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Abstract 

Even-aged forestry based on  clearcut harvesting, planting, and one to three thinnings is currently the dominant management 

approach in Fennoscandia. However, our understanding of the greenhouse gas (GHG) emissions following clearcutting 

remains limited, particularly on drained peatland forests. In this study, we report eddy covariance-based (EC) net emissions of 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from a boreal fertile drained peatland forest one year after the 15 

harvest. Our results show that on annual scale, the site was a net CO2 source. The CO2 emissions dominate the total annual 

GHG balance (23.3	t	CO2-eq	ha"#a"#, 82.5% of the total), while the role of N2O emissions (4.8	t	CO2-eq	ha"#a"#, 17.1%) 

was also significant. The site was a weak CH4 source (0.1	t	CO2-eq	ha"#a"#, 0.4%). A statistical model was developed to 

estimate surface-type-specific CH4 and N2O emissions. The model was based on air temperature and fraction of specific 

surface-types within the EC flux footprint. The surface-types were classified using unmanned aerial vehicle (UAV) spectral 20 

imaging and machine learning. Based on the statistical models, the highest surface-type specific CH4 emissions occurred from 

plant-covered ditches and exposed peat, while the surfaces dominated by living trees, dead wood, and litter along with plant-

covered ditches were the main contributors to N2O emissions. Our study provides new insights into how CH4 and N2O fluxes 

are affected by surface-type variation across clearcutting areas in boreal forested peatlands. Our findings highlight the need 

for integrating surface-type-specific flux modelling, EC-based data, and chamber-based flux measurements to comprehend the 25 

GHG emissions following clearcutting. Results strengthen the accumulated evidence that recently clearcut peatland forests are 

significant GHG sources. 
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1 Introduction 

Globally, peatland soils store 650000	Mt of carbon (C), which is equivalent to more than half of the C in the atmosphere 30 

(FAO, 2020). In Europe, the estimated peatland C stock is 43620	Mt	C, with a total peatland area of 58.8	Mha of which 46% 

is drained (UNEP, 2022). Drainage lowers water table and accelerates aerobic peat decomposition, resulting in carbon dioxide 

(CO2) emissions and an annual loss of soil C stock equivalent to 160	Mt	C (UNEP, 2022). Greenhouse gas (GHG) fluxes have 

been quantified (Ojanen et al., 2010), and the GHG balance of forests on organic soils at the national scale has been accounted 

for Finland (Alm et al., 2023; Statistics Finland, 2022). However, the short-term impact of clearcutting on the GHG fluxes of 35 

drained peatlands remains unclear and is not currently considered in the Intergovernmental Panel on Climate Change (IPCC) 

emission factors applied in the national GHG inventories or in reporting to the United Nations Framework Convention on 

Climate Change (UNFCCC). Therefore, estimates of the current GHG balance of drained forested peatlands under 

management are associated with high uncertainties.  

 40 

Even-aged forestry, is currently the dominant forest management method in Fennoscandia, both on mineral soils and on drained 

forested peatlands. It is characterized by forest stands with an even age structure, resulting from forest regeneration by 

clearcutting, usually followed by site preparation and single species planting, and later by intermediate thinning(s) from below 

(Kuuluvainen et al., 2012). In Finland, 4.7	Mha of peatlands have been drained for forestry purposes (Korhonen et al., 2021). 

A large fraction of fertile drained peatland forests is currently at mature stage and approaching the decision of final harvesting 45 

and regeneration (Lehtonen et al., 2023). In rotation-based peatland forestry, clearcutting typically leads to maintenance 

ditching to ensure adequate drainage for undisturbed tree growth (Päivänen and Hånell, 2012). However, even-aged forestry 

that involves clearcutting and maintenance ditching has been found to have several short-term negative external effects 

(Nieminen et al., 2018). These include increases in nutrient and dissolved organic carbon (DOC) exports to watercourses 

(Palviainen et al., 2022), loss of biodiversity (Paillet et al., 2010; Rajakallio et al., 2021), and enhanced CO2 emissions 50 

(Korkiakoski et al., 2023). However, the magnitude of the major GHG fluxes – CO2, methane (CH4) and nitrous oxide (N2O) 

– on boreal drained forested peatlands after clearcutting remain largely unclear. This is because there have been only a few 

studies assessing them to date (Korkiakoski et al., 2019, 2023; Mäkiranta et al., 2010; Tong et al., 2022). The lack of 

information on how clearcutting affects GHG emissions in boreal forestry-drained peatlands prevents the comparisons of 

climate change impacts of business-as-usual forestry (i.e., even-aged) and alternative forest management methods (e.g., 55 

continuous cover forestry) (Kaarakka et al., 2021; Mäkipää et al., 2023). 

 

Tree removal alters the local microclimate of forested peatlands by changing e.g., the amount of radiation available on the 

ground (Tikkasalo et al., 2024). This can result in higher soil temperatures (Pumpanen et al., 2004; Wu et al., 2011), potentially 

increasing peat decomposition and CO2 emission rates (Jandl et al., 2007). On the other hand, piles of harvest residues may 60 

decrease the soil temperature creating biotic and abiotic variation. Under drained or unsaturated moisture conditions, this 
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process may be further enhanced due to increased oxygen availability in soil (Drzymulska, 2016; Maljanen et al., 2010; Ojanen 

et al., 2013). The harvest of trees in peatland forests raise the water table depth (WTD) by decreasing transpiration and 

interception (Leppä et al., 2020a, b; Sarkkola et al., 2010). This, in turn, may result in a slower peat decomposition rate. 

Furthermore, the removal of trees and decline of forest-floor vegetation will lead to an strong immediate reduction in 65 

photosynthesis in clearcutting areas. However, drainage can increase root aeration and nutrient availability, which may benefit 

the rapid establishment of initial forest-floor vegetation and tree seedlings (Mäkiranta et al. 2010) and enhances rates of ground 

vegetation carbon sequestration (Minkkinen et al., 2001).  However, ground vegetation is insufficient to compensate for the 

increase in ecosystem respiration caused by the decomposition of logging residues (Korkiakoski et al., 2019; Mäkiranta et al., 

2012; Ojanen et al., 2017; Tong et al., 2022). Consequently, clearcutting transforms forested peatland ecosystems into net CO2 70 

sources during the early stages of stand development (Korkiakoski et al., 2023; Mäkiranta et al., 2010; Tong et al., 2022).  

 

Peatland drainage has decreased CH4 emissions compared to pristine peatlands, due to improved soil aeration (Maljanen et al., 

2010; Ojanen et al., 2010). After tree-removal WTD typically rises (Korkiakoski et al., 2019; Leppä et al., 2020a), which 

supports the production of CH4 in the extended anaerobic zone. This can turn peatland sites from net CH4 sinks into sources 75 

(Korkiakoski et al., 2019). However, Ojanen et al. (2010, 2013) found that CH4 emissions only increase when the WTL is at 

shallow level (i.e., within 30 cm from the soil surface). Furthermore, the response of vegetation to drainage may affect the 

supply of substrate to methanogens (Minkkinen and Laine, 2006), which can further enhance or offset the hydrological effects 

of drainage on CH4 fluxes.  

 80 

Clearcutting not only affects C fluxes, but also leads to N2O emissions (Huttunen et al., 2003; Korkiakoski et al., 2019; Neill 

et al., 2006; Robertson et al., 1987; Saari et al., 2009). This is due to the flush of decomposing logging residues and reduced 

nitrogen uptake due to lower plant biomass, which both increase available soil N in the first years after the harvesting 

(Mäkiranta et al., 2012). N2O production is also favoured by redox conditions that vary between oxidative and reductive, which 

exist in wet but unsaturated peat after clearcutting and drainage. The production of N2O responds to changes in soil moisture, 85 

so the effect of drainage on N2O emissions is likely to depend on the combination of WTL change and soil nutrient status 

(Tong et al., 2022). Additionally, drying-rewetting events occurring during the growing season have been identified as ‘hot 

moments’ for N2O emissions (Groffman et al., 2009).Considering the above, there is a great deal of uncertainty about the GHG 

dynamics and their key modulating processes on boreal drained peatland forests under forestry management, a shortcoming 

directly related to the limited number of studies available. Therefore, it is critical to improve our understanding on the 90 

clearcutting effects on CO2, CH4, and N2O fluxes. 

