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Abstract.  The tropospheric NO2 vertical column density (VCD) values measured by the Tropospheric Monitoring Instrument 10 

(TROPOMI) were used to study the NO2 variability and estimate urban NOx emissions for 261 major cities worldwide. The 

used algorithm isolated three components in tropospheric NO2 data: background NO2, NO2 from urban sources, and from 

industrial point sources, and then each of these components was analysed separately. The method is based on fitting satellite 

data by a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis. Unlike other 

similar studies that studied plumes from emission point sources, this study included the background component as a function 15 

of the elevation in the analysis and separated urban emissions from emissions from industrial point sources. Population density 

and surface elevation data as well as coordinates of industrial sources were used in the analysis. The largest per capita emissions 

were found at the Middle East and the smallest were in India and South Africa. The largest background component was 

observed over China and parts of Europe, while the smallest was over South America, Australia, and New Zealand. Differences 

between workday and weekend emissions were also studied. Urban emissions on Sundays (or Fridays for some countries) are 20 

typically 20%-50% less than workday emissions for all regions except China. The background component typically does not 

show any significant differences between workdays and weekends suggesting that background NO2 has a substantially longer 

lifetime compared to that in the urban and industrial plumes.  
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1 Introduction 

Nitrogen oxides (NOx, taken here to be nitric oxide (NO) and nitrogen dioxide (NO2)) are major air pollutants whose emissions 

are regulated in many countries. They originate from various anthropogenic (fuel combustion) and natural (e.g., biomass 

burning, lightning) sources. NOx from the combustion of fossil fuels is generally in the form of NO, but is oxidized rapidly 

forming a pseudo steady-state with NO2. NO2 is linked to respiratory health issues (Health Canada, 2018) and has negative 5 

environmental impacts such as acid rains (Burns et al., 2016). 

 Satellite measurements of one component of NOx, NO2 have a long history. Satellite observations of tropospheric 

NO2 columns began with the nadir-viewing GOME (Global Ozone Monitoring Experiment) in 1996 (Martin et al., 2002) with 

several successors such as OMI (Ozone Monitoring Instrument) (Duncan et al., 2015; Krotkov et al., 2016; Lamsal et al., 2015, 

2021; Levelt et al., 2018) and TROPOMI (Tropospheric Monitoring Instrument) (van Geffen et al., 2020, 2022; Veefkind et 10 

al., 2012). Most recently NO2 measurements become available from geostationary satellite missions such as operational 

Geostationary Environment Monitoring Spectrometer (GEMS) (J. Kim et al., 2020, Seo et al., 2024), and Tropospheric 

emissions: Monitoring of pollution (TEMPO) (Zoogman et al., 2016). Another geostationary mission, Sentinel 4 (Stark, 2013), 

is scheduled for 20254. 

 These satellite instruments provide measurements of tropospheric NO2 vertical column density (VCD), a geophysical 15 

quantity representing the total number of molecules (or total mass) per unit of area in the troposphere. Due to its relatively 

short lifetime, a few hours within a plume during the day, NO2 is elevated near sources such as  urban areas (Beirle et al., 2019; 

Lorente et al., 2019; Lu et al., 2015) and industrial locations such as power plants and oil refineries (Liu et al., 2016; McLinden 

et al., 2012). Satellite data have been used to better understand NOx sources, sinks, distributions, and trends (Beirle et al., 2011, 

2019; Goldberg et al., 2021b; Liu et al., 2016; Lorente et al., 2019; Lu et al., 2015; Martin et al., 2002; McLinden et al., 2012; 20 

Stavrakou et al., 2020; Vîrghileanu et al., 2020) as well as to estimate NOx emissions. Several methods have been developed 

for such emission estimates (Streets et al., 2013): inverse modelling (Konovalov et al., 2006; Mijling and van Der A, 2012), 

flux divergence (Beirle et al., 2019; 2021) as well as methods based on a rotation of satellite NO2 pixels around the source and 

then fitting the plume by one-dimensional (Beirle et al., 2011; Valin et al., 2013;  Lange et al., 2022; Pommier et al., 2013) 

or two-dimensional exponentially modified Gaussian (EMG) function (Fioletov et al., 2022, McLinden et al., 2020).  25 

 Tropospheric VCDs, together with surface, in-situ NO2 measurements, were both observed to decline during the 

