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Abstract. Accelerating
::::::::::
Accelerated progress in climate modeling is urgent

:::::::
urgently

::::::
needed for proactive and effective climate

change adaptation. The central challenge lies in accurately representing processes that are small in scale yet are climati-

cally important, such as turbulence and cloud formation. These processes are not explicitly resolvable
:::
will

:::
not

:::
be

::::::::
explicitly

::::::::
resolvable

:::
for

:::
the

::::::::::
foreseeable

:::::
future, necessitating the use of parameterizations. We propose a balanced approach that lever-

ages the strengths of traditional process-based parameterizations and contemporary AI-based data-driven methods to model5

subgrid-scale processes. This strategy focuses on employing
:::::::
employs

:
AI to derive data-driven closure functions from both

observational and simulated data, integrated within parameterizations that encode system knowledge and conservation laws.

Increasing
::
In

:::::::
addition,

:::::::::
increasing

:
resolution to resolve a larger fraction of small-scale processes can aid progress toward im-

proved and interpretable climate predictions outside the observed climate distributions, but it must still allow the generation

of large ensembles
::::::::::
distribution.

::::::::
However,

::::::::
currently

:::::::
feasible

::::::::
horizontal

::::::::::
resolutions

:::
are

::::::
limited

::
to
::::::::::
O(10 km),

:::::::
because

::::::
higher10

:::::::::
resolutions

:::::
would

:::::::
impede

:::
the

:::::::
creation

:::
of

:::
the

:::::::::
ensembles

:::
that

:::
are

:::::::
needed for model calibration and the broad exploration of

possible climate outcomes—currently O(10 km) horizontal resolutions are feasible
:::::::::
uncertainty

:::::::::::::
quantification,

:::
for

::::::::
sampling

::::::::::
atmospheric

:::
and

:::::::
oceanic

:::::::
internal

:::::::::
variability,

:::
and

:::
for

:::::::
broadly

::::::::
exploring

:::
and

::::::::::
quantifying

::::::
climate

:::::
risks. By synergizing decades

of scientific development with advanced AI techniques, this approach aims to significantly boost the accuracy, interpretability,

and trustworthiness of climate predictions.15

1 Introduction

Climate models serve two distinct purposes. First, they encode our collective knowledge about the climate system. They

instantiate theories and provide a quantitative account of climate processes—the complex interplay of causes and effects that

governs how the climate system operates. In this role, they belong to the realm of episteme, or explanatory science (Russo, 2000;

Parry, 2021). Second, climate models function as practical tools that allow us to calculate how the climate system might behave20

under different circumstances that have not
::
yet

:
been directly observed. In this role, they fall under the realm of techne, or goal-

oriented applied science (Russo, 2000; Parry, 2021). The requirements for climate models differ depending on their
:::::::
primary

role as episteme or techne. As encodings of our understanding (episteme), climate models should strive for explainability and
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simplicity, even if it means sacrificing a certain level of accuracy. Understanding of the climate system at different levels of

description emerges through a hierarchy of models, ranging from simpler ones such as one-dimensional radiative-convective25

equilibrium models to more complex ones such as atmospheric general circulation models with simplified parameterizations of

subgrid-scale processes (Held, 2005; Jeevanjee et al., 2017)
::::::::::::::::::::::::::::::::::::::::::::::
(Held, 2005; Jeevanjee et al., 2017; Mansfield et al., 2023). On the

other hand, as calculation tools (techne), climate models should aim to simulate the climate system as accurately as possible

under unobserved circumstances.

Over the past six decades, climate modeling has operated under the tacit assumption that these two roles of climate models30

converge
::::
align, implying that the most complex models reflecting our understanding of the system are also the most accurate

tools for predicting its behavior in unobserved conditions. This is a desirable goal, but it may not always be attainable in

systems as complex as the climate system.

In this essay, we specifically focus on climate models as techne, emphasizing their role as tools for accurately calculating the

behavior of the climate system in unobserved circumstances,
::::::::
although,

::
as

:::
we

::::
will

::::
see,

:::
this

::::
role

::::::
cannot

::::::
entirely

:::
be

:::::::::
decoupled35

::::
from

::::::::
episteme. The goal of such calculations

:::::::::
calculating

:::
the

::::::::
behavior

::
of

:::
the

:::::::
climate

::::::
system

:
is to obtain statistics about the

climate system
::
its

::::::::
statistics, including average temperatures at specific locations and seasons, the probability that daily pre-

cipitation in a given region exceeds some threshold, or the covariance between temperature and humidity, which can lead to

potentially dangerous humid heat extremes. These calculations correspond to what Lorenz (1975) defined as predictions of the

second kind, where future climate statistics are estimated given evolving boundary conditions, such as human-induced green-40

house gas emissions. This contrasts with predictions of the first kind, which focus on forecasting the future state of a system

given its initial conditions ζ0, as seen in weather forecasting. Consequently, climate models as techne should aim to minimize

a loss function of the form
::::::::::::::::::::
(Schneider et al., 2017a)

L= ∥⟨y(t)⟩− ⟨H ◦G(t;θ,λ,ν;ζ0)⟩∥2Γ. (1)

Here, the angle brackets ⟨·⟩ indicate an appropriate time averaging, such as a seasonal average over multiple years. The vector45

y(t) represents time-varying observables of the climate system, including those whose time average ⟨y(t)⟩ gives rise to higher-

order statistics such as the frequency of exceeding a daily precipitation threshold in a specific region.
:
It

::::
may

::::
also

:::::::
include

:::::::::::::
frequency-space

::::::::::
observables,

:::::
such

::
as

::
the

:::::::::
amplitude

:::
and

:::::
phase

::
of

:::
the

::::::
diurnal

:::::
cycle

::
of

:::::::::::
precipitation.

:
The climate model, denoted

as G(t;θ,λ,ν;ζ0), is a mapping that takes parameter vectors (θ,λ,ν) and an initial condition vector ζ0 (usually important

only for slowly varying components of the climate system, such as oceans and ice sheets) to time-varying simulated climate50

states ζ(t) = G(t;θ,λ,ν;ζ0). The observation operator H maps simulated climate states ζ(t) to the desired observables y(t).

Lastly, ∥ · ∥Γ = ∥Γ−1/2 · ∥2 represents a weighted Euclidean norm, or Mahalanobis distance. The weight is determined by the

::::::
inverse

::
of

:::
the

:
covariance matrix Γ, which reflects model and observational errors and noise due to fluctuations from internal

variability in the finite-time average ⟨·⟩. The weighted Euclidean norm is chosen because the climate statistics are aggregated

over time, meaning that, due to the central limit theorem, it is reasonable to assume that these statistics exhibit Gaussian55

fluctuations (Iglesias et al., 2013; Schneider et al., 2017a; Dunbar et al., 2021). However, the specific choice of norm in the

loss function is not crucial for the following discussion. The essence is that the loss function penalizes mismatches between
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simulated and observed climate statistics, with less noisy statistics receiving greater weight.
::::
This

:::
can

:::
be

::::
done

:::
for

::::::::::
longer-term

::::::::
aggregate

:::::::
statistics

::
or

:::
for

::::::::::
shorter-term

::::::::::
predictions,

:::
for

::::::::
example,

::
of

::
El

::
Ni

:
ñ
:
o
::::
and

::
its

::::::
impact

::
on

:::
the

:::::::
climate

::::::
system.

::::
The

::::::::
relatively

:::::
sparse

:::::::
statistics

::::::::
available

::::
from

:::::::::::::
reconstructions

::
of

::::
past

:::::::
climates

:::
can

::::::::::
additionally

:::::
serve

::
as

:
a
::::::
useful

:::
test

::
of

::::::
climate

::::::
models

:::::::
outside60

::
the

::::::::::
distribution

::
of

:::
the

:::::::
present

::::::
climate

::::::::::::::
(Zhu et al., 2022)

:
.

To achieve accurate simulations of climate statistics, the objective is to minimize the loss function (1) with respect to the

parameters (θ,λ,ν) for unobserved climate statistics ⟨y⟩. Importantly, these climate statistics may not entirely fall within
:::
fall

::::::
outside the distribution of observed climate statistics, particularly in the context of global warming projections. Therefore,

the ability of a model to generalize beyond the distribution of the observed data becomes essential. Merely minimizing the65

loss over observed climate statistics or even driving the loss to zero in an attempt to imitate observations and pass a “climate

Turing tes
:::
test” (Palmer, 2016) is not sufficient. Instead, fundamental science and data science tools, such as cross-validation

and Bayesian tools, need to be brought to bear to plausibly minimize the loss for unobserved statistics.

In the loss function, we distinguish three types of parameters:

1. The parameters θ appear in process-based models of subgrid-scale processes, such as entrainment and detrainment rates70

in parameterizations of convection. These parameters are directly interpretable and theoretically measurable, although

their practical measurement can be challenging.

2. The parameters λ represent the characteristics of the climate model’s resolution, such as the horizontal and vertical

resolution in atmosphere and ocean models.

3. The parameters ν pertain to AI-based data-driven models that capture subgrid-scale processes or correct for structural75

model errors, either within process-based models of subgrid-scale processes or holistically for an entire climate model

(Kennedy and O’Hagan, 2001; Levine and Stuart, 2022; Bretherton et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kennedy and O’Hagan, 2001; Levine and Stuart, 2022; Bretherton et al., 2022; Wu et al., 2024)

. These parameters are neither easily interpretable nor directly measurable but are learned from data.

This distinction among the parameters is useful as it reflects three different dimensions along which climate models can

be optimized. First, optimization can be achieved by calibrating parameters and improving the structure of process-based80

models that represent subgrid-scale processes such as turbulence, convection, and clouds. These processes have long been

identified as the dominant sources
:
a

::::::::
dominant

::::::
source of biases and uncertainties in climate simulations (Cess et al., 1989;

Bony and Dufresne, 2005; Stephens, 2005; Vial et al., 2013; Schneider et al., 2017b; Zelinka et al., 2020). Second, op-

timization can be accomplished by increasing the resolution of the models, which reduces the need for parameterization

(Bauer et al., 2021; Slingo et al., 2022). Finally, optimization can be pursued by integrating AI-based data-driven models.85

These models have the potential to replace (Gentine et al., 2018; O’Gorman and Dwyer, 2018; Yuval and O’Gorman, 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gentine et al., 2018; O’Gorman and Dwyer, 2018; Yuval and O’Gorman, 2020; Yuval et al., 2021) or complement (Schneider

et al., 2017a; Lopez-Gomez et al., 2022) process-based models for subgrid-scale processes. Additionally, they can serve as com-

prehensive error-corrections for climate models (Bretherton et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Watt-Meyer et al., 2021; Bretherton et al., 2022; Wu et al., 2024)

.90
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In the past two decades, efforts to optimize climate models have often focused on individual dimensions in isolation. For

instance
::::::
example, Climate Process Teams, initiated under the U.S. Climate Variability and Predictability Program, have concen-

trated on enhancing process-based models by incorporating knowledge from observational and process-oriented studies into

climate modeling (Subramanian et al., 2016). The resolution of atmosphere and ocean models has gradually increased, albeit

at a pace slower than the advances in computer performance would have allowed (Schneider et al., 2017b). More recently,95

there have been calls to prioritize resolution increase, aiming to achieve kilometer-scale resolutions in the horizontal, with the

expectation that this would alleviate the need for subgrid-scale process parameterizations,
:::::

such
::
as

:::::
those

:::
for

::::
deep

::::::::::
convection,

:::
and

:::::::::::
substantially

:::::::
increase

:::
the

::::::::
reliability

:::
of

::::::
climate

::::::::::
predictions (Bauer et al., 2021; Slingo et al., 2022). Moreover, there is a

rapidly growing interest to advance climate modeling by utilizing
:::::
using AI tools, broadly understood to include tools such as

Bayesian learning, deep learning, and generative AI (e.g., Schneider et al., 2017a; Reichstein et al., 2019; Chantry et al., 2021;100

Watson-Parris, 2021; Balaji et al., 2022; Irrgang et al., 2022; Schneider et al., 2023).

