

Construction and Application of a Pollen Emissions Model based on Phenology and Random Forests

3 Jiangtao Li^{a,b}, Xingqin An^{a,*}, Zhaobin Sun^a, Caihua Ye^c, Qing Hou^a, Yuxin Zhao^a, Zhe
4 Liu^a

⁵ ^a State Key Laboratory of Severe Weather, Chinese Academy of Meteorological
⁶ Sciences, Beijing, 100081, China

⁷ ^b Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric
⁸ Sciences, Fudan University, Shanghai, 200438, China

⁹ ^c Meteorological Service Center of Beijing Meteorological Bureau, Beijing, 100089,
¹⁰ China

11 * Corresponding author: Xingqin An

12 Email address: anxq@cma.gov.cn

13 **Abstract:** In recent years, the intensification of global climate change and
14 environmental pollution has led to a marked increase in pollen-induced allergic
15 diseases. This study leverages 16 years of continuous pollen monitoring data,
16 alongside meteorological factors and plant functional type data, to construct a pollen
17 emissions model using phenology and random forests (RF). This model is then
18 employed to simulate the emission characteristics of three primary types of autumn
19 pollen (Artemisia, Chenopod, and total pollen concentration), elucidating the emission
20 patterns throughout the seasonal cycle in Beijing. Phenology and RF precisely
21 simulate the start and end day of year of pollen, as well as the annual pollen
22 production. There are significant spatiotemporal differences among the three types of
23 pollen. On average, pollen dispersal begins around August 10, peaks around August
24 30, and concludes by September 25, with a dispersal period lasting approximately 45
25 days. Furthermore, the relationship between pollen emissions and meteorological
26 factors is investigated, revealing that temperature, relative humidity (RH), and
27 sunshine hours (SSH) significantly influence annual pollen emissions. Specifically,
28 temperature and RH exhibit a strong positive correlation with annual pollen emissions,

29 while SSH shows a negative correlation. Different pollen types display varied
30 responses to meteorological factors. Finally, the constructed pollen emissions model is
31 integrated into **Regional Climate Model (RegCM)** and validated using pollen
32 observation data, confirming its reliability in predicting pollen concentrations. This
33 study not only enhances the understanding of pollen release mechanisms but also
34 provides scientific evidence for the selection and planting of urban greening plants.

35 **Keywords:** Pollen Emissions Model, Phenology, Random Forests, RegCM

36 1. Introduction

37 Pollen are microscopic particles, typically ranging from 5 to 100 micrometers in
38 diameter, released by plants to transfer male genetic material for reproduction. These
39 particles, significant allergens, disperse into the atmosphere via wind, contributing to
40 atmospheric particulate matter, interacting with clouds and radiation, and playing a
41 pivotal role in plant fertilization and gene dissemination (Damialis et al., 2011; Lei et
42 al., 2023). Additionally, pollen is linked to allergic diseases such as allergic rhinitis
43 and asthma and may even elevate the risk of gastrointestinal and neurological
44 disorders (Guzman et al., 2007; Krishna et al., 2020; Chen et al., 2021; Stas et al.,
45 2021). In China, the incidence of pollen allergies has surged from 5 % to 17.8 % and
46 continues to rise rapidly (Lou et al., 2017). Pollen-induced respiratory allergic
47 symptoms, such as allergic rhinitis (AR), affect up to 30 % of the global population,
48 particularly children under 18 (Mir et al., 2012; Wang et al., 2016; Zhang and Steiner,
49 2022; Zhao et al., 2023). It is generally believed that these respiratory allergic
50 diseases are more prevalent in developed countries (Emanuel, 1988; Ibrahim et al.,
51 2021). However, the International Study of Asthma and Allergies in Childhood
52 (ISAAC) global reports indicate that these diseases are equally or even more prevalent
53 in some developing countries compared to developed ones (Asher et al., 2006; Mallol
54 et al., 2013). Children, as a vulnerable population, are particularly susceptible to AR
55 and its complications (Cingi et al., 2017). Without effective early intervention, allergic
56 symptoms in children can persist throughout their lives, imposing a substantial
57 economic burden on families and healthcare systems (Ahmed et al., 2018) and

58 potentially posing a life-threatening risk (Schmidt, 2016). In China, a densely
59 populated developing country, the proportion of pediatric allergic diseases within the
60 spectrum of childhood illnesses is increasing annually, leading to significant
61 economic and health losses due to medical expenses, impacts on human life, and
62 premature death (National Cooperative Group on Childhood Asthma, 1993, 2003,
63 2013). Furthermore, since pollen release is closely linked to environmental factors,
64 climate change may influence pollen release, thereby affecting the incidence of
65 allergic diseases (Wang et al., 2018; Bishan et al., 2020). In recent decades, the pollen
66 season has exhibited a trend of becoming longer and more intense, which may
67 exacerbate the conditions of allergic rhinitis and asthma (D'Amato et al., 2016; Lake
68 et al., 2017a; Aerts et al., 2020; Kurganskiy et al., 2021).

69 With the improvement in living standards and heightened health awareness,
70 airborne pollen diseases, such as hay fever, have garnered widespread attention. As a
71 typical seasonal epidemic (Yin et al., 2005; Lei et al., 2023), hay fever significantly
72 impacts global health. Existing studies have demonstrated that the incidence of
73 airborne pollen diseases is closely associated with the concentration of airborne
74 allergenic pollen, particularly during peak pollen seasons (Frei and Gassner, 2008;
75 Bastl et al., 2018; Kurganskiy et al., 2021). Due to the regional nature of airborne
76 pollen, the types and concentrations of pollen vary geographically. Although the
77 annual variation trend of total pollen amount generally exhibits a similar bimodal
78 pattern, increasing annual climatic variability amidst global warming has led to
79 significant changes in the pollen seasons of various plants, with discrepancies of more
80 than 20 days in some years. This variability poses practical challenges for conducting
81 pollen monitoring research and providing public meteorological services (He et al.,
82 2001; Gu and Liao, 2003; Bai et al., 2009; Lei et al., 2023). Therefore, studying
83 pollen concentration and distribution is crucial for understanding the pathogenesis of
84 airborne pollen diseases, conducting effective pollen monitoring research, and
85 delivering accurate public meteorological services.

86 However, compared to regions such as Europe and the United States, China faces
87 significant challenges in pollen monitoring due to fewer monitoring stations, shorter

88 monitoring histories, and a lower prevalence of automated facilities. These limitations
89 have resulted in China's pollen simulation research remaining primarily at the level of
90 simple statistical methods, focusing only on basic statistical studies of the impact of
91 meteorological conditions on pollen concentration. In contrast, numerical models are
92 rarely employed for regional simulation of pollen concentration. This situation
93 reflects the relative lag in China's pollen monitoring and research system, hindering a
94 deeper understanding of pollen dispersion patterns and the scientific study of related
95 health issues (Wu et al., 2011; Meng et al., 2016; Guan et al., 2021; Gao et al., 2022).

96 Although numerical models play a crucial role in simulating pollen concentration,
97 they require a clear understanding of pollen emissions. Numerical models are broad
98 mathematical frameworks used to simulate various physical processes through
99 numerical approximations, including atmospheric dynamics and climate systems. In
100 contrast, a pollen emission model specifically estimates the release and distribution of
101 pollen into the atmosphere, taking into account factors such as pollen phenology,
102 vegetation types, and environmental conditions. Pollen emissions are influenced not
103 only by meteorological factors but also by vegetation types, land use changes, and
104 human activities (Sofiev et al., 2006; Wozniak and Steiner, 2017; Zhang and Steiner,
105 2022; He et al., 2023; Lei et al., 2023). Particularly in the context of accelerated
106 urbanization, the selection and layout of urban greening plants have a significant
107 impact on pollen emissions. The complex interactions of these factors pose significant
108 challenges to accurately simulating pollen emissions.

109 Since 2004, various pollen prediction models have been developed to enhance
110 the accuracy of pollen emission estimates. Helbig et al. (2004) introduced a
111 parameterization method for calculating pollen release and resuspension fluxes,
112 implemented in the KAMM/DRAIS mesoscale model, although it relied on
113 assumptions due to limited observational data. Subsequently, Sofiev et al. (2006)
114 analyzed the feasibility of large-scale atmospheric migration of allergenic pollen,
115 validating existing dispersion models and providing key parameterizations for dry and
116 wet deposition, which were applied in Finland's SILAM system. However, this direct
117 simulation of pollen concentration based on numerical models has significant

118 complexity and uncertainty. Wozniak and Steiner (2017) developed the Pollen
119 Emission Prediction Model (PECM1.0), which simulates seasonal pollen counts based
120 on geography, vegetation, and meteorology. The model establishes empirical
121 relationships between historical average temperatures and pollen season timings for
122 four vegetation types. It captures up to 57% of seasonal variations, allowing for
123 analysis of climate change impacts on wind-driven pollen emissions. Building on this,
124 Zhang and Steiner (2022) introduced PECM2.0, which incorporates precipitation and
125 CO₂ factors while refining the linear relationship between annual pollen production
126 and temperature, ultimately predicting the temperature effects by the end of the
127 century. However, the linear relationships based on historical temperatures have
128 significant uncertainties, limiting their applicability for regional studies. Therefore,
129 the challenge of constructing a pollen emission model that is better suited for regional
130 scales and has broader applicability warrants careful consideration and further
131 research. Such advancements could significantly enhance our understanding of pollen
132 dynamics and improve the accuracy of related health risk assessments.

133 Given the importance of accurately modeling pollen emissions, validation of
134 numerical models for pollen emissions is necessary. These models not only provide a
135 framework for simulating atmospheric processes but also allow for a more nuanced
136 understanding of how various factors influence pollen dynamics. RegCM is the
137 pioneering regional climate model system used for climate downscaling, originating
138 in the late 1980s and early 1990s at the National Center for Atmospheric Research
139 (NCAR) in the USA. It has since undergone several development iterations and is
140 currently maintained at the International Centre for Theoretical Physics (ICTP) in
141 Italy. This open-source system is widely utilized by numerous research teams,
142 forming an extensive network for regional climate research. The model can be applied
143 globally and is evolving into a fully coupled regional earth system model,
144 incorporating ocean, lake, aerosol, desert dust, chemistry, hydrology, and land surface
145 processes. The version used in this study is RegCM4.7.1.

146 Therefore, this study constructs a pollen emissions model for the Beijing area,
147 leveraging pollen concentration and meteorological monitoring data, combined with

148 pollen phenology and the RF algorithm. It conducts a simulation study on the
149 emission phenology of three types of pollen in Beijing (Artemisia, Chenopod, and
150 total pollen concentration) to calculate the pollen emissions potential. The study also
151 investigates the seasonal and spatiotemporal distribution characteristics of pollen in
152 Beijing and its potential correlations with meteorological factors and climatic
153 conditions. Additionally, the constructed pollen emissions parameterization method is
154 applied to the RegCM and evaluated for accuracy using 15 years of pollen
155 observation data. This comprehensive study will enhance the understanding of pollen
156 sources, provide innovative guidance for the selection and planting of greening plants,
157 and promote sustainable development in ecological protection and urban planning.

158 **2. Methodology**

159 *2.1 Model description*

160 2.1.1 Parameterization method for pollen emissions

161 This study's pollen emissions potential integrates geographical parameters,
162 vegetation types, and meteorological data, and incorporates autumn pollen phenology
163 and RF to enhance the simulation of pollen phenology (Wozniak and Steiner, 2017;
164 Zhang and Steiner, 2022). This approach is used to predict pollen concentration and
165 distribution within the seasonal cycle. The specific calculation formula is as follows:

$$166 E_i(t) = f_i \bullet p_{annual,i} \bullet e^{-\frac{(t-\mu)^2}{2\delta^2}} \quad (1)$$

167 In the formula, $E_i(t)$ represents the pollen emissions potential for pollen type i on
168 day t of the year (DOY), t represents a specific day of the year, and i represents the
169 i -th type of pollen. f_i represents the vegetation land cover fraction, which is the
170 percentage of different vegetation types within a unit area, measured in %. $P_{annual,i}$
171 represents the production factor of the i -th vegetation type, which is the number of
172 pollen grains released during the pollen season, measured in $Grain m^{-2} year^{-1}$. In this
173 study, $P_{annual,i}$ is calculated based on the RF algorithm (Sect. 2.1.3). $e^{-\frac{(t-\mu)^2}{2\delta^2}}$
174 represents the phenological evolution of pollen emissions, controlling the pollen

175 release process. The formula indicates that pollen emissions during the pollen season
 176 follows a Gaussian distribution, where μ and δ are the mean and standard
 177 deviation of the Gaussian distribution. These parameters are calculated from sDOY
 178 (start Day of Year) and eDOY (end Day of Year) of the pollen season, as follows:
 179

$$\mu = \frac{sDOY + eDOY}{2} \quad (2)$$

$$\delta = \frac{eDOY - sDOY}{a} \quad (3)$$

181 In this context, sDOY and eDOY are optimized using autumn pollen phenology
 182 (Sect. 2.1.2). The parameter a represents a fitting parameter that explains the
 183 conversion between the empirical phenological dates based on pollen count thresholds
 184 and the equivalent width of the emission curve. In this study, the value of a is set to 4.