 

Most studies on GHG fluxes in boreal drained forested peatlands after clearcutting are based on manual chamber measurements 

(e.g., Tong et al. 2022; Mäkiranta et al. 2010). However, the magnitude and controls on CO2, CH4, and N2O fluxes in these 

high-latitude northern ecosystems remain highly uncertain. This is mainly related to the poor spatial and temporal 95 
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representation of manual chamber-based GHG measurements (Savage and Davidson, 2003). Clearcutting creates a highly 

heterogeneous surface, which makes it challenging to interpret ecosystem GHG fluxes due to variation in surface-specific 

fluxes. Previous research has demonstrated that forest-floor vegetation heterogeneity, logging residues, and ditches cause 

significant spatial variability in GHG fluxes from drained peatlands and clearcut areas (Mäkiranta et al., 2012; Minkkinen and 

Laine, 2006; Ojanen et al., 2010; Rissanen et al., 2023). In this context, eddy covariance (EC) has become a widely used 100 

technique for measuring the GHG exchange (Baldocchi, 2003) due to its ability to provide high-temporal resolution exchange 

rates integrated over a relatively large area. The EC footprint (i.e. source area of the measured flux) collects the contributions 

of each element of the surface area to the measured vertical turbulent flux (Vesala et al., 2008). Therefore, this area could be 

divided into distinct surface-types that form a heterogeneous matrix, enabling direct assessments of each surface-type on the 

measured GHG fluxes. While studies attributing EC measured surface fluxes to specific surface-types at heterogeneous 105 

ecosystems exist (Forbrich et al., 2011; Franz et al., 2016; Ludwig et al., 2024; Tuovinen et al., 2019), none of them focus on 

heterogeneous clearcut areas. Likely reason for this is the lack of high-resolution data on surface-types within the EC tower’s 

footprint. The use of high-resolution georeferenced imagery from unmanned aerial vehicle (UAV) surveys, and the possibility 

to derive detailed surface maps, however, now enables the integration of footprint models and GHG flux measurements and 

attributing measured fluxes to specific surface features.  110 

 

Here, we examined the CO2, CH4, and N2O fluxes from a fertile boreal drained peatland forest located in southern Finland 

during the first full year (second growing season) after clearcutting. GHG fluxes were measured using an EC system during 

the year 2022. Information on surface-type variation across the footprint area was collected through drone imaging in June 

2022. Our specific aims were to:  115 

1. Quantify the magnitude and temporal variation of CO2, CH4, and N2O fluxes along their annual balances. 

2. Estimate the differences in surface-type specific CH4 and N2O fluxes, as well as their sensitivity to environmental 

variation. 

2 Materials and methods 

2.1 Measurement site 120 

Ränskälänkorpi study site is a boreal peatland forest (ca. 24	ha) located in Southern Finland (61°11'N, 25°16'E, 144 m a.s.l.; 

Fig. 1, Fig. S1), which has been drained for forestry before 1960’s. The climate is humid continental with a 30-year (1981–

2022) mean annual temperature and precipitation sum of 4.2∘C and 611	mm, respectively. The site maintains snow cover on 

average for 133 days, typically from early November to late April. The forest is dominated by Norway spruce (Picea abies 

(L.) Karst., about 70% of all trees), with some Scots pine (Pinus sylvestris L.) and Downy birch (Betula pubescens Ehrh.). 125 

The forest-floor vegetation is sparse and consists of mosses (mainly Hylocomium splendens, Pleurozium schreberi and 

Dicranum polysetum), dwarf shrubs (mainly Vaccinium myrtillus and Vaccinium vitis-idaea), as well as forbs such as 
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Dryopteris carthusiana, Gymnocarpium dryopteris, Trientalis europaea, and Oxalis acetosella. The site consists of sedge-

wood dominated peat, which is mainly more than 1 m deep. The site type is mainly nutrient-rich (Rhtkg II) and Vaccinium 

myrtillus (Mtkg II). In March 2021, the site was divided into three areas with different harvest treatments: non-harvested 130 

control (C, ca. 7.3	ha), selection harvest (CCF, ca. 10.0	ha), and clearcutting (CC, ca. 6.1	ha). The harvesting in the CCF 

and CC areas took place with harvester machinery primarily from 18th March to 1st April 2021 when the soil was frozen. It 

was completed in June 2021 in the north-western section of the CC area. This study was conducted in the CC area, where all 

the trees were cut. Some large, dead trees were retained on site, and the resulting logging residues (i.e., foliage, branches and 

stumps) were left on the ground. The understory vegetation was significantly impacted by the disturbance caused by the 135 

harvester and logging machines. The stand regeneration was carried out in summer 2021 through ditch mounding and 

planting of Norway spruce seedlings, with an approximate density of 1800 − 2000	seedlings	ha"#. The harvest and 

regeneration are according to common practices for operational forestry in Finland. 

 

https://doi.org/10.5194/egusphere-2024-1994
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

 140 

 
Figure 1. Surface-type classification and aerial view of the experimental setup in the clearcut area. Black triangle shows the location 
of water table depth measurement, white circles show the location of the soil temperature and moisture sensors, red circle shows the location 
of the eddy covariance (EC) tower. The contour lines display the mean footprint area (10 to 90th percentiles) for the year 2022. The pixel 
colour indicates the surface-type. The background aerial photo is acquired from the National Land Survey of Finland Topographic Database 145 
(distributed with CC-BY 4.0 license, retrieved 06/2024). 

2.2 EC measurements 

Ecosystem-atmosphere greenhouse gas exchange was measured with the EC technique in the middle of the CC area with a 

3.1	m tall tower (see Fig. 1). Distance from the tower to the forest edge was at minimum 100 m in all directions. High frequency 

data on the three wind components and sonic temperature were acquired with an ultrasonic anemometer (uSonic-3 Cage MP, 150 

METEK GmbH, Germany), CO2 and water vapor (H2O) mixing ratios with a nondispersive infrared sensor (LI-7200RS, LI-

COR Biosciences, NE, USA) and CH4 and N2O mixing ratios with Tunable Infrared Laser Direct Absorption Spectrometer 
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(TILDAS, Aerodyne Research Inc, USA). All the EC data were logged with 10 Hz frequency. TILDAS data were logged to 

separate files and combined with the other EC data during data post-processing. TILDAS was located in a small, air-

conditioned measurement hut and it was sampling the air with a 9	m long heated Teflon tube. Rapid flow in the tube was 155 

created with a scroll pump (TriScroll 600, Agilent Technologies Inc, USA). LI-7200RS was situated in the measurement tower 

and it was sampling the air with a heated sampling tube distributed with the instrument (ca. 0.7	m long tube with 5.3	mm inner 

diameter) and pump. The gas analysers sampling inlets were located next to the sonic anemometer (0.18	m horizontal 

separation). 

 160 

In addition to the EC fluxes, several environmental variables were continuously monitored at the EC station. These include 

photosynthetically active radiation (PAR; LI-190R Quantum Sensor, LI-COR Biosciences, USA), air temperature (𝑇%&') and 

humidity (HMP155 Humidity and Temperature Probe, Vaisala Oyj, Finland), shortwave and longwave incoming and outgoing 

radiation component (CNR4 4-component Net Radiometer, Kipp & Zonen, the Netherlands), precipitation (P; TR-525M 

Rainfall sensor, Texas Electronics, USA), soil temperature (𝑇()&*) and water content (𝜃) at 10	cm depth (Hydra Probe II, 165 

Stevens Water Monitoring Systems Inc., USA). These variables were logged with 1	min time step. Soil temperature and water 

were monitored also at other locations at the clearcut (see Fig. 1) with TMS-4 microclimate loggers (Standard datalogger, 

TOMST s.r.o, Prague, Czechia) and water table depth were measured with Odyssey Capacitance Water Level Logger 

(Dataflow Systems Ltd, New Zealand). 

2.3 EC data processing 170 

EC flux data processing followed international standards set e.g. by Integrated Carbon Observation System (ICOS) network 

(Franz et al., 2018) as much as feasible. Flux calculations were executed with the EddyPro open-source software (version 

7.0.7, LI-COR Inc, USA). Fluxes were calculated using 30-min averaging time and turbulent fluctuations were separated from 

the measurements using block-averaging. The high frequency time series were despiked following Mauder et al (2013). High 

frequency gas data were already converted to dry mixing ratios internally by the measurement devices (LI-7200RS and 175 

TILDAS) and hence no conversions were done during post-processing. The gas sampling system (tubes and filters) induced 

time lags between wind and gas mixing ratio data. These time lags were estimated using cross-covariance maximisation and 

accounted for before flux calculations. Also, the flow coordinates were rotated using sector-wise planar fitting (Rannik et al., 

2020) before calculating the covariances (i.e., fluxes) between the vertical wind component and gas mixing ratio time series. 