Beginning with a review of recent advances in the goodness-of-fit between climate simulations and observed records, here

we will explore the potential benefits and challenges associated with optimizing each of the three dimensions mentioned earlier.

Our analysis will highlight the importance of adopting a balanced approach that encompasses progress along each dimension,

as this is likely to yield the most robust and accurate climate models
:::
and

:::
the

::::
most

::::::::::
trustworthy

:::
and

::::::
usable

:::::::::
predictions.105

2 Evolution of climate models

The climate statistics ⟨y⟩ used in the loss function (1) can vary depending on the specific application. For example, a national

climate model may prioritize minimizing the loss within a particular country. However, there are several climate statistics that

are generally considered important and should be included in any comprehensive loss function. Two such examples are the

top-of-atmosphere (TOA) radiative energy fluxes and surface precipitation rates.110

The inclusion of TOA radiative energy fluxes is crucial because accurately simulating these fluxes is a prerequisite for

accurately simulating a wide range of climate statistics
:::::::
changes

::
in

:::
any

::::::
climate

:::::::
statistic. After all, radiative energy is the primary

energy that drives
::::
driver

:::
of the climate system; changes

:
.
:::::::
Changes in radiative energy fluxes caused by changes in greenhouse

gas concentrations drive global climate change. Errors
:
;
::::::
climate

::::::
models

:::::
must

::::::::
accurately

:::::::
simulate

:::::::
changes

::
in

:::::
these

::::::
energy

:::::
fluxes

:::
and

::::
their

:::::
effect

:::
on

:::::::
multiple

:::::::
climate

::::::
system

:::::::::::
components,

::::
from

::::::
oceans

::::
and

::::
land

:::::::
surfaces

::
to

:::::::
clouds.

:::
As

:
a
:::::::::::
consequence,

::::::
errors115

in radiative energy fluxes affect many aspects of a simulated climate, from wind to precipitation distributions. The balance of

TOA radiative energy fluxes must also be closed to machine precision. This
:
A
::::::
closed

::::::
energy

:::::::
balance is necessary to achieve a

steady climate , without drift, in
::
in

:::::::
unforced

:
centennial to millennial integrations with

:
in

:::::
which

::::
tiny

::::::::::
imbalances

::
of

:::
the

::::::
energy

:::::
budget

:::::::::
otherwise

:::::::::
accumulate

:
over 107 discrete timesteps—in

::::::::
timesteps,

::::::
leading

::
to

:::::::::
large-scale

:::::::
climate

::::
drift.

::::
The

:::::::::::
conservation

::::::::::
requirements

:::
for

:::::::
climate

::::::::::::::
predictions—for what John von Neumann called the “infinite forecast” (Edwards, 2010), in contrast120

to
:::::
—are

::::
more

::::::::
stringent

::::
than

:::::
those

:::
for

:
the short-term integrations needed for weather forecasting, which have less stringent

conservation requirements. Similarly, precipitation rates are of significant importance as they
::
are

::::
part

::
of

::::
what

::::::
closes

:::
the

:::::
water

::::::
balance

::::
and

::::
they directly impact human activities. Achieving accurate simulations of precipitation rates relies on accurately
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Figure 1. Normalized rms error (RMSE) in the seasonal climatology of precipitation, top-of-atmosphere (TOA) longwave (LW) radiation,

and TOA shortwave (SW) radiation for different models and model intercomparison projects. The rms errors are relative to climatologies

from GCPC (Adler et al., 2018) and CERES-EBAF (Loeb et al., 2009) datasets over the period 2001–2020. CMIP and AMIP rms errors

represent median values over
:
of
:

the
:::::
RMSE

:::::::
computed

::::::::
separately

:::
for

::::
each

::
of

:::
the included models. Climatologies are computed as follow:

for CMIP3 over 2001–2020 for the B1 scenario; for CMIP5/6 over 2001–2020 for a combination of the historical and RCP4.5/SSP2.45

scenarios; for AMIP over 1995–2014 for models contributing to CMIP6; for HadGEM3-GC31 and MPI-ESM1-2 over 1995–2014 for the

historical simulations; and for the kilometer-scale resolution simulations over 1
:
4 simulated year

::::
years for

:::::
coupled

:
IFS and over 2

:
5
:
simulated

years for
:::::::::
nudged-SST

:
ICON (nextGEMS cycle 2

:
3;
::::::::::::::::::

(Koldunov et al., 2023)), shown together with AMIP averaged
::::::
averages

:
over the same

simulation length
:
in
::::::
CMIP6

:::
and

:::::
AMIP,

::::::::::
respectively. The rms error is normalized by the median across CMIP3 and CMIP5 models for each

field and across all seasons, with normalization constants shown below the colorbar. HadGEM3-GC3.1 and MPI-ESM1.2 from HighResMIP

(Haarsma et al., 2016) are sorted in order of increasing horizontal resolution,
::::
with

::
the

::::::::::
atmospheric

:::::::
resolution

:::
for

::::
each

::::::::::
configuration

:::::
stated

:::
over

:::
the

:::::::
respective

::::::
column

:
(see Table 1).

simulating numerous subgrid-scale processes within the climate system. Therefore, precipitation is an emergent property that

serves as a holistic metric to assess the goodness-of-fit of a climate model.125

Figure 1 assesses the evolution of climate models over the past two decades in simulating the observed climatology of TOA

radiative energy fluxes and precipitation rates, setting aside temporarily that the loss minimization should occur for unobserved

records. The figure displays the median root mean square (rms) error between model seasonal climatologies and observations,
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Table 1. Atmosphere and ocean model resolutions of HighResMIP simulations included in Fig. 1.

Atmos. Res. Ocean Res. Vertical Levels

HadGEM3-GC3.1-LL N96 (135 km) 100 km 85

HadGEM3-GC3.1-MM N216 (60 km) 25 km 85

HadGEM3-GC3.1-HH N512 (25 km) 8 km 85

MPI-ESM1.2-LR T63 (200 km) 150 km 47

MPI-ESM1.2-HR T127 (100 km) 40 km 95

MPI-ESM1.2-XR T255 (50 km) 40 km 95

with all data interpolated
::::::::::::
conservatively

::::::::
remapped

:
to a common 2.5◦ latitude-longitude grid

:::::
using

:::::::
Climate

::::
Data

:::::::::
Operators

:::::::::::::::::
(Schulzweida, 2023).1 The plot includes three generations of climate models from the Coupled Model Intercomparison Project130

(CMIP) as well as recent higher-resolution simulations. It is evident that, over time, there has been a gradual improvement in the

fidelity of models in simulating TOA radiative energy fluxes and precipitation. For example, in CMIP6 (late-2010s), the median

rms error relative to CMIP3 (mid-2000s) is reduced by 15% for precipitation, 31% for TOA outgoing longwave flux, and 30%

for TOA reflected shortwave flux(all values indicate
:
,
::::
with

::
all

::::::
values

::::::::
indicating

:::::::
average

:
seasonal-mean improvements

::::
(Fig.

::
1,

:::::
upper

:::
row). Individual modeling centers , such as the National Center for Atmospheric Research (NCAR), have surpassed135

this median rate of improvement,
::
for

::::::::
example,

:
with rms error reductions of 30% for precipitation, 49% for TOA outgoing

longwave flux, and 36% for TOA reflected shortwave flux in the progression from CCSM3 to CESM2 .
::
at

:::
the

:::::::
National

::::::
Center

::
for

:::::::::::
Atmospheric

::::::::
Research

::::::::
(NCAR)

::::
(Fig.

::
1,

:::::
lower

:::::
row). These improvements primarily stem from advances in process-based

parameterizations and model tuning (e.g., Danabasoglu et al., 2020). The average resolution has also increased across the

model generations, shifting from around 200–400 km horizontally in the atmosphere in CMIP3 to around 100–200 km in140

CMIP6 (Schneider et al., 2017b; Intergovernmental Panel on Climate Change, 2021).

To specifically examine the impact of resolution, we consider two models from the High Resolution Model Intercompari-

son Project (HighResMIP; Haarsma et al., 2016): HadGEM3-GC3.1 (Roberts et al., 2019) and MPI-ESM1.2 (Gutjahr et al.,

2019). These models have conducted simulations at three different resolutions, with horizontal resolutions in the atmosphere

between 25 and 200 km
:
,
:::::::
without

:::::::::::::::
resolution-specific

::::::
tuning (Table 1). Both models exhibit a modest but consistent reduction145

in error metrics as resolution increases. However, there is one exception: the doubling in atmospheric horizontal resolution

::::
from

:::::::::::::::
MPI-ESM1.2-HR

::::
(100

::::
km)

::
to

:::::::::::::::
MPI-ESM1.2-XR

:::
(50

::::
km), without an increase in ocean resolution or atmospheric ver-

tical resolution, from MPI-ESM1.2-HR to MPI-ESM1.2-XR did not result in an improvement in error metrics. This finding

suggests that ocean resolution and atmospheric vertical resolution are also important factors contributing to the improvements

with resolution.150
1That is, what is displayed in Fig. 1 are unweighted errors, in contrast to the loss function (1), which downweights mismatches between simulations and

observations for variables that have high error variance, e.g., because of internal variability in finite-time averages.
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Recently, there has been a push to increase the resolution of climate models even further to kilometer scales, allowing

for partial resolution of deep convection and potential improvements in simulating precipitation and its extremes (Bauer

et al., 2021; Slingo et al., 2022).
::
In

:::::::::
numerical

:::::::
weather

:::::::::
prediction,

::::::::
enhanced

:::::::::
horizontal

:::::::::
resolution

:::
has

:::
led

::
to

:::::::::::::
improvements,

::
for

::::::::
example,

:::
in

::::::
rainfall

::::::::::
predictions

:::
on

:::::::::
timescales

:::::
from

:::::
hours

::
to
:::::

days
::::::::::::::::
(Clark et al., 2016).

:::::::::
However,

:::::::
whereas

:::::::::::
assimilation

::
of

::::
data

::
at

:::
the

:::::::::::
initialization

:::
of

::
a

:::::::
forecast

:::::::::::
continuously

:::::
pulls

:::::::::
numerical

:::::::
weather

:::::::::
predictions

:::::
close

:::
to

:::
the

:::::::
climate

::::::::
attractor,155

::::::::
long-term

::::::
climate

::::::::::
simulations

:::::::
require

:
a
::::::::::

realistically
::::::

closed
::::::
energy

:::::::
balance

::
to

:::::::
remain

::
on

:::
the

:::::::
climate

::::::::
attractor.

::::
This

:::::::
balance

:::
also

::::::::
depends

::
on

:::::::::
dynamics

::
at

::::::
scales

::::
well

:::::
below

::
1
:::
km

:::::
(e.g.,

:::
in

:::::::
tropical

:::
low

:::::::
clouds,

:::::
which

::::
are

::::::
crucial

:::
for

:::::::
climate

:::
but

::::
less

::::::::
important

:::
for

:::::::
weather

:::::::::
prediction),

:::::::
making

::
it

:::
less

:::::
clear

:::
that

::::::::
increased

:::::::::
resolution

::
by

:::::
itself

::::::
results

::
in

:::::
better

::::::
climate

:::::::::::
simulations.

Figure 1 displays the rms errors of two such
::::::::::::
kilometer-scale

:
models (IFS and ICON) in simulating the seasonal climatol-

ogy of TOA radiative energy fluxes and precipitation. These simulations use a prescribed
:::::
While

::::
both

:::::::
models

::::::
include

::::::
ocean160

::::::::
coupling,

::::::
ICON

::::::
nudges

:::
to

:
a
:

seasonally varying climatology of sea surface temperatures (SSTs) and
::
to

:::::
avoid

:::
the

::::
long

::::
and

:::::::::::::
computationally

::::::::::
demanding

::::::::::
integrations

::::::
needed

::
to
::::::::::

equilibrate
:::
the

::::::
surface

:::::::
energy

:::::::
balance;

:::::
thus,

:
it
:

can be compared to the

ensemble of coarser-resolution models in the Atmospheric Model Intercomparison Project (AMIP).
:
,
:::::
which

::::::::
prescribe

::::::
SSTs.