185 This equation can be applied to a specific type of pollen or to the calculation of
 186 pollen concentration over the entire pollen season, depending mainly on the land
 187 cover type. The emission can be calculated offline using this equation or applied in
 188 online calculations.

189 2.1.2 Autumn pollen phenology model

190 In this study, we used three different calculation methods (Rs_1 , Rs_2 , Rs_{sig}) for the
 191 autumn phenology model to simulate sDOY and eDOY of autumn pollen (Meier &
 192 Bigler, 2023). Each model is related to temperature and SSH. The specific calculation
 193 formulas are as follows:

$$Rs_1 = \begin{cases} (T_{base} - T_i)^x \times (L_i / L_{base})^y, & T_i < T_{base} \wedge L_i < L_{base} \\ 0, & T_i \geq T_{base} \vee L_i \geq L_{base} \end{cases} \quad (4)$$

$$Rs_2 = \begin{cases} (T_{base} - T_i)^x \times (1 - L_i / L_{base})^y, & T_i < T_{base} \wedge L_i < L_{base} \\ 0, & T_i \geq T_{base} \vee L_i \geq L_{base} \end{cases} \quad (5)$$

$$Rs_{sig} = \frac{1}{1 + e^{a(T_i \times L_i - b)}} \quad (6)$$

$$\sum_{t_0}^{t_n} Rs_i \geq Y \quad (7)$$

198 In the above equations, Rs_1 , Rs_2 and Rs_{sig} represent three different autumn
 199 phenology model categories. T_i and L_i represent the temperature and SSH on a given

200 day, respectively, while T_{base} and L_{base} represent the thresholds for temperature and
201 SSH, respectively. In the Rs_1 and Rs_2 models, when the temperature and SSH are
202 below the threshold or the date exceeds a fixed DOY, Rs starts accumulating. In the
203 Rs_{sig} model, temperature and SSH accumulate inversely in an exponential form. The
204 day t_n , when the cumulative amount exceeds the threshold Y , represents the final
205 simulated pollen start/end date. t_0 represents the start day of accumulation, which is
206 the first day when $T_i < T_{base}$ and $L_i < L_{base}$. The parameters that need to be adjusted are Y ,
207 T_{base} , L_{base} , x , y and *start_day*. In this study, the simulated annealing (**SA**) algorithm is
208 used for parameter adjustment. The principle of the **SA** is to simulate the random
209 optimization process of the annealing process in solid-state physics, which can accept
210 non-optimal solutions with a certain probability to avoid falling into local optima and
211 eventually achieve the global optimum.

212 2.1.3 Random Forests

213 Random Forests (RF) is an ensemble learning algorithm introduced by Breiman
214 (2001) for classification and regression tasks. This algorithm enhances model
215 prediction performance and robustness by constructing multiple decision trees and
216 combining their outputs. The core principle involves drawing multiple sample sets
217 with replacement from the original training set, training a decision tree for each
218 sample set, and randomly selecting a subset of features at each node split to reduce
219 correlation between the trees. Ultimately, RF generates the final prediction by
220 averaging (for regression) or voting (for classification) the outputs of these trees. The
221 advantages of this method include high prediction accuracy, strong resistance to
222 overfitting, suitability for high-dimensional data, and efficient training processes. The
223 RF algorithm has been widely applied across various fields (Virro et al., 2022; Li et
224 al., 2023; Chen et al., 2024; Valipour Shokouhi et al., 2024).

225 In this study, the RF algorithm is employed to simulate annual pollen production.
226 Each pollen dataset is divided into training and testing sets in a 4:1 ratio, with the
227 training set used for model training and the testing set for accuracy validation.
228 Additionally, a grid search with cross-validation is applied to optimize the
229 hyperparameters of each estimator. Key parameters for RF adjustment include

230 n_estimators, max_depth, min_samples_split, and min_samples_leaf. Hyperparameter
 231 optimization is a crucial step in enhancing model performance.

232 2.1.4 Implementation of pollen emissions in RegCM

233 In this model, a pollen emissions model based on phenology and RF calculates
 234 the emission potential of different types of pollen offline, and then incorporated into
 235 the RegCM model. The calculation of pollen concentration in this model follows the
 236 method of Sofiev et al. (2013), with the formula as follows:

$$237 E_{pollen,i}(t) = E_i(t) \bullet f_w \bullet f_r \bullet f_h \quad (8)$$

$$238 f_w = 1.5 - \exp(-(u_{10} + u_{conv}) / 5)$$

$$f_r = \begin{cases} 1, pr < pr_{low} \\ \frac{pr_{high} - pr}{pr_{high} - pr_{low}}, pr_{low} < pr < pr_{high} \\ 0, pr > pr_{high} \end{cases} \quad (9)$$

$$f_h = \begin{cases} 1, rh < rh_{low} \\ \frac{rh_{high} - rh}{rh_{high} - rh_{low}}, rh_{low} < rh < rh_{high} \\ 0, rh > rh_{high} \end{cases}$$

239 Where f_w , f_r and f_h represent the wind, precipitation, and RH factors,
 240 respectively, influencing pollen emissions concentration. f_w is exponentially related to
 241 the 10m wind speed u_{10} and vertical turbulent wind speed u_{conv} . pr and rh represent
 242 precipitation and RH. When precipitation is below the threshold pr_{low} , the
 243 precipitation factor is 1. When precipitation exceeds the threshold pr_{high} , the factor is 0.
 244 When precipitation is between these thresholds, the factor is calculated as the ratio of
 245 the difference between the high threshold and precipitation to the difference between
 246 the thresholds, with default values $pr_{low}=10^{-5}$ mm and $pr_{high}=0.5$ mm. Similarly, the
 247 RH factor is related to RH and its thresholds, with default values $rh_{low}=50$ % and
 248 $rh_{high}=80$ %. These factors explain the impact of wind, precipitation, and humidity on
 249 pollen emissions. Given the significant influence of precipitation and RH on pollen
 250 emissions, this study adjusts pr_{high} and rh_{high} values to 1 mm and 90 %, respectively.
 251 Higher thresholds can prevent excessive suppression of pollen emissions under
 252 frequent precipitation and high humidity conditions, thus more accurately simulating

253 actual pollen concentration changes and better adapting the model to different climatic
254 conditions.

255 Moreover, the RegCM includes the pollen tracer transport equation (Solomon et al.
256 2006), as follows:

$$\frac{\partial \chi}{\partial t} = \bar{V} \cdot \nabla \chi + F_H + F_V + T_C + S - R_{Wls} - R_{Wc} - D_d \quad (10)$$

258 Where χ represents the tracer, F_H and F_V represent horizontal and vertical
259 diffusion, T_C represents convective transport, R_{Wls} and R_{Wc} represent large-scale and
260 convective precipitation wet removal processes, respectively, and D_d represents dry
261 removal processes. This transport equation comprehensively considers various
262 physical processes and removal mechanisms of pollen in the atmosphere, allowing the
263 simulation of the entire process from pollen release to atmospheric dispersion and
264 deposition. This provides a foundation for fully describing the spatial distribution and
265 temporal evolution of pollen in the atmosphere, which is crucial for studying pollen
266 dispersion in the air, determining the spatial distribution of pollen concentration, and
267 predicting future changes in pollen concentration.

268 2.2 Data

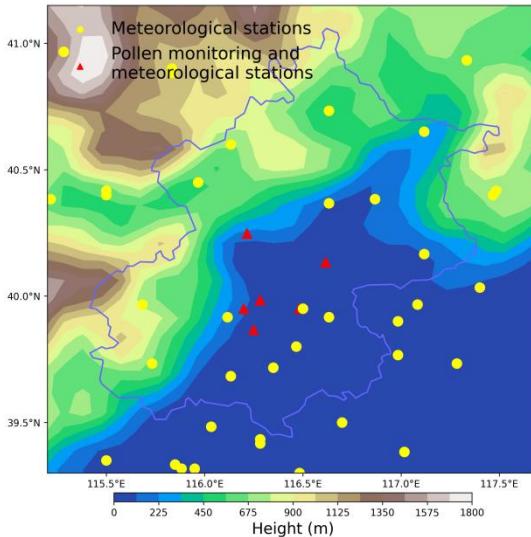
269 2.2.1 Observed pollen concentrations

270 The daily pollen concentration data were collected from six monitoring stations
271 in Beijing: Changping (CP), Chaoyang (CY), Fengtai (FT), Haidian (HD),
272 Shijingshan (SJS), and Shunyi (SY), as shown in Fig. 1. The monitoring period
273 spanned from April to October each year from 2006 to 2021, covering the main pollen
274 season in Beijing. The gravitational settling method (Unit: 10^3 Grains $m^{-2} d^{-1}$) was
275 used for monitoring. The pollen concentration data included Total Pollen
276 Concentration (the sum of pollen concentrations from all taxa, abbreviated as TotalPC)
277 and the concentrations of pollen from 10 common allergenic plants. These species
278 included trees such as Pine, Poplar, Birch, Cypress, Ash, and Elm, as well as weeds
279 like Artemisia, Chenopod, Humulus, and Amaranthus. Although autumn pollen
280 concentrations are lower compared to spring, autumn weed pollen has a higher
281 allergenic potential (Zhao et al., 2023). Therefore, this study focuses on the analysis

282 of autumn weed pollen. Due to significant data gaps in the pollen concentration of
283 specific species, we selected only the data that were more complete and of higher
284 allergenic potential, specifically Artemisia, Chenopod, and TotalPC. Table 1 provides
285 basic information, such as the number of effective sample years for these three types
286 of pollen across the six stations.

287 To prevent anomalies in the data, we excluded outliers in the pollen
288 concentration data for each species and any data points where the concentration
289 exceeded the 99th percentile. Furthermore, we applied a 5-day moving average to the
290 pollen monitoring data to smooth it. This approach not only eliminates noise from the
291 data (Li et al., 2019; Li et al., 2022) but also mitigates the influence of daily
292 meteorological changes and advection diffusion on daily pollen emissions (To further
293 analyze the impact of key factors such as meteorological factors and advection
294 diffusion on daily pollen emissions, we used the RegCM in Sect. 3.3. This model
295 accurately reflects the effects of daily meteorological factors such as temperature,
296 precipitation, humidity, and wind speed on pollen emissions while also describing key
297 physical processes such as advection diffusion, convective transport, and dry and wet
298 deposition, thus providing a comprehensive analysis of the behavior of pollen in the
299 atmosphere). This smoothing process allows us to more clearly explore the daily
300 variation trends of pollen.

301 Additionally, to better simulate the temporal and spatial distribution of pollen
302 during the autumn pollen period, we defined the autumn pollen period based on
303 observed pollen concentration data as $215 < \text{DOY} < 280$. Subsequently, we
304 determined the sDOY and eDOY for the autumn pollen period for each station and
305 year by identifying the day of year at which the cumulative pollen concentration
306 reached 5 % (start) and 95 % (end) of the total for that period (Khwarahm et al., 2017;
307 Li et al., 2019; Li et al., 2022).



308
309 Fig. 1. Distribution map of geopotential height, pollen observation stations (triangle), and
310 meteorological monitoring stations (circle) in Beijing area

311 Table 1 Explanation of effective sample years for pollen monitoring stations in Beijing
312 (2006-2021)

Station	Effective Sample Years / Year		
	Artemisia	Chenopod	TotalPC
CP	16	16	16
CY	13	13	13
FT	10	8	15
HD	0	0	8
SJS	11	11	16
SY	12	9	16
Total	62	57	84

313 To better simulate sDOY and eDOY for pollen, this study first applied the
314 Gaussian model to the autumn pollen data of each station and year. The Gaussian
315 model was chosen for its effectiveness in capturing peaks in time series data, which
316 are often reflected in pollen concentration data. Taking the CP station as an example,
317 Gaussian fitting distribution was performed on the autumn Artemisia, Chenopod, and
318 TotalPC for 2006-2021 (Supplementary Fig. S1-S3). The results indicated that the
319 autumn pollen concentration exhibited a significant Gaussian distribution, confirming
320 that the Gaussian model could aptly fit the time series changes of autumn pollen.