EC fluxes are always underestimated due to high frequency and low frequency dampening of the signal caused by the 180 

measurement system (e.g., dampening of the gas fluctuations in the sampling lines) and the need to use a finite flux averaging 

time, respectively. This underestimation of gas fluxes was corrected in this study following the approach by Fratini et al. (2012) 

and Moncrieff et al. (2005) with the exception that the cut-off frequencies characterising the high frequency dampening of 

each gas signal were estimated based on cospectra between vertical wind and gas time series and not from gas power spectra 

following Peltola et al. (2021). 185 
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The fully processed gas flux time series resulting from the processing procedure described above were quality filtered 

following Vitale et al. (2020) with few differences. First, flux data were discarded if the flux values were outside predefined 

limits, instrument diagnostics signalled erroneous measurement or site diaries suggested disturbance to the data. Then, the 

procedure by Vitale et al. (2020) was followed with the exception that the statistical model used in the quality filtering 190 

procedure was estimated using singular spectrum analysis and low-rank reconstruction of the time series (Golyandina et al., 

2001; Mahecha et al., 2007) instead of the multiplicative model used in Vitale et al. (2020). After quality filtering, low 

turbulence periods during which EC fluxes do not represent surface-atmosphere exchange were identified using friction 

velocity and periods when friction velocity was below a site-specific threshold ( 0.09	m	s"#) were removed from further 

analysis. After this procedure the flux data coverages were 64 %, 57 % and 57 % for CO2, CH4 and N2O flux time series, 195 

respectively, with majority of the data gaps occurring during low wind nights. 

 

For calculating daily mean fluxes or annual GHG balances, the gaps in flux time series needed to be filled. The gaps were 

filled separately with three machine learning (ML) algorithms: random forest (RF), extreme gradient boosting (XGB) and k 

nearest neighbours (kNN). These three algorithms were selected based on their good performance in filling gaps in flux time 200 

series in prior studies (e.g., Vekuri et al. 2023; Irvin et al. 2021; Goodrich et al. 2021). Ensemble median of the three gapfilled 

time series was then used to estimate annual GHG balances and daily fluxes, whereas the spread between the three estimates 

was used to evaluate the range of plausible annual GHG balance values. With this approach we minimize the uncertainty in 

annual balances stemming from the selection of a particular algorithm for gapfilling. “xgboost” (version 1.7.1) Python package 

was used for the XGB method, whereas “scikit-learn” (version 1.1.1) functions RandomForestRegressor and 205 

KNeighborsRegressor were utilized in RF and kNN methods, respectively. ML model training and testing of predictive 

performance was executed as follows: first model hyperparameters were tuned against a random subset of data with scikit-

learn function RandomizedSearchCV. After hyperparameter tuning, artificial gaps (covering 15 % of the data) were introduced 

in random locations in the flux time series and the lengths of these gaps were drawn from a distribution describing the length 

of actual gaps in the time series (Irvin et al., 2021). Measured data from these gaps were used as independent test data, whereas 210 

all the other data were used in model training. Then the trained model predictive performance was evaluated against the test 

data and this training/testing procedure was executed independently five times. The final models used in gapfilling the flux 

time series were trained using all the measured data. The following predictors were used in this gapfilling procedure for CH4 

fluxes: normalized daily incoming potential solar radiation (RPOT) and its first time derivative, 𝑇+,-, its average during the 

past 3 hours, 1 day and 7 days, incoming shortwave radiation, surface temperature calculated from upwelling longwave 215 

radiation, vapor pressure deficit, sine and cosine transformed wind direction and Ts. The list of predictors was the same for 

N2O fluxes except also soil water content (𝜃) was included. For CO2 flux time series gapfilling, otherwise the same predictors 

were used as for CH4, but also daily normalized RPOT and its first time derivative (within each day values range between 0 

and 1) were included so that the models capture better the CO2 flux daily cycle. For kNN, data were normalized to zero mean 
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and unit variance, whereas for RF and XGB data were not normalized. The predictive performance (R2) of the ensemble models 220 

obtained with this procedure were 0.75 ± 0.04 (mean ± standard deviation of the five predictions), 0.66 ± 0.05, and 0.92 ±

0.01for CO2, CH4, and N2O fluxes, respectively. These results for the predictive performance differ from some of the 

aforementioned studies, however this is likely due to the nature of variability of these fluxes at our site (low photosynthesis 

and CO2 flux variability, marked seasonal variability in N2O fluxes and low CH4 fluxes, see Sect. 3.1). 

 225 

CO2 fluxes (Net ecosystem exchange, NEE, with positive sign denoting net emissions) were decomposed to ecosystem 

respiration (𝑅./0) and gross primary productivity (GPP) following the nighttime decomposition method by Reichstein et al. 

(2005) with the slight modifications by Wutzler et al. (2018). However, in contrast to Reichstein et al. (2005), here we forced 

nighttime GPP to zero by subtracting 1.5 day running median of the nighttime GPP from the GPP time series (and added it to 

𝑅./0 time series) and forced any residual nighttime GPP to zero. This way NEE = R./0 − GPP is valid at all time steps and 230 

GPP is zero when there is no incoming solar radiation. 

 

2.4 EC flux footprint  

 

Turbulent fluxes measured with EC relate to the surface fluxes via 235 

𝐹(𝑡) = ∬𝜑(𝑥, 𝑦, 𝑡)𝑓(𝑥, 𝑦, 𝑡)dxdy,      (1) 

where 𝐹 = 𝐹(𝑡) is the flux measured with EC at time t, 𝑓 = 𝑓(𝑥, 𝑦, 𝑡) is the surface flux at location (𝑥, 𝑦) at time 𝑡 and 𝜑 =

𝜑(𝑥, 𝑦, 𝑡) is so-called footprint function which describes the source area of EC flux measurements (Vesala et al., 2008) 

Footprint gives an estimate for the relative contribution of each location on the surface to the measured turbulent flux and with 

such information it is possible link surface features to measured fluxes. If we assume constant fluxes (𝑓1(𝑡)) from surface-type 240 

𝑗 during time step 𝑡, then Eq. 1 can be simplified as 

𝐹(𝑡) ≈ ∑ 𝜑1(𝑡)𝑓1(𝑡)1 ,      

    (2) 

where 𝜑1 is the overall contribution of surface-type 𝑗 to the EC flux source area during time step t. 

 245 

In this study, the source area, i.e., footprint, for the measured gas fluxes was estimated for each 30-min period with the Kljun 

et al2015) model, which is a simple two-dimensional analytical parameterisation of results obtained with backward Lagrangian 

stochastic particle dispersion model (Kljun et al., 2002). The model requires information on the flow, namely wind speed, 

boundary layer height, Obukhov length, standard deviation of lateral velocity fluctuations, friction velocity and wind direction 

for rotating the footprint to prevailing direction. All these were measured with the EC equipment, except boundary layer height 250 

which was retrieved from ERA5 reanalysis product (Hersbach et al., 2023). In addition to these measurements, footprint 
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calculations require information on EC measurement height (𝑧), displacement height (𝑑) and surface roughness length (𝑧2). 

The CC surface is a complex mosaic of different surface-types and vegetation heights with small-scale topography. This 

variability influences the flow field above the surface and this needs to be accounted for in footprint calculations. To resolve 

this issue, we opted to use varying values for 𝑑 in the calculations and estimated them from the EC data via logarithmic wind 255 

profile equation similarly as in (Helbig et al., 2016) with the exception that only near-neutral periods were used in this analysis 

and the estimates for 𝑑 were bin-averaged in wind direction and 30-day bins before using in footprint calculations for reducing 

the noise stemming from the uncertain calculation procedure. The estimated values for 𝑑 ranged between 0.8	 and 2.0	m 

(534 − 9534 quantiles of the estimates) during the study period (Fig. S2). 𝑧2 was implicitly included in the footprint calculations 

via the ratio between wind speed and friction velocity (Kljun et al., 2015). With this footprint estimation procedure, we 260 

accounted for the effect of temporally and spatially varying surface characteristics on the footprints. 

2.5 Drone imaging 

Orthomosaic of the CC area was generated by using drone images captured on June 8th 2022 between 12-14 h using DJI 

Matrice 210 V2 drone equipped with Zenmuse X7 sensor for RGB and Micasense Altum sensor for multispectral images. 

Flight altitude was 75 m and images were captured with 95% overlap. The weather conditions were cloudy throughout the 265 

flight providing even spectral conditions. The images were georeferenced with 10 ground control points measured with a 

Timble R12 GNSS device and processed to orthomosaic and to Digital Elevation Model (DEM) using Agisoft Metashape 1.7.3 

(Agisoft, 2021) Resulting RGB orthomosaic had 1.16	cm	px"# and multispectral orhomosaic 3.23	cm	px"# resolution. 