COVID-19 lockdown, first in China and then worldwide (Bao and Zhang, 2020; Bauwens et al., 2020; Ding et al., 2020; 

Gkatzelis et al., 2021; Kanniah et al., 2020; Keller et al., 2021; Koukouli et al., 2021; Liu et al., 2020; Vadrevu et al., 2020; 

Vîrghileanu et al., 2020; Zhang et al., 2021). This decline was observed all over the world: in the U.S. and Canada (Bauwens 

et al., 2020; Goldberg et al., 2020; Griffin et al., 2020), Europe (e.g., Bar et al., 2021; Barré et al., 2021), India (Mirsa et al., 30 

2021; Hassan et al., 2021), Pakistan (Ghaffar et al., 2021; Mehmood et al., 2021), Brazil (Dantas et al., 2020; Siciliano et al., 

2020), and other countries (Ass et al., 2020; Aydin et al., 2020; Fu et al., 2020). More information about the COVID-19 

restrictions on atmospheric pollutants can be found in overview papers (Gkatzelis et al., 2021; Levelt et al., 2021). Satellite 
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data also demonstrated a decline in emissions by comparing the NOx2 emissions estimates before and after the lockdown started 

(Lange et al., 2022; Fioletov et al., 2022). 

  The concentration of air pollutants over large cities, including NO2, is different from weekends to weekdays due to 

reduced industrial activity and traffic (Cleveland et al., 1974; Elkus and Wilson, 1977). This is known as the “weekend effect”.  

This effect was intensively studied using ground-based (Butenhoff et al., 2015; Domínguez-López et al., 2014; Khoder, 2009; 5 

Nishanth et al., 2012) and satellite data (Beirle et al., 2003; Goldberg et al., 2021a; Jeong and Hong, 2021; Kaynak et al., 2009; 

Stavrakou et al., 2020). The estimated amplitude of the workday-weekend difference is about 20%-40% (Goldberg et al., 

2021a; Murphy et al., 2007), although it is different from city to city (Lange et al., 2022).  Unlike large cities, rural areas with 

other predominant sources of NOx (soil emissions, biomass burning, lightning) show no indication for a weekly NOx cycle. 

Satellite NO2 observations also do not show any weekly pattern in rural areas (Kaynak et al., 2009). 10 

 In this study, an algorithm previously developed to estimate the COVID-19 lockdown impact on tropospheric NO2 

over major urban areas (Fioletov et al., 2022) was applied to the available 2018-2023 TROPOMI data to estimate urban and 

industrial emissions as well as the background NO2 distribution for four seasons. Emissions derived using this algorithm 

demonstrated good agreement with the reported industrial emissions from the US power plants (Fioletov et al., 2022) and 

urban emission estimates by Lange et al. (2022).  Unlike other similar studies that studied plumes from emission point sources 15 

(e.g., Lange et al. (2022); Beirle et al. 2023), this study included the background component in the analysis and separated urban 

emissions from emissions from industrial point sources. The algorithm is based on a multisource dispersion function fitting 

approach, originally developed to estimate emissions from sulfur dioxide (SO2) point and area sources (Fioletov et al., 2017; 

McLinden et al., 2020).  The approach is based on fitting TROPOMI measurements by statistical models with empirical plume 

dispersion functions driven by a meteorological reanalysis. The analysis was done using data over 3° by 4° areas around major 20 

cities. The statistical models included three components related to (1) plumes from urban sources, (2) plumes from industrial 

point sources, and (3) background NO2. The parameters of the statistical model link the satellite NO2 values to proxies related 

to elevation and population density as well as to locations of large industrial point sources. The algorithm estimates NO2 mass 

and derives emissions, while the actual emissions are typically in the form of NO that rapidly reacts with ozone producing 

NO2. Although the emission estimates were done for NO2, they can be upscaled to derive total NOx emissions. We followed 25 

the approach used by Beirle et al., 2021 and Lange et al., 2022 for upscaling NO2 estimates to derive also total NOx emissions.  

