatter plots (Fig. 3).453
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According to the line plots in Fig. 3 (top), the predicted results for Artemisia are the454

closest to the actual observed results. The predictions for TotalPC follow, while the455

predictions for Chenopod show some deviation, particularly in eDOY, indicating the456

need for a more suitable phenological model to accurately simulate the phenology of457

Chenopod. The scatter plots in Fig. 3 (bottom) illustrate that for sDOY predictions,458

Artemisia exhibited the strongest correlation between predicted and observed pollen459

phenology, with an R value of 0.69 and an RMSE of 5.77 days. In contrast, Chenopod460

had the lowest correlation, with an R value of 0.49 and an RMSE of 4.98 days. It can461

also be observed that higher R values are associated with higher overall RMSE,462

possibly due to the models being more sensitive to noise or outliers in the data, which463

increases the overall error. For high-correlation predictions like those for Artemisia,464

the model may be more affected by random fluctuations in the data, leading to465

increased error. Additionally, different pollen types may exhibit varying466

characteristics or response patterns in phenological models, resulting in a non-linear467

or inconsistent relationship between correlation and error. For eDOY predictions, the468

correlation between predicted and observed is highest for Artemisia, with an R value469

of 0.53 and an RMSE of 3.77 days. Chenopod has the lowest correlation for eDOY470

predictions, with an R value of only 0.26 and an RMSE of 4.57 days. The poorer471

performance in simulating eDOY for Chenopod may be due to lower data quality472

compared to Artemisia and TotalPC, as well as the smallest sample size, resulting in473

insufficient information and samples for the model to learn and predict accurately.474

Additionally, Table 3 shows the proportion of simulations with errors less than 5475

days and 3 days for sDOY and eDOY across the three pollen types. It can be seen that476

the proportion of eDOY simulations with errors less than 5 days and 3 days is higher477

than that for sDOY, indicating that eDOY simulations generally have better accuracy478

in terms of error. Specifically, for Chenopod eDOY simulations, although the R value479

is poor, 76.79 % of simulations have errors less than 5 days, and 55.36 % have errors480

less than 3 days, meaning that more than half of the eDOY simulations have errors481

within 3 days. This performance is comparable to the other two pollen types (64.41 %482

and 68.12 %, respectively). Compared to Mo et al. (2023), which simulated the spring483
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season start pollen season (SPS) using 17 phenological models, this study has slightly484

lower R values but much lower RMSE (around 11 days in their study). Li et al. (2022)485

used satellite data to simulate the SPS for Birch, Oak, and Poplar, achieving RMSE486

values between 4.26 and 8.77 days. Furthermore, this study's process-based487

phenological models for sDOY and eDOY show smaller errors and higher488

correlations compared to empirical linear models based solely on temperature used by489

Wozniak and Steiner (2017) and Zhang and Steiner (2022).490

Therefore, from an error analysis perspective, the simulation performance of491

Chenopod eDOY maintains a relatively low error while also demonstrating some492

stability, indicating that the autumn phenological model can accurately capture the493

seasonal variation trend of Chenopod. This makes the simulation results reliable.494

Overall, the autumn phenological models provide good simulation performance for495

the phenology of the three pollen types, laying a solid foundation for further analysis496

of pollen temporal characteristics.497

498

Fig. 3. Comparison of pollen sDOY and eDOY in autumn phenology: simulation vs. observation.499

Line plots of three different pollen sDOY and eDOY (a-c) and scatter plot comparison of the same500

(d-f). Specific comparisons for Artemisia (a, d), Chenopod (b, e), and TotalPC (c, f). The501

horizontal axis of (a-c) represents the sequential distribution of effective sample counts for the502

three types of pollen.503

Table3 Statistics on the proportion of errors between simulation and observation of three different504
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types of pollen sDOY and eDOY within 5 and 3 days505

DOY Artemisia (%) Chenopod (%) TotalPC (%)

<5D
sDOY 68.97 73.21 71.83

eDOY 86.44 76.79 82.61

<3D
sDOY 48.28 44.64 53.52

eDOY 64.41 55.36 68.12

Based on the temperature and SSH observational station data from the Beijing506

area, we interpolated the station data into a grid dataset with a horizontal resolution of507

0.1°. Using the selected autumn phenological models, we then performed gridded508

simulations of the sDOY and eDOY for three pollen types. This approach enabled us509

to map the regional distribution of autumn pollen sDOY and eDOY in Beijing from510

