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Abstract 

Even-aged forestryRotation forestry based on  clearcut harvesting, site preparation, planting, and intermediate one to three 

thinnings is currently the dominant management approach in Fennoscandia. However, our understanding of the greenhouse 

gas (GHG) emissions following clearcutting remains limited, particularly on drained peatland forests. In this study, we report 

eddy covariance-based (EC) net emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from a boreal 15 

fertile drained peatland forest one year after the harvest. Our results show that on annual scale, the site was a net CO2 source. 

The CO2 emissions dominate the total annual GHG balance (23.3	t	CO2-eq	ha"#a"#, 82.5% of the total), while the role of N2O 

emissions (4.98	t	CO2-eq	ha"#a"#, 17.1%) was also significant. The site was a weak CH4 source (0.1	t	CO2-eq	ha"#a"#, 

0.4%). A statistical model was developed to estimate surface-type-specific CH4 and N2O emissions. The model was based on 

air temperature, soil moisture and fraction contribution of specific surface-types within the EC flux footprint. The surface-20 

types were classified using unmanned aerial vehicle (UAV) spectral imaging and machine learning. Based on the statistical 

models, the highest surface-type specific CH4 emissions occurred from plant-covered ditches and exposed peat, while the 

surfaces dominated by living trees, dead wood, and litter and exposed peat along with plant-covered ditches were the main 

contributors to N2O emissions. Our study provides new insights into how CH4 and N2O fluxes are affected by surface-type 

variation across clearcutting areas in boreal forested peatlands. Our findings highlight the need for integrating surface-type-25 

specific flux modelling, EC-based data, and chamber-based flux measurements to comprehend the GHG emissions following 

clearcutting and regeneration. Results strengthen the accumulated evidence that recently clearcut peatland forests are 

significant GHG sources. 
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1 Introduction 30 

Globally, peatland soils store 650000	Mt of carbon (C), which is equivalent to more than half of the C in the atmosphere 

(FAO, 2020). In Europe, the estimated peatland C stock is 43620	Mt	C, with a total peatland area of 58.8	Mha of which 46% 

is drained (UNEP, 2022). Drainage lowers water table depth (WTD) and accelerates aerobic peat decomposition, resulting in 

carbon dioxide (CO2) emissions and an annual loss of soil C stock equivalent to 160	Mt	C (UNEP, 2022). Greenhouse gas 

(GHG) fluxes have been quantified (Ojanen et al., 2010), and the GHG balance of forests on organic soils at the national scale 35 

has been accounted for Finland (Alm et al., 2023; Statistics Finland, 2022). However, the short-term impact of clearcutting 

and following site preparation on the GHG fluxes of drained peatlands remains unclear and is not currently considered in the 

Intergovernmental Panel on Climate Change (IPCC) emission factors applied in the national GHG inventories or in reporting 

to the United Nations Framework Convention on Climate Change (UNFCCC). Therefore, estimates of the current GHG 

balance of drained forested peatlands under management are associated with high uncertainties.  40 

 

Rotation forestryEven-aged forestry, is currently the dominant forest management method in Fennoscandia, both on mineral 

soils and on drained forested peatlands. It is characterized by forest stands with an even age structure, resulting from forest 

regeneration by clearcutting, usually followed by site preparation and single species planting, and later by intermediate 

thinning(s) from below (Kuuluvainen et al., 2012). In Finland, 4.7	Mha of peatlands have been drained for forestry purposes 45 

(Korhonen et al., 2021). A large fraction of fertile drained peatland forests is currently at mature stage and approaching the 

decision of final harvesting and regeneration (Lehtonen et al., 2023). In rotation-based peatland forestry, clearcutting typically 

leads to maintenance ditching to ensure adequate drainage for undisturbed tree growth (Päivänen and Hånell, 2012). However, 

even-agedRotation forestry that involves clearcutting and maintenance ditching has been found to have several short-term 

negative external effects (Nieminen et al., 2018). These include increases in nutrient and dissolved organic carbon (DOC) 50 

exports to watercourses (Palviainen et al., 2022), loss of biodiversity (Paillet et al., 2010; Rajakallio et al., 2021), and enhanced 

CO2 emissions (Korkiakoski et al., 2023). However, the magnitude and duration of the major GHG fluxes – CO2, methane 

(CH4) and nitrous oxide (N2O) – on boreal drained forested peatlands after clearcutting remain largely unclear. This is because 

there have been only a few studies assessing them to date (Korkiakoski et al., 2019, 2023; Mäkiranta et al., 2010; Tong et al., 

2022). The lack of information on how clearcutting affects GHG emissions in boreal forestry-drained peatlands prevents the 55 

comparisons of climate change impacts of business-as-usual forestry (i.e., even-agedrotation) and alternative forest 

management methods (e.g., continuous cover forestry) (Kaarakka et al., 2021; Mäkipää et al., 2023). 

 

Tree removal alters the local microclimate of forested peatlands by changing e.g., the amount of radiation available on the 

ground (Tikkasalo et al., 2024). This can result in higher soil temperatures (Pumpanen et al., 2004; Wu et al., 2011), potentially 60 

increasing peat decomposition and CO2 emission rates (Jandl et al., 2007). On the other hand, piles of harvest residues may 

decrease the soil temperature creating biotic and abiotic variation. Under drained or unsaturated moisture conditions, this 
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process may be further enhanced due to increased oxygen availability in soil (Maljanen et al., 2010; Ojanen et al., 2013; 

Drzymulska, 2016). The harvest of trees in peatland forests raise the water table depth (WTD) by decreasing transpiration and 

interception (Sarkkola et al., 2010; Leppä et al., 2020a, b). This, in turn, may result in a slower peat decomposition rate. 65 

Furthermore, the removal of trees and decline of forest-floor vegetation will lead to an strong immediate reduction in 

photosynthesis in clearcutting areas. However, dDrainage can increase root aeration and nutrient availability, which may 

benefit the rapid establishment of initial forest-floor vegetation and tree seedlings (Mäkiranta et al. 2010) and enhances rates 

of ground vegetation carbon sequestration (Minkkinen et al., 2001).  However, ground vegetation is insufficient to compensate 

for the increase in ecosystem respiration caused by the decomposition of logging residues (Mäkiranta et al., 2012; Ojanen et 70 

al., 2017; Korkiakoski et al., 2019; Tong et al., 2022). Consequently, clearcutting transforms forested peatland ecosystems into 

net CO2 sources during the early stages of stand development (Mäkiranta et al., 2010; Tong et al., 2022; Korkiakoski et al., 

2023).  

 

Peatland drainage has decreased CH4 emissions compared to pristine peatlands, due to improved soil aeration (Maljanen et al., 75 

2010; Ojanen et al., 2010). After tree-removal WTD typically rises (Korkiakoski et al., 2019; Leppä et al., 2020a), which 

supports the production of CH4 in the extended anaerobic zone. This can turn peatland sites from net CH4 sinks into sources 

(Korkiakoski et al., 2019). However, Ojanen et al. (2010, 2013) found that CH4 emissions only increase when the WTDL is at 

shallow level (i.e., within 30 cm from the soil surface). Furthermore, the response of vegetation to drainage may affect the 

supply of substrate to methanogens (Minkkinen and Laine, 2006), which can further enhance or offset the hydrological effects 80 

of drainage on CH4 fluxes.  

 

Clearcutting not only affects C fluxes, but also leads to increased N2O emissions (Robertson et al., 1987; Huttunen et al., 2003; 

Saari et al., 2009; Neill et al., 2006; Korkiakoski et al., 2019). This is due to the flush of decomposing logging residues and 

reduced nitrogen (N) uptake due to lower plant biomass, which both increase available soil N in the first years after the 85 

harvesting (Mäkiranta et al., 2012). N2O production is also favoured by redox conditions that vary between oxidative and 

reductive, which exist in wet but unsaturated peat after clearcutting and drainage. The production of N2O responds to changes 

in soil moisture, so the effect of drainage on N2O emissions is likely to depend on the combination of WTDL change and soil 

nutrient status (Tong et al., 2022). Additionally, drying-rewetting events occurring during the growing season have been 

identified as ‘hot moments’ for N2O emissions (Groffman et al., 2009). Nevertheless, the accurate estimation of N2O emissions 90 

has remained a significant challenge due to their considerable spatio-temporal variations (Rautakoski et al., 2024), which are 

a consequence of the inherent complexity of the various interacting processes. Furthermore, given that N2O is a potent long-

lived GHG and a stratospheric ozone-depleting substance that has been accumulating rapidly in the atmosphere over the last 

decades (Tian et al., 2024), it is important to determine the role of clearcutting in regulating the global GHG budget. 

 95 
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Considering the above, there is a great deal of uncertainty about the GHG dynamics and their key modulating processes on 

boreal drained peatland forests under forestry management, a shortcoming directly related to the limited number of studies 

available. Therefore, it is critical to improve our understanding on the clearcutting effects on CO2, CH4, and N2O fluxes. 

 

Most studies on GHG fluxes in boreal drained forested peatlands after clearcutting are based on manual chamber measurements 100 

(e.g., Mäkiranta et al., 2010; Tong et al., 2022). However, the magnitude and controls on CO2, CH4, and N2O fluxes in these 

high-latitude northern ecosystems remain highly uncertain. This is mainly related to the poor spatial and temporal 

representation of manual chamber-based GHG measurements (Savage and Davidson, 2003). Clearcutting creates a highly 

heterogeneous surface, which makes it challenging to interpret ecosystem GHG fluxes due to variation in surface-specific 

fluxes. Previous research has demonstrated that forest-floor vegetation heterogeneity, logging residues, and ditches cause 105 

significant spatial variability in GHG fluxes from drained peatlands and clearcut areas (Minkkinen and Laine, 2006; Ojanen 

et al., 2010; Mäkiranta et al., 2012; Rissanen et al., 2023). In this context, eddy covariance (EC) has become a widely used 

technique for measuring the GHG exchange (Baldocchi, 2003) due to its ability to provide high-temporal resolution exchange 

rates integrated over a relatively large area. The EC footprint (i.e. source area of the measured flux) collects the contributions 

of each element of the surface area to the measured vertical turbulent flux (Vesala et al., 2008). Therefore, this area could be 110 

divided into distinct surface-types that form a heterogeneous matrix, enabling direct assessments of each surface-type on the 

measured GHG fluxes. While studies attributing EC measured surface fluxes to specific surface-types at heterogeneous 

ecosystems exist (Forbrich et al., 2011; Franz et al., 2016; Tuovinen et al., 2019; Ludwig et al., 2024), none of them focus on 

heterogeneous clearcut areas. The lLikely reason for this is the lack of high-resolution data on surface-types within the EC 

tower’s footprint. The use of high-resolution georeferenced imagery from unmanned aerial vehicle (UAV) surveys, and the 115 

possibility to derive detailed surface maps, however, now enables the integration of footprint models and GHG flux 

measurements and attributing measured fluxes to specific surface features.  