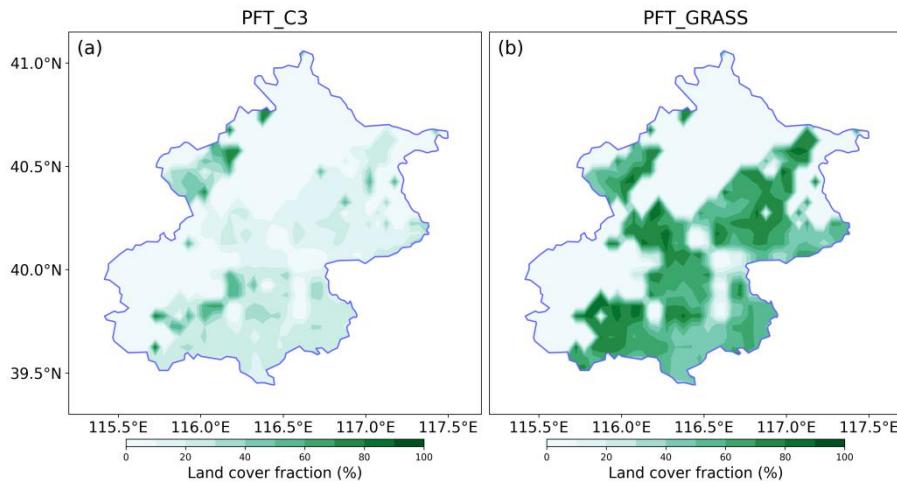
321 Therefore, by Gaussian fitting the pollen concentrations of each station, the autumn
322 pollen sDOY and eDOY under the Gaussian model simulation were further
323 determined. Comparing the sDOY and eDOY derived from observed pollen
324 concentration data with those obtained via Gaussian model simulation
325 (Supplementary Fig. S4), we found a high correlation coefficient (R) and a low root
326 mean square error (RMSE) between the two. Thus, the sDOY and eDOY obtained
327 from Gaussian model simulation were utilized to study the autumn pollen phenology.

328 *2.2.2 Meteorological observation and land cover data*

329 The meteorological data for this study were sourced from the China Surface
330 Climate Daily Dataset, encompassing observations from all benchmark and basic
331 meteorological stations in China. Specifically, we utilized data from 66 valid
332 meteorological stations in Beijing and its surrounding areas (39-41.5° N, 115-118° E)
333 covering the period from 2006 to 2020 (Fig. 1). This dataset includes meteorological
334 observations corresponding to the pollen monitoring stations (our meteorological data
335 extends only up to 2020). The variables incorporated in this study comprise average
336 temperature (TEM_Avg), maximum temperature (TEM_Max), minimum temperature
337 (TEM_Min), sunshine hours (SSH), station altitude (Alti), average pressure
338 (PRS_Avg), maximum pressure (PRS_Max), minimum pressure (PRS_Min),
339 maximum wind speed (WIN_S_Max), extreme wind speed (WIN_S_Inst_Max),
340 average 2-minute wind speed (WIN_S_2mi_Avg), ground surface temperature
341 (GST_Avg_Xcm, X=5, 10, 15, 20, 40, 80, 160, 320cm), average ground surface
342 temperature (GST_Avg), minimum ground surface temperature (GST_Min),
343 maximum ground surface temperature (GST_Max), average relative humidity
344 (RHU_Avg), minimum relative humidity (RHU_Min), average vapor pressure
345 (VAP_Avg), precipitation from 20:00 to 20:00 (PRE_Time_2020), and precipitation
346 from 08:00 to 08:00 (PRE_Time_0808). The first four meteorological factors were
347 utilized to simulate the autumn phenology model of pollen, predicting various pollen
348 sDOY and eDOY. All meteorological factors served as training datasets for the RF
349 algorithm to simulate annual pollen production.

350 For land use data, this study employed the Community Land Model 4 (CLM4)

351 dataset (Oleson et al., 2010), which includes 25 plant functional types such as
 352 needleleaf forests, broadleaf forests, shrubs, grasses (C3 and C4), and crops, with a
 353 spatial resolution of 0.05° . As *Artemisia* and *Chenopod* primarily fall under the C3
 354 plant category (Yorimitsu et al., 2019; Septembre-Malaterre et al., 2020; Qiao et al.,
 355 2023), the simulation of pollen utilization for *Artemisia* and *Chenopod* used plant
 356 functional C3 grass, while the TotalPC simulation incorporated both C3 and C4
 357 grasses. The distribution of these two plant functional types in Beijing is illustrated in
 358 Fig. 2.



359

360 Fig. 2. The distribution of plant functional type C3 (a) and GRASS (b) in Beijing area

361 3. Results and Discussion

362 3.1 Pollen Phenology Simulation

363 In this study, we analyzed the phenological changes of three types of
 364 pollen—*Artemisia*, *Chenopod*, and TotalPC—during the autumn season based on
 365 three different autumn pollen phenology calculation methods (Rs_1 , Rs_2 , and Rs_{sig}).
 366 Specifically, we examined the seasonal phenological simulations of these pollen
 367 concentrations under three different temperature conditions (TEM_Avg, TEM_Max,
 368 and TEM_Min) (Mo et al., 2023), with a primary focus on sDOY and eDOY.
 369 Additionally, the annual pollen production (P_{annual}) was simulated using the RF
 370 algorithm.

371 3.1.1 Simulation of sDOY and eDOY based on autumn phenology model

372 Table 2 presents the statistical indicators for simulating the phenology of

373 Artemisia using different phenological methods and temperature conditions. For
374 simulating the sDOY for Artemisia, the Rs_1 , Rs_2 , and Rs_{sig} methods demonstrated high
375 accuracy when TEM_Avg and TEM_Min were employed as temperature conditions.
376 The R values for both the training and testing sets exceeded 0.45, with some R values
377 in the testing set surpassing 0.7, and the RMSE values were relatively low. This
378 indicates that these three methods effectively capture the phenological characteristics
379 of Artemisia at the onset of autumn. Notably, the Rs_{sig} method, when using TEM_Avg
380 as the condition, achieved R values of 0.53 and 0.80 for the training and testing sets,
381 respectively, with RMSE values of 6.61 and 4.86, showing the best simulation
382 performance. However, when TEM_Max was used as the temperature condition, the
383 simulation performance of all three methods declined. The R value of the Rs_1 method
384 fell below 0.2, and the RMSE values were high, exceeding 8 days. Comparatively, the
385 Rs_{sig} method performed slightly better but still yielded inferior results compared to
386 TEM_Avg and TEM_Min, indicating lower model stability when predicting Artemisia
387 sDOY with TEM_Max. For the simulation of Artemisia eDOY, the performance of the
388 three methods was relatively close, with R values in the training and testing sets
389 generally ranging from 0.3 to 0.5, and similar RMSE values. Among them, the Rs_1
390 method performed better when TEM_Min and TEM_Avg were used as temperature
391 conditions, with R values of 0.66 and 0.51 in the testing set and RMSE values of 3.32
392 days and 3.9 days, respectively. Compared to the Rs_1 method, the Rs_2 and Rs_{sig}
393 methods were relatively weaker in predicting eDOY, indicating that the Rs_1 method
394 better captures the phenological trends of Artemisia at the end of autumn. Additionally,
395 when comparing the simulation results of sDOY and eDOY, sDOY generally had
396 higher R values, but eDOY had lower overall RMSE values.

397 The statistical indicators for simulating the phenology of Chenopod under
398 different phenological methods and temperature conditions are shown in Table S1. For
399 the simulation of the sDOY for Chenopod, the Rs_1 and Rs_2 methods demonstrated
400 high accuracy when using TEM_Min and TEM_Avg as temperature conditions. The R
401 values for both the training and testing sets were around 0.5, and the RMSE values
402 were relatively low. It is clear that using TEM_Avg as the temperature condition

403 yields higher R values and lower RMSE (in the case of the Rs_1 method) compared to
404 TEM_Min, indicating that these two methods effectively capture the phenological
405 changes of Chenopod at the onset of autumn when using TEM_Avg as the
406 temperature condition. However, when TEM_Max was used as the temperature
407 condition, the simulation performance of all three methods declined, particularly for
408 Rs_1 , which had an R value of -0.1 and an RMSE greater than 9 days in the testing set.
409 The Rs_{sig} method, when using TEM_Avg, achieved an R value of 0.51 in the training
410 set but only 0.28 in the testing set, with a high RMSE of 5.32, indicating poor model
411 stability in this scenario. In contrast to TotalPC and Artemisia, the simulation of the
412 eDOY for Chenopod was not satisfactory for any of the three methods. The R values
413 for both the training and testing sets were all below 0.42. Particularly when using
414 TEM_Max as the temperature condition, the simulation performance of all three
415 methods was poor, with the testing set R value reaching only 0.1. This indicates that
416 the models have limited ability to capture the end of the autumn season for Chenopod.

417 Table S2 shows the phenological simulation statistical indicators of TotalPC
418 under different phenological methods and temperature conditions. From the data in
419 the table, it can be seen that for the simulation of the sDOY of TotalPC, all three
420 phenological methods (Rs_1 , Rs_2 , and Rs_{sig}) performed with high accuracy ($R > 0.5$)
421 and relatively low RMSE when using TEM_Min. This indicates that these three
422 methods, when using TEM_Min, can effectively capture the trend of the sDOY of
423 TotalPC during the autumn season. Meanwhile, the Rs_1 method also showed good
424 simulation performance when using TEM_Avg as the temperature condition, with R
425 reaching 0.54 for both the training and testing sets. The Rs_{sig} method, using TEM_Avg,
426 had good simulation performance in the training set, but the R in the testing set only
427 reached 0.38. Compared to TEM_Min and TEM_Avg, the Rs_2 and Rs_{sig} methods
428 showed slightly inferior simulation performance when using TEM_Max as the
429 temperature condition. Surprisingly, the Rs_1 method's simulation of the sDOY showed
430 a negative correlation when using TEM_Max, indicating the worst performance. For
431 the simulation of the eDOY of TotalPC, the overall simulation performance was
432 worse in terms of R compared to sDOY, but the RMSE values were generally better.

433 Specifically, using TEM_Avg as the temperature condition, the Rs₂ and Rs_{sig} methods
 434 showed relatively good simulation performance and lower RMSE. However, the Rs₂
 435 method performed much worse on the testing set compared to the training set, with
 436 the R on the testing set being only 0.32.

437 Overall, different pollen types exhibit varying sensitivity to different
 438 phenological models and temperature conditions. TEM_Avg is generally the best
 439 temperature condition for predicting the sDOY of the three pollen types, providing
 440 higher R values and lower RMSE. This suggests that TEM_Avg can effectively
 441 predict the start of the autumn pollen season. At the same time, TEM_Min also
 442 performs well in predicting the sDOY of TotalPC and Artemisia, whereas TEM_Max
 443 generally shows the poorest prediction performance. For predicting eDOY, different
 444 pollen types show different sensitivities to temperature conditions, but overall, the
 445 models perform worse for eDOY compared to sDOY, especially in the simulation of
 446 Chenopod.