  This paper is organized as follows: Section 2 describes various data sets used in the study; the statistical models used 

in this study are discussed in Section 3. In Section 4, emission estimates for individual urban areas and for large regions are 

discussed.  The weekend effect is discussed in Section 5 and changes in NOx2 emissions are described in Section 6. Discussion 

and conclusions are given in Section 7. The upscaling of NO2 to NOx emissions is described in the Appendix.  30 
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2 Data Sets 

2.1 TROPOMI NO2 VCD data 

The TROPOMI instrument is a space-borne, nadir-viewing, imaging spectrometer, onboard of the European Space Agency 

(ESA) and EU Copernicus Sentinel 5 Precursor (S5p) satellite, was launched on 13 October 2017 (van Geffen et al., 2022; 

Veefkind et al., 2012). It measures in the ultraviolet and visible (270–500 nm), near-infrared (675–775 nm) and shortwave 5 

infrared (2305–2385 nm) spectral bands. The satellite is in a Sun‐synchronous, low‐Earth (825 km) orbit with a daily equator 

crossing time of approximately 13:30 local solar time and the swath width of 2,600 km (van Geffen et al., 2018). At nadir, the 

instrument has a high spatial resolution of 3.5 × 7 km2 at the beginning of operation and that was further reduced to 3.5 × 5.6 

km2 on 6 August 2019. To obtain tropospheric NO2 VCD, the stratospheric portion of the total NO2 column is subtracted using 

a global model estimate that is refined using data assimilation (Boersma et al, 2004). Our analysis is based on version 2 level 10 

2 TROPOMI tropospheric NO2 VCD data that are available from the Copernicus open data access hub 

(https://dataspace.copernicus.eu accessed on June 22, 2024). The NO2 data used were PAL, v 2.3.1 reprocessed (RPRO) v2.4 

(until July 2022) and offline mode (OFFL) v2.4 and 2.5 (end of July 2022- November 2023). These versions were available at 

the time of this study. A recent analysis by Nawaz et al. (2024) suggested that v 2.4 introduces an artificial step change of 

about 5-10% lower NO2 in an urban area that may affect our estimates of long-term changes (Section 6). The main difference 15 

between versions 2.3.1 and 2.4 is the use in 2.4 of a higher resolution directional Lambertian equivalent reflectivity (DLER) 

climatology and a higher resolution of a priori NO2 profiles (Nawaz et al., 2024). Since most of our results represent 

characteristics integrated over 3° by 4° areas around major cities, the impact of the change of the version should be smaller 

than 5-10% step change mentioned above.  Only data with the quality assurance value (qa_value) higher than 0.75 (van Geffen 

et al., 2018) were used. A qa_value of 0.75 removes problematic retrievals, errors, and partially snow/ice-covered scenes. In 20 

addition, satellite pixels with a solar zenith angle greater than 75 degrees and with cloud radiance fraction above 0.3 were 

excluded from the analysis. TROPOMI NO2 VCD values represent the total number of molecules per unit area below 

tropopause and are often given in molecules or moles (one mole is equal to 6.022×1023 molecules) per square metre or 

centimetre as well as in Dobson Units (DU, 1 DU = 2.69×1016 molec cm-2).  The specified random uncertainty of a single 

TROPOMI tropospheric NO2 VCD measurement is about 5×1014 molec cm-2 (or 0.026 DU) (ESA EOP-GMQ, 2017; van 25 

Geffen et al., 2020). Since TROPOMI has only one daily overpass at most locations, diurnal NO2 variations may affect satellite-

based emission estimates. Unlike surface concentrations, the diurnal variations of NO2 VCDs are relatively small (Herman et 

al., 2009; Chong et al., 2018). However, since we do not have information about night-time NO2 VCDs, the presented results 

are limited to daytime emissions only.  

2.2 Wind data 30 

As in previous studies (Fioletov et al., 2022, 2015; McLinden et al., 2020; Zoogman et al., 2016), the emission estimation 

algorithm is based on the plume dispersion function that uses the wind speed and direction obtained from European Centre for 

https://dataspace.copernicus.eu/
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Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data (C3S, 2017; Dee et al., 2011; Hersbach et al., 2020). The 

wind speed and direction from the reanalysis data were merged with the tropospheric NO2 value for each TROPOMI pixel. 

The reanalysis wind data have one-hour temporal resolution and are available on a 0.25° horizontal grid. U- and V- (west-east 

and south-north, respectively) wind-speed components were then linearly interpolated to the location of the centre of each 

TROPOMI pixel and to overpass time.  The ERA5 wind components at 1000, 950, and 900 hPa were averaged to obtain the 5 

used wind value (that approximately corresponds to the mean winds between 0 and 1 km). The results are not very sensitive 

to the wind profile within this range because the boundary layer wind is relatively constant (Beirle et al., 2011; Zhao et al., 

2024) except close to the surface. Note that in ERA5 reanalysis in pressure co-ordinates, when the surface pressure is smaller 

than that at a given level (e.g., 1000 hPa) the values will simply duplicate the winds at the lowest pressure available.  