 

In light of the preceding considerations, there is a considerable degree of uncertainty associated with the magnitude of GHGs 

as well as their key modulating processes and spatial and temporal heterogeneity on boreal drained peatland forests under 120 

forestry management. This deficiency is directly attributable to the paucity of available studies on the subject. It is therefore 

imperative to improve our understanding on the impact of clearcutting and different surface types on GHG fluxes. 

 Here, we examined the CO2, CH4, and N2O fluxes from a fertile boreal drained peatland forest located in southern Finland 

during the first full year (second growing season) after clearcutting. GHG fluxes were measured using an EC system during 

the year 2022, while clear-cutting was conducted during the winter and spring 2021. Information on surface-type variation 125 

across the footprint area was collected through drone imaging in June 2022. Our specific aims were to:  

1. Quantify the magnitude and temporal variation of CO2, CH4, and N2O fluxes along their annual balances. 

2. Estimate the differences in surface-type specific CH4 and N2O fluxes, as well as their sensitivity to environmental 

variation. 
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2 Materials and methods 130 

2.1 Measurement site 

Ränskälänkorpi study site is a boreal peatland forest (ca. 24	ha) located in Southern Finland (61°11'N, 25°16'E, 144 m a.s.l.; 

Fig. 1, Fig. S1), which has been drained for forestry before 1960’s. The climate is humid continental with a 30-year (1981–

2022) mean annual temperature and precipitation sum of 4.2∘C and 611	mm, respectively. The site maintains snow cover on 

average for 133 days, typically from early November to late April. The forest is dominated by Norway spruce (Picea abies 135 

(L.) Karst., about 70% of all trees), with some Scots pine (Pinus sylvestris L.) and Downy birch (Betula pubescens Ehrh.). The 

forest-floor vegetation is sparse and consists of mosses (mainly Hylocomium splendens, Pleurozium schreberi and Dicranum 

polysetum), dwarf shrubs (mainly Vaccinium myrtillus and Vaccinium vitis-idaea), as well as forbs such as Dryopteris 

carthusiana, Gymnocarpium dryopteris, Trientalis europaea, and Oxalis acetosella. The site consists of sedge-wood 

dominated peat, which is mainly more than 1 m deep. The site peatlandpeatland,type is mainly nutrient-rich (Rhtkg II) and 140 

Vaccinium myrtillus (Mtkg II). The site is a fertile and well-drained, Norway spruce dominated and represents mainly nutrient-

rich Herb-rich (Rhtkg II) and Vaccinium myrtillus (Mtkg II) site types according to Finnish site types of drained peatland 

forests (Laine et al., 2012).  In March 2021, the site was divided into three areas with different harvest treatments: non-

harvested control (C, ca. 7.3	ha), selection harvest (CCF, ca. 10.0	ha), and clearcutting (CC, ca. 6.1	ha). The harvesting in the 

CCF and CC areas took place with harvester machinery primarily from 18th March to 1st April 2021 when the soil was frozen. 145 

It was completed in June 2021 in the north-western section of the CC area. This study was conducted in the CC area, where 

all the trees were cut. Some large, dead trees were retained on site, and the resulting logging residues (i.e., foliage, branches 

and stumps) were left on the ground. The understory vegetation was significantly impacted by the disturbance caused by the 

harvester and logging machines. The stand regeneration was carried out in summer 2021 through ditch mounding and planting 

of Norway spruce seedlings, with an approximate density of 1800 − 2000	seedlings	ha"#. The harvest and regeneration are 150 

according to common practices for operational forestry in Finland. 
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Figure 1. Surface-type classification and aerial view of the experimental setup in the clearcut area. Black triangle shows the location 155 
of water table depth measurement, black white circles show the location of the soil temperature and moisture sensors, red circle shows the 
location of the eddy covariance (EC) tower. The contour lines display the mean footprint area (10 to 90th percentiles) for the year 2022. The 
pixel colour indicates the surface-type. The background aerial photo is acquired from the National Land Survey of Finland Topographic 
Database (distributed with CC-BY 4.0 license, retrieved 06/2024). 

2.2 EC measurements 160 

Ecosystem-atmosphere greenhouse gas exchange was measured with the EC technique in the middle of the CC area with a 

3.1	m tall tower (see Fig. 1). Distance from the tower to the forest edge was at minimum 100 m in all directions. High frequency 

data on the three wind components and sonic temperature were acquired with an ultrasonic anemometer (uSonic-3 Cage MP, 

METEK GmbH, Germany), CO2 and water vapor (H2O) mixing ratios with a nondispersive infrared sensor (LI-7200RS, LI-

COR Biosciences, NE, USA) and CH4 and N2O mixing ratios with Tunable Infrared Laser Direct Absorption Spectrometer 165 
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(TILDAS, Aerodyne Research Inc, USA). All the EC data were logged with 10 Hz frequency. TILDAS data were logged to 

separate files and combined with the other EC data during data post-processing. TILDAS was located in a small, air-

conditioned measurement hut and it was sampling the air with a 9	m long heated Teflon tube. Rapid flow in the tube was 

created with a scroll pump (TriScroll 600, Agilent Technologies Inc, USA). LI-7200RS was situated in the measurement tower 

and it was sampling the air with a heated sampling tube distributed with the instrument (ca. 0.7	m long tube with 5.3	mm inner 170 

diameter) and pump. The gas analysers sampling inlets were located next to the sonic anemometer (0.18	m horizontal 

separation). 

 

In addition to the EC fluxes, several environmental variables were continuously monitored at the EC station. These include 

photosynthetically active radiation (PAR; LI-190R Quantum Sensor, LI-COR Biosciences, USA), air temperature (𝑇%&') and 175 

humidity (HMP155 Humidity and Temperature Probe, Vaisala Oyj, Finland), shortwave and longwave incoming and outgoing 

radiation component (CNR4 4-component Net Radiometer, Kipp & Zonen, the Netherlands), precipitation (P; TR-525M 

Rainfall sensor, Texas Electronics, USA), soil temperature (𝑇()&*) and water content (𝜃) at 10	cm depth (Hydra Probe II, 

Stevens Water Monitoring Systems Inc., USA). These variables were logged with 1	min time step. Soil temperature and water 

were monitored also at other locations at the clearcut (see Fig. 1) with TMS-4 microclimate loggers (Standard datalogger, 180 

TOMST s.r.o, Prague, Czechia) and water table depth were measured with Odyssey Capacitance Water Level Logger 

(Dataflow Systems Ltd, New Zealand). 

2.3 EC data processing 

EC flux data processing followed international standards set e.g. by Integrated Carbon Observation System (ICOS) network 

(Franz et al., 2018) as much as feasible. Flux calculations were executed with the EddyPro open-source software (version 185 

7.0.7, LI-COR Inc, USA). Fluxes were calculated using 30-min averaging time and turbulent fluctuations were separated from 

the measurements using block-averaging. The high frequency time series were despiked following Mauder et al (2013). High 

frequency gas data were already converted to dry mixing ratios internally by the measurement devices (LI-7200RS and 

TILDAS) and hence no conversions were done during post-processing. The gas sampling system (tubes and filters) induced 

time lags between wind and gas mixing ratio data. These time lags were estimated using cross-covariance maximisation and 190 

accounted for before flux calculations. Also, the flow coordinates were rotated using sector-wise planar fitting (Rannik et al., 

2020) before calculating the covariances (i.e., fluxes) between the vertical wind component and gas mixing ratio time series. 

EC fluxes are always underestimated due to high frequency and low frequency dampening of the signal caused by the 

measurement system (e.g., dampening of the gas fluctuations in the sampling lines) and the need to use a finite flux averaging 

time, respectively. This underestimation of gas fluxes was corrected in this study following the approach by Fratini et al. (2012) 195 

and Moncrieff et al. (2005) with the exception that the cut-off frequencies characterising the high frequency dampening of 

each gas signal were estimated based on cospectra between vertical wind and gas time series and not from gas power spectra 

following Peltola et al. (2021). 
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The fully processed gas flux time series resulting from the processing procedure described above were quality filtered 200 

following Vitale et al. (2020) with few differences. First, flux data were discarded if the flux values were outside predefined 

limits, instrument diagnostics signalled erroneous measurement or site diaries suggested disturbance to the data. Then, the 

procedure by Vitale et al. (2020) was followed with the exception that the statistical model used in the quality filtering 

procedure was estimated using singular spectrum analysis and low-rank reconstruction of the time series (Golyandina et al., 

2001; Mahecha et al., 2007) instead of the multiplicative model used in Vitale et al. (2020). After quality filtering, low 205 

turbulence periods during which EC fluxes do not represent surface-atmosphere exchange were identified using friction 

velocity and periods when friction velocity was below a site-specific threshold ( 0.09	m	s"#) were removed from further 

analysis. After this procedure the flux data coverages were 64 %, 57 % and 57 % for CO2, CH4 and N2O flux time series, 

respectively, with majority of the data gaps occurring during low wind nights. 