2006 to 2020, thereby laying the groundwork for further simulations of autumn pollen511

emissions potential.512

3.1.2 Simulation of annual pollen production based on RF513

The simulation of annual pollen production (Pannual, referring to the cumulative514

pollen concentration during each autumn pollen season) was conducted using the RF515

algorithm. The training data comprised all station-observed pollen data from Table 1516

and the corresponding meteorological observation data from Sect. 2.2.2. Four-fifths of517

the station data were randomly selected as the training set to train the RF algorithm,518

while the remaining one-fifth was used as the test set to validate the accuracy of the519

RF's Pannual simulation. Fig. 4 presents the scatter plots of observed versus simulated520

Pannual for three different pollen types (Artemisia, Chenopod, and TotalPC) based on521

the RF in the test set. The R between simulated and observed values for the three522

pollen types were all above 0.5, with Chenopod reaching 0.65. The calculated RMSE523

was around 0.2 × 106 Grains m-2 year-1 (with TotalPC having an RMSE of 2.12 × 106524

Grains m-2 year-1). This indicates that the prediction performance of the RF varies525

among different pollen types, with the best performance for Chenopod and the poorest526

for TotalPC annual production. Compared to the temperature-based empirical linear527
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models for Pannual by Zhang and Steiner (2022), the machine learning algorithm-based528

simulations in this study have smaller errors and higher correlations. Overall, the RF529

effectively simulates Pannual.530

Based on meteorological observation data from stations in and around Beijing,531

the station data were interpolated into a gridded dataset with a horizontal resolution of532

0.1°. Subsequently, all station data for each pollen type were used as the training set,533

with 12 stations in the gridded dataset cyclically selected as the test set for gridded534

simulations. This ultimately resulted in the spatial distribution of Pannual in Beijing535

from 2006 to 2020, laying the foundation for further simulation of autumn pollen536

emissions potential.537

538
Fig. 4. Scatter plots of simulated and observed annual pollen (Pannual) based on RF. Comparisons539

for Artemisia (a), Chenopod (b), and TotalPC (c).540

3.2 Simulation of Pollen Emissions in Beijing Area541

Based on the simulation results of autumn pollen phenology (sDOY, eDOY, and542

Pannual) from Sect. 3.1 and the pollen emissions potential parameterization method543

from Sect. 2.1.1, this study calculated the pollen emissions potential in the Beijing544

area. Fig. 5 and Fig. S5-S6 present a comparison between the observed and simulated545

average site values of Artemisia, Chenopod, and TotalPC in Beijing from 2006 to546

2020. In these figures, blue dots represent the actual daily observed pollen counts, and547

red lines represent the simulated pollen emissions. To assess the consistency between548

the simulated and observed data, we calculated R and RMSE. As illustrated in the549

figures, the simulated data closely match the actual observations in most years, with550

correlation coefficients around 0.9. Specifically, the Artemisia emissions in 2010,551

Chenopod emissions in 2016, and TotalPC emissions in 2007, 2009, 2018, and 2019552
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show R values as high as 0.98 and relatively low RMSE levels, demonstrating the553

high accuracy of this study in simulating pollen emissions potential.554

Additionally, the simulation results for sDOY and eDOY were also satisfactory,555

though there were slight advances in the start of the pollen season in certain years,556

such as 2017 and 2018 for Artemisia and Chenopod. While the peak pollen emissions557

simulations were highly accurate in most years, there were instances of558

overestimation and underestimation in some years. For example, the peak emissions559

of Artemisia in 2008, 2009, and 2020, Chenopod in 2007, and TotalPC in 2013 and560

2020 were significantly underestimated. Conversely, the peak simulations of TotalPC561

in 2011 and 2012 were slightly overestimated. This indicates that, despite the high562

accuracy of the annual pollen production simulations based on the RF, there is still563

room for improvement564

Overall, this study achieved significant results in simulating pollen emissions,565

demonstrating the potential application of autumn phenological models and the RF566

algorithm in simulating pollen emissions. However, to further enhance the accuracy of567

these simulations, future research needs to investigate and address the instances of568

overestimation and underestimation in greater detail.569

570

Fig. 5. Time series of observation and simulation of average Artemisia emissions at stations in571
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Beijing from 2006 to 2020. The red solid line represents the simulation of pollen emissions model,572

while blue dots depict observations573

To further investigate the spatial distribution of annual pollen production, we574

simulated the spatial distribution of annual Artemisia, Chenopod, and TotalPC575

production in Beijing from 2006 to 2020 (Fig. 6 and Fig. S7-S8). The results reveal576

significant spatial and temporal variations in annual pollen production. Spatially,577