::::::::
Therefore,

:
Figure 1 also shows

::::::
includes

:
the rms errors in AMIP for 1- and 2-year averaging periods equivalent to the length

of the
::::::
CMIP6

:::
and

::::::
AMIP

::::::::::
simulations

:::
for

:::
4-

:::
and

::::::
5-year

:::::::::
averaging

:::::::
periods

:::
for

:::::
direct

::::::::::
comparison

::::
with

::::
the IFS and ICON165

simulations, respectively. Compared to the coarser-resolution AMIP simulations, the kilometer-scale simulations show mod-

est improvements in TOA shortwave fluxes and longwave fluxes, but
::::
little

:::::::::::
improvement

:::
or

::
in

:::::
some

:::::
cases

::::
even

:
increased

errors in precipitation. These simulations highlight that higher resolution alone does not guarantee an improved fit in cli-

mate simulations. Many crucial climate-regulating processes, such as shallow clouds and cloud microphysics, remain unre-

solved at kilometer-scales, requiring appropriate parameterization. Extensive calibration or even re-design of subgrid-scale170

parameterizations
::
at

:::::::::::::
kilometer-scale

:::::::::
resolution is necessary to reduce large-scale biases that can otherwise exceed those

seen in coarser-resolution models (Hohenegger et al., 2023).
:::::::::::::::::::::::::::::::::::
(Wedi et al., 2020; Hohenegger et al., 2023).

::::::::
However,

::::
the

::::
high

:::::::::::
computational

::::
cost

::
at

:::::::::::::
kilometer-scale

:::::::::
resolutions

:::
has

::
so

:::
far

::::::::
inhibited

:::::::::
systematic

:::::
model

:::::::::
calibration

::
or

::::::::::
exploration

::
of

:::::::::
alternative

:::::::::::::
parameterization

::::::::::
approaches.

:

Figure 2 provides a more detailed illustration of how kilometer-scale models can inherit longstanding biases from coarse-175

resolution models. The figure compares August precipitation between observations and simulations. The simulations include

coarse-resolution AMIP models and a set of kilometer-scale simulations conducted under the DYAMOND project (Stevens

et al., 2019). The figure reveals that the kilometer-scale simulations capture more intricate details in the precipitation patterns,

such as the strong orographic precipitation in the Himalayas, New Guinea, and the Sierra Madre Occidental. However, they

still exhibit similar large-scale biases as the coarse-resolution simulations, such as excessive precipitation over the tropical180

regions of the south Pacific and Indian Oceans, commonly referred to as the double-ITCZ bias (Tian and Dong, 2020). The

double-ITCZ bias has important implications for regional precipitation projections over land (Dong et al., 2021).

Over the past two decades, then, climate models have shown gradual improvements in key metrics, with error reductions

of 10–20% per decade, as seen in Figure 1 and in other studies (Bock et al., 2020). However, there are still errors that are

large compared to the climate change signals we aim to predict. For instance, the radiative forcing due to doubling CO2185
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Figure 2. August precipitation in satellite observations (top), coarse-resolution AMIP simulations (middle), and kilometer-scale DYAMOND

simulations (bottom). Observations are based on the Global Precipitation Climatology Project (GPCP) (Adler et al., 2018). AMIP simulations

are from 14 models that participated in CMIP6. Both GPCP data and AMIP simulations are interpolated to a common 1◦ × 1◦ grid, and the

August climatology is derived from 1979–2014. The DYAMOND results, shown at the model native resolutions, are based on the average of

5 models with horizontal resolutions ranging from 3.3 km to 7.8 km for August 2020. Figure adapted from Zhou et al. (2022).

concentrations is about 4W m−2, while rms errors in TOA radiative energy fluxes are O(10W m−2). The response of climate

models to increasing greenhouse gas concentrations also varies widely across models. For example, the time when the 2◦C

warming threshold of the Paris agreement is exceeded varies by several decades among models (Schneider et al., 2017b;

Intergovernmental Panel on Climate Change, 2021). This indicates that there is significant room for further improvement.

Given the significant errors in simulating the current climate and the uncertainties in future projections, there ’s
:::::
exists a large190

gap between the demands placed on climate models for adaptation decisions—such as designing stormwater management

systems or sea walls to handle a 100-year flood in the decades ahead—and the capabilities of models today (Fiedler et al.,

2021; President’s Council of Advisors on Science and Technology, 2023). Yet, the need for such decision-making is immediate.

Therefore, it is urgent to accelerate the improvement of climate models, aiming for a step change enhancement in both accuracy
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and usability for decision-making, beyond the gradual advances of recent decades. The question is how to achieve such a step195

change.

3 Process-based parameterizations

The uncertainties and biases in climate simulations, as shown in Figs. 1 and 2, have their roots in the parameterization of

unresolved small-scale processes. So far, these processes have been primarily parameterized based on process knowledge, in a

reductionist approach. For example, the influential work of Arakawa and Schubert (1974) laid the foundation for widely used200

parameterizations of moist convection, employing a reductionist process model of convective plumes that are, at all times,

in statistical equilibrium with their environment and incorporate environmental air by entrainment. Research over the past

two decades has focused on refining the formulation of the entrainment rate, a key control on climate model sensitivity to

greenhouse gas concentrations (Stainforth et al., 2005; Knight et al., 2007). Typically, this rate is represented by a constant

parameter ϵ= θ or a parametric function ϵ= ϵ(z,ζ;θ) of height z and (usually local) plume and environmental properties205

encoded in the model state ζ (e.g., de Rooy et al., 2013; Yeo and Romps, 2013; Anber et al., 2019; Savre and Herzog,

2019; Cohen et al., 2020). Similarly, diffusive closures of various types have been commonly employed for boundary layer

turbulence in the atmosphere and oceans. These closures employ diffusivities that may depend on height, other flow variables,

or a turbulence kinetic energy determined by separate equations, and they are sometimes augmented by correction terms to

represent upgradient fluxes
:
in

:::::::::
convective

:::::::::
boundary

:::::
layers

:
(e.g., Mellor and Yamada, 1982; Large et al., 1994; Lock et al.,210

2000).

The process-based approach offers the advantage that the parameters or parametric functions that require closure are inter-

pretable and theoretically measurable. For example, Monin-Obukhov similarity theory reduced the problem of parameterizing

turbulence in a thin (∼100 m) layer near the surface to finding universal functions that characterize the vertical structure of

turbulent fluxes (Foken, 2006). Later, these functions were empirically derived based on measurements over a field of wheat215

stubble during the summer of 1968 in Kansas (Businger et al., 1971); they have since been widely incorporated into climate

models. This represents a success story for the process-based approach. It led to a parametrically sparse and interpretable

representation of near-surface turbulent fluxes. It applies not only to summer conditions over Kansas wheat fields but also

demonstrates invariance properties that make it applicable across most of the globe, with a
::::::::
relatively few limitations, particu-

larly in convective situations.220

However, despite this progress, the dominant source of uncertainties and biases in climate simulations, even 50 years after

the introduction of the convection parameterization by Arakawa and Schubert (1974), lies in the representation of turbulence,

convection, and clouds
:::::::::
(including

::::
their

:::::::::::
microphysics)

:
above the near-surface layer. This indicates that the reductionist approach

to developing process-based models for these components has encountered significant challenges. For example, measuring

entrainment rates directly, despite being theoretically possible, remains challenging in practice, both in observational data and225

high-resolution simulations (e.g., Romps, 2010). The search for universal functions to accurately represent entrainment has
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been unsuccessful thus far. Consequently, the process-based approach to modeling convection and clouds is widely perceived

as being deadlocked (Randall et al., 2003; Randall, 2013)
::::::::::::::::::::::::::::::::::::::::::::::
(Randall et al., 2003; Randall, 2013; Gentine et al., 2018).

However, prematurely dismissing process-based modeling as obsolete would ignore its advantages and its potential for fur-

ther development. Contrasting the achievements of Monin-Obukhov similarity theory and moist convection parameterizations230

is illuminating. Monin-Obukhov similarity theory systematically coarse-grained the equations of motion, employing controlled

approximations and identifying the nondimensional groups of variables that govern near-surface turbulent fluxes. The approach

reduced the closure problem to finding universal functions of the identified nondimensional groups, with well-defined limits

in different scenarios. This led to its near-universal applicability. In contrast, typical moist convection parameterizations in

current use emerged phenomenologically, without a systematic coarse-graining of the known equations of motion through235

controlled approximations. Even when starting from a rigorous basis like the Arakawa and Schubert (1974) parameterization,

operational parameterizations often introduced artificial scale breaks between boundary layer turbulence, shallow convection,

and deep convection, or even between convection over land and oceans, leading to separate parameterizations with discontin-

uous differences in parameters and structure. Such discontinuities do not exist in nature. As a result, these parameterizations

lack well-defined limits. For example, they do not converge to a well-defined dry limit when the latent heats of fusion and va-240

porization of water approach zero, and they do not converge in resolution
::
to

:::
the

::::::::::::
Navier-Stokes

:::::::
equation

::
as

::::::::
resolution

::::::::
increases.

This approach hindered the systematic removal of unnecessary approximations, particularly as model resolution increased and

common assumptions, such as small plume area fractions relative to the host model’s grid scale, or statistical equilibrium

between moist convection and the environment, became inadequate (Arakawa et al., 2011; Arakawa and Wu, 2013; Randall,

2013). Therefore, rather than declaring process-based modeling for moist convection and other complex processes at a dead245

end, a more nuanced perspective recognizes the need for further development with greater mathematical and physical rigor,

particularly in light of the abundant data and enhanced computational capabilities available today that surpass what the early

pioneers of these approaches had at their disposal. The invariance properties, such as conservation laws and symmetries, inher-

ited by this approach from the underlying equations of motion, may well hold the key to developing universal parameterizations

that enable us to minimize the loss (1) for unobserved climate statistics and generalize beyond the observed distributions. 2250

::::::::::
distribution.

::::
That

::
is,

:::::::
progress

:::
on

:::::::::::
macroscopic

:::::
techne

:::
here

::::::
hinges

::
on

:::::::::::
microscopic

:::::::
episteme

:
.

These considerations suggest that successful process-informed parameterizations satisfy three
::::
four clear requirements:

1. Parameterizations should be based on
::::::::
grounded

::
in the governing equations of subgrid-scale processes whenever possible.

These equations can be systematically coarse-grained through methods like conditional averaging or moment equations

derived from
:::::::
feasible.

::::::::
Equations

:::
for

:::::::::::::::
parameterizations

:::
can

:::
be

:::::::
obtained

:::
by

:::::::::
systematic

:::::::::::::
coarse-graining

::::::
through

::::::::
methods255

::::
such

::
as

:::::::::
conditional

:::::::::::::
averaging—for

::::::::
example,

:::::::
resulting

:::
in

::::::
distinct

:::::::
equation

::::
sets

:::
for

:::::::
coherent

:::::::::
structures

:::
like

:::::::
updrafts

::::
and

::::
their

::::
more

:::::::::::
isotropically

::::::::
turbulent

::::::::::::::
environment—or

:::
the

:::::::::
derivation

::
of

:::::::
moment

:::::::::
equations

:::::
rooted

:::
in distribution assump-

tions on subgrid-scale fluctuations.
::::::::
Whatever

:::::::
approach

::
is
::::::::

adopted,
::
it

::
is

::::::
crucial

:::
that

:::::::::::
assumptions

:::
are

::::::::
explicitly

::::
laid

:::
out

:::
and

::::::
subject

::
to

::::::::
empirical

::::::::
validation

:::
or

:::::::
revision. Examples of such approaches

:::
for

:::::::::
turbulence

:::
and

:::::::::
convection

:
include Lap-

pen and Randall (2001), Golaz et al. (2002),
::::::::::::::::
Soares et al. (2004),

:::::::::::::::::::
Siebesma et al. (2007),

::::::::::::::::
Witek et al. (2011),

:
Guo et al.260

2That is, progress on macroscopic techne here hinges on microscopic episteme.
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(2015), Firl and Randall (2015), Tan et al. (2018), Thuburn et al. (2018), Cohen et al. (2020), and Lopez-Gomez et al.