2.6 Surface type classification 

The land surface classification is based on geographical object-based image classification approach similar to De Luca et al. 270 

(2019). Orthomosaics from the CC area including RGB, Red Edge (RE) and Near Infrared (NIR) channels were merged with 

the DEM and segmented by spectral signal Euclidian distance using the Large-Scale Mean-Shift (LSMS) segmentation 

found in Orfeo Toolbox (Grizonnet et al., 2017). Parameters for LSMS were spatialr=1 range.r=5 and minsize=40. The 

LSMS segmentation resulted in 1.4 million polygons which provide detailed segmentation even between the smallest objects 

at the site. 275 

To classify the segments, training data consisting samples of different surface-types were used to train a Random Forest 

classifier found in the Orfeo Toolbox using the means and variances of R, G, B, RE, NIR and DEM channels inside the 

polygon. Random Forest uses multiple decision trees trained on bootstrap sets of training data and the classification is based 

on majority vote of the decision trees (Breiman, 2001). The training data was manually labelled on the segmented polygon in 

QGIS software using the RGB image and field surveys. The training data covered 0.27% of the CC area and included even 280 

numbers of samples for each class evenly around the area to account for small spectral changes during the flight. The classes 

(Table 1, Fig. 1, Fig. S3) were selected by prior field surveys to be a representative set of different surface-types that could 
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accurately be distinguished from the drone orthomosaic and were readily identifiable in situ. With the trained model, the rest 

of the segments were classified into different land cover types with mean balanced accuracy of 81.2% and Cohen’s kappa 

coefficient of 0.64. As the number of segments in the different surface-types varies widely, the Table 1 shows also the User’s 285 

Accuracy for class samples. Piles of harvest residue and dead wood are common throughout the area, and in many cases the 

difference between those classes is difficult to distinguish and the classification can be mixed. A moderate amount of 

precipitation occurred just before the flight, but this did not affect the classification of exposed peat, even though it had small 

ponds. The plant covered ditches, however, can in some cases be classified as the bottom or the field layer. 

Table 1: Surface type classification. Names of the surface-types, their definition, share of the clearcut area, mean classification confidence 290 
level (share of votes for the majority class) of the Random Forest classifier, and the User's accuracy (share of correctly classified segments 
from the classification) for equal-sized sample of each class. 

Surface type Definition Share of 
clearcut area 
(%) 

Mean 
classification 
confidence (%) 

User’s 
accuracy (%) 

Dead wood Tree trunks and connected branches 22.8 47.8 55.6 

Harvest residue Piles of branches left from clearcutting 7.9 53.6 82.2 

Exposed peat Peat piles for spruce saplings 29.0 76.7 75.6 

Litter Bare dry ground, conifer shoots 19.9 52.2 66.7 

Bottom layer (mosses) Mosses, small shrubs 1.4 28.2 51.1 

Field layer Small plants 11.8 49.7 68.9 

Living tree Larger trees 4.2 66.8 82.2 

Plant covered ditch Water growing moss or other vegetation 1.1 41.2 73.3 

Ditch (water surface) Open water surfaces 1.9 70.9 95.4 

 

2.7 Correlation analysis 

We quantified the GHG flux correlation with environmental variables with the bivariate Spearman rank correlation coefficient 295 

(𝑟(). 𝑟(  was calculated for the 30-min, non-gap filled timeseries (except for GPP) by omitting those 30-min intervals which 

did not have observations recorded. For CO2 flux we present both the 𝑁𝐸𝐸 (𝐹567) and 𝐺𝑃𝑃 since the 𝑁𝐸𝐸 consists of two 

components (𝐺𝑃𝑃 and 𝑅./0). The environmental variables are precipitation (𝑃), 𝑃𝐴𝑅, water content in air (𝑤879), 𝑊𝑇𝐷, air 

and soil temperature (𝑇%&' , 𝑇()&*) and soil water content (𝜃). 𝑇%&', 𝑃 and  𝑤879 and 𝑃𝐴𝑅 are measured at the EC tower and the 

locations of 𝑇()&*,WTD and 𝜃  measurements are shown in Fig. 1. 300 
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2.8 Splitting CH4 and N2O flux into surface-type and environmental controls 

We developed a statistical model that can capture the spatiotemporal variability of the fluxes, 𝐹5:; and 𝐹<76. We included the 

surface-type (ST; Table 1) and temperature effect to the model. We opted to use only air temperature as the single independent 

environmental variable in our model since 𝑇%&'	can be expected to be uniform across whole clearcut area. The same assumption 305 

is more challenging to justify for soil temperature, soil moisture or 𝑊𝑇𝐷 , which are influenced by soil processes and 

topography and expected to vary spatially within the study site. 

 

Two alternative models were fitted to the EC flux measurements. The response variable in both models was the natural 

logarithm of observed fluxes, either CH4 or N2O, and both models had a temperature dependency similar to the 𝑄#2 temperature 310 

response. The first model (Eq. 3) is referred as baseline model and assumes coherent responses of soil fluxes across the site. 

The second model (Eq. 4) is a ST specific model and allows soil-cover specific variation in fluxes and in their temperature 

responses.  

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&' − 𝑇'=>
10∘C		  

(3) 315 

 

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&' − 𝑇'=>
10∘C +h𝜑&,1 i𝛾1 + 𝛿1

𝑇%&' − 𝑇'=>
10∘C l

<

1@#

 

(4) 

where 𝐹& is the observed 30-min flux , 𝛼, 𝛽, 𝛾 and 𝛿 are free parameters to be estimated, 𝜑&,1 	is the fraction of surface-type 𝑗 

inside the footprint of observation 𝑖 and 𝑇'=> = 10∘C is the reference temperature. In Eq. (4) parameter 𝛼 then relates to base 320 

source strength at 10°C, 𝛽 to base temperature scale of a GHG flux, 𝛾1 to surface-type specific source / sink effect at 10°C and 

𝛿1 to surface-type specific temperature dependency effect. 

 

For the ST specific model, we consider models with either 3, 4, 5, 6, or 9 surface-types (ST3, ST4, ST5, ST6 and ST9 

respectively) bringing the total number of models that are considered to six for both GHG. ST9 considers all the classified 325 

surface-types. ST5 is built from ST9 by leaving out the bottom layer class which covers only ca 0.6% on average of the 

footprint areas and by combining dead wood and harvest residue classes, ditches with water surface (open ditches) and plant 

covered ditch classes and living trees and field layer classes. Similarly, ST3 is built from ST5 by further combining all 

classes except exposed peat class and the class containing both ditch types. ST4 and ST6 are derived from ST3 and ST5, 
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respectively, by separating open ditches and plant covered ditches to their own classes. The different surface-type 330 

combinations are summarized in Table 2 (see also Fig. 1 and Fig. S3 for visualization of surface-types in the CC area). 

 
Table 2: Surface type combinations between ST specific models. The table shows which surface-types are combined in different ST 
specific models. Same number in a column indicates that the surface-types are combined. X indicates that the surface-type is removed from 
the analysis. 335 

Surface type  ST3 ST4 ST5 ST6 ST9 

Dead wood 1 1 1 1 1 

Harvest residue 1 1 1 1 2 

Exposed peat 2 2 2 2 3 

Litter 1 1 3 3 4 

Bottom layer (mosses) X X X X 5 

Field layer 1 1 4 4 6 

Living tree 1 1 4 4 7 

Plant covered ditch 3 3 5 5 8 

Ditch (water surface) 3 4 5 6 9 

 

 

The free parameters of the models 𝛼, 𝛽, 𝛾1 , 𝛿1 and 𝜎A	(the standard deviation of the likelihood function) were estimated using 

Bayesian inference and Markov chain Monte Carlo (MCMC) methods using the “pyMC” package (Abril-Pla et al., 2023). The 

prior distribution of 𝛼 was set to a normal distribution whose mean and standard deviation were calculated from the measured 340 

flux where air temperature was between 9-11°C. The prior distribution of 𝛾 follows a hierarchial design: the prior for each 

surface-type is normally distributed with mean 𝜇B and standard deviation 𝜎B and the prior distribution for mean 𝜇B was the 

standard normal distribution  𝜇B	~	𝒩(0,1). We used exponential distributions as priors for 𝛽 and 𝛿 with rate parameters 𝜆C 

and 𝜆D. We used a normally distributed likelihood function with standard deviation 𝜎A. We set the prior distribution for 𝜎A to 

be exponential distribution with rate parameter 𝜆A. Finally, the rate parameters 𝜆& of the exponential distributions for 𝛽, 𝛿, 𝜎A 345 

and 𝜎B were set such that the full width at half maximum (FWHM) of prior predictive distributions (Fig. S4-S5) is at least 2 

times wider than the FWHM of the observed flux distributions. For simplicity, same values were used for both GHGs 𝜎B =

2.0,	𝜆* = 1.0; 	𝑙 ∈ {𝛽, 𝛿, 𝜖}. The parameters were estimated using the pymc.sampling.mcmc.sample function of the pyMC 

package with 4 chains, 2000 samples per chain and a tuning period of 2000 steps, i.e., total 8000 individual parameters sets 

were drawn for further analysis. All the other sampler settings were left as default. 350 

 

https://doi.org/10.5194/egusphere-2024-1994
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



14 
 

We evaluate the model performance based on two metrics the leave one out cross validation (LOO) and the adjusted coefficient 

of determination (R2adj). LOO was calculated using the compare function of the “ArviZ” Python package which uses the Pareto 

smoothed importance sampling to re-fit the model parameters (Vehtari et al., 2017). 