Artemisia production is predominantly concentrated in the southeastern, northeastern,578

and certain northwestern regions of Beijing, with occasional occurrences in the central579

urban area during specific years (2008 and 2013). Chenopod production is highest in580

the southern part of Beijing and lowest in the northern parts and surrounding areas.581

Notably, from 2006 to 2008, the southern region exhibited high concentrations of582

Chenopod production. TotalPC is mainly distributed in the southeastern plains of583

Beijing, forming a strip-like pattern, while lower production is observed in the584

northwestern mountainous areas, indicating a possible influence of geographical585

location on TotalPC distribution. Temporally, the annual production of these three586

pollen types demonstrates distinct interannual variations. Artemisia shows little587

change in both distribution area and production concentration over time. In contrast,588

Chenopod and TotalPC exhibit a general declining trend, reaching their lowest levels589

between 2016 and 2018, which may be attributed to recent climatic changes,590

vegetation shifts, and human activities in the Beijing area.591

The simulation results for annual pollen production of Artemisia, Chenopod, and592

TotalPC in Beijing from 2006 to 2020, based on autumn phenology and the RF pollen593

emissions model, indicate pronounced spatial differences and temporal variation594

characteristics. Analyzing the spatial distribution and temporal variation of annual595

pollen production in Beijing enhances our understanding of the spatiotemporal596

patterns of pollen in the region, providing crucial insights for the control and597

mitigation of pollen allergies.598
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599

Fig. 6. Distribution of Artemisia in Beijing from 2006 to 2020 based on pollen emissions model600

To more intuitively reflect the temporal variation trends in the annual production601

of three types of pollen, we further analyzed the interannual variation of the regional602

average cumulative concentration of these pollen types during the autumn pollen603

season in Beijing from 2006 to 2020 (Fig. 7). The annual production of Artemisia,604

Chenopod, and TotalPC in Beijing averages between 0.8-1.6, 0.5-1.4, and 6.5-9 grains605

m-2 year-1, respectively. The annual production of Artemisia and Chenopod are606

notably similar. Over time, the regional annual production of these pollen types in607

Beijing exhibits significant fluctuations. Nonetheless, Artemisia remains relatively608

stable, whereas Chenopod and TotalPC production demonstrate a discernible609

declining trend, particularly in TotalPC. The annual production of all three pollen610

types reached a local nadir in 2012. Following a surge in 2013, production steadily611

declined from 2014 to 2017, reaching the lowest levels observed in nearly 15 years612

(with TotalPC being the lowest in 2018). Subsequently, from 2018 to 2020, an613

increasing trend was observed. Overall, the annual pollen production in Beijing614

appears to follow a minor cyclical pattern, intimately linked to the impacts of climate615

change. Building on this analysis, it suggest that interannual variations in pollen616

production may be influenced by multiple climate-related factors, such as temperature,617
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precipitation, and SSH. These climatic elements can influence the phenology and618

growth cycles of pollen-producing plants, thereby affecting their annual production619

levels. For example, higher temperatures may lead to earlier flowering times,620

potentially shifting the timing and duration of pollen release. Variations in621

precipitation impact soil moisture, which can affect plant health and, consequently,622

pollen output. The observed trends in Beijing’s pollen production, including the623

declining patterns in Chenopod and TotalPC, could correspond to climate shifts that624

are less favorable for these species. Thus, these fluctuations in pollen production625

underscore the sensitivity of pollen phenology to both local and broader climate626

variations.627

To further explore the meteorological factors influencing average annual pollen628

production in Beijing, we selected six meteorological variables during the autumn629

pollen season from 2006 to 2020 for temporal and regional average calculations.630

These factors include maximum temperature (TEM_Max), average temperature631

(TEM_Avg), minimum temperature (TEM_Min), average relative humidity632

(RHU_Avg), sunshine hours (SSH), and precipitation time (PRE_Time_0808). The633

annual variations of these meteorological factors were analyzed, and their correlations634

with annual pollen production variations were calculated (Fig. 8).635

The trends in annual variations of each meteorological factor and the calculated636

correlations reveal that for Artemisia, TEM_Min and RHU_Avg have a significant637

positive correlation with its production, especially RHU_Avg, which shows a638

correlation of 0.79. This indicates that an increase in relative humidity promotes639