(2020).

2. Artificial scale breaks, such as those between shallow and deep convection, should be avoided. These breaks have no
::::
lack

correspondence in nature but introduce
::::::::::
unphysically

::::::::::::
discontinuous

:::::::::
dynamical

::::::::::
transitions.

::::
They

::::
also

::::
lead

::
to

:
correlated

parameters that are difficult to calibrate
:::
with

::::
data. For example, parameters in

:::::::::::
discontinuous

:::::::::
transitions

:::::::
between

:::::::
shallow265

:::
and

::::
deep

:::::::::
convection

::::::
impede

:::
an

:::::::
accurate

::::::::
simulation

:::
of

::
the

::::::
diurnal

:::::
cycle

::
of

:::::::::
convection

::::::::::::::::::::::::::::::::::::::::::::
(Christopoulos and Schneider, 2021; Tao et al., 2024)

:::
and

:::::
result

::
in

::::::::
correlated

:::::::::
parameters

::
in

:::
the

:
shallow and deep convection schemes are necessarily correlated

:::
that

:::
are

:::::::
difficult

::
to

::::::
identify

:::::
from

::::
data. Moreover, bridging these

::::::::::::
discontinuous scale breaks becomes challenging

:::::::::
problematic

:
as resolu-

tion increases,
:::
for

::::::::
example,

::::::
through

:::
the

:::::
“gray

:::::
zone”

::::::
where

::::::::
processes

::::
such

::
as

::::
deep

:::::::::
convection

:::::::
become

:::::::
partially

:::::::
resolved.

3. When scale separation is absent between the parameterized subgrid-scale processes and the resolved grid-scale, param-270

eterizations must incorporate subgrid-scale memory and stochastic terms. This means
::::::
implies that convection and cloud

parameterizations, for example, need to
:::
must

:
be explicitly time-dependent (i.e., have memory) and cannot be assumed

to be in instantaneous equilibrium with the environment. Homogenization theories such as those of Mori and Zwanzig ,

which employs
:::::::::::::
(Zwanzig, 2001)

:
,
:::::
which

:::::::
employ averaging but also shows how fluctuations about averages arise on the

macroscale, supports
::::::
support

:
the inclusion of these features (Majda et al., 2003; Wouters and Lucarini, 2013; Lucarini275

et al., 2014; Wouters et al., 2016; Lucarini and Chekroun, 2023).

4.
::::::::::::::
Parameterization

:::::::
schemes

::
for

::::::::
different

::::::::
processes

::::
must

::
be

:::::::
coupled

::::
such

:::
that

::::
they

::::::
interact

::::::::::
consistently

::::::::::::::::::::::::::::::::
(Devine et al., 2006; Gross et al., 2018)

:
.
:::
For

:::::::
example,

::::::
models

:::
for

:::::::::::
subgrid-scale

::::::::::
fluctuations

::
of

:::::
cloud

::::::::
dynamics

::::
must

::
be

:::::::
coupled

::::::::::
consistently

::::
with

:::::::::::::::
parameterizations

::
for

:::::
cloud

::::::::::::
microphysics,

::::::::
ensuring

::::
that

::::::::
nonlinear

::::::::::
interactions

:::::::
between

::::::::::::
microphysical

:::::::::
processes

::::
such

:::
as

:::
ice

:::::::::
nucleation

:::
and

:::
the

::::::::::::::
thermodynamics

::::
and

::::::::
velocities

:::
of

:::::::
updrafts

:::
are

:::::::::::
consistently

::::::::
modeled

:::::::::::::::::::
(Gettelman et al., 2019)

:
.
::::
This

::
is
::::::

likely280

:::::::::
particularly

:::::::::
important

::
for

:::::::::
processes

::::
such

::
as

:::
the

:::::::::
formation

::
of

::::::::::
supercooled

:::::
liquid

:::
in

:::::
strong

::::::::
updrafts,

:::::
which

:::::
occur

:::
out

:::
of

:::::::::::::
thermodynamic

:::::::::
equilibrium

::::
and

:::::
hence

:::
are

:::::::::
dependent

::
on

:::
the

:::::::
history,

:::
and

:::
not

::::
just

:::
the

:::::::::::
instantaneous

:::::
state,

::
of

:::
air

:::::::
masses.

::::
Such

::::::::
processes

:::
are

::::::
known

::
to

:::::::
strongly

:::::
affect

:::
the

::::::::
response

::
of

::::::
climate

:::::::
models

::
to

::::::::
increased

:::::::::
greenhouse

::::
gas

::::::::::::
concentrations

:::::::::::::::::
(Zelinka et al., 2020).

:

Developing process-based parameterizations by systematically coarse-graining equations of motion will lead to unclosed terms,285

similar to the universal functions in Monin-Obukhov similarity theory. These terms , whether
:::::
should

:::
be

::::::::
expressed

:::
in

:::::
terms

::
on

::::::::::::::
nondimensional

:::::::
variable

::::::
groups

::::
that

:::::
make

::::
them

:::
as

::::::::::::::::
“climate-invariant”

::
as

::::::::
possible

:::::::::::::::::
(Beucler et al., 2024)

:
.
::::::::
Whether they

contain parameters, parametric functions, or non-parametric functions, present
::::
they

::::
then

:::::::
become

:
excellent targets for AI-

enabled learning from data.

There is accumulating evidence that a program focused on process-based parameterizations
:::
that

::::::
satisfy

:::
the

:::::
above

:::::::::::
requirements290

can achieve success. For example, Lopez-Gomez et al. (2020) and Cohen et al. (2020) have demonstrated the effectiveness of

a unified parameterization approach for
:::
the

::::::::
spectrum

::
of

::::::::::
small-scale

:::::::
motions

:::::
from

:
boundary layer turbulence and

:
to

:::::
deep

moist convection. This parametrically sparse approach ,
:
is
:

based on conditionally averaged equations of motion, accurately
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represents
:::::
which

::::
leads

::
to

:::::::::
additional

::::::::
evolution

::::::::
equations

:::
for

:::::::::::
subgrid-scale

::::::::
quantities

::::
such

:::
as

::::::
updraft

:::::::
energies

:::
and

:::::
mass

::::::
fluxes.

:::
The

::::::::
equations

:::
for

:::
the

::::::::::::
subgrid-scale

::::::::
quantities

:::::
carry

::::::::
additional

:::::::::::
information,

::::::::
including

:::::::::::
subgrid-scale

::::::::
memory,

::::::::::
augmenting

:::
the295

:::::::::
information

::::::::
available

:::
on

:::
the

:::::
grid

::::
scale

:::
of

::
a

::::::
model.

::::::
Within

::::
one

:::::::::
continuous

:::::::::::::::
parameterization

::::::::::
framework,

::::
they

:::
are

::::
able

:::
to

::::::::
accurately

::::::::
represent

:
a wide range of cloud dynamics observed on Earth, from stable boundary layers to stratocumulus-topped

boundary layers and deep convection. Furthermore, Lopez-Gomez et al. (2022) have shown that machine learning can be

employed to identify closure functions in these parameterizations, such as entrainment rates that depend on
::::::::::::::
climate-invariant

nondimensional groups.300

As climate models reach resolutions where deep convection becomes marginally resolved, using an inadequate deep-

convection parameterization based on instantaneous statistical equilibrium
::::::::::
assumptions

:
may well be less effective than not

using any parameterization at all. In the kilometer-scale simulations shown in Figures 1 and 2, deep convection parameteriza-

tions are entirely turned off for this reason (Stevens et al., 2019). However, parameterizations for boundary layer turbulence

and low-cloud cover are usually kept, and sometimes also those for shallow convection, even though they were originally305

developed for resolutions in the hundred kilometer range, where, for example, assumptions of instantaneous statistical equilib-

rium of subgrid-scales with resolved scales are more justifiable. As seen in the above figures, this approach has not achieved

the anticipated
::
yet

::::::::
achieved

:::
the

:::::::::
hoped-for success; in particular, it has not significantly improved large-scale precipitation

simulations at kilometer-scale resolutions. Consequently, it is essential to advance the development of parameterizations that

effectively bridge the scales between marginally resolved convection and the dynamics that remain unresolved in this reso-310

lution range, in addition to parameterizations of yet smaller scales, such as the microphysics of cloud droplet and ice crystal

formation.

4 Resolution

Climate is regulated by turbulent motions in the atmosphere and oceans. Horizontal motions transport energy, momentum, and,

in the atmosphere, water vapor, shaping surface temperatures, winds, and precipitation patterns. Vertical motions couple the315

atmosphere and surface, creating clouds, driving precipitation, and mixing heat and tracers like
::::
such

::
as

:
carbon dioxide in the

oceans. Representing these turbulent motions accurately is crucial for climate models, but challenging due to their vast range

of length scales, from planetary to millimeter scales.

Figure 3a shows the kinetic energy spectrum of horizontal and vertical motions in the atmosphere, measured by aircraft.

The spectra are displayed as functions of the inverse of the horizontal wavelength λ
::::::::
horizontal

::::::::::
wavelength

::::
λ−1, which is320

proportional to the horizontal wavenumber k = 2π/λ. At large scales (small wavenumbers), the spectrum of horizontal kinetic

energy follows a k−3 power law, as predicted by geostrophic turbulence theory (Vallis, 2006, chapter 9). At mesoscales below

approximately 500 km, the spectrum becomes shallower, resembling a k−5/3 power law. The reason for this change has been

debated. The shallower spectrum seems to be caused by linear inertia-gravity waves, which are internal waves modified by

planetary rotation that coexist with the nonlinear, primarily geostrophic, atmospheric turbulence (Dewan, 1979; VanZandt,325

1982; Callies et al., 2014).
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Figure 3. Kinetic energy spectra and cumulative energy in the atmosphere. (a) Spectral kinetic energy density based on aircraft measurements,

shown as a function of inverse
:::::::
horizontal

:
wavelength λ−1 = k/(2π). (b) Cumulative kinetic energy from λmax = 5000 km to λ on the upper

horizontal axis, normalized by the energy for λmin = 10 m; the
:
.
:::
The

:
lower horizontal axis expresses

:::::::::
wavelength λ through the required

horizontal model grid spacing ∆x, using λ≈ 7∆x. Blue for horizontal motion kinetic energy, red for vertical motion kinetic energy. Data

from Callies et al. (2014) (MOZAIC) and Schumann (2019) (NAWDEX). Dashed lines in (a) indicate linear extrapolations in log-log space,

except for the dashed blue line where NAWDEX and MOZAIC data overlap: there the dashed line represents the NAWDEX spectrum

multiplied by a fitting constant to match the MOZAIC spectrum. Cumulative energies are obtained by numerical integration over the spectra,

including the extrapolations. The dashed line in (b), for wavelengths λ≤ 25 km, represents a power law fit 1−a(λβ−λβ
min) to the cumulative

vertical kinetic energy, with β ≈ 0.4 and a≈ 0.2
:::::
a≈ 0.5. Note that the extrapolations of vertical kinetic energy to large scales may not be

very accurate due to possible deviations from a completely flat spectrum, which can slightly shift the position of the inflection point in the

cumulative energy (Skamarock et al., 2014; Schumann, 2019).

At scales greater than 10–20 km, the kinetic energy of vertical motions is much weaker than that of horizontal motions, with a

relatively flat spectrum. This difference is mainly due to two factors: (1) The scale of vertical motions is limited by the depth of

the troposphere (about 10–20 km), which contains the most important vertical motions; and (2) the vertical velocity depends on
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the divergence of the horizontal velocity, which is weaker (by a factor of order Rossby number) than the dominant rotational330

velocity at large scales, though it becomes comparable to it on mesoscales. The divergence involves horizontal derivatives,

leading to a multiplication by k2 of the kinetic energy spectra in wavenumber space at horizontal scales above 10–20 km,

where the vertical depth scale is constrained by the depth of the troposphere (see Schumann (2019) for a detailed model, from

which these insights are drawn). This results in the relatively flat spectrum with low vertical kinetic energy at larger horizontal

scales. At horizontal scales smaller than about 10–20 km, where the horizontal scale is comparable to the vertical scale and not335

::
the

:::::
latter

::
is

::
no

::::::
longer constrained by the depth of the troposphere, the vertical kinetic energy spectrum starts to decay following

a rate of roughly k−5/3, like the horizontal kinetic energy spectrum. At yet smaller scales in the meter range, the turbulence

becomes increasingly isotropic, which
:::
also results in a k−5/3 power law due to

::::::
because three-dimensional turbulence following

::::::
follows

:
a Kolmogorov spectrum. The figure shows an extrapolation of both the horizontal and vertical kinetic energy spectra

from the smallest measured scale near 100 m down to 10 m for illustrative purposes. However, in reality, the spectra continue340

without a break to the Kolmogorov scale at millimeters, where kinetic energy is dissipated.