447 Table2 Statistical indicators of Artemisia phenology under different phenological methods and
 448 temperature conditions

	Artemisia	Rs ₁ (R)		Rs ₂ (R)		Rs _{sig} (R)		Rs ₁ (RMSE)		Rs ₂ (RMSE)		Rs _{sig} (RMSE)	
		Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
sDOY	TEM_Min	0.47	0.66 [#]	0.52*	0.77 [#]	0.45	0.59 [#]	6.61	5.93	6.29	4.99	6.63	6.57
	TEM_Avg	0.45	0.63 [#]	0.50	0.71 [#]	0.53*	0.80[#]	6.67	6.18	6.78	5.44	6.61	4.86
	TEM_Max	0.16	0.17	0.44	0.47	0.45	0.58 [#]	8.87	9.58	8.21	7.51	6.52	6.32
eDOY	TEM_Min	0.38	0.66[#]	0.38	0.44	0.36	0.37	4.19	3.32	4.19	3.97	4.02	4.07
	TEM_Avg	0.46	0.51*	0.38	0.29	0.44	0.44	3.92	3.9	4.16	4.23	3.85	4.07
	TEM_Max	0.31	0.43	0.05	0.07	0.33	0.27	5.59	4.65	6.84	6.47	3.98	4.32

449 Note: Bold represents the best model performance, [#] Indicates significance levels at P < 0.001, *
 450 Indicates significance levels at P < 0.005

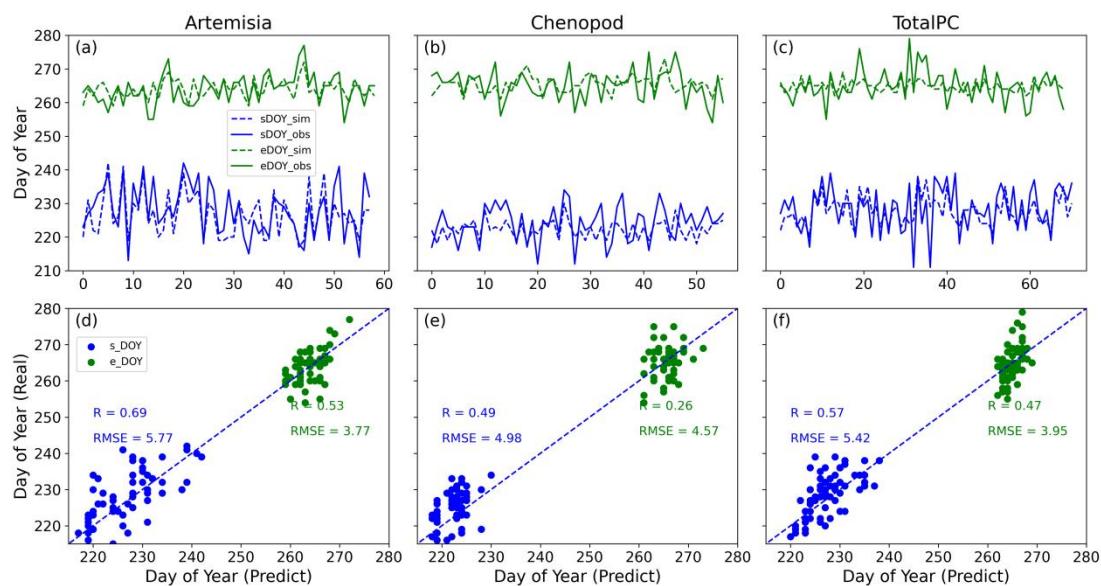
451 Based on the above discussion, we selected the most suitable phenological and
 452 temperature conditions for the three types of pollen (bold parts in Table 2 and Table
 453 S1-S2), simulated their sDOY and eDOY, and generated line and scatter plots (Fig. 3).

According to the line plots in Fig. 3 (top), the predicted results for Artemisia are the closest to the actual observed results. The predictions for TotalPC follow, while the predictions for Chenopod show some deviation, particularly in eDOY, indicating the need for a more suitable phenological model to accurately simulate the phenology of Chenopod. The scatter plots in Fig. 3 (bottom) illustrate that for sDOY predictions, Artemisia exhibited the strongest correlation between predicted and observed pollen phenology, with an R value of 0.69 and an RMSE of 5.77 days. In contrast, Chenopod had the lowest correlation, with an R value of 0.49 and an RMSE of 4.98 days. It can also be observed that higher R values are associated with higher overall RMSE, possibly due to the models being more sensitive to noise or outliers in the data, which increases the overall error. For high-correlation predictions like those for Artemisia, the model may be more affected by random fluctuations in the data, leading to increased error. Additionally, different pollen types may exhibit varying characteristics or response patterns in phenological models, resulting in a non-linear or inconsistent relationship between correlation and error. For eDOY predictions, the correlation between predicted and observed is highest for Artemisia, with an R value of 0.53 and an RMSE of 3.77 days. Chenopod has the lowest correlation for eDOY predictions, with an R value of only 0.26 and an RMSE of 4.57 days. The poorer performance in simulating eDOY for Chenopod may be due to lower data quality compared to Artemisia and TotalPC, as well as the smallest sample size, resulting in insufficient information and samples for the model to learn and predict accurately.

Additionally, Table 3 shows the proportion of simulations with errors less than 5 days and 3 days for sDOY and eDOY across the three pollen types. It can be seen that the proportion of eDOY simulations with errors less than 5 days and 3 days is higher than that for sDOY, indicating that eDOY simulations generally have better accuracy in terms of error. Specifically, for Chenopod eDOY simulations, although the R value is poor, 76.79 % of simulations have errors less than 5 days, and 55.36 % have errors less than 3 days, meaning that more than half of the eDOY simulations have errors within 3 days. This performance is comparable to the other two pollen types (64.41 % and 68.12 %, respectively). Compared to Mo et al. (2023), which simulated the spring

484 season start pollen season (SPS) using 17 phenological models, this study has slightly
 485 lower R values but much lower RMSE (around 11 days in their study). Li et al. (2022)
 486 used satellite data to simulate the SPS for Birch, Oak, and Poplar, achieving RMSE
 487 values between 4.26 and 8.77 days. Furthermore, this study's process-based
 488 phenological models for sDOY and eDOY show smaller errors and higher
 489 correlations compared to empirical linear models based solely on temperature used by
 490 Wozniak and Steiner (2017) and Zhang and Steiner (2022).

491 Therefore, from an error analysis perspective, the simulation performance of
 492 Chenopod eDOY maintains a relatively low error while also demonstrating some
 493 stability, indicating that the autumn phenological model can accurately capture the
 494 seasonal variation trend of Chenopod. This makes the simulation results reliable.
 495 Overall, the autumn phenological models provide good simulation performance for
 496 the phenology of the three pollen types, laying a solid foundation for further analysis
 497 of pollen temporal characteristics.



498
 499 Fig. 3. Comparison of pollen sDOY and eDOY in autumn phenology: simulation vs. observation.
 500 Line plots of three different pollen sDOY and eDOY (a-c) and scatter plot comparison of the same
 501 (d-f). Specific comparisons for Artemisia (a, d), Chenopod (b, e), and TotalPC (c, f). **The**
 502 **horizontal axis of (a-c) represents the sequential distribution of effective sample counts for the**
 503 **three types of pollen.**

504 Table3 Statistics on the proportion of errors between simulation and observation of three different

505 types of pollen sDOY and eDOY within 5 and 3 days

	DOY	Artemisia (%)	Chenopod (%)	TotalPC (%)
<5D	sDOY	68.97	73.21	71.83
	eDOY	86.44	76.79	82.61
<3D	sDOY	48.28	44.64	53.52
	eDOY	64.41	55.36	68.12

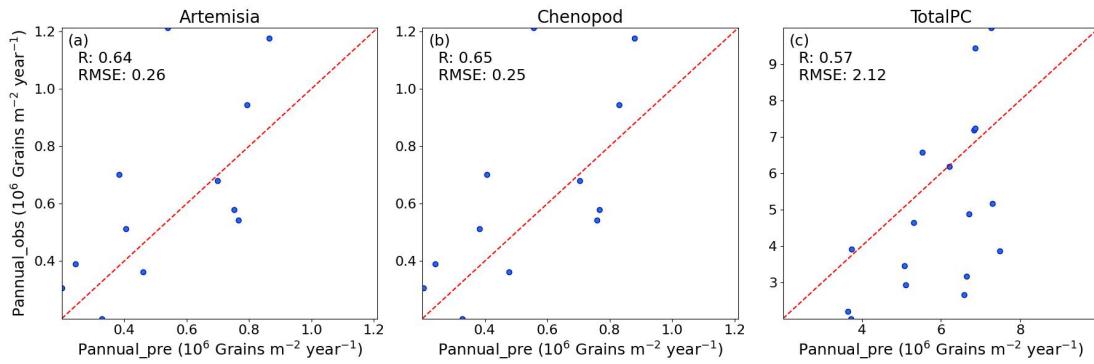
506 Based on the temperature and SSH observational station data from the Beijing
507 area, we interpolated the station data into a grid dataset with a horizontal resolution of
508 0.1°. Using the selected autumn phenological models, we then performed gridded
509 simulations of the sDOY and eDOY for three pollen types. This approach enabled us
510 to map the regional distribution of autumn pollen sDOY and eDOY in Beijing from
511 2006 to 2020, thereby laying the groundwork for further simulations of autumn pollen
512 emissions potential.

513 3.1.2 Simulation of annual pollen production based on RF

514 The simulation of annual pollen production (P_{annual} , referring to the cumulative
515 pollen concentration during each autumn pollen season) was conducted using the RF
516 algorithm. The training data comprised all station-observed pollen data from Table 1
517 and the corresponding meteorological observation data from Sect. 2.2.2. Four-fifths of
518 the station data were randomly selected as the training set to train the RF algorithm,
519 while the remaining one-fifth was used as the test set to validate the accuracy of the
520 RF's P_{annual} simulation. Fig. 4 presents the scatter plots of observed versus simulated
521 P_{annual} for three different pollen types (Artemisia, Chenopod, and TotalPC) based on
522 the RF in the test set. The R between simulated and observed values for the three
523 pollen types were all above 0.5, with Chenopod reaching 0.65. The calculated RMSE
524 was around 0.2×10^6 Grains m⁻² year⁻¹ (with TotalPC having an RMSE of 2.12×10^6
525 Grains m⁻² year⁻¹). This indicates that the prediction performance of the RF varies
526 among different pollen types, with the best performance for Chenopod and the poorest
527 for TotalPC annual production. Compared to the temperature-based empirical linear

528 models for P_{annual} by Zhang and Steiner (2022), the machine learning algorithm-based
 529 simulations in this study have smaller errors and higher correlations. Overall, the RF
 530 effectively simulates P_{annual} .

531 Based on meteorological observation data from stations in and around Beijing,
 532 the station data were interpolated into a gridded dataset with a horizontal resolution of
 533 0.1° . Subsequently, all station data for each pollen type were used as the training set,
 534 with 12 stations in the gridded dataset cyclically selected as the test set for gridded
 535 simulations. This ultimately resulted in the spatial distribution of P_{annual} in Beijing
 536 from 2006 to 2020, laying the foundation for further simulation of autumn pollen
 537 emissions potential.



538
 539 Fig. 4. Scatter plots of simulated and observed annual pollen (P_{annual}) based on RF. Comparisons
 540 for Artemisia (a), Chenopod (b), and TotalPC (c).

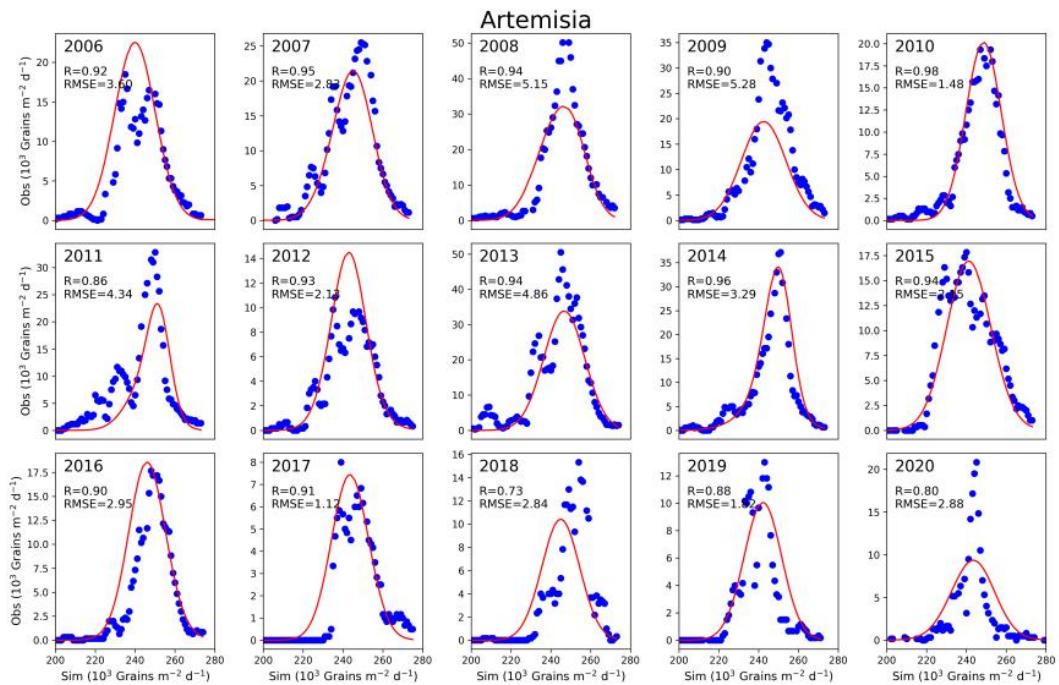
541 3.2 Simulation of Pollen Emissions in Beijing Area

542 Based on the simulation results of autumn pollen phenology (sDOY, eDOY, and
 543 P_{annual}) from Sect. 3.1 and the pollen emissions potential parameterization method
 544 from Sect. 2.1.1, this study calculated the pollen emissions potential in the Beijing
 545 area. Fig. 5 and Fig. S5-S6 present a comparison between the observed and simulated
 546 average site values of Artemisia, Chenopod, and TotalPC in Beijing from 2006 to
 547 2020. In these figures, blue dots represent the actual daily observed pollen counts, and
 548 red lines represent the simulated pollen emissions. To assess the consistency between
 549 the simulated and observed data, we calculated R and RMSE. As illustrated in the
 550 figures, the simulated data closely match the actual observations in most years, with
 551 correlation coefficients around 0.9. Specifically, the Artemisia emissions in 2010,
 552 Chenopod emissions in 2016, and TotalPC emissions in 2007, 2009, 2018, and 2019

553 show R values as high as 0.98 and relatively low RMSE levels, demonstrating the
 554 high accuracy of this study in simulating pollen emissions potential.