 210 

For calculating daily mean fluxes or annual GHG balances, the gaps in flux time series needed to be filled. The gaps were 

filled separately with three machine learning (ML) algorithms: random forest (RF), extreme gradient boosting (XGB) and k 

nearest neighbours (kNN). These three algorithms were selected based on their good performance in filling gaps in flux time 

series in prior studies (e.g., Goodrich et al., 2021; Irvin et al., 2021; Vekuri et al., 2023). Ensemble median of the three gapfilled 

time series was then used to estimate annual GHG balances and daily fluxes, whereas the spread between the three estimates 215 

was used to evaluate the range of plausible annual GHG balance values. With this approach we minimize the uncertainty in 

annual balances stemming from the selection of a particular algorithm for gapfilling. “xgboost” (version 1.7.1) Python package 

was used for the XGB method, whereas “scikit-learn” (version 1.1.1) functions RandomForestRegressor and 

KNeighborsRegressor were utilized in RF and kNN methods, respectively. ML model training and testing of predictive 

performance was executed as follows: first model hyperparameters were tuned against a random subset of data with scikit-220 

learn function RandomizedSearchCV. After hyperparameter tuning, artificial gaps (covering 15 % of the data) were introduced 

in random locations in the flux time series and the lengths of these gaps were drawn from a distribution describing the length 

of actual gaps in the time series (Irvin et al., 2021). Measured data from these gaps were used as independent test data, whereas 

all the other data were used in model training. Then the trained model predictive performance was evaluated against the test 

data and this training/testing procedure was executed independently five times. The final models used in gapfilling the flux 225 

time series were trained using all the measured data. The following predictors were used in this gapfilling procedure for CH4 

fluxes: normalized daily incoming potential solar radiation (RPOT) and its first time derivative, 𝑇+,-, its average during the 

past 3 hours, 1 day and 7 days, incoming shortwave radiation, surface temperature calculated from upwelling longwave 

radiation, vapor pressure deficit, sine and cosine transformed wind direction and Ts. The list of predictors was the same for 

N2O fluxes except also soil water content (𝜃) was included. For CO2 flux time series gapfilling, otherwise the same predictors 230 

were used as for CH4, but also daily normalized RPOT and its first time derivative (within each day values range between 0 

and 1) were included so that the models capture better the CO2 flux daily cycle. For kNN, data were normalized to zero mean 
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and unit variance, whereas for RF and XGB data were not normalized. The predictive performance (R2) of the ensemble models 

obtained with this procedure were 0.75 ± 0.04 (mean ± standard deviation of the five predictions), 0.66 ± 0.05, and 0.92 ±

0.01for CO2, CH4, and N2O fluxes, respectively, the slopes of linear fits between the predictions and observations were 0.97 ±235 

0.08, 1.01 ± 0.02 and 1.01 ± 0.04 and the intercepts were 0.01 ± 0.07 μmol m-2 s-1, −0.01 ± 0.04 nmol m-2 s-1 and −0.02 ±

0.04 nmol m-2 s-1, respectively. These results for the predictive performance differ from some of the aforementioned studies, 

however this is likely due to the nature of variability of these fluxes at our site (low photosynthesis and CO2 flux variability, 

marked seasonal variability in N2O fluxes and low CH4 fluxes, see Sect. 3.1). 

 240 

CO2 fluxes (nNet ecosystem exchange, NEE;, with positive sign denoting net emissions) were decomposed to ecosystem 

respiration (R./0) and gross primary productivity (GPP) following the nighttime decomposition method by Reichstein et al. 

(2005) with the slight modifications by Wutzler et al. (2018). However, in contrast to Reichstein et al. (2005), here we forced 

nighttime GPP to zero by subtracting 1.5 day running median of the nighttime GPP from the GPP time series (and added it to 

𝑅./0 time series) and forced any residual nighttime GPP to zero. This way NEE = R./0 − GPP is valid at all time steps and 245 

GPP is zero when there is no incoming solar radiation. 

 

2.4 EC flux footprint  

 

Turbulent fluxes measured with EC relate to the surface fluxes via 250 

𝐹(𝑡) = ∬𝜑(𝑥, 𝑦, 𝑡)𝑓(𝑥, 𝑦, 𝑡)dxdy,      (1) 

where 𝐹 = 𝐹(𝑡) is the flux measured with EC at time t, 𝑓 = 𝑓(𝑥, 𝑦, 𝑡) is the surface flux at location (𝑥, 𝑦) at time 𝑡 and 𝜑 =

𝜑(𝑥, 𝑦, 𝑡) is so-called footprint function which describes the source area of EC flux measurements (Vesala et al., 2008) 

Footprint gives an estimate for the relative contribution of each location on the surface to the measured turbulent flux and with 

such information it is possible link surface features to measured fluxes. If we assume constant fluxes (𝑓1(𝑡)) from surface-type 255 

𝑗 during time step 𝑡, then Eq. 1 can be simplified as 

𝐹(𝑡) ≈ ∑ 𝜑1(𝑡)𝑓1(𝑡)1 ,      

    (2) 

where 𝜑1 is the overall contribution of surface-type 𝑗 to the EC flux source area during time step t. 

 260 

In this study, the source area, i.e., footprint, for the measured gas fluxes was estimated for each 30-min period with the Kljun 

et al. (2015) model, which is a simple two-dimensional analytical parameterisation of results obtained with backward 

Lagrangian stochastic particle dispersion model (Kljun et al., 2002). The model requires information on the flow, namely wind 

speed, boundary layer height, Obukhov length, standard deviation of lateral velocity fluctuations, friction velocity and wind 
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direction for rotating the footprint to prevailing direction. All these were measured with the EC equipment, except boundary 265 

layer height which was retrieved from ERA5 reanalysis product (Hersbach et al., 2023). In addition to these measurements, 

footprint calculations require information on EC measurement height (𝑧), displacement height (𝑑) and surface roughness length 

(𝑧2). The CC surface is a complex mosaic of different surface-types and vegetation heights with small-scale topography. This 

variability influences the flow field above the surface and this needs to be accounted for in footprint calculations. To resolve 

this issue, we opted to use varying values for 𝑑 in the calculations and estimated them from the EC data via logarithmic wind 270 

profile equation similarly as in (Helbig et al., 2016) with the exception that only near-neutral periods were used in this analysis 

and the estimates for 𝑑 were bin-averaged in wind direction and 30-day bins before using in footprint calculations for reducing 

the noise stemming from the uncertain calculation procedure. The estimated values for 𝑑 ranged between 0.8	 and 2.0	m 

(534 − 9534 quantiles of the estimates) during the study period (Fig. S2). 𝑧2 was implicitly included in the footprint calculations 

via the ratio between wind speed and friction velocity (Kljun et al., 2015). With this footprint estimation procedure, we 275 

accounted for the effect of temporally and spatially varying surface characteristics on the footprints. 

2.5 Drone imaging 

Orthomosaic of the CC area was generated by using drone images captured on June 8th 2022 between 12-14 h using DJI 

Matrice 210 V2 drone equipped with Zenmuse X7 sensor for RGB and Micasense Altum sensor for multispectral images. 

Flight altitude was 75 m and images were captured with 95% frontoverlap and 85% sidelap. The weather conditions were 280 

cloudy throughout the flight providing even spectral conditions. The images were georeferenced with 10 ground control points 

measured with a Timble R12 GNSS device and processed into an orthomosaic and to Digital Elevation Model (DEM) using 

Agisoft Metashape 1.7.3 (Agisoft, 2021). The rResulting RGB orthomosaic had a ground sample distance (GSD) of 

1.16	cm	px"# and multispectral orhomosaic of 3.23	cm	px"# resolution. 

2.6 Surface type classification 285 

The land surface classification is based on geographical object-based image classification approach similar to De Luca et al. 

(2019) and was executed using the drone images (see Sect. 2.5). Orthomosaics from the CC area including RGB, Red Edge 

(RE) and Near Infrared (NIR) channels were merged with the DEM and segmented by spectral signal Euclidian distance using 

the Large-Scale Mean-Shift (LSMS) segmentation found in Orfeo Toolbox (Grizonnet et al., 2017). Parameters for LSMS 

were spatialr=1 range.r=5 and minsize=40. The LSMS segmentation resulted in 1.4 million polygons which provide enabled 290 

detailed segmentation even of between the smallest objects at the sitesurface cover elements down to ca. 10 by 10 cm in size. 

To classify the segments, training data consisting of samples of different surface -ttypes were used to train thea Random Forest 

classifier found in thewithin the Orfeo Toolbox using the means and variances of R, G, B, RE, NIR and DEM channels inside 

the polygon. Random Forest uses multiple decision trees trained on bootstrap sets of training data and the classification is 

based on majority vote of the decision trees (Breiman, 2001). The training data was manually labelled on the segmented 295 
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polygon in QGIS software using the RGB image and field surveys. The training data covered 0.27% of the CC area and 

included even numbers of samples for each surface type class distributed evenly around across the area surveyed area to 

account for small spectral changes due to slight changes in cloud optical depth during the flight. The classes (Table 1, Fig. 1, 

Fig. S3) were selected by prior field surveys to be a representative set of different surface -types that could accurately be 

distinguished from the drone orthomosaic and were readily identifiable in situ. With the trained model, the rest of the segments 300 

were classified into different land cover types with mean balanced accuracy of 81.2% and Cohen’s kappa coefficient of 0.64. 

As the number of segments in the different surface-types varies widely, the Table 1 shows also the User’s Accuracy for class 

samples. Piles of harvest residue and dead wood are common throughout the area, and in many cases the difference between 

those classes is difficult to distinguish and the classification can be mixed. A moderate amount of precipitation occurred just 

before the flight, but this did not affect the classification of exposed peat, even though it had small pondsdespite the presence 305 

of small pond in the depressions. The plant- covered ditches, however, can in some cases be classified as the bottom or the 

field layer. 