As
::::::::
horizontal

:
climate model resolution increases, the continuity of the atmospheric energy spectrum implies a gradual

improvement as resolved motions replace imperfectly parameterized smaller scales. To quantitatively assess the benefits of

higher resolution in climate models, we integrate the energy spectra Ê(k) over a wavenumber interval from kmin = 2π/λmax

to k = 2π/λ:345

E(kmin,k)∝
k∫

kmin

Ê(k′)dk′. (2)

Figure 3b illustrates the cumulative energy contained between λmax = 5000 km and a given λ on the upper horizontal axis,

normalized by the cumulative energy extrapolated to λmin = 10 m. Because of the steepness of the horizontal kinetic energy

spectrum at large scales, the benefits of increased resolution for horizontal kinetic energy level off at wavelengths just under

1000 km, corresponding .
::::
This

::::::::::
corresponds

:
to a grid spacing around ∆x≈ 150 km (lower horizontal axis in Fig. 3) because the350

minimum wavelength λ a model can resolve is approximately 7∆x (Skamarock, 2004; Wedi, 2014; Klaver et al., 2020). Cli-

mate models reached this “geostrophic turbulence plateau” in resolution in the past decade (Schneider et al., 2017b). However,

the vertical kinetic energy spectrum remains relatively flat at larger scales, leading to continued benefits in resolving vertical

kinetic energy as λ decreases.2 Concretely, the data in Fig. 3 indicate that resolving wavelengths of 1000 km, 100 km, and

10 km (grid spacings ∆x of about 150 km, 15 km, and 1.5 km, respectively) increases the fraction of resolved vertical kinetic355

energy between 5000 km and 10 m from 0.6% to 7% and 43%, respectively. The returns on increasing resolution only begin to

diminish for wavelengths below 1 km, that is, grid spacings ∆x≲ 150 m. The specific results depend on the data and extrapo-

lations used (Schumann, 2019), but the main finding is clear: Even at kilometer-scale resolution, most vertical motions require

parameterization, especially those generating the
:
.
::::
This

::
is

::::::::
especially

::::
true

:::
for

:::
the

:::::::
motions

::
at

:::::::::
horizontal

:::::
scales

::
in

:::
the

::::::
meter

::
to

:::::::
hundred

:::::
meter

:::::
range,

::::::
which

::::::::
generate

:::
the low clouds that impact

:::
help

:::::::
control Earth’s energy balance (Bony and Dufresne,360

2For a k−α spectrum, the cumulative vertical kinetic energy scales as −λβ , where β = α−1. This gives β = 2/3 for α= 5/3; the .
:::
The curves in Fig. 3,

for wavelengths λ < 25 km, are fit well with β ≈ 0.4, showing .
::::

This
::::
shows

:
that there is no qualitative change in behavior over those scales,

:::
only

::::::
gradual

:::
gains

::::
from

:::::::
increasing

:::::::
resolution.
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2005; Stephens, 2005; Vial et al., 2013; Schneider et al., 2017b, 2019). As
::::::::
Therefore,

::
as

:
we push the resolution frontier, it is

crucial to concurrently improve parameterization of smaller-scale turbulent motions
::
in

::::
ways

::::
that,

:::
as

::::::::
discussed

::
in

::::::
section

::
3,

:::
are

::::::::::::
commensurate

::::
with

:::
the

:::::
model

:::::::::
resolution;

:::
for

::::::::
example,

::::::::
statistical

::::::::::
equilibrium

::::::::::
assumptions

:::
for

:::::::::::
subgrid-scale

::::::::::
fluctuations

:::::
must

::
be

::::::
relaxed

::
at

:::::::::
resolutions

::::::
where

::::
scale

:::::::::
separation

:::::::
between

:::::::
resolved

::::
and

::::::::::::
parameterized

::::::::
processes

:::::::::
disappears.

Increasing horizontal model resolution comes with
:::
the

:::::::::
horizontal

::::::::
resolution

::
of

:::::::
climate

::::::
models

::::::
incurs a substantial compu-365

tational cost, which grows as (∆x)−3 for a
:
fixed vertical resolution. This cost arises from the increasing number of horizontal

grid points, ∝ (∆x)−2, and the need
:::::::
necessity

:
for smaller timesteps, ∝ (∆x)−1, to maintain numerical stability. To illustrate

using the previous example from Fig. 3, reducing the grid spacing from ∆x≈ 15 km to ∆x≈ 1.5 km increases the computa-

tional cost by a factor 1000, while increasing
:::::::::
enhancing the cumulative vertical kinetic energy resolved by a factor 6, from 7%

to 43%. That is, the rate at which the
:
of

::::::::::::
improvement

::
in resolved vertical kinetic energy improves (a low power of ∆x) is very370

small relative to
::::::::::
significantly

::::::
smaller

::::
than

:
the additional computational expenditure

:::::::
expense. From this perspective, increas-

ing horizontal resolution is an inefficient means of improving climate models. Moreover, the vertical grid spacing ∆z must

also be considered
:::
and

::::::::
typically

::::::
should

::::
scale

:::::
with

:::
∆x

::::::::::::::::::::::::::::::
(Lindzen and Fox-Rabinovitz, 1989);

::::::::
however,

:::::::
existing

::::::::::::
process-based

::::::::::::::
parameterizations

:::
are

:::::
often

::::::::
manually

:::::::::
calibrated

::
to

:
a
:::::::
specific

:::::::
vertical

:::::::::
resolution,

:::::::
resulting

::
in
::

a
:::::::::
reluctance

::
to

:::::::
increase

:::::::
vertical

::::::::
resolution

::::::::
alongside

:::::::::
horizontal

::::::::
resolution

::
in

:::::::
practice. Increasing vertical resolution incurs

:::::
entails a more modest computational375

cost, typically
:::::::
generally

:
scaling as (∆z)−1. This is because fast vertical dynamics are generally treated implicitly in climate

models to circumvent timestep limitations, ideally using implicit solvers with computational costs linear in (∆z)−1. As hinted

at
::::::::
suggested in Fig. 1, increasing vertical resolution at coarser horizontal resolution can be advantageous because it can improve

the representation of parameterized subgrid-scale dynamics (Harlaß et al., 2015; Kawai et al., 2019; Smalley et al., 2023). At

higher horizontal resolutions where resolved dynamics become more isotropic, proportionately increasing both vertical and380

horizontal resolution becomes necessary, leading to a computational cost that scales even less favorably, like (∆x)−4.

Therefore, making trade-offs in optimizing the parameters λ characterizing model resolution is essential because, even

:::
that

::::::
define

:::::
model

:::::::::
resolution

:::::::
requires

:::::::::
inevitable

:::::::::
trade-offs.

:::::
Even

:
at foreseeable future resolutions, unresolved scales of at-

mosphere and ocean turbulence, plus even finer scales controlling cloud microphysics and other processes, will still require

parameterization. In particular, it is crucial
:::::
While

:::::::::
increasing

:::::::::
resolution

::::::::
gradually

::::::::
improves

:::
the

::::::::::::
representation

:::
of

::::::::
turbulent385

::::::::
dynamics

:::
and

::::::::
enhances

:::
the

:::::::::
resolution

::
of
:::::::

surface
::::::::::
topography,

::::::
gravity

:::::::
waves,

:::
and

:::::::
land-sea

:::::::::
contrasts,

:::
the

::::::::
1000-fold

::::::::
increase

::
in

::::::::::::
computational

:::
cost

:::::
from

:::::::::
O(10 km) to invest some of the available computational resources in enabling parameterizations

to be calibrated with and learn from
::::::::
O(1 km)

:
is
::::::::

unlikely
::
to

::::::
justify

:::
the

:::::::
benefits

:::::::::::::::
(Wedi et al., 2020)

:
.
:
It
::::

will
::::::
remain

:::::::
crucial

::
to

::::
make

:::::::::::::::
parameterizations

::
as

:::::::::::::::::::
resolution-independent

::::::
(“scale

:::::::
aware”)

::
as

:::::::
possible

:::
and

::
to
:::::::
allocate

:::::
some

::::::::::::
computational

::::::::
resources

::
to

:::::::::
calibrating

::::::::::::::
parameterizations

::::
with

:
data, which requires hundreds to thousands of climate simulations. This practical limitation,390

in addition to the need to run large
:::::::
Although

:::::::::
calibrating

::::
over

::::::
shorter

:::::::::
(weather)

::::::::
timescales

::
is
::::::::::::::
computationally

::::::
feasible

::::
and

::::
may

::
be

:::::::::
beneficial,

:
it
::::
does

:::
not

:::::::::
guarantee

::::::::
improved

::::::::::
simulations

::
of

::::::::::
longer-term

::::::
climate

:::::::
statistics

::::::::::::::::::
(Schirber et al., 2013)

:
.
:::::::::
Moreover,

::
to

:::::::
quantify

::::::
climate

:::::
risks,

:
it
::
is

::::::::
necessary

::
to

:::
run ensembles of climate simulations to broadly explore possible climate outcomes, will

determine the resolution attainable
:
.
:::::
Doing

:::
so

:::::::
requires

:::::
O(10)

::::::::
ensemble

::::::::
members

::
to
:::::::

sample
::::::::::
atmospheric

:::
and

:::::::
oceanic

:::::::
internal

::::::::
variability

:::::::::::::::::::::::::::::::::::::::::::::::::
(Deser et al., 2020; Wills et al., 2020; Bevacqua et al., 2023),

::::::
ideally

::::
with

::::
each

::
of

:::::
those

:::
also

::::::::
sampling

::::::
model

::::::::::
uncertainties395
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::
by

:::::::
drawing

::::
from

:
a
::::::::
posterior

:::::::::
distribution

::::
over

::::::::
plausible

::::::
models

:::::::::::::::::::::::::::::::::::
(Dunbar et al., 2021; Howland et al., 2022),

::::::::
resulting

::
in

:::::::
hundreds

::
of

:::::::::::
decades-long

::::::
climate

::::::::::
simulations.

::::::::
Ensemble

:::::::::
generation

:::::
lends

::::
itself

::::
well

::
to

:::::::::
distributed

::::::
(cloud)

:::::::::
computing

::
as

:
it
::
is

:::::::::::::
embarrassingly

::::::
parallel.

:::::::::
However,

:
it
::::
also

:::::::::
constrains

:::
the

::::::::
routinely

::::::::
achievable

:::::::::
resolution

:
in climate models. In the atmosphere and oceans, this

routinely achievable resolution currently
::::::::
Therefore,

:::::::::::::
kilometer-scale

:::::::::
resolution

:::::::
remains

:::
an

:::::::::::
experimental

:::::::
frontier.

:::::::::
Currently,

:::::::
routinely

:::::::::
achievable

::::::::::
atmospheric

:::::::::
resolution lies in the O(10 km) range (Schneider et al., 2023)

::::::::
10–50 km

:::::
range

:::::::::::::::::::
(Schneider et al., 2023)400

:
,
:::::
while

:::::
ocean

:::::::::
resolutions

:::
of

::::::::
5–10 km

:::
are

:::::::::
achievable

::::::::::::::::::::::::::::::::::
(Chang et al., 2020; Silvestri et al., 2024). By finding the right balance

between resolution and parameterization learning and calibration, we can make significant strides in improving climate simu-

lations within realistic computational constraints.