555 Additionally, the simulation results for sDOY and eDOY were also satisfactory,
 556 though there were slight advances in the start of the pollen season in certain years,
 557 such as 2017 and 2018 for Artemisia and Chenopod. While the peak pollen emissions
 558 simulations were highly accurate in most years, there were instances of
 559 overestimation and underestimation in some years. For example, the peak emissions
 560 of Artemisia in 2008, 2009, and 2020, Chenopod in 2007, and TotalPC in 2013 and
 561 2020 were significantly underestimated. Conversely, the peak simulations of TotalPC
 562 in 2011 and 2012 were slightly overestimated. This indicates that, despite the high
 563 accuracy of the annual pollen production simulations based on the RF, there is still
 564 room for improvement

565 Overall, this study achieved significant results in simulating pollen emissions,
 566 demonstrating the potential application of autumn phenological models and the RF
 567 algorithm in simulating pollen emissions. However, to further enhance the accuracy of
 568 these simulations, future research needs to investigate and address the instances of
 569 overestimation and underestimation in greater detail.

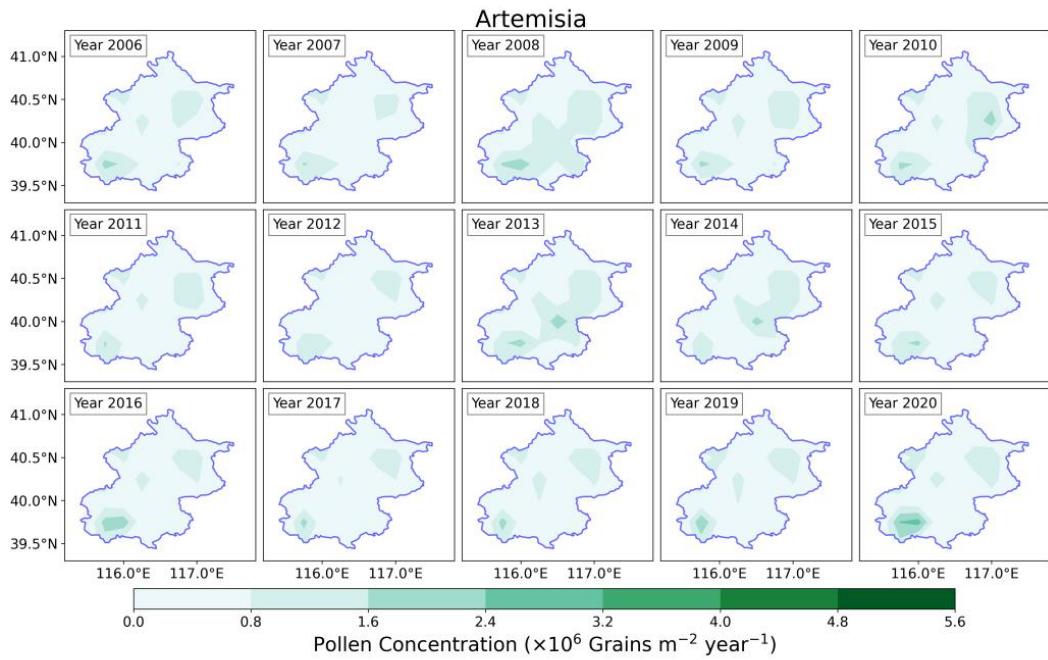


570
 571 Fig. 5. Time series of observation and simulation of average Artemisia emissions at stations in

572 Beijing from 2006 to 2020. The red solid line represents the simulation of pollen emissions model,
573 while blue dots depict observations

574 To further investigate the spatial distribution of annual pollen production, we
575 simulated the spatial distribution of annual Artemisia, Chenopod, and TotalPC
576 production in Beijing from 2006 to 2020 (Fig. 6 and Fig. S7-S8). The results reveal
577 significant spatial and temporal variations in annual pollen production. Spatially,
578 Artemisia production is predominantly concentrated in the southeastern, northeastern,
579 and certain northwestern regions of Beijing, with occasional occurrences in the central
580 urban area during specific years (2008 and 2013). Chenopod production is highest in
581 the southern part of Beijing and lowest in the northern parts and surrounding areas.
582 Notably, from 2006 to 2008, the southern region exhibited high concentrations of
583 Chenopod production. TotalPC is mainly distributed in the southeastern plains of
584 Beijing, forming a strip-like pattern, while lower production is observed in the
585 northwestern mountainous areas, indicating a possible influence of geographical
586 location on TotalPC distribution. Temporally, the annual production of these three
587 pollen types demonstrates distinct interannual variations. Artemisia shows little
588 change in both distribution area and production concentration over time. In contrast,
589 Chenopod and TotalPC exhibit a general declining trend, reaching their lowest levels
590 between 2016 and 2018, which may be attributed to recent climatic changes,
591 vegetation shifts, and human activities in the Beijing area.

592 The simulation results for annual pollen production of Artemisia, Chenopod, and
593 TotalPC in Beijing from 2006 to 2020, based on autumn phenology and the RF pollen
594 emissions model, indicate pronounced spatial differences and temporal variation
595 characteristics. Analyzing the spatial distribution and temporal variation of annual
596 pollen production in Beijing enhances our understanding of the spatiotemporal
597 patterns of pollen in the region, providing crucial insights for the control and
598 mitigation of pollen allergies.



599

600 Fig. 6. Distribution of Artemisia in Beijing from 2006 to 2020 based on pollen emissions model

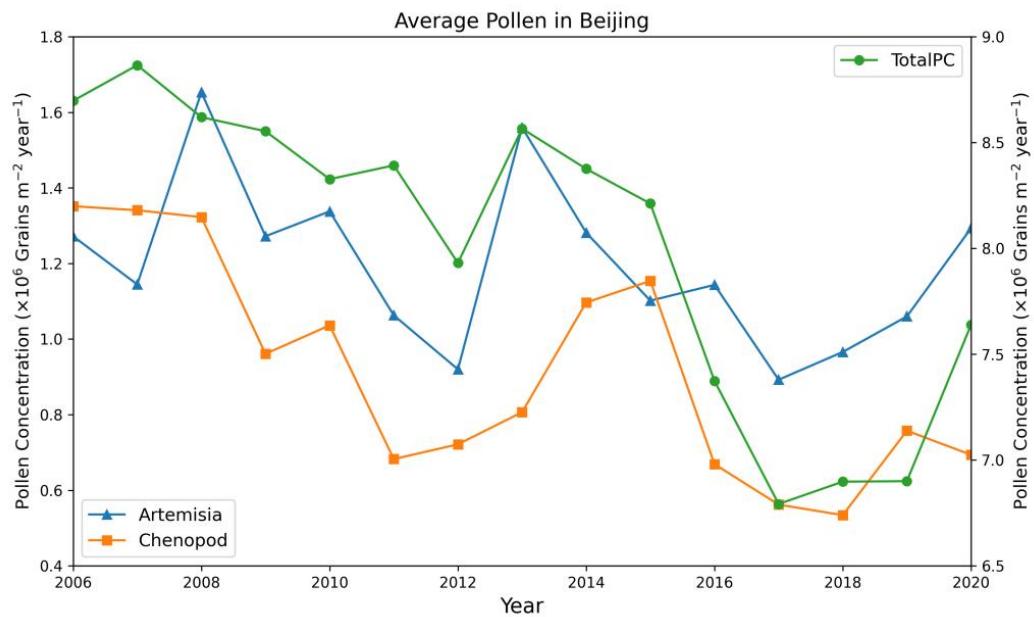
601 To more intuitively reflect the temporal variation trends in the annual production
 602 of three types of pollen, we further analyzed the interannual variation of the regional
 603 average cumulative concentration of these pollen types during the autumn pollen
 604 season in Beijing from 2006 to 2020 (Fig. 7). The annual production of Artemisia,
 605 Chenopod, and TotalPC in Beijing averages between 0.8-1.6, 0.5-1.4, and 6.5-9 grains
 606 $\text{m}^{-2} \text{ year}^{-1}$, respectively. The annual production of Artemisia and Chenopod are
 607 notably similar. Over time, the regional annual production of these pollen types in
 608 Beijing exhibits significant fluctuations. Nonetheless, Artemisia remains relatively
 609 stable, whereas Chenopod and TotalPC production demonstrate a discernible
 610 declining trend, particularly in TotalPC. The annual production of all three pollen
 611 types reached a local nadir in 2012. Following a surge in 2013, production steadily
 612 declined from 2014 to 2017, reaching the lowest levels observed in nearly 15 years
 613 (with TotalPC being the lowest in 2018). Subsequently, from 2018 to 2020, an
 614 increasing trend was observed. Overall, the annual pollen production in Beijing
 615 appears to follow a minor cyclical pattern, intimately linked to the impacts of climate
 616 change. **Building on this analysis, it suggest that interannual variations in pollen**
 617 **production may be influenced by multiple climate-related factors, such as temperature,**

618 precipitation, and SSH. These climatic elements can influence the phenology and
619 growth cycles of pollen-producing plants, thereby affecting their annual production
620 levels. For example, higher temperatures may lead to earlier flowering times,
621 potentially shifting the timing and duration of pollen release. Variations in
622 precipitation impact soil moisture, which can affect plant health and, consequently,
623 pollen output. The observed trends in Beijing's pollen production, including the
624 declining patterns in Chenopod and TotalPC, could correspond to climate shifts that
625 are less favorable for these species. Thus, these fluctuations in pollen production
626 underscore the sensitivity of pollen phenology to both local and broader climate
627 variations.

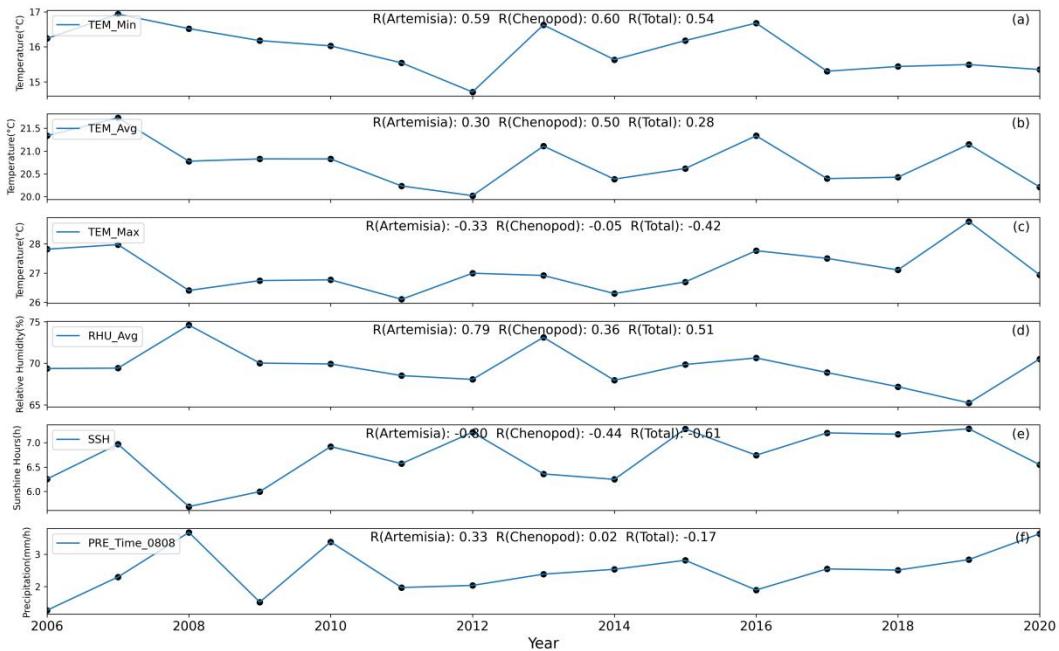
628 To further explore the meteorological factors influencing average annual pollen
629 production in Beijing, we selected six meteorological variables during the autumn
630 pollen season from 2006 to 2020 for temporal and regional average calculations.
631 These factors include maximum temperature (TEM_Max), average temperature
632 (TEM_Avg), minimum temperature (TEM_Min), average relative humidity
633 (RHU_Avg), sunshine hours (SSH), and precipitation time (PRE_Time_0808). The
634 annual variations of these meteorological factors were analyzed, and their correlations
635 with annual pollen production variations were calculated (Fig. 8).