 355 

We defined the Eqs. (3)-(4) on natural logarithm base since ln-transformations of the measured flux values were normally 

distributed based on quantile-quantile plotting. When transforming the measured 30-min fluxes to natural logarithm base, we 

omitted those CH4 fluxes that were below −10	nmol	m"7s"# and those N2O values that were below 0	nmol	m"7s"#. We 

chose these limits since during low flux period CH4 fluxes varied randomly around zero, whereas N2O fluxes were clearly 

positive throughout the measurement period with only occasional negative flux observations. The CH4 flux values were then 360 

shifted by 10 nmol	m"7s"# before the natural logarithm was applied. This shift was accounted for also when the model results 

were transformed back into units of nmol	m"7s"#. Additionally, we accounted for natural logarithm transformation bias when 

transforming the modelled fluxes to nmol	m"7s"#. In total the back transformation is 

 

𝐹& = expz𝐹&,*E +
𝜎A7

2 { − 𝑆, 365 

(5) 

where 𝐹&,FG is the modelled flux in natural logarithm base, 𝜎A is the standard deviation of the likelihood function and 𝑆 is the 

shift (𝑆 = 0	nmol	m"7s"# for N2O and 𝑆 = 10	nmol	m"7s"# for CH4) 

 

To further understand the GHG emissions from different surface-types, we calculated the surface-type specific fluxes by 370 

setting the contribution of each surface-type to unity (𝜑&,1 = 1 in Eq. 4) in turn, while zeroing others. The measured 𝑇%&' was 

used in calculating these model estimates. For each temperature we calculated 8000 different flux values with the parameters 

estimated in the MCMC sampling.  

 3 Results 

3.1 Ecosystem scale greenhouse gas fluxes 375 

The CC area in the Ränskälänkorpi study site was a strong net source of GHGs during the first full year (second growing 

season) after the clearcutting (Fig. 2 and Fig. S6). The eddy covariance measurements showed that the CO2 was the 

dominant GHG flux in terms of emissions (expressed as CO2-equivalents, 𝐺𝑊𝑃1005:; = 28	, 𝐺𝑊𝑃100<76 = 265; Stocker 

et al. 2013). Specifically, the annual cumulative net CO2 emission during 2022 was 23300	kg	CO7-eq	ha"#	a"# 

(640	g	C	m"7	a"#), followed by N2O (4800	kg	CO7-eq	ha"#	a"#) and only minor net CH4 emissions 380 

(100	kg	CO7-eq	ha"#	a"#; 	0.3	g	C	m"7	a"#). The contribution of the snow-free period emissions to annual emissions were 
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82%, 80%, and 98% for CO2, N2O and CH4, respectively. The annual 𝑅./0 was 38200	kg	CO7-eq	ha"#	a"#	 

(1040	g	C	m"7	a"#) and 𝐺𝑃𝑃	14900	kg	CO7-eq	ha"#	a"#	(410	g	C	m"7	a"#). 

  

The seasonal cycle of NEE was characterized by small  emissions (𝑅./0) during winter. 𝑅./0 increased rapidly after snowmelt, 385 

while 𝐺𝑃𝑃 remained low until late May. The 𝑁𝐸𝐸 was rather stable from late May to late Aug, while both component fluxes 

showed dual peak in late June and August. In autumn, 𝐺𝑃𝑃 decreased along the reduced solar radiation but respiration 

remained at nearly constant level from September to November, causing the seasonal asymmetry seen in 𝑁𝐸𝐸 (Fig. 2). On 

daily scale, the ecosystem was a net source of CO2 to the atmosphere throughout the measurement period. CH4 flux started to 

increase in the mid-June slightly over one month after snow melt and the daily CH4 emissions fluctuated between1 −390 

6	nmol	m"7s"#  until the end of August after which the flux was small (-1 − 1.6	nmol	m"7s"#). N2O flux increased from	0.5  

to  1.5	nmol	m"7s"# from mid-April to mid-May and after a short decrease, it gradually increased to	2	nmol	m"7s"#  by mid-

July. Between mid-July and mid-August N2O flux experienced a strong peak with highest values of 6	nmol	m"7s"#. N2O flux 

stayed then around 2	nmol	m"7s"#  until the snow covered the clearcut area after which the flux decreased below 

1	nmol	m"7s"#. 395 
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Figure 2. Time series of daily mean and cumulative sums of CO2 (a), CH4 (b) and N2O (c) fluxes and daily air temperature (d) during 
the year 2022. CO2 flux is partitioned into components of gross primary production (GPP) and ecosystem respiration (Reco) with methods 400 
described in Sect. 2.3. Vertical dash lines indicate the snow melt dates in spring and first snow in late autumn. Flux time series were gapfilled 
with three different ML algorithms (Sect. 2.3) and cumulative sums calculated from these time series are shown with grey lines. Black line 
shows the ensemble average of these three estimates. Shaded area in panel d shows daily temperature variability (standard deviation) around 
the mean.  
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3.2 Flux correlation with environmental parameters 405 

 
Figure 3. Correlation heatmap reporting Spearman’s rank correlation coefficients for GHG fluxes and selected environmental 
parameters. The abbreviations are: 𝐹!"# = CO2 flux, 𝐺𝑃𝑃 = gross primary production, 𝐹$#" = N2O flux, 𝐹!%& = CH4 flux, 𝑃 = precipitation, 
𝑃𝐴𝑅	= photosynthetically active radiation, 𝑤%#" = water mixing ratio in air, 𝑊𝑇𝐷 = water table depth, 𝑇'() = air temperature, 𝑇*+(, = soil 
temperature at 5 cm depth (averaged value obtained from 3 different sensors located over the CC area; see white circles in Fig. 1), q = soil 410 
water content at 5 cm depth (average value similar to 𝑇-./0). For further details on the measurement locations of other parameters, please 
refer to Fig. 1 and Sect. 2.2. Only correlations whose absolute value is higher than 0.25 are shown. 

 

Figure 3 shows correlation coefficients between the 30-minute GHG fluxes and environmental variables. The NEE correlated 

well (|rs| > 0.25) only with PAR while the GPP correlates with PAR, 𝑊879 and both 𝑇%&' and 𝑇()&F. 𝐹5:; correlated with all 415 

environmental variables besides P. The 𝐹5:; correlated positively with temperature, 𝑤:76  and 𝑃𝐴𝑅, and negatively with 𝑊𝑇𝐷 

(i.e., higher 𝐹5:; are observed when 𝑊𝑇𝐷 is close to the surface) and 𝜃. 𝐹<76	correlation with environmental factors was 

similar to FCH4 except that it correlated weaker with 𝑃𝐴𝑅,𝑊𝑇𝐷, 𝜃, 𝑇%&' and 𝑇()&F . Most of the environmental variables are 

correlated with each other due to their similar diel and annual cycles.  
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3.3 Models for CH4 and N2O fluxes to estimate surface-type specific fluxes  420 

The performance of each model variant (eq. 3 & 4) are shown in Table S1. We selected the best models (based on LOO and 

R2adj) for further analysis: ST9 for 𝐹<76 and , and ST6 for 𝐹5:;. For 𝐹5:;, the ST9 model was nearly as good as the ST6.  
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 425 
Figure 4. Time series of measured and modelled CH4 flux (a), distribution of measured CH4 flux and the posterior predictive 
distributions (b), scatter plot of modelled versus measured CH4 flux (c) and the model residuals as function of air temperature (d). 
The model estimates are calculated with the maximum a posteriori (MAP) estimate of the parameters. 