5 AI for learning parameterizations

Even at the highest achievable climate model resolutions
:::::::::
resolutions

:::::::::
achievable

::
in

:::::::
climate

::::::::
modeling, parameterizing small-405

scale processes remains essential. Process-based parameterizations, encoding conservation laws and invariance properties,

are promising for generalizing beyond observed climate data, but they include unclosed terms and functions
::::
While

::
it
::::
may

:::
be

:::::::
tempting

::
to

:::::
learn

::::
about

:::
all

:::::::::
small-scale

::::::::
processes

::::::::::
holistically

::::
from

::::
data,

::::
this

::::::::
approach

:
is
:::::
more

:::::
likely

::
to

::
be

:::::::::
successful

::
in

:::::::
weather

:::::::::
prediction,

:::::
where

:::::::::
short-term

::::::::
accuracy

::
is

:::::::::
prioritized,

::::
and

::::::
energy

:::::::::::
conservation

::
is

::::
less

::::::
critical

:::::::
because

::::
daily

::::
data

:::::::::::
assimilation

:::::::
prevents

:::::
model

:::::
drift.

::
In

:::::::
contrast,

:::::::
climate

::::::::
prediction

:::::
faces

:::
two

:::::::
primary

:::::::::
challenges.

:
410

::::
First,

::::::
energy

:::::::::::
conservation

:::
and

::::::::
predicting

:::::::
changes

::
in

::::::
Earth’s

::::::
energy

:::::::
balance

:::
are

:::::::::
paramount,

::
as

::::::::::
exemplified

::
by

:::::
Suki

::::::::
Manabe’s

::::::::::
Nobel-prize

:::::::
winning

:::::
work.

::::
His

::::::
climate

:::::::::
modeling

::::
work

::::::
began

::::
with

:::::::::::::::::
radiative-convective

::::::::::
equilibrium

:::::::
models

::
to

:::::::
explore

:::
the

:::::::
energetic

::::::
effects

::
of

:::::::
changes

::
in

::::::::::
atmospheric

::::::::::
composition

:::
on

::
the

::::::::::
atmosphere

:::
and

::::::
surface

:::::::::::::::::::::::::::::::::::::::::::::::::
(Manabe and Strickler, 1964; Manabe and Wetherald, 1967)

:
.
::
In

::
the

:::::
same

::::
vein,

::::::
climate

:::::::
models

::::
must

::::::::
accurately

::::::
predict

:::::::::
responses

:
to
:::::::
changes

::
in

::::::::::
atmospheric

:::::::::::
composition,

::::
such

::
as

::::::::::
greenhouse

:::
gas

::::::::::::
concentrations

::::
and

::::::
aerosol

:::::::
loading.

:::::
Some

:::
of

:::::
these

::::::::
responses

:::::::
involve

::::
rapid

:::::::::::
adjustments

:::
that

:::
are

:::::::::::
independent

::
of

:::::::
surface415

::::::::::
temperature

:::::::
changes.

:::
For

::::::::
example,

::::::
changes

::
in
::::::::::
greenhouse

:::
gas

::::::::::::
concentrations

:::
can

::::::::
modulate

:::::
cloud

:::::
cover

::::::
through

:::::
rapid

::::::::::
adjustments

:::::::
mediated

:::
by

:::::::
changes

:
in
:::::::::
longwave

:::::::
radiative

:::::
fluxes,

::
in
:::::::
addition

::
to

:::
the

:::::
cloud

:::::::
response

::
to

::::::
surface

::::::::::
temperature

:::::::
changes

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gregory and Webb, 2008; Sherwood et al., 2015; Bretherton, 2015)

:
.
::::::::
Predicting

:::::
these

::::::
effects

::::::::
separately

::
is

:::::::
essential

:::
for

:::::
future

:::::::
climate

::::::::
scenarios:

::
in

:::::
future

::::::::
climates,

:::::::
changes

::
in

::::::
aerosol

:::::::
loadings

::::
and

:::::::::
greenhouse

:::
gas

::::::::::::
concentrations

:::
can

::::::::::
decorrelate,

:::
and

:::::::
changes

::
in

::::::::
longwave

::::::::
radiative

:::::
fluxes

:::
can

:::::::
decouple

:::::
from

::::::
surface

::::::::::
temperature

:::::::
changes,

::
as

::
is

:::
the

::::
case

::
in

::::
solar

:::::::::::::
geoengineering

::::::::
scenarios

:::::::::::::::::::
(Schneider et al., 2020)

:
.
:::::::
Learning

:::::
their

:::::::::
compound

:::::
effects

::::::::::
holistically420

::::
from

::::
data

::::
will

:::
not

::::::
enable

::::
such

::::::::::
predictions

:::::::
because

:::
the

::::::
effects

::::::
cannot

::
be

:::::::::::
disentangled

::::
from

::::
data

::::::
alone,

::::::
where,

:::
for

::::::::
example,

::::::
changes

:::
in

:::::::::
greenhouse

::::
gas

::::::::::::
concentrations

:::
and

:::::::
surface

::::::::::
temperature

:::
are

:::::::::
correlated;

:::::::
instead,

::::::::
modeling

:::
the

::::::::
processes

:::::::::
separately

::::
using

::::::
known

:::::::
physics

::
as

::::::::
guardrails

:::::::
appears

::::::::
essential.

::::::
Second,

:::::::
climate

::::::
change

:::::::::
prediction

::
is

::
an

::::::::::::::::
out-of-distribution

:::::::::
challenge,

::
as

:::
we

::::
lack

::::
data

:::
for

::::::
future,

::::::
warmer

::::::::
climates.

::::::
While

::::
using

:::::::::
simulated

::::
data

:::
for

:::::::
learning

:::
is

:::
one

:::::::::
approach,

::
it

:::::::
restricts

:::::::
learning

:::
to

:::::
model

:::::::::
emulation

::::
and

::::
may

:::
not

:::::::
capture

::::::::
complex425

::::::::
processes

::::
such

::
as

::::::
aerosol

::::::
effects

:::
on

::::::
clouds,

:::::
which

::::::::
currently

::::::
cannot

::
be

:::::::::
simulated

::::::
reliably

:::::
even

::
in

::::::
limited

::::::::
domains.

:::::::::
Therefore,

:::::::
learning

::::
from

:::::::::::
observations

:::::
must

::
be

::::::::
informed

:::
by

::::::
known

:::::::
physics

::
to

::::::
ensure

:::::::
models

::::::::
generalize

:::::::
beyond

:::
the

::::::::
observed

:::::::
climate

::::::::::
distribution.
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::
To

:::::
make

:::::::
progress

::::
and

:::::::::
generalize

::::::
beyond

::::::::
observed

:::::::
climate

::::
data,

:::
we

::::
can

::::
build

:::
on

::::::::::::
process-based

:::::::::::::::
parameterizations,

::::::
which

::::::
encode

:::::
known

:::::::
physics

:::::::
through

::::::::::
conservation

::::
laws

:::
and

:::::::::
invariance

:::::::::
properties. AI-based data-driven methods, broadly understood430

to include a spectrum of methods from Bayesian to deep learning, can aid in learning about these
:::::
entire

::::::::::::::
parameterizations

:::
or

:::::::
unclosed

:
terms and functions or about entire parameterizations, thus reducing

:::::
within

:::::
them.

:::::
This

:::
can

::::::
reduce

:
inaccuracies in

climate models and potentially also allowing
:::::
allow the quantification of the remaining uncertainties.

AI approaches require the specification of a loss function. The most suitable is a loss function (1) that penalizes differences

between simulated and observed climate statistics. This ,
::::::::

weighted
:::
by

:::
the

::::::
inverse

:::
of

:
a
:::::::::
covariance

::::::
matrix

:::::::::::
representing

:::::
noise435

::::::
sources

::::
such

::
as
::::::::::::

observational
::::
error

::::
and

::::::
internal

:::::::::
variability.

::::
The

::::
loss function should include variables such as TOA radiative

energy fluxes and global precipitation fields, as shown in Fig. 1. It might
::::
may also include higher-order statistics, such as the

covariance between surface temperature and cloud cover (Schneider et al., 2017a). This
::::::::
covariance

:
represents an emergent

constraint: a statistic that, across climate models, correlates with the response of cloud cover to greenhouse gas concentration

increases (e.g., Klein and Hall, 2015; Brient and Schneider, 2016; Caldwell et al., 2018; Hall et al., 2019). These emergent
::::
Such440

:::::::
emergent

::::::::::
constraints

:::
can

:::::
arise,

:::
for

::::::::
example,

::::
from

:::::::::::::::::::
fluctuation-dissipation

::::::::
theorems

::::
that

:::::
relate

::::::::::
fluctuations

::
in

:
a
::::::
system

:::
to

:::
the

:::::::
response

::
of

:::
the

::::::
system

:::
to

:::::::
external

:::::::::::
perturbations

::::::::::::::::::::::::::::::::::::
(Ruelle, 1998; Lucarini and Chekroun, 2023)

:
.
::::::::
Emergent

:
constraint statistics,

previously used only for retrospective model assessments, can be proactively minimized in the loss function to improve model

accuracy in simulating greenhouse gas responses.3

However, using climate statistics in a loss function challenges traditional machine learning (ML) methods. Supervised learn-445

ing (SL), the dominant ML approach, depends on labeled input-output pairs for process modeling and learns regressions of out-

puts onto inputs. For example, a convection parameterization requires at least temperature and humidity inputs, which must be

paired with the output—convective time tendencies of temperature and humidity—for training. Since such data are unavailable

from Earth observations, SL has been limited to simulated data (e.g., O’Gorman and Dwyer, 2018; Rasp et al., 2018; Gentine et al., 2018; Yuval and O’Gorman, 2020; Yu et al., 2023)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., O’Gorman and Dwyer, 2018; Rasp et al., 2018; Gentine et al., 2018; Yuval and O’Gorman, 2020; Yuval et al., 2021; Yu et al., 2023)450

. Conversely, the climate statistics in the loss function (1) provide only indirect information about processes such as convection.

For example, the loss function may include fields such as precipitation and cloud cover—noisy fields with missing data that

are influenced by multiple processes, including but not limited to convection (Schneider et al., 2017a).

To illustrate, consider determining closures in a conservation equation:

Dq

Dt
= F +S. (3)455

Here, q(x, t) is a tracer, such as total specific humidity, dependent on space x and time t, and D/Dt= ∂/∂t+u · ∇ is the

material derivative with fluid velocity u(x, t). The quantities on the left-hand side are taken to be resolved on the model’s

grid. The right-hand side consists of two components: F(x, t) represents unresolved subgrid-scale flux divergences in need of

parameterization; S(x, t) denotes all other, separately modeled sources and sinks.
3
:
If
::::::
emergent

:::::::
constraint

::::::
statistics

:::
are

:::
used

:::::
during

:::
loss

:::::::::
minimization,

::::
they

::
can

:::
no

::::
longer

::::
serve

::
as

:::::::::
retrospective

:::::::
constraints

::
on

:::
the

::::::
response

::
of

::
the

:::::
model

:
to
::::::::::
perturbations.

:
In
:::::::::

retrospective
:::::
studies,

::::
there

::
is

:
a
:::
risk

:
in
::::

using
:::::::

emergent
:::::::
constraints

::::::
because

::
the

::::::::
correlation

:::::
between

:::::::
emergent

:::::::
constraint

::::::
statistics

::
and

:::
the

:::::
climate

::::::
response

:::
may

::
be

::::::
spurious

::::::::::::::::::
(Caldwell et al., 2014, 2018)

:
.
::::
When

::::
using

::::::
emergent

:::::::
constraint

::::::
statistics

::::
during

:::
loss

::::::::::
minimization,

::
by

:::::
contrast,

:::
the

::::::
statistics

:
at
::::
worst

:::
may

:::::
merely

::
be

:::::::::
uninformative

::::
about

:::::
model

:::::::
parameters

:::
and

:::::::
processes.
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In SL approaches, the objective is to map the model state ζ to approximate SGS
::::::::::
subgrid-scale

:
flux divergences F̂(ζ;ν)holistically,460

with parameters ν (e.g., neural network weights and biases). To make the problem tractable, the mapping is usually considered

locally in the horizontal, mapping column states ζ(x,y,zi, t) :::::
ζ(zi, t):at discrete levels zi (for i= 1, . . . ,Nz) to parameterized

flux divergences F̂ j

(
ζ(x,y,zi, t);ν)

)
:::::::::::::
F̂ j

(
ζ(zi, t);ν)

)
:
at levels zj . This is achieved by using the column state ζ(x,y,zi, t)

::::::
ζ(zi, t) as input, and the remainder Dq/Dt−S as output, to learn a regression F̂ ≈Dq/Dt−S + ϵ. The material derivative

Dq/Dt is rolled out over time intervals typically spanning hours to days. The aim is to minimize the residual ϵ over parameters465

ν, typically using methods such as backpropagation that compute gradients of the loss function with respect to the parameters

ν.