636 The trends in annual variations of each meteorological factor and the calculated
637 correlations reveal that for Artemisia, TEM_Min and RHU_Avg have a significant
638 positive correlation with its production, especially RHU_Avg, which shows a
639 correlation of 0.79. This indicates that an increase in relative humidity promotes
640 Artemisia production. Conversely, SSH has a correlation of -0.8 with Artemisia,
641 indicating that longer sunshine hours inhibit its production. Meanwhile, TEM_Avg
642 and PRE_Time_0808 have minor promoting effects on Artemisia production, while
643 TEM_Max has a slight inhibitory effect. For Chenopod, TEM_Min is the most
644 significant promoting factor, while SSH has an inhibitory effect, although its negative
645 correlation is lower than that for Artemisia, indicating a limited inhibitory effect on
646 Chenopod production. For TotalPC, similar to Artemisia, increases in TEM_Min and
647 RHU_Avg promote production, while increases in SSH and TEM_Max inhibit

648 production. Notably, the three types of pollen reached local minimum concentrations
 649 in 2012, 2017, and 2018, when TEM_Min and SSH respectively reached local
 650 minimum and maximum values, further demonstrating the promoting effect of
 651 TEM_Min and the inhibitory effect of SSH on annual average pollen concentration.
 652 Rahman et al. (2020) and Lei et al. (2023) indicated that temperature is the main
 653 factor affecting the interannual variation of pollen and is positively correlated with
 654 pollen production. Our findings are largely consistent with these conclusions,
 655 although they did not consider the effect of SSH on interannual changes in pollen
 656 concentration. In summary, the annual production of pollen in Beijing is significantly
 657 influenced by meteorological conditions, particularly temperature, relative humidity,
 658 and sunshine hours. Different meteorological factors exhibit distinct promoting and
 659 inhibiting effects on pollen production.



660
 661 Fig. 7. Time series variation chart of regional average annual production of three types of pollen in
 662 Beijing from 2006 to 2020. Due to the different magnitudes of pollen concentrations, the left
 663 y-axis represents the concentrations of Artemisia and Chenopod, while the right y-axis represents
 664 TotalPC. Plotting the time series distributions of the three pollen concentrations on a single graph
 665 allows for a clearer observation of the trends in their variations over time.

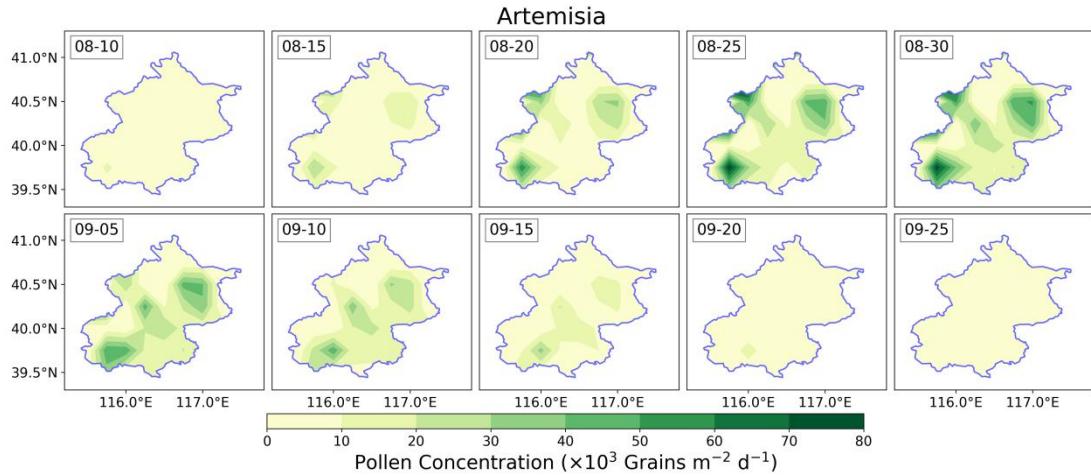


666

667 Fig. 8. Time series variation chart of average values of different meteorological factors in Beijing
 668 from 2006 to 2020. (The correlation coefficient between the average meteorological factors and
 669 the regional average annual production of three types of pollen is calculated in the figure)

670 Fig. 9 and Fig. S9-S10 illustrate the spatial distribution of the average
 671 concentrations of Artemisia, Chenopod, and TotalPC during the autumn pollen season
 672 in Beijing from 2006 to 2020. During this period, the concentration of all three pollen
 673 types initially increases and then decreases. The pollen season begins around August
 674 10 each year and concludes around September 25. The peak concentrations for
 675 Artemisia and Chenopod pollen occur around August 30, while the peak concentration
 676 for TotalPC is observed around September 5. The entire pollen season lasts
 677 approximately 45 days.

678 Regarding the average pollen concentration distribution, Artemisia is primarily
 679 concentrated in the southwest, northeast, and parts of the northwest of Beijing, with
 680 lower concentrations in the southeast. In contrast, Chenopod and TotalPC are mainly
 681 distributed in the southeastern plains. The maximum average concentrations for
 682 Artemisia, Chenopod, and TotalPC reach 81.1×10^3 Grains $m^{-2} d^{-1}$, 42.0×10^3 Grains
 683 $m^{-2} d^{-1}$, and 351.8×10^3 Grains $m^{-2} d^{-1}$, respectively.



684

685 Fig. 9. Temporal and spatial distribution of Artemisia in Beijing (average from 2006 to 2020)

686

3.3 Simulation of Pollen Emissions in Regional Climate Models

687 To evaluate the pollen emissions model based on autumn pollen phenology and
 688 RF, this study integrates the offline calculated pollen emissions into the regional
 689 climate model RegCM. By comparing the simulated atmospheric pollen
 690 concentrations with data from ground-based pollen monitoring stations, we assess the
 691 performance of this pollen emissions potential model.

692

3.3.2 Evaluation of pollen simulation accuracy in RegCM

693 Fig. 10 and Fig. S11-S12 depict the time series distribution of the concentrations
 694 of three pollen types simulated by the RegCM compared to observed concentrations
 695 from 2006 to 2020. The RegCM successfully captures the temporal variation trends of
 696 pollen concentrations during the autumn pollen season, generally showing an initial
 697 increase followed by a decrease. Daily pollen concentrations fluctuate significantly
 698 due to meteorological factors such as temperature, precipitation, and RH, as well as
 699 key physical processes like advection, convection, and dry and wet deposition.
 700 Overall, the simulated pollen concentrations by the RegCM align well with the
 701 observed trends, though some discrepancies remain.

702 In the simulation of Artemisia (Fig. 10), the sDOY and pollen production vary
 703 annually due to meteorological conditions and key physical processes. The annual
 704 peak pollen concentrations generally range from $20-70 \times 10^3$ Grains $m^{-2} d^{-1}$, while in
 705 2019-2020, observed pollen concentrations exceeded 100×10^3 Grains $m^{-2} d^{-1}$, with
 706 notable spikes and drops likely due to abrupt meteorological changes or possible

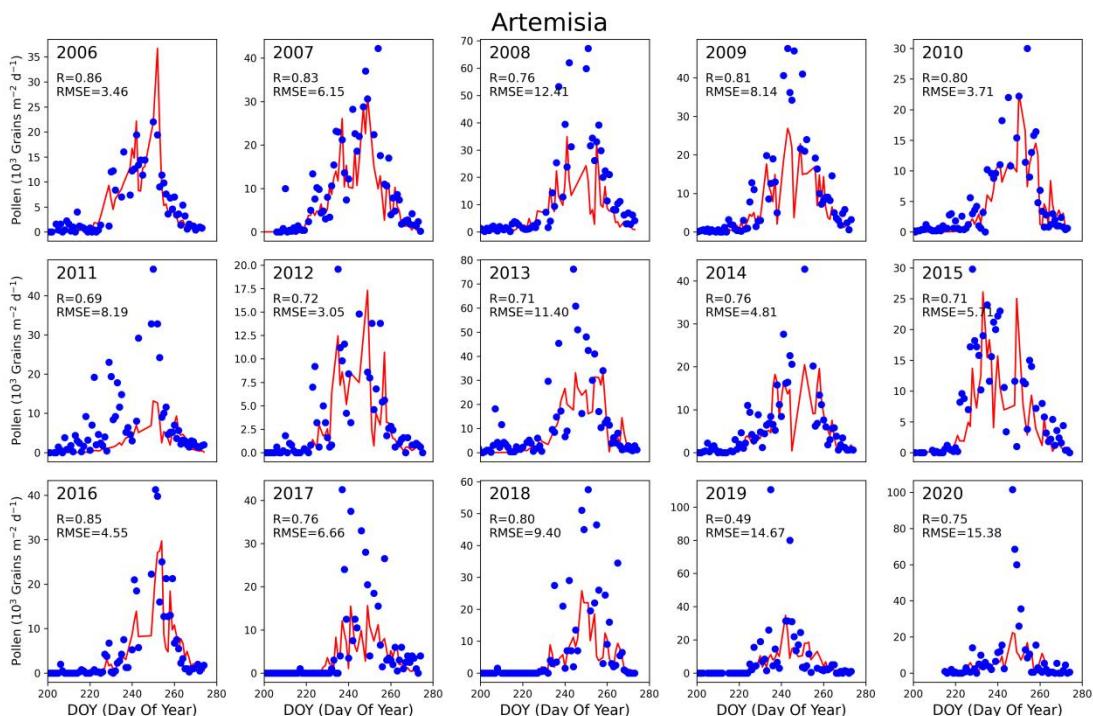
707 issues with the quality of observation data. The RegCM accurately simulates the
708 sDOY and eDOY, displaying a similar frequency to observations. For peak pollen
709 simulations, years such as 2006, 2007, 2010, 2012, 2015, and 2016 show good
710 performance, with R above 0.7, particularly in 2006 and 2016, where R exceeds 0.85
711 and RMSE is only 4×10^3 Grains $m^{-2} d^{-1}$. However, for other years, peak simulations
712 are underestimated to varying degrees. For 2011, although the trend is consistent, the
713 observed peak is near 50×10^3 Grains $m^{-2} d^{-1}$, while the simulated peak is only 12×10^3
714 Grains $m^{-2} d^{-1}$, indicating a significant underestimation. This underestimation is also
715 noticeable in 2008, 2013, and 2017-2020. In 2019, although the peak concentrations
716 align, the trend correlation is low (R=0.49), and RMSE is high. The variability in
717 observation station data quality and quantity could influence these results, with some
718 years having fewer than six effective stations (minimum of two), impacting the
719 average and peak values. Box plots (Fig. 11) reveal that Artemisia concentrations in
720 2019-2020 are more dispersed, suggesting possible anomalies in observation data.
721 Overall, the R for RegCM simulations ranges from 0.69 to 0.86 (except 2019), with
722 RMSE between $3.05-15.38 \times 10^3$ Grains $m^{-2} d^{-1}$.

723 For Chenopod simulations (Fig. S11), the overall performance is similar to
724 Artemisia. The annual peak concentrations are generally lower, around $20-50 \times 10^3$
725 Grains $m^{-2} d^{-1}$, except for 2007, which reaches 120×10^3 Grains $m^{-2} d^{-1}$. The years
726 2006, 2008-2009, 2012-2013, 2015, and 2019 show good simulation performance,
727 accurately reflecting peak concentrations, particularly in 2016 (R=0.84,
728 RMSE= 3.11×10^3 Grains $m^{-2} d^{-1}$). However, 2007, 2010, 2017-2018, and 2020 exhibit
729 underestimation, with the exceptionally high observed concentrations in 2007 likely
730 causing the model's underestimation. Fig. 11 indicates increasing peak concentrations
731 in recent years (2017-2020) for both Artemisia and Chenopod, with room for
732 improvement in peak simulations by the RegCM. Despite the lower concentrations
733 compared to spring pollen, autumn pollen significantly impacts pollen-induced
734 diseases (pollinosis), prompting more attention and efforts in pollen management,
735 which contributes to the decreasing trend in monitored pollen concentrations.