Table 1: Surface type classification. Names of the surface-types, their definition, share of the clearcut area and average footprint area, 
mean classification confidence level (share of votes for the majority class) of the Random Forest classifier, and the User's accuracy (share 
of correctly classified segments from the classification) for equal-sized sample of each class. 310 

Surface type Definition Share of 
clearcut 
area (%) 

Mean share of 
footprint area 
(%) 

Mean 
classification 
confidence (%) 

User’s 
accuracy (%) 

Dead wood Tree trunks and connected 
branches 

22.8 22.6 47.8 55.6 

Harvest residue Piles of branches left from 
clearcutting 

7.9 3.7 53.6 82.2 

Exposed peat Peat piles for spruce saplings 29.0 40.6 76.7 75.6 

Litter Bare dry ground, conifer 
shoots 

19.9 13.5 52.2 66.7 

Bottom layer 
(mosses) 

Mosses, small shrubs 1.4 0.6 28.2 51.1 

Field layer Small plants 11.8 9.3 49.7 68.9 

Living tree Larger trees (>ca. 0.5 m) 4.2 5.2 66.8 82.2 

Plant- covered 
ditch 

Water growing moss, sedge or 
other vegetation covering the 
ditch 

1.1 2.4 41.2 73.3 

Ditch (water 
surface) 

Open water surfaces 1.9 2.1 70.9 95.4 
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2.7 Correlation analysis 

To understand which environmental parameters should be included in the statistical flux models, wWe quantified the GHG 

flux correlation with environmental variables with the bivariate Spearman rank correlation coefficient (𝑟(). 𝑟(  was calculated 

for the 30-min, non-gap filled timeseries (except for GPP) by omitting those 30-min intervals which did not have observations 315 

recorded. For CO2 flux we present both the NEE (𝐹567) and GPP since the NEE consists of two components (GPP and R./0). 

The environmental variables are precipitation (P), PAR, water content in air (𝑤879), WTD, air and soil temperature (T+,-, T:0,;) 

and soil water content (𝜃). T+,-, P, and  w879 and PAR are measured at the EC tower and the locations of T:0,;, WTD and 𝜃  

measurements are shown in Fig. 1. 

 320 

2.8 Splitting CH4 and N2O flux into surface-type and environmental controls 

We developed a statistical model that can capture the spatiotemporal variability of the fluxes, 𝐹5<= and 𝐹>76. We included the 

surface-type (ST; Table 1)  and temperature and soil water availability effects to the model. Soil water availability was only 

included as a general term without ST specific contribution. We opted to use only air temperature as the single independent, 

ST specific environmental variable in our model since T+,-	can be expected to be uniform across whole clearcut area. The same 325 

assumption is more challenging to justify for soil temperature, soil moisture or WTD, which are influenced by soil processes 

and topography and expected to vary spatially within the study site. 

 

Two Six alternative models were fitted to the EC flux measurements. The response variable in both models was the natural 

logarithm of observed fluxes, either CH4 or N2O, and both models had a temperature dependency similar to the 𝑄#2 temperature 330 

response. The first model (Eq. 3) is referred to as baseline model and assumes coherent responses of soil fluxes across the site. 

The second model (Eq. 4) is an extension of the baseline model and includes a soil moisture (𝜃) term. The second model is 

referedreferred to as the baseline 𝜃 model. The thirdsecond model (Eq. 54) is a ST specific model and allows soil-cover specific 

variation in fluxes similar to Ludwig et al. (2024) and in their temperature responses. Models 4-6 are modifications of the third 

model. Model 4 (Eq. 6) does not have a ST specific temperature term, model 5 (Eq. 7) includes a soil moisture term and model 335 

6 (Eq. 8) is similar to model 5 but does not include the ST specific temperature term. Models 3-6 (Eqs. 5-8) are named full, 

full no 𝛿, full 𝜃 and full 𝜃 no 𝛿 models, respectively. 

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&',& − 𝑇'@A
10∘C		  

(3) 

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&',& − 𝑇'@A
10∘C		 + 𝜁𝜃& 340 

(4) 
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ln(𝐹&) = 𝛼 + 𝛽
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(54) 345 

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&',& − 𝑇'@A

10∘C +h𝜑&,1

>

1B#

𝛾1 

(6) 

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&',& − 𝑇'@A

10∘C + 𝜁𝜃& +h𝜑&,1 i𝛾1 + 𝛿1
𝑇%&',& − 𝑇'@A

10∘C k
>
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(7) 

ln(𝐹&) = 𝛼 + 𝛽
𝑇%&',& − 𝑇'@A

10∘C + 𝜁𝜃& +h𝜑&,1𝛾1

>

1B#

 350 

(8) 

 

 

 

where 𝐹& is the observed 30-min flux , 𝛼, 𝛽, 𝛾, 𝛿 and 𝜁𝛿 are free parameters to be estimated, 𝜑&,1 	is the fraction of surface-type 355 

𝑗 inside the footprint of observation 𝑖, and 𝑇'@A = 10∘C is the reference temperature and 𝜃 is the mean soil moisture measured 

at three locations shown in Fig. 1. In Eq. (4) parameter 𝛼 then relates to base source strength at 10°C, 𝛽 to base temperature 

scale of a GHG flux, 𝛾1  to surface-type specific source / sink effect at 10°C and 𝛿1  to surface-type specific temperature 

dependency effect. 

 360 

For the ST specific models (Eqs. (5)-(8)), we consider models with either 3, 4, 5, 6, or 9 surface-types (ST3, ST4, ST5, ST6 

and ST9 respectively) bringing the total number of models that are considered to 22six for both GHG. ST9 considers all the 

classified surface-types. ST5 is built from ST9 by leaving out the bottom layer class which covers only ca 0.6% on average of 

the footprint areas and by combining dead wood and harvest residue classes, ditches with water surface (open ditches) and 

plant- covered ditch classes and living trees and field layer classes. Similarly, ST3 is built from ST5 by further combining all 365 

classes except exposed peat class and the class containing both ditch types. ST4 and ST6 are derived from ST3 and ST5, 

respectively, by separating allotting the open ditches and plant- covered ditches to their own classes. The different surface-

type combinations are summarized in Table 2 (see also Fig. 1 and Fig. S3 for visualization of surface-types in the CC area). 
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Table 2: Surface type combinations between ST specific models. The table shows which surface-types are combined in different ST 370 
specific models. Same number in a column indicates that the surface-types are combined. X indicates that the surface-type is removed from 
the analysis. 

Surface type  ST3 ST4 ST5 ST6 ST9 

Dead wood 1 1 1 1 1 

Harvest residue 1 1 1 1 2 

Exposed peat 2 2 2 2 3 

Litter 1 1 3 3 4 

Bottom layer (mosses) X X X X 5 

Field layer 1 1 4 4 6 

Living tree 1 1 4 4 7 

Plant- covered ditch 3 3 5 5 8 

Ditch (water surface) 3 4 5 6 9 

 

 

The free parameters of the models 𝛼, 𝛽, 𝜁, 𝛾1 , 𝛿1 and 𝜎C	(the standard deviation of the likelihood function) were estimated using 375 

Bayesian inference and Markov chain Monte Carlo (MCMC) methods using the “pyMC” package (Abril-Pla et al., 2023). The 

prior distribution of 𝛼 and 𝜁 was set to a normal distribution whose mean was zero and standard deviation was two were 

calculated from the measured flux where air temperature was between 9-11°C. The prior distribution of 𝛾 follows a hierarchial 

design: the prior for each surface-type is normally distributed with mean 𝜇D and standard deviation 𝜎D and the prior distribution 

for mean 𝜇D was the standard normal distribution  𝜇D	~	𝒩(0,1). We used exponential distributions as priors for 𝛽 and 𝛿 with 380 

rate parameters 𝜆E and 𝜆F. We used a normally distributed likelihood function with standard deviation 𝜎C. We set the prior 

distribution for 𝜎C  to be exponential distribution with rate parameter 𝜆C . Finally, the rate parameters 𝜆&  of the exponential 

distributions for 𝛽, 𝛿, 𝜎C and 𝜎D were set such that the full width at half maximum (FWHM) of prior predictive distributions 

(Fig. S4-S5) is at least 2 times wider than the FWHM of the observed flux distributions. For simplicity, same values were used 

for both GHGs 𝜎D = 2.0 , 	𝜆* = 1.0; 	𝑙 ∈ {𝛽, 𝛿, 𝜖} . The parameters were estimated using the pymc.sampling.mcmc.sample 385 

function of the pyMC package with 4 chains, 2000 samples per chain and a tuning period of 2000 steps, i.e., total 8000 

individual parameters sets were drawn for further analysis. All the other sampler settings were left as default. The full, non 

gap-filled, EC flux data sets were used in the parameter estimation i.e., the artificial gaps introduced to the flux data sets for 

developing the gap-filling model were not present in this parameter estimation. 

 390 

We evaluate the model performance based on two metrics the expected log posterior densitythe of leave one out cross 

validation (ELPD-LOO) and the adjusted coefficient of determination (R2adj). ELPD-LOO was calculated using the compare 

function of the “ArviZ” Python package which uses the Pareto smoothed importance sampling to re-fit the model parameters 
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(Vehtari et al., 2017). The compare function ranks the models based on the expected log posterior density of the left out 

samples. While a single ELPD-LOO value is not easy to interpret in terms of model performaceperformance, models are 395 

straightforward to compare against each other as higher value of ELPD-LOO marks better performance. 