 

 430 
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Figure 5. Time series of measured and modelled N2O flux (a), distribution of measured N2O flux and the posterior predictive 
distributions (b), scatter plot of modelled versus measured N2O flux (c) and the model residuals as function of air temperature (d). 
The model estimates are calculated with the maximum a posteriori (MAP) estimate of the parameters. 435 
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For CH4 the posterior predictive distribution (Fig. 4b) of ST6 model showed that the model both over and underestimated the 

measurements, which were distributed very narrowly with two peaks at ln(FH8;) = 2.35 (0.5	nmol	m"7s"#)and ln(FH8;) =

2.75 (5.6	nmol	m"7s"#). The best model for CH4 could captures 48% of the variation in the measurements. The model 

parameters (Fig. 6 a-b) indicate the flux has weak temperature dependency except for ditches, high base source strength (𝛼) 440 

and low surface-type specific base strength modifier (𝛾) except for plant covered ditches. This suggests that there are no major 

differences in source strengths between the surface-types, expect for ditches from which the emissions are clearly higher than 

from other parts of the CC area. 

 

The posterior predictive distribution for 𝐹<76 ST9 model shows a better fit to the observations (Fig. 5b) but fails to capture the 445 

peak N2O emissions observed at the end of July (Fig. 5a). The 𝑅7 value between modelled and measured flux is 0.43, slightly 

lower than for the 𝐹5:; ST6 model. The 𝐹<76 ST9 model indicates higher variation between fluxes from different surface-

types than the model for 𝐹5:; (Fig. 6). Similarly, the temperature dependency defining parameter	𝛿 varies more between 

different surface-types than it did for 𝐹5:;. The model residuals (calculated with the MAP estimate) for both GHGs do not 

show a clear dependency of the air temperature (Fig. 4d and Fig. 5d) indicating no clear over- or underfitting with respect to 450 

certain temperature range except for the highest measured 𝑇%&' bin for 𝐹<76 model. 
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 455 
Figure 6. 95% highest posterior density interval for parameters of the best models for CH4 (a-b) and N2O (c-d). The bold line indicates 
the 25th and 75th percentiles of the distributions, white circles are the distribution means and black crosses show the maximum a posteriori 
(MAP) estimate. 𝛼 indicates base source effect and 𝛾 its surface-type specific modifier (i.e., surface-type specific flux at 10∘C	 is 𝛼 + 𝛾). 𝛽 
indicates 𝑄10 type of temperature effect and 𝛿 its surface-type specific modifier (i.e., surface-type temperature modifier for the flux is 
(𝛽 + 𝛿)(𝑇2/3 − 10∘C)/10∘C. 460 

 

 

Fig. 7 shows the distribution of the modelled surface-type specific fluxes,  predicted by setting the corresponding surface-type 

contribution to unity (φ,,I = 1	for each 𝑗 in Eq. 4) and calculating the 95% highest density interval of the resulting model using 

the measured 𝑇+,-. The results are extrapolations of the underlying model to visualize the model parameters in Fig. 6. 465 

 

The highest CH4 emissions originate from plant covered ditches (Fig. 6a, Fig. 7a), while emissions from the exposed peat and 

litter are over two orders of magnitude smaller. The other surface-types show small uptake of CH4. Living trees and plant 
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covered ditches show highest N2O emissions (Fig. 6c-d, Fig. 7 c-d). The second highest N2O emission come from litter and 

dead wood. 470 

 

 

 

 
Figure 7. Surface type specific flux of CH4 (a-b) and N2O (c-d) fluxes. The surface-type specific fluxes are calculated by setting the 475 
corresponding surface-type contribution to unity (𝜑(,5 = 1 for each 𝒋 in Eq. 4) and calculating the 95% highest density interval of the 
resulting model with the measured 𝑇2/3. The boxplot whiskers represent 5th and 95th percentile of the flux value distribution, the edges of the 
post represent 25th and 75th percentile and the black horizontal line shows the median of the distribution. The boxplots are ordered by the 
75th percentile. Note the different scales of the y-axis for each panel. See also Fig. S7-S8 for flux values as a function of air temperature. 

 480 

Fig. S7-S8 shows the predicted surface-specific flux as a function of air temperature and. Fig. S9 and Fig. S10 show how the 

modelled flux changes when surface-types are added one by one to the model and how the model results agree with chosen 

measurements. From the analysis it is evident that the most important surface-types for the footprint-average CH4 emissions 

are the plant covered ditches (areal coverage 1.1%, Table 1), exposed peat (29%) and dead wood and residue (total 30.7%). 

For N2O emissions the most important surface-types are exposed peat, litter and dead wood and field layer (areal coverage 485 

11.8%). 
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Finally, we calculated the total emissions for CH4 and N2O for the snow free period using the best models and compared them 

to EC measurements (Table 3). The predicted cumulative CH4 emission is order of magnitude smaller than that based on EC 

whereas for N2O, the emissions from EC are ca. 1.5 times higher than the median model prediction. However, the EC derived 490 

emission estimate is inside the 95% highest density interval for both GHGs. 

 
Table 3. Comparison of methane and nitrous oxide emissions obtained from the EC measurements and predicted by the models that 
best described the temporal variability of fluxes. Note that the snow-free period is from 1st May to 16th November. For the modelling 
approach, the first value represents the median model prediction, while the values in brackets present the 95% highest density interval of 495 
distribution of the snow-free period emissions calculated with the parameters estimated in the MCMC run. For the EC results, the values 
show the total emissions calculated from time series gapfilled with ML ensemble, while the values in brackets show the range of values 
calculated from time series gapfilled with different ML algorithms (see Sect. 2.3). 

Greenhouse gas 
Modelling approach snow free 

period (kg CO2-eq. ha-1) 

Eddy covariance snow free 

period (kg CO2-eq. ha-1) 

Eddy covariance full year 

(kg CO2-eq. ha-1) 

CO2 - 19200 (18400 - 20000) 23300 (22400 - 24100) 

CH4 10 (-190 - 250) 100 (100 - 100) 100 (100 - 1000) 

N2O 3100 (1100 - 6200) 3900 (3800 - 4000) 4900 (4800 - 4900) 

 

 500 

 

4 Discussion  

4.1 Impact of surface types on CH4 and N2O fluxes 

We built a statistical model to separate observed CH4 and N2O fluxes into their surface-type and environmental controls using 

the flux timeseries and surface type composition for each measurement period inferred from drone-based surface 505 

characterization and analytical footprint model. The aim of the analysis was to assess whether the fluxes vary across different 

surface types, and to detect the key surface types contributing to the net emissions. The models suggest that plant-covered 

ditches and exposed peat are the most important surface-types for CH4 emissions (Fig. 6, Fig. 7, Fig. S9), while other surface-

types contributed much less or acted as CH4 sinks. The high CH4 emissions observed in ditches can be attributed to two main 

factors: the high production of CH4 in anaerobic ditch sediments and the transport of CH4 from surrounding soils by drainage 510 

water. Rissanen et al. (2023) found that ditches with open water exhibited higher emissions than those covered by plants. In 

particular, ditches covered by mosses showed very low emissions, as CH4 can be oxidized in the moss layer. Minkkinen and 

Laine (2006) reported that the CH4 emissions from ditches varied considerably depending on the water movement and 

vegetation cover. They found that ditches with moving water showed higher emissions, likely due to the transportation of CH4 

from the surrounding areas. The main ditch in close proximity to the EC tower was classified as plant-covered because of the 515 
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vascular plants growing on the ditch bank (Fig. S1).  It contributed the majority of the CH4 emissions according to our analysis. 

It should be noted that our classification did not distinguish between moss- and vascular plant-covered ditches. In contrast to 

mosses, which can act as a filter for CH4 due oxidation (Kolton et al., 2022; Larmola et al., 2010), some vascular plants, such 

as Eriophorum, can enhance transport of CH4 to the atmosphere (Minkkinen and Laine, 2006). The second largest contributor 

to CH4 emissions in our model was exposed peat. Pearson et al. (2012) observed that the contrasting effects of mounding with 520 

exposed peat on CH4 emissions from soil depends on the drainage condition the surface. 