Artemisia production. Conversely, SSH has a correlation of -0.8 with Artemisia,640

indicating that longer sunshine hours inhibit its production. Meanwhile, TEM_Avg641

and PRE_Time_0808 have minor promoting effects on Artemisia production, while642

TEM_Max has a slight inhibitory effect. For Chenopod, TEM_Min is the most643

significant promoting factor, while SSH has an inhibitory effect, although its negative644

correlation is lower than that for Artemisia, indicating a limited inhibitory effect on645

Chenopod production. For TotalPC, similar to Artemisia, increases in TEM_Min and646

RHU_Avg promote production, while increases in SSH and TEM_Max inhibit647
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production. Notably, the three types of pollen reached local minimum concentrations648

in 2012, 2017, and 2018, when TEM_Min and SSH respectively reached local649

minimum and maximum values, further demonstrating the promoting effect of650

TEM_Min and the inhibitory effect of SSH on annual average pollen concentration.651

Rahman et al. (2020) and Lei et al. (2023) indicated that temperature is the main652

factor affecting the interannual variation of pollen and is positively correlated with653

pollen production. Our findings are largely consistent with these conclusions,654

although they did not consider the effect of SSH on interannual changes in pollen655

concentration. In summary, the annual production of pollen in Beijing is significantly656

influenced by meteorological conditions, particularly temperature, relative humidity,657

and sunshine hours. Different meteorological factors exhibit distinct promoting and658

inhibiting effects on pollen production.659

660

Fig. 7. Time series variation chart of regional average annual production of three types of pollen in661

Beijing from 2006 to 2020. Due to the different magnitudes of pollen concentrations, the left662

y-axis represents the concentrations of Artemisia and Chenopod, while the right y-axis represents663

TotalPC. Plotting the time series distributions of the three pollen concentrations on a single graph664

allows for a clearer observation of the trends in their variations over time.665
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666
Fig. 8. Time series variation chart of average values of different meteorological factors in Beijing667

from 2006 to 2020. (The correlation coefficient between the average meteorological factors and668

the regional average annual production of three types of pollen is calculated in the figure)669

Fig. 9 and Fig. S9-S10 illustrate the spatial distribution of the average670

concentrations of Artemisia, Chenopod, and TotalPC during the autumn pollen season671

in Beijing from 2006 to 2020. During this period, the concentration of all three pollen672

types initially increases and then decreases. The pollen season begins around August673

10 each year and concludes around September 25. The peak concentrations for674

Artemisia and Chenopod pollen occur around August 30, while the peak concentration675

for TotalPC is observed around September 5. The entire pollen season lasts676

approximately 45 days.677

Regarding the average pollen concentration distribution, Artemisia is primarily678

concentrated in the southwest, northeast, and parts of the northwest of Beijing, with679

lower concentrations in the southeast. In contrast, Chenopod and TotalPC are mainly680

distributed in the southeastern plains. The maximum average concentrations for681

Artemisia, Chenopod, and TotalPC reach 81.1×103 Grains m-2 d-1, 42.0×103 Grains682

m-2 d-1, and 351.8×103 Grains m-2 d-1, respectively.683
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684

Fig. 9. Temporal and spatial distribution of Artemisia in Beijing (average from 2006 to 2020)685

3.3 Simulation of Pollen Emissions in Regional Climate Models686

To evaluate the pollen emissions model based on autumn pollen phenology and687

RF, this study integrates the offline calculated pollen emissions into the regional688

climate model RegCM. By comparing the simulated atmospheric pollen689

concentrations with data from ground-based pollen monitoring stations, we assess the690

performance of this pollen emissions potential model.691

3.3.2 Evaluation of pollen simulation accuracy in RegCM692

Fig. 10 and Fig. S11-S12 depict the time series distribution of the concentrations693

of three pollen types simulated by the RegCM compared to observed concentrations694

from 2006 to 2020. The RegCM successfully captures the temporal variation trends of695

pollen concentrations during the autumn pollen season, generally showing an initial696

increase followed by a decrease. Daily pollen concentrations fluctuate significantly697

due to meteorological factors such as temperature, precipitation, and RH, as well as698

key physical processes like advection, convection, and dry and wet deposition.699

Overall, the simulated pollen concentrations by the RegCM align well with the700

observed trends, though some discrepancies remain.701

In the simulation of Artemisia (Fig. 10), the sDOY and pollen production vary702

annually due to meteorological conditions and key physical processes. The annual703

peak pollen concentrations generally range from 20-70×10³ Grains m-2 d-1, while in704