 

We defined the Eqs. (3)-(84) on natural logarithm base since ln-transformations of the measured flux values were normally 

distributed based on quantile-quantile plotting. When transforming the measured 30-min fluxes to natural logarithm base, we 

omitted those CH4 fluxes that were below −10	nmol	m"7s"# and those N2O values that were below 0	nmol	m"7s"#. We 400 

chose these limits since during low flux period CH4 fluxes varied randomly around zero, whereas N2O fluxes were clearly 

positive throughout the measurement period with only occasional negative flux observations. The CH4 flux values were then 

shifted by 10 nmol	m"7s"# before the natural logarithm was applied. This shift was accounted for also when the model results 

were transformed back into units of nmol	m"7s"#. Additionally, we accounted for natural logarithm transformation bias when 

transforming the modelled fluxes to nmol	m"7s"#. In total the back transformation is 405 

 

𝐹& = expy𝐹&,*G +
𝜎C7

2 z − 𝑆, 

(95) 

where 𝐹&,;H is the modelled flux in natural logarithm base, 𝜎C is the standard deviation of the likelihood function and 𝑆 is the 

shift (𝑆 = 0	nmol	m"7s"# for N2O and 𝑆 = 10	nmol	m"7s"# for CH4) 410 

 

To further understand the GHG emissions from different surface-types, we calculated the surface-type specific fluxes by 

setting the contribution of each surface-type to unity (𝜑&,1 = 1 in Eq. 4) in turn, while zeroing others. The measured 𝑇%&' was 

used in calculating these model estimates. For each temperature we We calculated 8000 different flux values with the 

parameters estimated in the MCMC sampling.  415 

 3 Results 

3.1 Ecosystem scale greenhouse gas fluxes 

The CC area in the Ränskälänkorpi study site was a strong net source of GHGs during the first full year (second growing 

season) after the clearcutting (Fig. 2 and Fig. S6). The eddy covariance measurements showed that the CO2 was the dominant 

GHG flux in terms of emissions (expressed as CO2-equivalents, 𝐺𝑊𝑃1005<= = 28	, 𝐺𝑊𝑃100>76 = 265; Stocker et al. 420 

2013). Specifically, the annual NEE was controlled by Reco (38200	kg	CO7-eq	ha"#	a"#	; 1040	g	C	m"7	a"#) rather than by 

GPP (14900	kg	CO7-eq	ha"#	a"#	; 410	g	C	m"7	a"#). Consequently, the CC area showed high cumulative net CO2 emissions 

during 2022 was( 23300	kg	CO7-eq	ha"#	a"# ;  ( 640	g	C	m"7	a"# ), followed by relatively low N2O emissions 
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(4800	kg	CO7-eq	ha"#	a"#) and only minor net CH4 emissions (100	kg	CO7-eq	ha"#	a"#; 	0.3	g	C	m"7	a"#). It should be 

noted that tThe contribution of the snow-free period emissions to annual emissions were 82%, 80%, and 98% for CO2, N2O 425 

and CH4, respectively. The annual 𝑅./0  was 38200	kg	CO7-eq	ha"#	a"#	  (1040	g	C	m"7	a"#)  and 

𝐺𝑃𝑃	14900	kg	CO7-eq	ha"#	a"#	(410	g	C	m"7	a"#). 

  

The seasonal cycle of NEE was characterized by small  emissions (R./0) during winter. R./0 increased rapidly after snowmelt, 

while GPP remained low until late May. The NEE was rather stable from late May to late Aug, while both component fluxes 430 

showed dual peak in late June and August. In autumn, GPP decreased along the reduced solar radiation but respiration remained 

at nearly constant level from September to November, causing the seasonal asymmetry seen in NEE (Fig. 2). On daily scale, 

the ecosystem was a net source of CO2 to the atmosphere throughout the measurement period. CH4 flux started to increase in 

the mid-June slightly over one month after snow melt and the daily CH4 emissions fluctuated between 1 − 6	nmol	m"7s"#  

until the end of August after which the flux was small ( -1 − 1.6	nmol	m"7s"# ). N2O flux increased from 	0.5   to  435 

1.5	nmol	m"7s"# from mid-April to mid-May and after a short decrease, it gradually increased to	2	nmol	m"7s"#  by mid-

July. Between mid-July and mid-August N2O flux experienced a strong peak with highest values of 6	nmol	m"7s"#. N2O flux 

stayed then around 2	nmol	m"7s"#  until the snow covered the clearcut area after which the flux decreased below 

1	nmol	m"7s"#. 

 440 
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Figure 2. Time series of daily mean and cumulative sums of CO2 (a), CH4 (b) and N2O (c) fluxes, and daily air temperature and soil 
moisture (d) during the year 2022. CO2 flux is partitioned into components of gross primary production (GPP) and ecosystem respiration 
(Reco) with methods described in Sect. 2.3. Vertical dash lines indicate the snow melt dates in spring and first snow in late autumn. Flux time 445 
series were gapfilled with three different ML algorithms (Sect. 2.3) and cumulative sums calculated from these time series are shown with 
grey lines. Black line shows the ensemble average of these three estimates. Shaded area in panel d shows daily temperature variability 
(standard deviation) around the mean.  
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3.2 Flux correlation with environmental parameters 

 450 
Figure 3. Correlation heatmap reporting Spearman’s rank correlation coefficients for GHG fluxes and selected environmental 
parameters. The abbreviations are: 𝑭𝑪𝑶𝟐  = CO2 flux, 𝑮𝑷𝑷  = gross primary production, 𝑭𝑵𝟐𝑶  = N2O flux, 𝑭𝑪𝑯𝟒  = CH4 flux, 𝑷  = 
precipitation, 𝑷𝑨𝑹	= photosynthetically active radiation, 𝒘𝑯𝟐𝑶  = water mixing ratio in air, 𝑾𝑻𝑫  = water table depth, 𝑻𝒂𝒊𝒓  = air 
temperature, 𝑻𝒔𝒐𝒊𝒍 = soil temperature at 5 cm depth (averaged value obtained from 3 different sensors located over the CC area; see white 
circles in Fig. 1), q  = soil water content at 5 cm depth (average value similar to 𝑻𝐬𝐨𝐢𝐥). For further details on the measurement locations of 455 
other parameters, please refer to Fig. 1 and Sect. 2.2. Only correlations whose absolute value is higher than 0.25 are shown. 

 

Figure 3 shows correlation coefficients between the 30-minute GHG fluxes and environmental variables. The NEE correlated 

well (|rs| > 0.25) only with PAR while the GPP correlates with PAR, 𝑤𝑊879 and both T+,- and T:0,;. 𝐹5<= correlated with all 

environmental variables besides P. The 𝐹5<= correlated positively with temperature, 𝑤<76  and 𝑃𝐴𝑅, and negatively with 𝑊𝑇𝐷 460 

(i.e., higher 𝐹5<= are observed when WTD is close to the surface) and 𝜃. 𝐹>76	correlation with environmental factors was 

similar to 𝐹5<=F𝐶𝐻4 except that it correlated weaker with PAR,WTD, 𝜃, T+,- and T:0,; . Most of the environmental variables 

are correlated with each other due to their similar diel and annual cycles.  
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3.3 Models for CH4 and N2O fluxes to estimate surface-type specific fluxes  

The performance of each model variant (eq. 3 & 4) are shown in Table S1. We selected the best models (based on LOO and 465 

R2adj) for further analysis: Full 𝜃 ST9 for both 𝐹>76 and 𝐹5<= , and ST6 for 𝐹5<=. For 𝐹5<=, the ST9 model was nearly as good 

as the ST6.  
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 470 
Figure 4. Time series of measured and modelled CH4 flux (a), distribution of measured CH4 flux and the posterior predictive 
distributions (b), scatter plot of modelled versus measured CH4 flux (c) and the model residuals as function of air temperature (d). 
The model estimates are calculated with the maximum a posteriori (MAP) estimate of the parameters. 

 

 475 
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Figure 5. Time series of measured and modelled N2O flux (a), distribution of measured N2O flux and the posterior predictive 
distributions (b), scatter plot of modelled versus measured N2O flux (c) and the model residuals as function of air temperature (d). 
The model estimates are calculated with the maximum a posteriori (MAP) estimate of the parameters. 480 
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For CH4 the posterior predictive distribution (Fig. 4b) of ST6 the best model showed that the model both over and 

underestimated the measurements, which were distributed very narrowly with two peaks at ln(FI8=) = 2.35 

(0.5	nmol	m"7s"#)and ln(FI8=) = 2.75 (5.6	nmol	m"7s"#). The best model for CH4 could captures 6248% of the variation 

in the measurements. The model parameters (Fig. 6 a-b) indicate the flux has weak temperature dependency except for ditches, 485 

high base source strength (𝛼) and low surface-type specific base strength modifier (𝛾) except for plant- covered ditches. This 

suggests that there are no major differences in source strengths between the surface-types, expect for the plant covered ditches 

from which the emissions are clearly higher than from other parts of the CC area. 

 

The posterior predictive distribution for the best 𝐹>76 ST9 model shows a better fit to the observations (Fig. 5b) but fails to 490 

capture the peak N2O emissions observed at the end of July (Fig. 5a). The 𝑅7 value between modelled and measured flux is 

0.463, slightly lower than for the best 𝐹5<=  ST6 model. The best 𝐹>76 ST9 model indicates higher variation between fluxes 

from different surface-types than the model for 𝐹5<= (Fig. 6c). Similarly, the temperature dependency defining parameter	𝛿 

varies more between different surface-types than it did for 𝐹5<= (Fig. 6d). The model residuals (calculated with the MAP 

estimate) for both GHGs do not show a clear dependency of the air temperature (Fig. 4d and Fig. 5d) indicating no clear over- 495 

or underfitting with respect to certain temperature range. except for the highest measured 𝑇%&' bin for 𝐹>76 model. 
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 500 
Figure 6. 95% highest posterior density interval for parameters of the best models for CH4 (a-b) and N2O (c-d). The bold line indicates 
the 25th and 75th percentiles of the distributions, white circles are the distribution means and black crosses show the maximum a posteriori 
(MAP) estimate. 𝜶 indicates base source effect and 𝜸 its surface-type specific modifier (i.e., surface-type specific flux at 𝟏𝟎∘𝐂	 is 𝜶+ 𝜸). 𝜷 
indicates 𝟏𝟎 type of temperature effect and 𝜹 its surface-type specific modifier (i.e., surface-type temperature modifier for the flux is 
(𝜷 + 𝜹)(𝑻𝐚𝐢𝐫 − 𝟏𝟎∘𝐂)/𝟏𝟎∘𝐂. 505 