 

Measured N2O fluxes showed strong temporal variation over the studied year (Fig. 2). The short periods of high N2O emission, 

which contribute significantly to the annual budget, have been previously reported in peatland sites through continuous 

measurements based on EC and automatic chambers (Pihlatie et al., 2010). Our model was, however, unable to predict the 525 

high N2O emission period observed during late July and early August. The high emissions are likely driven by the activity of 

specific archaea and prevailing conditions, including temperature, moisture, C/N ratio, nitrate content, pH, and peat 

decomposition phase (Bahram et al., 2022) and our modelling approach lacked these details. On the other hand, our model 

showed that the majority of N2O emissions were attributable to surfaces with living trees, plant-covered ditches, exposed peat 

and litter (Fig. 6, Fig. 7, Fig. S10). A previous study, which employed chamber measurements, corroborates our modelling 530 

findings (Mäkiranta et al., 2012). It was observed that soils in peatland forests covered by logging residues exhibited high N2O 

emissions after harvesting, which was attributed to the decay of the logging residuals. Pearson et al. (2012) also found high 

N2O emissions from the mounds (surfaces with exposed peat) following site preparation in a nutrient-poor clearcut peatland 

forest. N2O emissions were found to be highly dependent on the availability of N in the soil (Ojanen et al., 2010). Therefore, 

the observed variation in N2O emissions from different surface-types may also be related to the spatial variability of nutrient 535 

conditions within the studied clearcut area. 

 

Studies of soil microclimate and gas fluxes after clearcutting and site preparation are scarce on drained peatland forests, but 

the few done using manual chamber method (Mjöfors et al., 2015; Pumpanen et al., 2004; Strömgren et al., 2016, 2017) have 

showed the spatial variability is typically very high. Pearson et al. (2012) applied the manual chamber method to assess the 540 

impact of varying microtopography following site preparation in a nutrient-poor clearcut peatland forest for CO2, CH4 and 

N2O. Gas fluxes from ditches can be measured by manual chamber floating on ditch water (e.g., Minkkinen and Laine, 2006; 

Rissanen et al., 2023), while ditch banks where the ditch materials are exposed and possibly act as CH4 hotspots were rarely 

measured due to the difficulty of installing chambers on uneven surfaces. Our surface-type model could facilitate the 

understanding of the contribution of surfaces on CH4 and N2O emissions, particularly those that are not or have been 545 

challenging to quantify previously. Furthermore, we identified the surfaces that are likely to have high CH4 and N2O emissions 

after clearcutting, and those surface types should be targeted in  in future chamber studies to accurately quantify the surface-

specific emission fluxes (or emission factors). 
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4.2 Methodological issues and outlook 

The models for 𝐹5:; and 𝐹<76were found to explain slightly less than 50% of the observed temporal variation. Moreover, the 550 

model that best explained the variability in 𝐹5:; produced an order of magnitude higher cumulative flux over the snow free 

season than what was measured by the EC (Table 3). However, this estimate was still withing the 95% HDI. The underlying 

assumptions in our model approach are i) surface type variability drives the variability of soil processes underlying the fluxes, 

an assumption that can be tested using e.g. chamber studies, ii) the relative contribution of surface types for each 30-min EC 

flux can be determined by footprint analysis, and iii) the surface types can be reliably characterized from aerial RGB images. 555 

 

For both CH4 and N2O, we found a clear improvement in model predictions when the effect of surface-types were introduced 

in the models (Table S1). For CH4 the deviation in model performance between different surface-type specific models was 

minor, suggesting that the CH4 emissions may be less dependent on the surface-type than N2O emissions. The Bayesian 

inference method was selected for its capacity to incorporate prior knowledge into the model. With Bayesian framework, we 560 

were able to define the surface-type specific flux strength modifiers (parameters 𝛾1) in a hierarchical manner. This resulted in 

each surface-type having a distinct base production distribution, while the mean of each distribution was derived from a 

common underlying distribution. Furthermore, there are other types of prior knowledge that could be incorporated to the model 

to improve the surface-type specific flux estimates. For instance, chamber measurements of surface-type specific flux could 

be employed to inform the model development, particularly as they could be used as a prior information to constrain the model. 565 

Results also revealed that there is a strong negative correlation between CH4 and N2O flux with soil water availability (Fig. 3), 

a finding that is consistent with previous observations in drained peatland forests (Ojanen et al., 2010). This would suggest 

that either soil water content or water table depth should be incorporated into the model as an independent variable, as net CH4 

emissions increase and N2O emissions decrease when	𝑊𝑇𝐷 gets closer to the surface. As 𝑊𝑇𝐷 and microtopography vary 

across the clearcut, distributed measurements of water table (or soil moisture) would be necessary to enable such extension. 570 

Furthermore, the modelling approach for N2O emissions might be improved by incorporating variables describing nutrient 

availability (e.g., C:N ratio). 

  

A few previous studies have used surface-type information and EC measurements to elucidate surface-type specific fluxes. In 

the tundra ecosystem, Tuovinen et al. (2019) and Ludwig et al. (2024) developed a model for CH4 flux by decomposing the 575 

total flux into sum of fluxes from different surface-types. In both studies, the models performed better than our model for CH4. 

Similarly, in peatlands, Franz et al. (2016) and Forbrich et al. (2011) were able to achieve a better agreement with CH4 modelled 

from surface-type specific fluxes and EC measurements than our CH4 model. One possible explanation for this discrepancy is 

that the surface-types in our model are rather homogeneously distributed in our drained peatland clearcut compared to the 

other sites, which makes the attribution of fluxes to different surface-types more challenging, as their relative contribution 580 

within the flux footprint does not strongly depend on wind direction. Regarding the N2O emissionsdd, we are not aware of any 
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previous studies that have attempted to model surface-type specific fluxes based on EC-data. However, given that N2O was 

the second largest GHG source from the clearcut area, it is evident that such studies are required in order to improve GHG 

budget estimation in the future.  

 585 

Footprint calculations were sensitive to the input parameters used in the calculations, hence altering the estimation of surface-

type specific CH4 and N2O fluxes. For instance, the displacement height (𝑑) was empirically estimated from data (see Sect. 

2.3) and changing the estimation procedure altered the footprint results. This was because changes in 𝑑 directly affects the 

effective measurement height (𝑧 − 𝑑), which is one of the main factors for the footprint size (e.g., Rannik et al., 2012). These 

uncertainties essentially stem from the fact that the clearcut surface is heterogeneous, with varying plant height and small-590 

scale topography. The spatial heterogeneity varies with wind direction, and this altered the flow field observed with the EC 

equipment. Therefore, the estimation of descriptive values for all the parameters needed by the footprint model, e.g., 𝑑, is 

uncertain.  

 

Furthermore, it is important to note that simple footprint models, such as the Kljun model used in this study, are only strictly 595 

valid above the roughness sublayer, where individual surface roughness elements (e.g., trees, branch piles, etc) do not anymore 

locally alter the flow. Even above roughness sublayer they rely on simplified theories on the flow field, such as the Monin-

Obukhov theory, which are unable to handle e.g., non-stationarities. Nevertheless, such models are utilised also in complex 

roughness sublayer flows (Chu et al., 2021) to link the observed turbulent fluxes to surface features (Stagakis et al., 2019). It 

is likely that our EC tower was frequently within the roughness sublayer. Although simple footprint models have been shown 600 

to produce reasonable estimates for flux source areas in ideal measurement locations (Arriga et al., 2017; Dumortier et al., 

2019; Heidbach et al., 2017; Nicolini et al., 2017; Rey-Sanchez et al., 2022), it is unclear how the estimates are affected by the 

roughness sublayer flow. The presence of surface roughness elements increases turbulent mixing, which may result in shorter 

footprints than would be expected for flows above smoother surfaces. Nevertheless, the empirically estimated values for 𝑑 and 

𝑧2 may already partly account for this. The methodology used here to derive surface-type specific fluxes did not consider the 605 

aforementioned uncertainties. Furthermore, we assumed in the Bayesian framework that the footprints were observed perfectly. 

This simplification should be kept in mind when analysing the surface-type specific fluxes. 