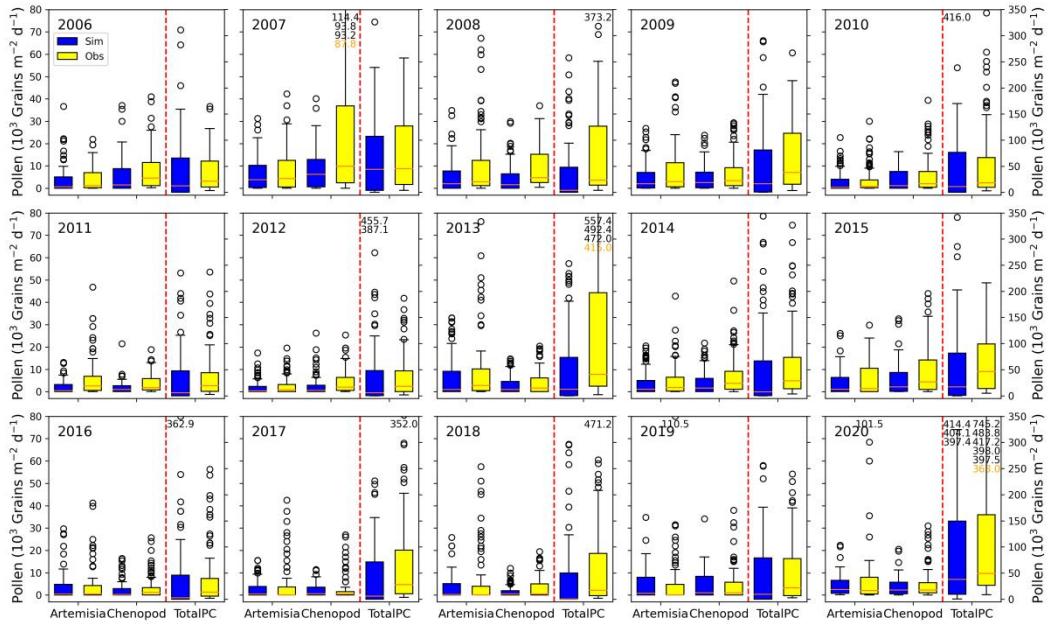
736 TotalPC generally exhibits higher concentration levels compared to Artemisia

737 and Chenopod (Fig. S12). Annual peak TotalPC can reach $150\text{-}500 \times 10^3$ Grains $\text{m}^{-2} \text{d}^{-1}$,
 738 with the highest observed concentration in 2020 at 745×10^3 Grains $\text{m}^{-2} \text{d}^{-1}$. Due to the
 739 higher quality and completeness of TotalPC monitoring data, the simulation results
 740 are more accurate, with R generally above 0.76 (except 2015, $R=0.64$). Over 60 % of
 741 the years have R above 0.8, with fewer years showing significant underestimation of
 742 peak concentrations (e.g., 2013). This highlights the critical role of high-quality
 743 pollen monitoring data for accurate simulations. High-quality data enable precise
 744 capturing of pollen concentration trends and peaks, providing robust support for
 745 regional pollen phenology research.

746 In summary, the RegCM demonstrates high accuracy in simulating the
 747 concentrations of the three pollen types, especially TotalPC. Accurate simulations of
 748 pollen concentrations and peaks enhance the effectiveness of pollen emissions models,
 749 improve health risk warnings, and provide a scientific basis for urban planning and
 750 environmental management.



751
 752 Fig. 10. Time-series distribution of Artemisia under RegCM simulation compared to observations
 753 (averaged across effective pollen monitoring sites). The red solid line represents model
 754 simulations, while blue dots depict observations



755

756 Fig. 11. Box plot statistics of pollen concentration under RegCM simulation compared to observed
 757 values. Each subplot features box plots denoted by red dashed lines: on the left side, representing
 758 Artemisia and Chenopod concentrations with values referenced on the left y-axis; on the right side,
 759 depicting TotalPC with values referenced on the right y-axis. In each box plot, from bottom to top,
 760 the box and whiskers indicate the minimum, lower quartile, median, upper quartile, and maximum
 761 values (extending up to 1.5 times the interquartile range, IQR). Black circles denote outliers
 762 exceeding 1.5 times IQR. Orange numbers annotated in the subplot indicate the maximum values
 763 unseen within the box, while black numbers denote unseen outliers

764 **4. Conclusion**

765 This study utilized years of autumn pollen concentration data from Beijing,
 766 alongside meteorological and land use data, to develop an autumn pollen emissions
 767 model using autumn phenology and the RF algorithm. We conducted an in-depth
 768 analysis of the spatiotemporal distribution characteristics of Artemisia, Chenopod, and
 769 TotalPC in Beijing and examined their relationships with meteorological factors.
 770 Finally, we validated the accuracy and reliability of the constructed pollen emissions
 771 model using the RegCM. Through a series of simulations and validations, several
 772 significant conclusions and findings were obtained.

773 (1) Construction of the Pollen Emissions Model: By incorporating phenology

774 and the RF algorithm, we calculated autumn pollen emissions, thereby avoiding the
775 poor simulation results of sDOY, eDOY, and annual pollen production based solely on
776 temperature linear simulations. The study demonstrates that using a phenology model
777 for sDOY and eDOY simulations captures the temporal variations of pollen release
778 more accurately, effectively reducing simulation errors. The RF algorithm excels in
779 handling multivariate and nonlinear relationships, significantly improving the
780 simulation accuracy of the pollen emissions model. The optimized annual pollen
781 production simulations better reflect seasonal changes in pollen, showcasing the
782 applicability and reliability of the RF algorithm in processing meteorological and
783 environmental data.

784 (2) Spatiotemporal Distribution Characteristics of Pollen Concentration: The
785 study found significant spatial and temporal variations in pollen concentration in
786 Beijing. The autumn pollen peak occurs between DOY 215-280, with considerable
787 differences in peak times and concentrations among monitoring stations. These
788 differences are closely related to the vegetation types, topographical features, and
789 local climatic conditions around each station. Optimized simulations of pollen
790 concentration data further reveal the spatiotemporal variation patterns of pollen
791 concentrations.

792 (3) Impact of Meteorological Factors on Annual Pollen Emissions:
793 Meteorological factors significantly influence pollen concentrations. The study
794 reveals that temperature, RH, and SSH are crucial factors affecting annual pollen
795 emissions in Beijing. There is a positive correlation between temperature and RH with
796 annual pollen emissions, while SSH has a negative correlation. The response of
797 different pollen types to meteorological factors varies due to their distinct biological
798 characteristics and ecological environments. This comprehensive analysis provides a
799 scientific basis for predicting future changes in pollen concentrations.

800 (4) Validation of Pollen Emissions Models Using the RegCM: The RegCM
801 accurately reflects the daily impact of meteorological factors on pollen emissions.
802 Key physical processes, such as advection, convection, and wet and dry deposition,
803 play essential roles in simulating the atmospheric dispersion and deposition of pollen.

804 This study validated the accuracy and reliability of the optimized emission potential
805 models for three pollen types using RegCM, effectively describing the daily variations
806 in pollen concentrations influenced by meteorological factors and key physical
807 processes. Furthermore, the pollen emissions model developed in this study can be
808 applied to other regions, offering potential for wider application. These
809 comprehensive results provide essential scientific support for pollen monitoring,
810 allergy prevention, and the selection of urban greening plants. Future research can
811 extend these methods and findings to larger-scale pollen emissions simulations and
812 forecasts, enhancing responses to pollen-related public health issues.

813 (5) Limitations and Future Prospects: Despite significant progress in
814 constructing the pollen emissions model and analyzing the spatiotemporal distribution
815 of pollen concentrations, some limitations persist. For broader application, more
816 extensive observation stations are needed to verify the model's accuracy, considering
817 the limited spatiotemporal resolution of current pollen concentration data. Simulating
818 specific species' pollen concentrations requires detailed plant functional type
819 distributions, which significantly impact the spatial distribution of pollen emissions
820 potential. The current research utilizes static plant functional type data, but dynamic
821 data would better reflect the impact of land use changes on pollen climates over
822 various temporal and spatial scales. Additionally, the complex relationship between
823 meteorological factors and pollen concentrations suggests that future research could
824 introduce more environmental and meteorological variables and apply advanced
825 machine learning algorithms to enhance the model's predictive capability.

826 In conclusion, This study successfully constructed a pollen emissions potential
827 model, systematically analyzed the spatiotemporal distribution of different pollen
828 types in autumn in Beijing, and explored their relationship with meteorological factors.
829 The model's accuracy and stability were validated using the RegCM, yielding notable
830 research results. Future research can further validate and extend this approach on a
831 larger scale and with higher resolution, providing comprehensive scientific support
832 for ecological environment protection and public health.

833 **Data availability**

834 Meteorological data were sourced from the China Surface Climate Daily Dataset
835 (<https://data.cma.cn/data/cdcindex/cid/f0fb4b55508804ca.html>), which requires
836 appropriate permissions for access. Pollen data were provided by the Beijing
837 Meteorological Bureau, and the authors do not have permission to share this data.

838 **Authorship contributions**

839 **JL** performed the analysis, investigation, methodology, software development,
840 validation, and original draft preparation. **XA** conceptualized the paper, provided
841 resources, acquired funding, and conducted the review and editing. **ZS** and **CY**
842 contributed resources, visualization, and data curation. **HQ**, **YZ**, and **ZL** were
843 involved in visualization. All authors contributed to manuscript revisions.

844 **Declaration of competing interest**

845 The authors declare that they have no known competing financial interests or personal
846 relationships that could have appeared to influence the work reported in this paper.

847 **Acknowledgments**

848 This work was supported by the National Key Research and Development
849 Program of China (grant number 2022YFC3701205), Science and Technology
850 Development Fund of the Chinese Academy of Meteorological Sciences (grant
851 number 2023Z026) and the National Natural Science Foundation of China (grant
852 number 41975173).

853 **Reference**

854 Aerts, R., M. Stas, N. Vanlessen, M. Hendrickx, N. Bruffaerts, L. Hoebelke, N. Dendoncker, S.
855 Dujardin, N. D. Saenen & A. Van Nieuwenhuyse (2020) Residential green space and seasonal
856 distress in a cohort of tree pollen allergy patients. International Journal of Hygiene and
857 Environmental Health, 223, 71-79.
858 Ahmed, A., A. Hakim & A. Becker (2018) Evaluation of eczema, asthma, allergic rhinitis and

859 allergies among the Grade-1 children of Iqaluit. *Allergy Asthma Clin. Immunol.* 14, 9.

860 Asher, M.I., S. Montefort, B. Björkstén, C.K. Lai, D.P. Strachan, S.K. Weiland & H. Williams
861 (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic
862 rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat
863 multicountry cross-sectional surveys. *Lancet* 368, 733–743.

864 Bai, Y., X. Liu, M. Sun, G. Liu & Y. Meng (2009) Effect of Pollen Pollution on Human Health.
865 *Journal of Anhui Agri. Sci.*, 37(5), 2220-2222. (in Chinese)

866 Bastl, K., M. Kmenta, M. Berger & U. Berger (2018) The connection of pollen concentrations and
867 crowd-sourced symptom data: new insights from daily and seasonal symptom load index data
868 from 2013 to 2017 in Vienna. *World Allergy Organization Journal*, 11, 1-8.

869 Bishan, C., L. Bing, C. Chixin, S. Junxia, Z. Shulin, L. Cailang, Y. Siqiao & L. Chuanxiu (2020)
870 Relationship between airborne pollen assemblages and major meteorological parameters in
871 Zhanjiang, South China. *PLOS ONE*, 15, e0240160.

872 Breiman, L. (2001) Random Forests. *Machine Learning*, 45, 5-32.

873 Chen, H., J. Li, L. Cheng, Z. Gao, X. Lin, R. Zhu, L. Yang, A. Tao, H. Hong & W. Tang (2021)
874 China consensus document on allergy diagnostics. *Allergy, Asthma & Immunology Research*,
875 13, 177.

876 Chen, J., S. Zhu, P. Wang, Z. Zheng, S. Shi, X. Li, C. Xu, K. Yu, R. Chen, H. Kan, H. Zhang & X.
877 Meng (2024) Predicting particulate matter, nitrogen dioxide, and ozone across Great Britain
878 with high spatiotemporal resolution based on random forest models. *Science of The Total
879 Environment*, 926, 171831.

880 Cingi, C., P. Gevaert, R. Møsge, C. Rondon, V. Hox, M. Rudenko, N.B. Muluk, G. Scadding, F.
881 Manole, C. Hupin, W.J. Fokkens, C. Akdis, C. Bachert, P. Demoly, J. Mullol, A. Muraro, N.
882 Papadopoulos, R. Pawankar, P. Rombaux, E. Toskala, L. Kalogjera, E. Prokopakis, P.W.
883 Hellings & J. Bousquet (2017) Multimorbidities of allergic rhinitis in adults: European
884 academy of allergy and clinical immunology task force report. *Clin. Transl. Allergy* 7, 17.

885 D'Amato, G., C. Vitale, M. Lanza, A. Molino & M. D'Amato (2016) Climate change, air pollution,
886 and allergic respiratory diseases: an update. *Current opinion in allergy and clinical
887 immunology*, 16, 434-440.

888 Damialis, A., C. Fotiou, J. M. Halley & D. Vokou (2011) Effects of environmental factors on

889 pollen production in anemophilous woody species. *Trees*, 25, 253-264.