 

 

Fig. 7 shows the distribution of the modelled surface-type specific fluxes,  predicted by setting the corresponding surface-type 

contribution to unity (φ,,J = 1	for each 𝑗 in Eq. 74) and calculating the 95% highest density interval of the resulting model 

using the measured 𝑇+,-. The results are extrapolations of the underlying model to visualize the model parameters in Fig. 6. 510 

 

The highest CH4 emissions originate from plant- covered ditches (Fig. 6a, Fig. 7a), while emissions from the exposed peat and 

litter are over antwo orders of magnitude smaller. The other surface-types show small uptake and emissions of CH4. Living 
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trees and plant covered ditcheslitter show highest N2O emissions (Fig. 6c-d, Fig. 7 c-d). The second highest N2O emission 

come from litter and dead wood and plant covered ditches. 515 

 

 

 

 
Figure 7. Surface type specific flux of CH4 (a-b) and N2O (c-d) fluxes. The surface-type specific fluxes are calculated by setting the 520 
corresponding surface-type contribution to unity (𝝋𝒊,𝒋 = 𝟏 for each 𝒋 in Eq. 74) and calculating the 95% highest density interval of the 
resulting model with the measured 𝑻𝐚𝐢𝐫. The boxplot whiskers represent 5th and 95th percentile of the flux value distribution, the edges of the 
post represent 25th and 75th percentile and the black horizontal line shows the median of the distribution. The boxplots are ordered by the 
75th percentile. Note the different scales of the y-axis for each panel and that the fluxes are per square meter of the respective surface type. 
To estimate the contribution of each surface type to the total flux values in this figure need to be multiplied by the fraction of the surface 525 
type in the clearcut area or in the EC footprint presented in Table 1. See also Fig. S7-S8 for flux values as a function of air temperature. 

 

Fig. S7-S8 shows the predicted surface-specific flux as a function of air temperature and. Fig. S79 and Fig. S810 show how 

the modelled flux changes when surface-types are added one by one to the model and how the model results agree with chosen 

measurements. From the analysis it is evident that the most important surface-types for the footprint-average CH4 emissions 530 

are the plant- covered ditches (areal coverage 1.1%, Table 1) and, exposed peat (29%) and dead wood and residue (total 

30.7%). For N2O emissions the most important surface-types are exposed peat, litter (19.9%), and dead wood (22.8%) and 

field layer (areal coverage 11.8%). 
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Fig. S9-S12 show the estimated parameters for the full 𝜃 models for the other number of STs. Interestingly, for CH4 when the 535 

two types of ditches are lumped into one ST, their 𝛾 estimate is close to zero (Fig. S9 and S11) whereas when the ditches are 

considered as separate STs the estimated 𝛾  for the plant- covered ditch is the highest and the 𝛾 for the ditches with water 

surface is the lowest which is the same behaviour what we see in Fig. 6 for the best model. 

 

The parameter estimates between different number of STs for N2O models differ more than for CH4 models. For example for 540 

ST6 (Fig. S12) the highest 𝛾 MAP estimate is for dead wood and residue whereas the 𝛾 for the field layer and trees is the 

smallest. The 𝛾 estimates for ST5 (Fig. S11) seem to also emphasize the role of litter and dead wood and residue as high N2O 

emitting surface types. It should be noted that for all other number of STs the living trees are always lumped together with 

some other surface type or types. It might be for this reason that the full 𝜃 no 𝛿 ST9 model outperforms the full 𝜃 ST6 model 

clearly in N2O but not for CH4 (Table S1). 545 

 

Finally, we calculated the total emissions for CH4 and N2O for the snow free period using the best models and compared them 

to EC measurements (Table 3). The model estimates were calculated using the areal fraction of each surface type in the whole 

clearcut (Table 1), instead of areal fraction of the surfaces in the EC footprints. This way the reported modelled flux estimates 

are representative for the whole clearcut area. The predicted cumulative CH4 emission is an 60% smaller order of magnitude 550 

smaller than that based on EC whereas for N2O, the emissions from EC are ca. 1.25 times higher than the median model 

prediction. This might be either due to model inaccuracies (see Figs. 4 and 5) or due to the EC observing a biased sample of 

the ecosystem-atmosphere exchange (i.e. certain surface types have higher/lower areal coverage in EC footprints than they 

have in the whole clearcut, see Table 1). However, the EC derived emission estimate is inside the 95% highest density interval 

for both GHGs. 555 

 
Table 3. Comparison of methane and nitrous oxide emissions obtained from the EC measurements and predicted for the whole 
clearcut area by the models that best described the temporal variability of fluxes. Note that the snow-free period is from 1st May to 16th 
November. For the modelling approach, the first value represents the median model prediction, while the values in brackets present the 95% 
highest density interval of distribution of the snow-free period emissions calculated with the parameters estimated in the MCMC run. For 560 
the EC results, the values show the total emissions calculated from time series gapfilled with ML ensemble, while the values in brackets 
show the range of values calculated from time series gapfilled with different ML algorithms (see Sect. 2.3). Note that the share of each 
surface type in the whole clearcut were used to calculate the modelled flux estimates and hence they relate to the whole clearcut area, not to 
the EC footprint area. 

Greenhouse gas 
Modelling approach snow free 

period (kg CO2-eq. ha-1) 

Eddy covariance snow free 

period (kg CO2-eq. ha-1) 

Eddy covariance full year 

(kg CO2-eq. ha-1) 

CO2 - 19200 (18400 - 20000) 23300 (22400 - 24100) 

CH4 4010 (-14090 - 24050) 100 (100 - 100) 100 (100 - 1000) 

N2O 3100 (12100 - 63200) 3900 (3800 - 4000) 4900 (4800 - 4900) 
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 565 

 

 

4 Discussion  

4.1 Impact of surface types on CH4 and N2O fluxes 

We built a statistical model to separate observed CH4 and N2O fluxes into their surface-type and environmental controls using 570 

the flux timeseries and surface type composition for each measurement period inferred from drone-based surface 

characterization and analytical footprint model. The aim of the analysis was to assess whether the fluxes vary across different 

surface types, and to detect the key surface types contributing to the net emissions. The models suggest that plant-covered 

ditches and exposed peat are the most important surface-types for CH4 emissions (Fig. 6, Fig. 7, Fig. S79), while other surface-

types contributed much less or acted as CH4 sinks. This is consistent with chamber measurement atin this study site, which 575 

showed that the soils acted as CH4 sinks, as the aerobic soil layer above the water table WT is able to consume CH4 from both 

the deep soil and the atmosphere. The high CH4 emissions observed in ditches can be attributed to two main factors: the high 

production of CH4 in anaerobic ditch sediments and the transport of CH4 from surrounding soils by drainage water. Rissanen 

et al. (2023) found that ditches with open water exhibited higher emissions than those covered by plants. In particular, ditches 

covered by mosses showed very low emissions, as CH4 can be oxidized in the moss layer. Minkkinen and Laine (2006) reported 580 

that the CH4 emissions from ditches varied considerably depending on the water movement and vegetation cover. They found 

that ditches with moving water showed higher emissions, likely due to the transportation of CH4 from the surrounding areas. 

However, we found that the plant- covered ditch surface iswas the highest emissions sources, which probably because tThe 

main ditch in close proximity to the EC tower was classified as plant-covered because ofdue to the vascular plants growing on 

the ditch bank (Fig. S1).  It contributed the majority of the CH4 emissions according to our analysis. It should be noted that 585 

our classification did not distinguish between moss- and vascular plant-covered ditches. In contrast to mosses, which can act 

as a filter for CH4 due oxidation (Kolton et al., 2022; Larmola et al., 2010), some vascular plants, such as Eriophorum, can 

enhance transport of CH4 to the atmosphere (Minkkinen and Laine, 2006). The second largest contributor to CH4 emissions in 

our model was exposed peat. Pearson et al. (2012) observed that the contrasting effects of mounding with exposed peat on 

CH4 emissions from soil depends on the drainage condition the surface. Soil CH4 emissions from soil depends on the 590 

production, consumptionconsumption, and transportation processes. PThe production is mostlylargely controlled by the WTD, 

which determines the anoxic layer, whereas and the surface types in clearcut with distinct topography and ground vegetation 

can impactaffect the consumption and transportation.  

 

Measured N2O fluxes showed strong temporal variation over the studied year (Fig. 2). The short periods of high N2O emissions 595 

observed during the snow-free period, which contribute significantly considerably to the annual budget, have been previously 
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reported documented in peatland sites through continuous measurements based on EC and automatic chambers (Pihlatie et al., 

2010). Our model was, however, unable to predict the high N2O emission period observed during late July and early August. 

The high emissions are likely driven by the activity of specific archaea and prevailing conditions, including temperature, 

moisture, C/N ratio, nitrate content, pH, and peat decomposition phase (Bahram et al., 2022). O and our modelling approach, 600 

unfortunately, lacked some of these details. Furthermore, our study demonstrated that N2O emissions during the snow-covered 

period constituted a significant (20%) contribution to the annual budget. The winter under study was meteorologically typical, 

which may explain why the importance of these emissions is consistent with that reported in previous works (Rautakoski et 

al., 2024; Kim and Tanaka, 2002). However, the frequency of warm winters with lower snow cover and more freeze-thaw 

events is predicted to increase in northern latitudes (Ruosteenoja and Räisänen, 2021). As a result, snow-covered N2O 605 

emissions are expected to increase in boreal forests. In terms of spatial variability, On the other hand, our model showed that 

the majority of N2O emissions were attributable to surfaces with living trees, plant-covered ditches, exposed peat, dead wood 

and litters (Fig. 6, Fig. 7, Fig. S810). A previous study, which employed chamber measurements, corroborates our modelling 

findings (Mäkiranta et al., 2012). It was observed that soils in peatland forests covered by logging residues exhibited high N2O 

emissions after harvesting, which was attributed to the decay of the logging residuals. Pearson et al. (2012) also found high 610 

N2O emissions from the mounds (surfaces with exposed peat) following site preparation in a nutrient-poor clearcut peatland 

forest. N2O emissions were found to be highly dependent on the availability of N in the soil (Ojanen et al., 2010). Therefore, 

it can be concluded that the observed variation in N2O emissions from different surface-types may also be related to the spatial 

variability of nutrient conditions within the studied clearcut area. 