This approach leverages the expressive capabilities of deep learning and has shown some promise, as evidenced in studies

demonstrating that moist convection or ocean turbulence parameterizations that are accurate over short time intervals can be ef-

fectively learned in this manner (e.g., O’Gorman and Dwyer, 2018; Rasp et al., 2018; Gentine et al., 2018; Bolton and Zanna, 2019; Yuval and O’Gorman, 2020; Zanna and Bolton, 2020)470

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., O’Gorman and Dwyer, 2018; Rasp et al., 2018; Gentine et al., 2018; Bolton and Zanna, 2019; Yuval and O’Gorman, 2020; Yuval et al., 2021; Zanna and Bolton, 2020; Wang et al., 2022; Sane et al., 2023)

. Error corrections to existing parameterizations have been learned in a similar manner (Bretherton et al., 2022)
::::::::::::::::::::::::::::::::::::::::
(Watt-Meyer et al., 2021; Bretherton et al., 2022)

. However, focusing solely on minimizing the short-term residual ϵ presents several limitations:

1. The learned parameterization F̂ may not necessarily minimize the climate-relevant loss function (1), which is concerned

with longer-term statistics.
:::::::::::::::::
Schirber et al. (2013)

::::::
provide

:::
an

:::::::
example

:::
of

::::
how

:::::::::
short-term

:::::::::::
optimization

::::
can

::::
lead

::
to

:::
no475

:::::::::::
improvement

::
or

::::
even

::::::::::
degradation

::
of

::::::::::
longer-term

::::::
climate

::::::::
statistics

::
in

:
a
::::::
model.

:

2. Supervised learning of the parameterization F̂ is typically restricted to data generated computationally in higher-resolution

simulations, restricting it to the emulation of imperfect models, because labeled parameterization output Dq/Dt−S is

generally not available from Earth observations.

3. The parameterization F̂ , learned holistically for the
:::::::
typically

::::::
learned

:::
for

::
a multitude of processes it comprises

:::::
jointly,480

usually does not generalize well out of the training distribution
:::
and

::
is
:::::::::
resolution

::::::::
dependent, necessitating training with a

broad range of simulated climates (e.g., O’Gorman and Dwyer, 2018)
:::
and

:::::::::
re-training

::::::::
whenever

:::
the

::::::::
resolution

::
is
:::::::
changed.

4. Climate models incorporating the learned parameterization F̂ often struggle with conserving essential quantities such as

energy and exhibit instabilities during extended integrations (e.g., Brenowitz and Bretherton, 2018), because minimizing

the short-term residual ϵ does not inherently ensure conservation or stability.485

5. The learned parameterization F̂ is resolution dependent because it is based on discretized model states at a particular

resolution, necessitating re-training whenever the resolution is changed.

Some of the challenges associated with SL approaches in climate modeling can be addressed or alleviated. For example,

longer roll-outs of the material derivative Dq/Dt have been shown to reduce instabilities when integrating the learned pa-

rameterization F̂ into a climate model (Brenowitz et al., 2020), and constraints on the loss function can be used to enforce490

conservation laws (Beucler et al., 2021). Additionally, the issue of resolution dependence in the learned parameterization
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F̂ can be tackled by shifting from learning a finite-dimensional discrete mapping between model grid points to learning an

infinite-dimensional operator. Such operators map between function spaces; they would effectively represent the atmospheric

or oceanic column state as a continuous function, rather than as a set of discrete points (e.g., Nelsen and Stuart, 2021; Kovachki

et al., 2023). This approach allows for a more flexible representation of the underlying physical processes, potentially adaptable495

to different resolutions without the need for retraining.

An alternative approach that avoids the restrictions of SL views learning parameterizations F̂ and ML parameters ν within

them as an inverse problem, minimizing a climate-relevant loss function (1) (Kovachki and Stuart, 2019). This
:::::::
However,

::::
this

loss function is based on data that are only indirectly informative about the process being modeled; that is, the parameterization

F̂ influences the climate model output G(t;θ,λ,ν;ζ0) in the loss function only indirectly, through the complex and nonlinear500

interactions of other components in the climate model (Schneider et al., 2017a). Gradients of the loss function with respect to

the parameters ν in this case would involve differentiation through the model G, which may not be differentiable or
::::
(e.g.,

::
at

:::::::::::
discontinuous

:::::
phase

::::::::::
transitions)

::
or

::::
may

::
be

:
difficult to differentiate.

In this context, learning about the parameterization F̂ is no longer a straightforward regression of outputs onto inputs. How-

ever, this does not preclude the inclusion of parameter-rich and expressive deep learning models within the parameterization.505

The parameters ν
:
,
:::::::
together

::::
with

::::::::::::
process-model

:::::::::
parameters

::
θ,

:
can be estimated by minimizing a climate-relevant loss function

(1) using derivative-free ensemble Kalman inversion techniques, which
:::
are

::::::
proven

::
to

::::
scale

::::
well

::
to

:::::::::::::::
high-dimensional

::::::::
problems

:::
and can be used with models for which gradients are unavailable (Kovachki and Stuart, 2019). Furthermore, this

:::
that

:::
are

:::
not

::
or

::::::
difficult

::
to
:::::::::::
differentiate

:::::::::::::::::::::::
(Kovachki and Stuart, 2019).

:::
As

::
in

:::::
many

::::::
inverse

:::::::::
problems,

:::::::::
minimizing

:::
the

::::
loss

:::::::
function

::
is

::::
often

:::
an

:::::::
ill-posed

:::::::
problem

::::
with

:::::
many

:::::::
possible

::::::::
solutions,

:::::
which

::::
may

::
be

:::::::
sensitive

::
to
:::::
small

:::::::
changes

::
in

:::
the

:::
data

:::::::::::::::::::::::::::::::::::::::::::
(Tarantola, 1987; Hansen, 1998; Iglesias et al., 2013)510

:
.
:::
This

:::::::
requires

::::::::::::
regularization,

:::
for

::::::::
example,

:::::::
through

::
the

::::
use

::
of

::::
prior

::::::::::
information

::
on

:::
the

:::::::::
parameters

::
ν

::
to

:::::
select

::::::
“good”

:::::::::
parameter

:::
sets

::::::
among

:::
the

:::::
many

::::
that

::::
may

::::::::
minimize

:::
the

:::::
loss.

::::
Such

:::::
prior

::::::::::
information

::::
may

::
be

::::::::
obtained,

:::
for

::::::::
example,

:::
by

::::::::::
pre-training

:::
on

:::::::::::::
computationally

::::::::
generated

:::::
data,

:::::
which

:::
can

:::
be

::::
more

:::::::
detailed

::::
than

:::::::::::
observational

::::
data

:::::::::::::::::::::::
(Lopez-Gomez et al., 2022).

:::::
This inverse

problem approach,
:::::::::
augmented

::::
with

:::::
prior

::::::::::
information,

:
not only makes it possible to learn from heterogeneous and noisy Earth

observations but also allows for the quantification of uncertainties (e.g., Cleary et al., 2021; Huang et al., 2022). Stochastic515

elements can also be incorporated in the parameterizations (e.g., Schneider et al., 2021b), which, as discussed in section 3, is

particularly relevant in the absence of clear scale separation, offering a more principled and realistic representation of climate

processes.

This expanded view of applying
:::::::::
perspective

::
on

::::::::::::
incorporating AI methods in climate models broadens the scope of where

these methods can be effectively integrated. Instead of focusing
:
It
::::::
moves

::::::
beyond

:::::::::::
automatically

:::::::::
calibrating

:::::
scalar

::::::::::
parameters

::
in520

::::::
climate

::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhang et al., 2015; Couvreux et al., 2021; Hourdin et al., 2023)

:
to
::::::::::

encompass
::::::::::::::::
higher-dimensional

:::::::::
parameter

::::::
spaces,

::::::::
including

:::::
those

:::::::
relevant

::
to

::::
deep

:::::::
learning

:::::::::::
approaches.

::::::
Rather

::::
than

:::::::
focusing

::::::
solely on areas where SL is feasible, the

emphasis shifts to where AI can have the most significant impact. The key challenge in climate modeling and prediction is

minimizing the loss function (1) for unobserved climate statistics, especially in global warming scenarios where these statistics

may fall outside the range of observed data. While traditional methods such as withholding part of the data for cross-validation525

are
:::::
remain

:
essential, they fall short in ensuring model generalization beyond the training dataset. This limitation is evident when
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predicting, for example, the direct effects of CO2 on cloud cover (Bretherton, 2015) or on
:::::::
becomes

:::::::
evident

:::::
when

:::::::::
attempting

::::
tasks

::::
such

::
as

:::::::::
predicting

::::
rapid

::::::::::
adjustments

::
in
:::::
cloud

:::::
cover

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gregory and Webb, 2008; Sherwood et al., 2015; Bretherton, 2015)

::
or

:::::::
changes

::
in

:
the photosynthetic productivity of the biosphere (Luo, 2007) , which are challenging to infer from the limited

variations in recent CO
::
in

:::::::
response

::
to

::::::::
increased

:::
CO2 concentrations.

::::::::::::
concentrations,

:::::
given

:::
the

::::::
limited

::::
range

:::
of

:::
CO2::::::::::::

concentration530

::::::::
variations

:::
and

::::
their

::::::::::
inextricable

::::::::::
correlation

::::
with

::::::::::
temperature

::::::::
variations

::
in

::::::
recent

:::::::::::
observations.

:::::::::
Embedding

:::::::::
AI-driven

:::::::
closures

:::::
within

::::::::::::
process-based

:::::::::::::::
parameterizations

::::::
rooted

::
in

:::::::::::
conservation

::::
laws

:::
can

:::::
help

::
in

::::::::
obtaining

::::::
models

::::
that

:::::::::
generalize

:::
out

:::
of

:::
the

:::::::
observed

:::::::
climate

::::::::::
distribution.

A valuable insight emerges from the success of similarity theories, such as the Monin-Obukhov similarity theory discussed

in section 3, which generalized effectively from a few specific measurements to a wide range of global conditions. Similarly, AI535

methods may be most effective when used to learn universal functions of relevant nondimensional variable groups: functions

that likely remain invariant across different climates and are well-sampled in current climate conditions, including the seasonal

cycle whose amplitude in many quantities exceeds the climate change signals we expect for the coming decades (Schneider

et al., 2021a). If such learning minimizes a loss (1) in an online setting, it leads to
:::
that

:::
is,

:::::
while

:::
the

::::::
learned

:::::::::
functions

:::
are

::::::::
integrated

::::
into

:::
the

::::::
global

::::::
model,

::
it

::
is

::::
more

::::::
likely

::
to

::::
lead

::
to

:
long-term stable models, because existence of the statistics in540

the loss function implies that the model is stable over the timescales over which the statistics are aggregated. For example,

rather than learning the convective flux divergence F̂ for water or energy holistically, it is likely beneficial to focus on learning

:::::::::
corrections

::
to

::::::::::::
process-based

:::::::::::::::
parameterizations

::
or

:
key unknown functions such as entrainment and detrainment rates within

the coarse-grained conservation laws for water and energy, embedded online in a larger forward model. Lopez-Gomez et al.