Our results suggest that the emission from multiple surface types (Fig. 6 & 7) are very similar, and that some surface types 

contribute little to the footprint-average fluxes (Fig. S9-S10). This implies that a more detailed surface type characterization 

would have improved the model performance. The methods used for surface characterization hold promise for following 610 

clearcut vegetation dynamics to address the vegetation recovery after site preparation and planting. More detailed vegetation 

classification was examined but found difficult as the vegetation after the clearcutting was sparse and the plant sizes were 

small. This caused the number of polygons for some vegetation classes in the training data to be very small. The vegetation 

growing on ditches had larger and more uniform surface area, and the classification of those would be easier than of individual 
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saplings. In addition, the topography of the studied site is flat, which makes the classification between the ditch, tree and other 615 

vegetation types using the drone-derived elevation model to be more accurate. Here we could utilize precise georeferencing 

using Ground Control Point accurately measured in the open area of the site. For more detailed vegetation surveys, the 

resolution of the drone orthomosaic could still be increased to determine the leaf and branch structure of the smallest plants as 

the spectral differences are not only defined by species but also by e.g. plant health (Grybas and Congalton, 2021; Zhou et al., 

2021). Parameters describing the structure, such as gray-level co-occurrence matrix, should be used additionally for 620 

classification. Alternatively deep learning methods provide high classification accuracy by taking the structure into account 

without parametrisation (Onishi and Ise, 2021). Using the same sensors, increased resolution could be achieved by lowering 

the flight altitude resulting in increased flight time and battery capacity need. In addition, increased resolution can make 

generating training data and validating results more difficult as the number of segments increases and it is more difficult to 

decide which class the polygon represents, especially in sites like clearcut area with very detailed surface cover and require 625 

multiple surface-type classes.  

4.3 Clearcut peatland forests are net GHG sources 

Despite the importance of peatland forests in the Nordic countries, little is known on the impacts of harvesting practices and 

alternative management chains on their GHG balance dynamics. Especially the fluxes soon after clear-cut and stand 

establishment have been rarely quantified (Korkiakoski et al., 2023, 2019; Mäkiranta et al., 2010). We measured CO2, CH4 630 

and N2O fluxes from a clearcut with the eddy covariance technique and showed that a previously spruce-dominated fertile 

peatland forest was a major source of GHG emissions during the first full year (second growing season) after clearcutting and 

site preparation. The results  indicate the CO2 dominates the total annual GHG balance, accounting for 83% 

(23.3. t	CO7-eq	ha"#a"#) of the total global warming potential of the GHG emissions. The first-year net CO2 emissions from 

the clearcutting site were ca. 10	t	CO7-eq	ha"#a"# larger than NEE before the clearcutting (13.2	t	CO7-eq	ha"#a"#, Laurila et 635 

al., 2021). Our results are consistent with those previous studies on forested peatlands. A relatively similar fertile drained 

mixed forested peatland (Lettosuo) in southern Finland was CO2 neutral before harvest as observed by EC measurements 

(Korkiakoski et al., 2023). After clearcutting and site preparation, the ecosystem turned into a strong CO2 source, emitting 

initially 31	t	CO7-eq	ha"#a"# but decreasing to 8.2	t	CO7-eq	ha"#a"# six years after the harvest as the emerging vegetation 

uptake increased and release of CO2 from decomposing cutting residues decreased (Korkiakoski et al., 2023). At our site, the 640 

recovery of ground vegetation was seen as significant 𝐺𝑃𝑃  (14.9	t	CO7-eq	ha"#	a"# ) already at the second post-harvest 

growing season, which partially offset more than 35% of ecosystem respiration mostly from the soil CO2 emissions. In a more 

southern minerotrophic drained forested peatland (Tobo) in the Uppsala region of Sweden the CO2 emissions were measured 

with chamber-based methods and ranged from 27 to 50	t	CO7-eq	ha"#a"# in the second year following clearcut, depending 

on ditch management (Tong et al., 2022). Furthermore, according to Mäkiranta et al. (2010), chamber-based estimates of CO2 645 

emissions during the growing from a clearcut drained oligotrophic peatland (Vesijako) located in southern Finland varied 

between 16 and 23	t	CO7-eq	ha"# during the first three years after clearcutting.  

https://doi.org/10.5194/egusphere-2024-1994
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



29 
 

 

The net CO2 emissions from Ränskälänkorpi clearcut are comparable to EC-measurements by Ahmed (2019; 

20	t	CO7-eq	ha"#a"#) after clearcut of a fertile Norway spruce stand on mineral soil in Hyytiälä, Southern Finland, and 20 −650 

30%  larger than emissions from 1-3 year old clearcuts on mineral soils in Southern and Central Sweden ( 16 −

18	t	CO7-eq	ha"#a"#; Grelle et al., 2023). Kolari et al., (2004)  observed smaller emissions (14	t	CO7-eq	ha"#a"#) 4 years 

after clearcutting an infertile Scots pine stand on mineral soil in Southern Finland. At Norunda, Sweden, clearcut former spruce 

forest on mineral soil with shallow water table was net source of CO2 (𝑁𝐸𝐸 16 t	CO7-eq	ha"#yr"#) first year after harvest 

(11	t	CO7-eq	ha"#a"# at second post-harvest year). At that site 𝐺𝑃𝑃 and 𝑅./0  varied between 5 and 14	t	CO7-eq	ha"#a"# 655 

and 20.8 − 22.8	t	CO7-eq	ha"#a"#, respectively (Vestin et al., 2020).  

 

The contribution of N2O and CH4 emissions to the total annual GHG balance remained small despite their much higher global 

warming potential. Specifically, the contribution of N2O emissions was 17% (48	t	CO7-eq	ha"#a"#), while the CH4 had only 

marginal importance (0.4%; 0.1	t	CO7-eq	ha"#a"#). The negligible share of CH4 to net GHG emissions is in line with that 660 

found in Lettosuo and Tobo sites (Korkiakoski et al., 2019; Tong et al., 2022). Korkiakoski et al. (2019) estimated from 

chamber measurements that N2O emissions from Lettosuo site were 3.7	g	N7O	m"7a"# after clearcut, which makes more than 

11	t	CO7-eq	ha"#a"#. According to Tong et al. (2022), N2O emissions after clearcut at Tobo site contributed only 0.5-1.3% to 

total GHG emissions, likely due to the fact that the biweekly chamber sampling may have missed some of the high emission 

peaks and due to low soil moisture as the water table depth was low compared to similar studies. Note that the prior studies 665 

have utilized temporally and spatially discontinuous chamber measurements for observing N2O and CH4 fluxes. Vestin et al., 

(2020) observed net CH4 emissions between 0.3 − 1.5	t	CO7-eq	ha"#a"#and N2O emissions of 0.8 − 1.1	t	CO7-eq	ha"#a"# 

from the Norunda clearcut using flux-gradient approach. To our knowledge, our study is the first of its kind to report EC-based 

N2O and CH4 fluxes from forest after clearcut. 

 670 

Our results confirm earlier findings (e.g., Korkiakoski et al., 2023) that clearcutting increases the GHG emissions from boreal 

forested peatlands, at least in short term when compared to mature forests (Alm et al., 2023; Minkkinen et al., 2001; Ojanen 

et al., 2010). To evaluate the climate effects of alternative harvesting methods (e.g. continuous cover forestry) in comparison 

to clearcutting and even-aged forestry, the post-harvest dynamics of GHG emissions must be better known, calling for more 

and longer follow-up studies (Korkiakoski et al., 2023). In Finland 390000	ha of fertile drained peatlands will soon be subject 675 

to choice between clearcutting and second even-aged rotation, or converting to other management regimes such as continuous 

cover forestry (Lehtonen et al., 2023) or partial rewetting. Currently it is estimated that converting to continuous cover forestry 

(no clear-cutting but frequent heavy thinnings from above) could reduce annually clearcut area in fertile peatlands by 

16000	ha	a"# (Lehtonen et al., 2023). It is thus evident that comparative long-term studies (but also modelling) between 

clearcutting and alternative harvesting approaches across a spectrum of site characteristics are needed to facilitate the 680 
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development of effective harvest management strategies to mitigate GHG emissions, especially those of CO2 from peat 

decomposition, in boreal forested peatlands. 

5 Conclusions 

We measured CO2, CH4 and N2O fluxes after clearcutting of a Norway spruce dominated boreal drained peatland forest in 

southern Finland using eddy-covariance. The clearcut was a significant source of GHG emissions with the annual total GHG 685 

balance dominated by the CO2 emissions (23.3	t	CO2-eq	ha"#a"#, 82.5% of total). The N2O emissions (4.8	t	CO2-eq	ha"#a"#) 

contributed 17.1 % while the role of CH4 flux (0.1	t	CO2-eq	ha"#a"#, 0.4%) was negligible. We used Bayesian statistical 

models, drone-based surface classification and established flux footprint model to predict the methane and nitrous oxide fluxes 

from based surface-type and air temperature. The best-fitting models captured around half of the observed variation in the 

measured CH4 and N2O fluxes, and revealed the highest CH4 emissions come from the plant covered ditches and exposed peat 690 

and highest N2O emissions came from the plant covered ditches, living trees, exposed peat and litter surface-types. Manual 

chamber measurements are needed to better constrain and validate surface-type specific flux estimates. The results strengthen 

recently established understanding that clearcut peatland forests are significant GHG sources. 
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