 615 

Studies of soil microclimate and gas fluxes after clearcutting and site preparation are scarce on drained peatland forests, but 

the few done using manual chamber method (Pumpanen et al., 2004; Mjöfors et al., 2015; Strömgren et al., 2016, 2017) have 

showed that the spatial variability is typically very high. Pearson et al. (2012) applied the manual chamber method to assess 

the impact of varying microtopography following site preparation in a nutrient-poor clearcut peatland forest for CO2, CH4 and 

N2O. Gas fluxes from ditches can be measured by manual chamber floating on ditch water (e.g., Minkkinen and Laine, 2006; 620 

Rissanen et al., 2023). However, while ditch banks, where the ditch materials are exposed and possibly may act as CH4 

hotspots, have rarely been  were rarely measured due to the difficulty of installing chambers on uneven surfaces. Our surface-

type model could facilitate the understanding of the contribution of surfaces on to CH4 and N2O emissions, particularly those 

that are not or have been challenging to quantify previously. Furthermore, we identified the surface types that are likely to 

have high CH4 and N2O emissions after clearcutting. These , and those surface types should be targeted in  in future chamber 625 

studies to accurately quantify the surface-specific emission fluxes (or emission factors). 

4.2 Methodological issues and outlook 

The models for 𝐹5<=  and 𝐹>76were found to explain slightly less than 62% and 46%, respectively,50% of the observed 

temporal variation. Moreover, the model that best explained the variability in 𝐹5<=  produced an order of magnitude 
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higherlower cumulative flux over the snow free season for the whole clearcut than what was measured by the EC from its 630 

footprint (Table 3). This disagreement might be either due to model inaccuracy or the slightly unrepresentative location of the 

EC tower (Table 1; see also Chu et al., 2021). However, this the estimates wereas still withing the 95% HDI. The underlying 

assumptions in our model approach are i) surface type variability drives the variability of soil processes underlying the fluxes, 

an assumption that can be tested using e.g. chamber studies, ii) the relative contribution of surface types for each 30-min EC 

flux can be determined by footprint analysis, and iii) the surface types can be reliably characterized from aerial RGB and 635 

multispectral images. 

 

For both CH4 and N2O, we found a clear improvement in model predictions when the effect of surface-types werewas 

introduced in the models (Table S1). For CH4 the deviation in model performance between different surface-type specific 

models was minor, suggesting that the CH4 emissions may be less dependent on the surface-type than N2O emissions. The 640 

Bayesian inference method was selected for its capacity to incorporate prior knowledge into the model. With Bayesian 

framework, we were able to define the surface-type specific flux strength modifiers (parameters 𝛾1) in a hierarchical manner. 

This resulted in each surface-type having a distinct base production distribution, while the mean of each distribution was 

derived from a common underlying distribution. Furthermore, there are other types of prior knowledge that could be 

incorporated to the model to improve the surface-type specific flux estimates. For instance, chamber measurements of surface-645 

type specific flux could be employed to inform the model development, particularly as they could be used as a prior information 

to constrain the model (Ludwig et al., 2024). Results also revealed that there is a strong negative correlation between CH4 and 

N2O flux with soil water availability (Fig. 3), a finding that is consistent with previous observations in drained peatland forests 

(Ojanen et al., 2010). Inclusion of soil moisture dependent term in the model improved the model’s predictive performance. 

However, only a general soil moisture term was included. As moisture andThis would suggest that either soil water content or 650 

water table depth should be incorporated into the model as an independent variable, as net CH4 emissions increase and N2O 

emissions decrease when	𝑊𝑇𝐷 gets closer to the surface. As 𝑊𝑇𝐷 and microtopography vary across the clearcut, distributed 

measurements of water table (or soil moisture) would be necessary to enable such extension for further refinement of the 

model. We tested replacing the soil moisture with WTD but the models with WTD performed worse than the full 𝜃 ST9 models 

for both compounds. Given that we only considered WTD measurement at one location, we cannot be sure that the soil moisture 655 

would outperform WTD as an independent variable also with more distributed measurements. Furthermore, the modelling 

approach for N2O emissions might be improved by incorporating variables describing nutrient availability (e.g., C:N ratio). 

  

A few previous studies have used surface-type information and EC measurements to elucidate surface-type specific fluxes. In 

the tundra ecosystem, Tuovinen et al. (2019) and Ludwig et al. (2024) developed a model for CH4 flux by decomposing the 660 

total flux into sum of fluxes from different surface-types. In both studies, the models captured more distinct surface type fluxes 

than our performed better than our model for CH4. Similarly, in peatlands, Franz et al. (2016) and Forbrich et al. (2011) were 

able to achieve a better agreement and more distinct surface specific emissions with CH4 modelled from surface-type specific 
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fluxes and EC measurements than our CH4 model. Also Mazzola et al., (2021) found, based on chamber measurements, that 

there was a clear difference between surface type specific CH4 emissions on a restored bog site in northern Scotland. One 665 

possible explanation for this discrepancy is that the surface-types in our model are rather homogeneously distributed in our 

drained peatland clearcut compared to the other sites, which makes the attribution of fluxes to different surface-types more 

challenging, as their relative contribution within the flux footprint does not strongly depend on wind direction. Regarding the 

N2O emissionsdd, we are not aware of any previous studies that have attempted to model surface-type specific fluxes based 

on EC-data. However, given that N2O was the second largest GHG source from the clearcut area, it is evident that such studies 670 

are required in order to improve GHG budget estimation in the future.  

 

For the best models we also tested replacing T+,- with mean soil temperature measured at the tree locations shown in Fig. 1. 

For N2O this produced slightly better fit in terms of ELPD-LOO (difference of 74 units). This suggests that especially for 

understanding N2O emissions, measuring the surface type specific soil temperature would be beneficial. 675 

 

Footprint calculations were sensitive to the input parameters used in the calculations, hence altering the estimation of surface-

type specific CH4 and N2O fluxes. For instance, the displacement height (𝑑) was empirically estimated from data (see Sect. 

2.3) and changing the estimation procedure altered the footprint results. This was because changes in 𝑑 directly affects the 

effective measurement height (𝑧 − 𝑑), which is one of the main factors for the footprint size (e.g., Rannik et al., 2012). These 680 

uncertainties essentially stem from the fact that the clearcut surface is heterogeneous, with varying plant height and small-

scale topography. The spatial heterogeneity varies with wind direction, and this altered the flow field observed with the EC 

equipment. Therefore, the estimation of descriptive values for all the parameters needed by the footprint model, e.g., 𝑑, is 

uncertain.  

 685 

Furthermore, it is important to note that simple footprint models, such as the Kljun model used in this study, are only strictly 

valid above the roughness sublayer, where individual surface roughness elements (e.g., trees, branch piles, etc) do not anymore 

locally alter the flow. Even above roughness sublayer they rely on simplified theories on the flow field, such as the Monin-

Obukhov theory, which are unable to handle e.g., non-stationarities. Nevertheless, such models are utilised also in complex 

roughness sublayer flows (Chu et al., 2021) to link the observed turbulent fluxes to surface features (Stagakis et al., 2019). It 690 

is likely that our EC tower was frequently within the roughness sublayer. Although simple footprint models have been shown 

to produce reasonable estimates for flux source areas in ideal measurement locations (Arriga et al., 2017; Heidbach et al., 

2017; Nicolini et al., 2017; Dumortier et al., 2019; Rey-Sanchez et al., 2022), it is unclear how the estimates are affected by 

the roughness sublayer flow. The presence of surface roughness elements increases turbulent mixing, which may result in 

shorter footprints than would be expected for flows above smoother surfaces. Nevertheless, the empirically estimated values 695 

for 𝑑 and 𝑧2 may already partly account for this. The methodology used here to derive surface-type specific fluxes did not 
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consider the aforementioned uncertainties. Furthermore, we assumed in the Bayesian framework that the footprints were 

observed perfectly. This simplification should be kept in mind when analysing the surface-type specific fluxes. 

Our results suggest that the emission from multiple surface types (Fig. 6 & 7) are very similar, and that some surface types 

contribute little to the footprint-average fluxes (Fig. S79-S10S8). This implies that a more detailed surface type characterization 700 

would have improved the model performance. The methods used for surface characterization hold promise for following 

clearcut vegetation dynamics to address the vegetation recovery after site preparation and planting. More detailed vegetation 

classification was examined but found difficult as the vegetation after the clearcutting was sparse and the plant sizes were 

small. This caused the number of polygons for some vegetation classes in the training data to be very small. The vegetation 

growing on ditches had larger and more uniform surface area, and the classification of those would be easier than of individual 705 

saplings. TIn addition, the topography of the studied site is flat, which makes the classification between the ditch, tree and 

other vegetation types using the drone-derived elevation model to be more accurate. Here we could utilize precise 

georeferencing using Ground Control Point accurately measured in the open area of the site. For more detailed vegetation 

surveys, the resolution of the drone orthomosaic could still be increased to determine the leaf and branch structure of the 

smallest plants as the spectral differences are not only defined by species but also by e.g. plant health (Grybas and Congalton, 710 

2021; Zhou et al., 2021). Parameters describing the structure, such as gray-level co-occurrence matrix, should be used 

additionally for classification. Alternatively, deep learning methods provide high classification accuracy by taking the structure 

into account without parametrisation (Onishi and Ise, 2021). Using the same sensors, increased resolution could be achieved 

by lowering the flight altitude resulting in increased flight time and battery capacity need. In addition, increased resolution can 

make generating training data and validating results more difficult as the number of segments increases and it is more difficult 715 

to decide which class the polygon represents, especially in sites like clearcut area with very detailed surface cover and 

requirerequiring multiple surface-type classes.  