(2022) demonstrated that this approach can successfully learn parameterizations that generalize well to warmer climates not545

encountered during training
:
,
:::
and

::::::
related

:::::::
results,

::::
with

::::::::::::
gradient-based

::::::
online

:::::::
learning

::::::::::
approaches,

:::
are

::::::::
emerging

:::
for

:::::::::
turbulence

::::::
closure

::::::
models

::::::::::::::::::
(Shankar et al., 2024). An ancillary benefit is that quantification of uncertainties becomes more straightforward,

and the parameterizations remain interpretable, facilitating the investigation of mechanisms, for example, of cloud feedbacks

and the differential effects of changing greenhouse gas concentrations and warming in them. Models for structural errors

can similarly be incorporated where the errors are actually made—within the parameterizations of unresolvable small-scale550

processes (Levine and Stuart, 2022; Wu et al., 2024),
:::::
rather

::::
than

::
in

:::
the

:::::
space

::
of

:::
the

:::::
model

::::::
output

:::::::::::::::::::::::::
(Kennedy and O’Hagan, 2001)

.

Therefore, we advocate for an approach that leverages our extensive knowledge of conservation laws, expressed as partial

differential equations, and enhances it with AI methods to learn about closure functions in parameterizations where reductionist

first-principle approaches fall short. The central challenge is to find a balance: using first principles to encode system knowl-555

edge and conservation laws for generalization and interpretability, while avoiding overly rigid constraints that limit the model’s

adaptability to diverse data sets. This balance will vary across different components of the climate system,
:::
and

::::::
finding

::
it

:::::::
requires

::::::
domain

::::::::
expertise. For instance, first principle modeling has proven less effective than data-driven approaches for river flows and

snowpack thickness, where systematic coarse-graining is challenging and observed spatial and temporal variations plausibly

capture future scenarios (Kratzert et al., 2018, 2019; Nearing et al., 2021; Kratzert et al., 2023; Moshe et al., 2020; Charbonneau et al., 2023)560

::::::
sample

:::::
future

::::::::
scenarios

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kratzert et al., 2018, 2019; Nearing et al., 2021; Kratzert et al., 2023; Moshe et al., 2020; Charbonneau et al., 2023; Nearing et al., 2024)
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. In contrast, modeling phenomena such as turbulence, convection, and clouds
::::::::
(including

:::::
their

:::::::::::
microphysics)

:
may benefit more

from reductionist process-informed modeling, among other reasons because direct radiative effects outside observed climates

::::
rapid

::::::::
radiative

::::::::::
adjustments impact clouds and cannot be learned solely from data,

:::
but

::::::
spatial

::::
and

:::::::
temporal

:::::::::
variations

::
in

::::
data

:::
may

:::::::
sample

::::::::::::::
climate-invariant

::::::
closure

:::::::::
functions

::::::::
appearing

::
in

:::::
them

::::
well. Striking the right balance is crucial for developing565

climate models that are physically grounded and trustworthy for predictions beyond observed climates, yet flexible enough to

integrate a wide range of observational data, leading to more accurate and reliable predictions.

6 A balanced path forward

Climate models, as a form of techne, aim to provide the most accurate and reliable predictions of how the climate system’s

statistics will change under unobserved conditions, such as increased greenhouse gas concentrations
::
or

:::::::
changes

::
in

:::::::
aerosol570

:::::::
loadings. Improving climate models is urgent for proactive and effective adaptation to the coming climate changes. However,

current models fall short in accuracy and reliability (Fiedler et al., 2021; President’s Council of Advisors on Science and

Technology, 2023), as evidenced by their still significant errors in simulating observed climate statistics (Fig. 1).

Progress in climate modeling has been gradual, achieved primarily through increasing resolution and refining process-based

parameterizations for small, unresolvable scales. Yet, neither approach alone, nor in combination, seems likely to produce a575

significant leap in model accuracy and reliability. The complexity of the climate system limits the effectiveness of reductionist

approaches in developing process-based parameterizations. Additionally, while higher resolution is beneficial, it is no panacea.

At any resolution reachable in the foreseeable future, many aspects, such as large portions of the atmosphere’s
:::
and

:::::::
oceans’

vertical motion and finer scales such as those controlling cloud microphysics, will remain unresolvable.

AI tools, broadly defined
::
in

::::
their

::::::::
broadest

:::::
sense, hold promise for breakthroughs due to their capacity to learn from high-580

resolution simulations and from the extensive array of Earth observations available. However, they cannot operate in isolation.

Climate change prediction is an archetypal out-of-distribution prediction challenge. It is hard
::::::
difficult

:
to envision how an

unsupervised AI system could learn the effects of unseen greenhouse gas concentrations on aspects such as cloud cover or

the biosphere’s photosynthetic productivity using only higher-resolution simulations and current and recent past observations.

:::
The

::::::
limited

:::::
range

:::
of

:::::::::
greenhouse

:::
gas

:::::::::
variations

::
is

::::::
closely

::::::::
correlated

::::
with

:::::::::::
temperature

:::::::
changes

::
in

:::::
recent

:::::::::::
observations,

:::::::
making585

:
it
::::::::::
challenging

::
to
::::::

isolate
:::::

their
:::::::::
individual

::::::
effects,

::::::
which

::::
need

::
to
:::

be
:::::::::
predicted. Unlike weather forecasting, where short-term

predictions can be validated daily and long-term stability and conservation properties of simulations are less critical, climate

prediction lacks the luxury of immediate validation. Conservation, long-term stability in an “infinite forecast,” and reliable gen-

eralization beyond observed climate states are essential.
::::
Trust

::
in

::::::
climate

::::::::::
predictions

:::
and

:::
the

:::::::
absence

::
of

:::::::::
immediate

:::::::::
validation

::::::::::
additionally

::::::
require

::::::
models

::
to

::
be

:::::::::::
interpretable

:::
and

:::::::::::
uncertainties

::
in

::::::::::
predictions

::
to

::
be

:::::::::
quantified.

:
590

Therefore, a balanced approach that capitalizes on the strengths of all three dimensions—advancing process-based param-

eterizations, maximizing resolution while allowing large ensembles of simulations, and harnessing AI tools to incorporate

data-driven models where reductionism reaches its limits—appears to be
::::::::
limits—in

::::
our

::::
view

::
is

:
the most promising path for-

ward (Schneider et al., 2021a) .
::::
(Fig.

::
4).

:
In situations where we have well-defined equations of motion and can systematically
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Figure 4.
:
A
:::::::
balanced

::::::::
approach

:::::::::
capitalizing

::
on

:::
all

::::
tools

::
at

:::
our

:::::::
disposal

:
is
:::

the
:::::

most
::::::::
promising

:::
path

::::::
toward

:::::::
accurate,

::::::::::
interpretable,

::::
and

::::::::
trustworthy

::::::
climate

::::::::
predictions

::::
and

::::::::
projections

:::
that

:::
can

:::::
inform

:::::::
decision

::::::
making.

coarse-grain them, AI may be optimally employed to learn data-driven yet climate-invariant closure functions of nondimen-595

sional variable groups arising within coarse-grained equations. This approach is akin to how data have been used to close

Monin-Obukhov similarity theory for the atmospheric surface layer. Conversely, in situations where first-principle modeling

and systematic coarse-graining are less effective, but where spatial and temporal climate variations—particularly the seasonal

cycle—may plausibly represent future climate states, more direct data-driven models could prove more fruitful. This may be

particularly relevant for various aspects of land surface modeling, such as snow, vegetation, and river models.600

Well-defined
::
To

:::::::
catalyze

::::::::
advances

::
in

::::::
climate

::::::::
modeling,

:::
we

::::::::
advocate

:::
for

::
the

::::::::::::
establishment

::
of

::::::::::
well-defined

:
competitive chal-

lenge problems, employing open benchmark data, shared code, and clear quantitative success metrics, may catalyze advances

in climate
:
.
::::
Such

::::::::
challenge

::::::::
problems

:::
can

:::::
foster

:::::::::
innovation

::
in

:::::::
climate

::::::
process modeling, as they have in other areas, such as ma-

chine vision, natural language processing, and protein folding (Donoho, 2023). For example, benchmark challenges for cloud

parameterizations could leverage libraries of high-resolution simulations, employing current-climate simulations for training605

and altered climate conditions for evaluation (e.g., Hourdin et al., 2021; Shen et al., 2022; Lopez-Gomez et al., 2022; Yu et al.,

2023). Other benchmark challenges may focus on the seasonal cycle of land carbon uptake, evapotranspiration, snow cover, or

river discharge, utilizing
::::
using

:
a subset of the available data for model training while reserving other regional datasets for eval-
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uation. Such
:::::::::::
Benchmarking

::::
can

:::
also

:::::::
include

:::::::::::
retrospective

:::::::
analysis

::
of

::::::::
emergent

::::::::
properties

:::::
such

::
as

::::::
climate

::::::
trends

::
in

::::::::
historical

::::::::::
simulations,

::
as

::::
long

:::
as

:::
the

::::::
metrics

:::::::::
evaluated

::::
were

:::
not

:::::
used

::
in

::::::
model

:::::::::
calibration.

:::::::::
Designing

::::
such

:
structured challenges can610

foster innovationin climate process modeling and can
::::
drive

::::::::::
innovation, help determine what balance between process-based

and data-driven methods is most successful,
::::
and

:::
lead

::
to
:::::
more

:::::::
accurate

::::
and

::::::
reliable

::::::
climate

:::::::
models.

::::::::
Moreover,

::
to

::::::::
engender

::::
trust

::
in
:::::::
climate

::::::::::
predictions,

:
it
::
is
:::::::::
imperative

::
to
:::::::
develop

::::
and

:::::::
maintain

::::::::
carefully

:::::::
designed

:::::::::::
open-source

:::::::
software,

:::::::::::
accompanied

:::
by

:::::::
rigorous

:::
unit

:::
and

:::::::::
integration

:::::
tests.

::::
This

::::::::
approach

::::::
ensures

:::::::::::
transparency,

:::::::::::::
reproducibility,

:::
and

::::::::::
replicability

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(National Academies of Sciences, Engineering, and Medicine, 2019),

::::::::
enabling

:::
the

::::::::
scientific

::::::::::
community

::::
and

::::::::::
stakeholders

:::
to615

::::::::
scrutinize

:::
and

:::::::
validate

:::
the

:::::::
models’

::::::::::
predictions.

:::::::::::
Trustworthy

:::::::
software

::::::::::::
infrastructure

::
is

:
a
::::::::::
cornerstone

:::
for

:::::::
building

::::::::::
confidence

::
in

::::::
climate

:::::::
models

::::
and

::::
their

::::::::::
predictions,

:::::::::
especially

:::
as

:::
we

:::::::
integrate

:::::
more

::::::::
complex

::::::::::
data-driven

::::::::::
components

::::
into

:::::::::
modeling

::::::::::
frameworks.

Ultimately, the utility of climate predictions for decision-making hinges on their trustworthiness and their ability to explore

a broad range of possible climate outcomes through large ensembles (Deser et al., 2020; Bevacqua et al., 2023). A balanced ap-620

proach ,
:::
that

::
is grounded in decades of accumulated intellectual capitaland methodical, rigorous approximations,

:::
and

::::::::
carefully

:::::::
designed

::::::::
software is likely to foster such trust. This approach can enable a clear tracing of the causal chain leading to possi-

ble climate changes, allowing for interpretation and scrutiny in line with centuries-old scientific traditions. If successful, this

strategy may eventually also narrow the gap between episteme and techne in climate modelingand
:
.
::
It

::::
may deepen our un-

derstanding of the climate system’s complexities through the investigation of
:
to
::::::::::

investigate models that integrate data-driven625

components
:::
and

::
to

:::
use

:::::
them

::
to

::::
shed

:::::
light

::
on

::::
very

::::::::
different

:::
past

::::::::
climates,

::::
such

:::
as

::
at

:::
the

::::
Last

::::::
Glacial

:::::::::
Maximum

::
or

::::::
during

:::
the

::::::
Eocene

::::::::
hothouse

:::::::
climates. Such a convergence would mark a significant advance in both the science and practical application

of climate modeling.
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