2019-2020, observed pollen concentrations exceeded 100×10³ Grains m-2 d-1, with705

notable spikes and drops likely due to abrupt meteorological changes or possible706
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issues with the quality of observation data. The RegCM accurately simulates the707

sDOY and eDOY, displaying a similar frequency to observations. For peak pollen708

simulations, years such as 2006, 2007, 2010, 2012, 2015, and 2016 show good709

performance, with R above 0.7, particularly in 2006 and 2016, where R exceeds 0.85710

and RMSE is only 4×10³ Grains m-2 d-1. However, for other years, peak simulations711

are underestimated to varying degrees. For 2011, although the trend is consistent, the712

observed peak is near 50×10³ Grains m-2 d-1, while the simulated peak is only 12×10³713

Grains m-2 d-1, indicating a significant underestimation. This underestimation is also714

noticeable in 2008, 2013, and 2017-2020. In 2019, although the peak concentrations715

align, the trend correlation is low (R=0.49), and RMSE is high. The variability in716

observation station data quality and quantity could influence these results, with some717

years having fewer than six effective stations (minimum of two), impacting the718

average and peak values. Box plots (Fig. 11) reveal that Artemisia concentrations in719

2019-2020 are more dispersed, suggesting possible anomalies in observation data.720

Overall, the R for RegCM simulations ranges from 0.69 to 0.86 (except 2019), with721

RMSE between 3.05-15.38×10³ Grains m-2 d-1.722

For Chenopod simulations (Fig. S11), the overall performance is similar to723

Artemisia. The annual peak concentrations are generally lower, around 20-50 × 10³724

Grains m-2 d-1, except for 2007, which reaches 120 × 10³ Grains m-2 d-1. The years725

2006, 2008-2009, 2012-2013, 2015, and 2019 show good simulation performance,726

accurately reflecting peak concentrations, particularly in 2016 (R=0.84,727

RMSE=3.11×10³ Grains m-2 d-1). However, 2007, 2010, 2017-2018, and 2020 exhibit728

underestimation, with the exceptionally high observed concentrations in 2007 likely729

causing the model’s underestimation. Fig. 11 indicates increasing peak concentrations730

in recent years (2017-2020) for both Artemisia and Chenopod, with room for731

improvement in peak simulations by the RegCM. Despite the lower concentrations732

compared to spring pollen, autumn pollen significantly impacts pollen-induced733

diseases (pollinosis), prompting more attention and efforts in pollen management,734

which contributes to the decreasing trend in monitored pollen concentrations.735

TotalPC generally exhibits higher concentration levels compared to Artemisia736
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and Chenopod (Fig. S12). Annual peak TotalPC can reach 150-500×10³ Grains m-2 d-1,737

with the highest observed concentration in 2020 at 745×10³ Grains m-2 d-1. Due to the738

higher quality and completeness of TotalPC monitoring data, the simulation results739

are more accurate, with R generally above 0.76 (except 2015, R=0.64). Over 60 % of740

the years have R above 0.8, with fewer years showing significant underestimation of741

peak concentrations (e.g., 2013). This highlights the critical role of high-quality742

pollen monitoring data for accurate simulations. High-quality data enable precise743

capturing of pollen concentration trends and peaks, providing robust support for744

regional pollen phenology research.745

In summary, the RegCM demonstrates high accuracy in simulating the746

concentrations of the three pollen types, especially TotalPC. Accurate simulations of747

pollen concentrations and peaks enhance the effectiveness of pollen emissions models,748

improve health risk warnings, and provide a scientific basis for urban planning and749

environmental management.750

751
Fig. 10. Time-series distribution of Artemisia under RegCM simulation compared to observations752

(averaged across effective pollen monitoring sites). The red solid line represents model753

simulations, while blue dots depict observations754



31

755

Fig. 11. Box plot statistics of pollen concentration under RegCM simulation compared to observed756

values. Each subplot features box plots denoted by red dashed lines: on the left side, representing757

Artemisia and Chenopod concentrations with values referenced on the left y-axis; on the right side,758

depicting TotalPC with values referenced on the right y-axis. In each box plot, from bottom to top,759

the box and whiskers indicate the minimum, lower quartile, median, upper quartile, and maximum760

values (extending up to 1.5 times the interquartile range, IQR). Black circles denote outliers761

exceeding 1.5 times IQR. Orange numbers annotated in the subplot indicate the maximum values762

unseen within the box, while black numbers denote unseen outliers763

4. Conclusion764

This study utilized years of autumn pollen concentration data from Beijing,765

alongside meteorological and land use data, to develop an autumn pollen emissions766

model using autumn phenology and the RF algorithm. We conducted an in-depth767

analysis of the spatiotemporal distribution characteristics of Artemisia, Chenopod, and768