4.3 Clearcut peatland forests are net GHG sources 

Despite the importance of peatland forests in the Nordic countries, little is known on the impacts of harvesting practices and 

alternative management chains on their GHG balance dynamics. In particular, GHG fluxes occurring shortly after clear-cutting. 720 

Especially the fluxes soon after clear-cut and stand establishment have been rarely quantified (Mäkiranta et al., 2010; 

Korkiakoski et al., 2019, 2023). In this study, we employed the EC technique to quantify theWe measured CO2, CH4 and N2O 

fluxes from a   recent clearcutting area, which was regenerated by planting after site preparation and ditch network maintenance 

with the eddy covariance technique and showed . The findings demonstrate that oura previously spruce-dominated fertile 

peatland forest was a major source of GHG emissions during the first full year (second growing season) after clearcutting and 725 

site preparation. The results  indicate the CO2  is the primary contributor to the annual GHG balancedominates the total annual 

GHG balance, accounting for 83% (23.3. t	CO7-eq	ha"#a"#) of the total global warming potential of the GHG emissions. It is 

also important to note that the The first-year net CO2 source strength of the clearcut area was emissions from the clearcutting 
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site were ca. 10	t	CO7-eq	ha"#a"# larger than NEE before the clearcutting (13.2	t	CO7-eq	ha"#a"#, Laurila et al., 2021)). Our 

results are consistent with those previous studies on forested peatlands. A relatively similar fertile drained mixed forested 730 

peatland (Lettosuo) in southern Finland was found to be CO2 neutral before harvesting as observed by EC measurements 

(Korkiakoski et al., 2023). After clearcutting and site preparation, the ecosystem turned into a strong CO2 source, emitting 

initially 31	t	CO7-eq	ha"#a"# but decreasing to 8.2	t	CO7-eq	ha"#a"# six years after the harvest. This decrease was attributed 

to as the emerging vegetation uptake increased and release of CO2 uptake by emerging vegetation and the concomitant decrease 

in CO2 release from decomposing cutting residues decreased (Korkiakoski et al., 2023). At our site, the recovery of ground 735 

vegetation was observedseen as significant GPP (14.9	t	CO7-eq	ha"#	a"#) already at the second post-harvest growing season., 

This partially offset which partially offset more than 35% of R./0ecosystem respiration which was  mostly associated with 

from the soil CO2 emissions. In a more southern minerotrophic drained forested peatland (Tobo) in the Uppsala region of 

Sweden, the CO2 emissions were measured quantified using with chamber-based methods, with values and ranginged from 27 

to 50	t	CO7-eq	ha"#a"#  in the second year following clearcut, depending on ditch management (Tong et al., 2022). 740 

Furthermore, according to Mäkiranta et al. (2010) reported, chamber-based estimates of CO2 emissions during the growing 

season from a clearcut drained oligotrophic peatland (Vesijako) located in southern Finland varied between 16  and 

23	t	CO7-eq	ha"# during the first three years after clearcutting.  

 

The net CO2 emissions from theour study site Ränskälänkorpi clearcut area are comparable to EC-based measurements by 745 

Ahmed (2019; 20	t	CO7-eq	ha"#a"#) after clearcut of a fertile Norway spruce stand on mineral soil in Hyytiälä, Southern 

Finland. Furthermore, they are and 20 − 30% larger than the CO2 emissions from 1-3 year old clearcuts on mineral soils in 

Southern and Central Sweden (16 − 18	t	CO7-eq	ha"#a"# ; Grelle et al., 2023). Kolari et al., (2004)  observed smaller 

emissions (14	t	CO7-eq	ha"#a"#) 4 years after clearcutting an infertile Scots pine stand on mineral soil in Southern Finland. 

At Norunda, Sweden, a clearcut former Norway spruce forest on mineral soil with shallow water table was identified as net 750 

source of CO2 (𝑁𝐸𝐸 16 t	CO7-eq	ha"#yr"#) during the first and second year after harvest (16	and	11	t	CO7-eq	ha"#a"#, 

respectively at second post-harvest year). At thisat site, 𝐺𝑃𝑃 and 𝑅./0 exhibited fluctuations ranging  varied between 5 and 

5 − 14		t	CO7-eq	ha"#a"# and 210.8 − 232.8	t	CO7-eq	ha"#a"#, respectively (Vestin et al., 2020).  

 

The contribution of N2O and CH4 emissions to the total annual GHG balance remained small despite their much higher global 755 

warming potential. Specifically, the contribution of N2O emissions was 17% (4.98	t	CO7-eq	ha"#a"#), while the CH4 had only 

marginal importance (0.4%; 0.1	t	CO7-eq	ha"#a"#). The negligible share of CH4 to net GHG emissions is in line with that 

found in Lettosuo and Tobo sites (Korkiakoski et al., 2019; Tong et al., 2022). Korkiakoski et al. (2019) estimated from 

chamber measurements that N2O emissions from Lettosuo site were 3.7	g	N7O	m"7a"# after clearcut, which makes more than 

11	t	CO7-eq	ha"#a"#. According to Tong et al. (2022), N2O emissions after clearcut at Tobo site contributed only 0.5-1.3% to 760 

total GHG emissions, likely due to the fact that the biweekly chamber sampling may have missed some of the high emission 
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peaks and due to low soil moisture as the water table depth was low compared to similar studies. Note that the prior studies 

have utilized temporally and spatially discontinuous chamber measurements for observing N2O and CH4 fluxes. Vestin et al., 

(2020) observed net CH4 emissions between 0.3 − 1.5	t	CO7-eq	ha"#a"#and N2O emissions of 0.8 − 1.1	t	CO7-eq	ha"#a"# 

from the Norunda clearcut using flux-gradient approach. To the best of our knowledge, our this study is the first of its kind to 765 

report document EC-based N2O and CH4 fluxes from a forest ecosystem after clearcutting. 

 

Our results confirm earlier findings (e.g., Korkiakoski et al., 2023) that clearcutting increases the GHG emissions from boreal 

forested peatlands, at least in short term when compared to mature forests (Minkkinen et al., 2001; Ojanen et al., 2010; Alm 

et al., 2023). To evaluate the climate effects of alternative harvesting methods (e.g. continuous cover forestry) in comparison 770 

to rotation forestry and clearcutting and even-aged forestry, the post-harvest dynamics of GHG emissions must be better 

known, calling for more and longer follow-up studies (Korkiakoski et al., 2023). In Finland 390000	ha of fertile drained 

peatlands will soon be subject to choice between clearcutting and second even-aged rotation, or converting to other 

management regimes such as continuous cover forestry (Lehtonen et al., 2023) or partial rewetting. It is cCurrently it is 

estimated that the conversion converting to continuous cover forestry (which excludes no clear-cutting but permits frequent 775 

heavy thinnings from above) could result in an annual reduction of the reduce annually clearcut area in fertile peatlands by 

16000	ha	a"# (Lehtonen et al., 2023). It is thus therefore evident that comparative long-term studies (but also modelling) 

between rotation forestry with clearcutting and alternative harvesting approaches across a spectrum of site characteristics are 

needed to facilitate the development of effective harvest management strategies to mitigate GHG emissions, especially those 

of CO2 from peat decomposition, in boreal forested peatlands. 780 

5 Conclusions 

We measured CO2, CH4 and N2O fluxes the second growing season after clearcutting of a Norway spruce dominated boreal 

drained peatland forest in southern Finland using eddy -covariance-based measurements. On the second growing season, tThe 

clearcut area was a significant source of GHG emissions with the annual total GHG balance dominated by the CO2 emissions 

(23.3	t	CO2-eq	ha"#a"#, 82.5% of total). The N2O emissions (4.98	t	CO2-eq	ha"#a"#) contributed 17.1 % while the role of 785 

CH4 flux (0.1	t	CO2-eq	ha"#a"#, 0.4%) was negligible. We note that our study represents only a partial overviewsnapshot of 

a rapidly evolving forest ecosystem and that longer studies are needed to better understand the GHG budget of clearcut boreal 

peatland forests.  However, the results presented herein reinforce the recently established understanding that clearcut peatland 

forests are significant source of GHGs. 

 790 

We used Bayesian statistical models, WithUsing the ddrone-based surface classification together with the EC measurements 

and statistical modelling, we established estimated flux footprint model to surface type specific predict the methane CH4 and 

nitrous oxideN2O fluxes from based surface-type and air temperature. The best-fitting models captured around half of the 
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observed variation in the measured CH4 and N2O fluxes, and revealed tthat the highest CH4 emissions in the studyied area 

come originated from the plant- covered ditches  and and  exposed peat,, while the  and highest N2O emissions came occurred 795 

from from the exposed peat, litter, dead wood and living trees.  

 

The role of exposed peat as aboth CH4 and N2O emitter suggests the raises a need for more detailed studies to understand the 

processes insidewithin this surface exposed peat type. Based on this study, decreasingreducing the amount of exposed peat 

after post-clearcutting would be beneficial in decreasing the CH4 and N2O emissions to the atmosphere. Similarly, reducing 800 

the decreasing litter input to the ground whileduring harvesting is performed would be importantbeneficial in for decreasing 

N2O emissions. The plant- covered ditches are important for the CH4 emissions based on the modelling and therefore an 

interesting future question is that how the CH4 emissions change with respect to different plant species.   

 

Finally, we note that our results are based on statistical modelling, and, therefore us, we recommended that manual chamber-805 

based measurements be conducted in parallel with EC-based measurements to better constrain and validate surface-type 

specific flux estimates for better forest management of drained boreal forested peatlands. plant covered ditches, living trees, 

exposed peat, and litter surface-types.  

 

Based on our findings, it is recommended that mManual chamber measurements be conducted are needed to better constrain 810 

and validate surface-type specific flux estimates. In conclusion, the results presented herein reinforceThe results strengthen 

the recently established understanding that clearcut peatland forests are significant sources of GHG sources. 
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