890 Emanuel, M.B. (1988) Hay fever, a post industrial revolution epidemic: a history of its growth
891 during the 19th century. *Clin. Allergy* 18, 295–304.

892 Frei, T. & E. Gassner (2008) Climate change and its impact on birch pollen quantities and the start
893 of the pollen season an example from Switzerland for the period 1969–2006. *International*
894 *Journal of Biometeorology*, 52, 667-674.

895 Gao, Q.Q., Q.Y. Gao, J. Li, F. Shen, S. Ji & L. Guan (2022) Preliminary Study on the Variation
896 Characteristics of Pollen Concentration and Pollen Allergy Grade in Langfang Area in Spring.
897 *Journal of Agricultural Catastrophology*. 12(10): 16-18.(in Chinese)

898 Gu, D. & K. Liao (2003) The relationship between urban pollen dispersal and meteorological
899 conditions. *Hubei Meteorology*, (03): 36-37. (in Chinese)

900 Guan, L., Q.Y. Gao, H. Li, J. Li & Q.Q. Gao (2021) Characteristics of Airborne Pollen Variation in
901 Langfang City and Its Relationship with Meteorological Factors. *Agricultural technology*
902 *service*. 38(6):93-98.(in Chinese)

903 Guzman, A., L. Tonelli, D. Roberts, J. Stiller, M. Jackson, J. Soriano, S. Yousufi, K. Rohan, H.
904 Komarow & T. Postolache. 2007. Mood-worsening with high-pollen-counts and seasonality:
905 a preliminary report. In *Journal of affective disorders*.

906 He, H., D. Zhang & B. Qiao (2001) Preliminary approach of the relationship between Airborne
907 pollen amount and meteorological factors in Beijing urban area. *Chin J Microbiol Immunol*.
908 (S2):36-38. (in Chinese)

909 He, X., D. Liu, Y. Pan, X. He, M. Zhang & S. Yang (2023) Distribution and sources of fluvial
910 pollen in the middle reaches of the Yellow River in China and their relationship with
911 vegetation and land use. *Science of The Total Environment*, 856, 159109.

912 Helbig, N., B. Vogel, H. Vogel, and F. Fiedler, 2004: Numerical modelling of pollen dispersion on
913 the regional scale. *Aerobiologia*, 20, 3-19.

914 Ibrahim, N.M., F.I. Almarzouqi, F.A. Al Melaih, H. Farouk, M. Alsayed & F.M. AlJassim (2021)
915 Prevalence of asthma and allergies among children in the United Arab Emirates: a
916 cross-sectional study. *World Allergy Organ. J.* 14, 100588.

917 Khwarahm, N. R., J. Dash, C. A. Skjøth, R. M. Newnham, B. Adams-Groom, K. Head, E. Caulton
918 & P. M. Atkinson (2017) Mapping the birch and grass pollen seasons in the UK using satellite

919 sensor time-series. *Science of The Total Environment*, 578, 586-600.

920 Krishna, M. T., P. A. Mahesh, P. K. Vedanthan, V. Mehta, S. Moitra & D. J. Christopher (2020)

921 The burden of allergic diseases in the Indian subcontinent: barriers and challenges. *The*

922 *Lancet Global Health*, 8, e478-e479.

923 Kurganskiy, A., S. Creer, N. De Vere, G. W. Griffith, N. J. Osborne, B. W. Wheeler, R. N. McInnes,

924 Y. Clewlow, A. Barber & G. L. Brennan (2021) Predicting the severity of the grass pollen

925 season and the effect of climate change in Northwest Europe. *Science Advances*, 7,

926 eabd7658.

927 Lake, I. R., N. R. Jones, M. Agnew, C. M. Goodess, F. Giorgi, L. Hamaoui-Laguel, M. A.

928 Semenov, F. Solomon, J. Storkey & R. Vautard (2017a) Climate change and future pollen

929 allergy in Europe. *Environmental health perspectives*, 125, 385-391.

930 Lei, Y., Y. Miao, Y. Zhao, S. Zhang, H. Cao, X. Lan, Z. Zhang & H. Jin (2023) The effects of

931 meteorological conditions on allergenic airborne pollen in arid Northwest China.

932 *Atmospheric Environment*, 299, 119647.

933 Li, L., D. Hao, X. Li, M. Chen, Y. Zhou, D. Jurgens, G. Asrar & A. Sapkota (2022) Satellite-based

934 phenology products and in-situ pollen dynamics: A comparative assessment. *Environmental*

935 *Research*, 204, 111937.

936 Li, X., Y. Zhou, L. Meng, G. Asrar, A. Sapkota & F. Coates (2019) Characterizing the relationship

937 between satellite phenology and pollen season: A case study of birch. *Remote Sensing of*

938 *Environment*, 222, 267-274.

939 Li, Z., Y. Chen, Y. Tao, X. Zhao, D. Wang, T. Wei, Y. Hou & X. Xu (2023) Mapping the personal

940 PM2.5 exposure of China's population using random forest. *Science of The Total*

941 *Environment*, 871, 162090.

942 Lou, H., S. Ma, Y. Zhao, F. Cao, F. He, Z. Liu, J. Bousquet, C. Wang, L. Zhang & C. Bachert

943 (2017) Sensitization patterns and minimum screening panels for aeroallergens in

944 self-reported allergic rhinitis in China. *Scientific reports*, 7, 9286.

945 Mallol, J., J. Crane, E. von Mutius, J. Odhiambo, U. Keil & A. Stewart (2013) The international

946 study of asthma and allergies in childhood (ISAAC) phase three: a global synthesis. *Allergol.*

947 *Immunopathol.* 41, 73-85.

948 Meier, M. & C. Bigler (2023) Process-oriented models of autumn leaf phenology: ways to sound

949 calibration and implications of uncertain projections. *Geosci. Model Dev.*, 16, 7171-7201.

950 Meng, L., X. Wang, Z. Ouyang, Y. Ren & Q. Wang (2016) Seasonal Dynamics of Airborne Pollens
951 and Its Relationship with Meteorological Factors in Beijing Urban Area. *Environmental*
952 *science*. 37 (02): 452-458.(in Chinese)

953 Mir, E., C. Panjabi & A. Shah (2012) Impact of allergic rhinitis in school going children. *Asia*
954 *Pacific Allergy*, 2, 93-100.

955 Mo, Y., J. Zhang, H. Jiang & Y. H. Fu (2023) A comparative study of 17 phenological models to
956 predict the start of the growing season. *Frontiers in Forests and Global Change*, 5.

957 National Cooperative Group on Childhood Asthma, 1993. A nationwide survey on the prevalence
958 of asthma among 0-14 year old population in China(1988~1990). *Chin. J. Tuberc. Respir. Dis.*
959 16, 64–68. <https://doi.org/10.3760/cma.j.issn.1001-0939.1993.Z1.143>.

960 National Cooperative Group on Childhood Asthma, 2003. A nationwide survey in China on
961 prevalence of asthma in urban children. *Chin. J. Pediatr.* 41, 123–127. <https://doi.org/10.3760/cma.j.issn.0578-1310.2003.02.116>.

962 National Cooperative Group on Childhood Asthma, Institute of Environmental Health and Related
963 Product Safety, Chinese Center for Disease Control and Prevention, Chinese Center for
964 Disease Control and Prevention, 2013. Third nationwide survey of childhood asthma in urban
965 areas of China. *Chin. J. Pediatr.* 51, 729–735.

966 Oleson, K., D. Lawrence, G. Bonan, M. Flanner & E. Kluze (2010) Technical Description of
967 Version 4.0 of the Community Land Model (CLM), NCAR Technical Note
968 NCAR/TN-478+STR, NCAR, Boulder, USA, 257 pp.

969 Qiao, Y., L. Wu, S. Yang, Q. Wang, H. Gu, L. Wei, G. Liu, S. Zhou, P. Wang & M. Song (2023)
970 Metabolomic and transcriptomic analyses provide insights into variations in flavonoids
971 contents between two *Artemisia* cultivars. *BMC Plant Biology*, 23, 288.

972 Rahman, A., C. Luo, B. Chen, S. Haberle, M. H. R. Khan, W. Jiang, R. Xiang, J. Liu, L. Wang, G.
973 Lin, M. Yang & V. Thilakanayaka (2020) Regional and seasonal variation of airborne pollen
974 and spores among the cities of South China. *Acta Ecologica Sinica*, 40, 283-295.

975 Schmidt, C.W. (2016) Pollen overload: seasonal allergies in a changing climate. *Environ. Health*
976 *Perspect.* 124.

977 Septembre-Malaterre, A., M. Lalarizo Rakoto, C. Marodon, Y. Bedoui, J. Nakab, E. Simon, L.

979 Hoarau, S. Savriama, D. Strasberg, P. Guiraud, J. Selambarom & P. Gasque (2020) *Artemisia*
980 *annua*, a Traditional Plant Brought to Light. *International Journal of Molecular Sciences*, 21.

981 Sofiev, M., P. Siljamo, H. Ranta & A. Rantio-Lehtimäki (2006) Towards numerical forecasting of
982 long-range air transport of birch pollen: theoretical considerations and a feasibility study.
983 *International Journal of Biometeorology*, 50, 392-402.

984 Sofiev, M., P. Siljamo, H. Ranta, T. Linkosalo, S. Jaeger, A. Rasmussen, A. Rantio-Lehtimaki, E.
985 Severova & J. Kukkonen (2013) A numerical model of birch pollen emissions and dispersion
986 in the atmosphere. Description of the emission module. *International Journal of*
987 *Biometeorology*, 57, 45-58.

988 Stas, M., R. Aerts, M. Hendrickx, A. Delcloo, N. Dendoncker, S. Dujardin, C. Linard, T. Nawrot,
989 A. Van Nieuwenhuyse & J.-M. Aerts (2021) Exposure to green space and pollen allergy
990 symptom severity: A case-crossover study in Belgium. *Science of The Total Environment*,
991 781, 146682.

992 Valipour Shokouhi, B., K. de Hoogh, R. Gehrig & M. Eeftens (2024) Estimation of historical daily
993 airborne pollen concentrations across Switzerland using a spatio temporal random forest
994 model. *Science of The Total Environment*, 906, 167286.

995 Virro, H., A. Kmoch, M. Vainu & E. Uuemaa (2022) Random forest-based modeling of stream
996 nutrients at national level in a data-scarce region. *Science of The Total Environment*, 840,
997 156613.

998 Wang, X. D., M. Zheng, H. Lou, C. Wang, Y. Zhang, M. Bo, S. Ge, N. Zhang, L. Zhang & C.
999 Bachert (2016) An increased prevalence of self-reported allergic rhinitis in major Chinese
1000 cities from 2005 to 2011. *Allergy*, 71, 1170-1180.

1001 Wang, X. Y., T. T. Ma, X. Y. Wang, Y. Zhuang, X. D. Wang, H. Y. Ning, H. Y. Shi, R. L. Yu, D.
1002 Yan & H. D. Huang (2018) Prevalence of pollen-induced allergic rhinitis with high pollen
1003 exposure in grasslands of northern China. *Allergy*, 73, 1232-1243.

1004 Wozniak, M. C. & A. L. Steiner (2017) A prognostic pollen emissions model for climate models
1005 (PECM1.0). *Geosci. Model Dev.*, 10, 4105-4127.

1006 Wu, Z., A. Liu, Y. Bai, B. Liu & C. Wang (2011) Study on Evaluation of Economic Benefits from
1007 Pollen Forecast and Service in Tianjin. *Meteorological monthly*. 37(5):626-632.(in Chinese)

1008 Yin, J., F. Yue, L. Wang, H. He, T. Xu, H. Zhang, H. Li, L. Wen, J. Sun & J. Gu (2005) The

1009 clinical study of the relationship between allergic rhinitis and allergic asthma in the patients
1010 with autumnal pollinosis. *Zhonghua Yi Xue Za Zhi*, 85, 1683-1687.

1011 Yorimitsu, Y., A. Kadosono, Y. Hatakeyama, T. Yabiku & O. Ueno (2019) Transition from C3 to
1012 proto-Kranz to C3-C4 intermediate type in the genus *Chenopodium* (Chenopodiaceae).
1013 *Journal of Plant Research*, 132, 839-855.

1014 Zhang, Y. & A. L. Steiner (2022) Projected climate-driven changes in pollen emissions season
1015 length and magnitude over the continental United States. *Nature Communications*, 13, 1234.

1016 Zhao, Y., Z. Sun, L. Xiang, X. An, X. Hou, J. Shang, L. Han & C. Ye (2023) Effects of pollen
1017 concentration on allergic rhinitis in children: A retrospective study from Beijing, a Chinese
1018 megacity. *Environmental Research*, 229, 115903.