TotalPC in Beijing and examined their relationships with meteorological factors.769

Finally, we validated the accuracy and reliability of the constructed pollen emissions770

model using the RegCM. Through a series of simulations and validations, several771

significant conclusions and findings were obtained.772

(1) Construction of the Pollen Emissions Model: By incorporating phenology773
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and the RF algorithm, we calculated autumn pollen emissions, thereby avoiding the774

poor simulation results of sDOY, eDOY, and annual pollen production based solely on775

temperature linear simulations. The study demonstrates that using a phenology model776

for sDOY and eDOY simulations captures the temporal variations of pollen release777

more accurately, effectively reducing simulation errors. The RF algorithm excels in778

handling multivariate and nonlinear relationships, significantly improving the779

simulation accuracy of the pollen emissions model. The optimized annual pollen780

production simulations better reflect seasonal changes in pollen, showcasing the781

applicability and reliability of the RF algorithm in processing meteorological and782

environmental data.783

(2) Spatiotemporal Distribution Characteristics of Pollen Concentration: The784

study found significant spatial and temporal variations in pollen concentration in785

Beijing. The autumn pollen peak occurs between DOY 215-280, with considerable786

differences in peak times and concentrations among monitoring stations. These787

differences are closely related to the vegetation types, topographical features, and788

local climatic conditions around each station. Optimized simulations of pollen789

concentration data further reveal the spatiotemporal variation patterns of pollen790

concentrations.791

(3) Impact of Meteorological Factors on Annual Pollen Emissions:792

Meteorological factors significantly influence pollen concentrations. The study793

reveals that temperature, RH, and SSH are crucial factors affecting annual pollen794

emissions in Beijing. There is a positive correlation between temperature and RH with795

annual pollen emissions, while SSH has a negative correlation. The response of796

different pollen types to meteorological factors varies due to their distinct biological797

characteristics and ecological environments. This comprehensive analysis provides a798

scientific basis for predicting future changes in pollen concentrations.799

(4) Validation of Pollen Emissions Models Using the RegCM: The RegCM800

accurately reflects the daily impact of meteorological factors on pollen emissions.801

Key physical processes, such as advection, convection, and wet and dry deposition,802

play essential roles in simulating the atmospheric dispersion and deposition of pollen.803
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This study validated the accuracy and reliability of the optimized emission potential804

models for three pollen types using RegCM, effectively describing the daily variations805

in pollen concentrations influenced by meteorological factors and key physical806

processes. Furthermore, the pollen emissions model developed in this study can be807

applied to other regions, offering potential for wider application. These808

comprehensive results provide essential scientific support for pollen monitoring,809

allergy prevention, and the selection of urban greening plants. Future research can810

extend these methods and findings to larger-scale pollen emissions simulations and811

forecasts, enhancing responses to pollen-related public health issues.812

(5) Limitations and Future Prospects: Despite significant progress in813

constructing the pollen emissions model and analyzing the spatiotemporal distribution814

of pollen concentrations, some limitations persist. For broader application, more815

extensive observation stations are needed to verify the model's accuracy, considering816

the limited spatiotemporal resolution of current pollen concentration data. Simulating817

specific species' pollen concentrations requires detailed plant functional type818

distributions, which significantly impact the spatial distribution of pollen emissions819

potential. The current research utilizes static plant functional type data, but dynamic820

data would better reflect the impact of land use changes on pollen climates over821

various temporal and spatial scales. Additionally, the complex relationship between822

meteorological factors and pollen concentrations suggests that future research could823

introduce more environmental and meteorological variables and apply advanced824

machine learning algorithms to enhance the model's predictive capability.825

In conclusion, This study successfully constructed a pollen emissions potential826

model, systematically analyzed the spatiotemporal distribution of different pollen827

types in autumn in Beijing, and explored their relationship with meteorological factors.828

The model's accuracy and stability were validated using the RegCM, yielding notable829

research results. Future research can further validate and extend this approach on a830

larger scale and with higher resolution, providing comprehensive scientific support831

for ecological environment protection and public health.832
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