2.3 Population density data, city selection, and elevation data 10 

The Gridded Population of the World (GPW) dataset (SEDAC, 2017) was used as a source for of the population density data. 

GPW data are on 0.042 degree (2.5 arc-minute) grid and consists of estimates of number of persons per square kilometre based 

on counts consistent with national censuses and population registers. When coarser resolution data were required, they were 

obtained by averaging the original data within the new grid cells.  

The analysis was performed for the same 261 urban areas around the world as in Fioletov et al., 2022. Information 15 

about large city location and population was obtained from the World Cities Database available from 

https://simplemaps.com/data/world-cities (accessed on May 10, 2021). All cities with population greater than 1 million were 

considered. As in the previous study (Fioletov et al., 2022), we also included several European national capitals with population 

between 700 thousand and 1 million. For China, we raised the limit and considered only cities with population greater than 6 

million to keep the number of analysed areas similar to other regions. The cities were grouped into 14 regions and regional 20 

characteristics were calculated by averaging estimates for individual cities within the region.  

In the absence of major sources, tropospheric NO2 VCD depends on the thickness of the troposphere that is affected 

by the elevation. NO2 background concentrations decline nearly exponentially with altitude with a rate of about 50% per km 

(Dang et al., 2023).  Thus, the higher the altitude, the lower the NO2 VCD over that location. Elevation data from 2-Minute 

Gridded Global Relief Data  (ETOPO2v2) database (NOAA, 2006) were used as a proxy to estimate the background 25 

component in the statistical models. When lower resolution data were required, they were obtained by averaging the original 

data within the new grid cells.  

Information about workdays and weekends in different countries was obtain from the “Time and Date AS” web site 

(Thorsen, 2024; https://www.timeanddate.com/calendar/ accessed on Mar 15, 2024). 

2.4 Industrial point source locations  30 

https://simplemaps.com/data/world-cities
https://www.timeanddate.com/calendar/
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Coordinates of industrial point sources are required by the used algorithm. We used the same list of point sources as in Fioletov 

et al., (2022). For the U.S., information about the sources was taken from  the U.S. Environmental Protection Agency (EPA) 

National Emissions Inventory (NEI) (EPA, 2020) and from eGRID database (https://www.epa.gov/egrid/download-data, 

accessed on April 5, 2024) for 2018 and 2019 were used. For Canada, the sources coordinates were from the Canadian National 

Pollutant Release Inventory (NPRI, 2020) are used.  Only Canadian and U.S. sources with annual emissions greater than 0.5 5 

kt of NOx per year were selected and used in this study. Coordinates of the European industrial point sources were obtained 

from European Industrial Emissions Portal (https://industry.eea.europa.eu/) (accessed on March 20, 2024). Only sources that 

emitted more than 0.5 kt yr-1 of NOx are included in the analysis.  

For other regions, three sources of information on industrial source location were used. (1) The world powerplant 

database (https://globalenergymonitor.org/projects/global-coal-plant-tracker/) (accessed on March 20, 2024) was used to find 10 

locations of power plants. (2) Oil and gas-related industrial factories and other sources were also obtained from the SO2 

emission source catalogue (Fioletov et al., 2023).  (3) Missing sources were also added based on the analysis of the NO2 

residuals maps and then confirmed using satellite imagery as discussed in Fioletov et al., (2022).  

3 The fitting algorithms and statistical models 

The technique used here is based on the approach from our previous study (Fioletov et al., 2022) that is briefly described 15 

below. All satellite measurements over an 3° by 4° areas (roughly, 330 km by 330 km at 42°N) around large cities taken during 

a certain period are linked to locations of industrial point sources as well as to population density and elevation-related proxies 

by a statistical (linear regression) model. The predictor functions of the statistical model represent plumes from the known 

industrial sources and population grid emission strengths are the unknown parameters of the model. In addition, the statistical 

model includes a term that links the elevation data with the background NO2 distribution. The parameters of the model were 20 

estimated by the least squares method using all data collected during 3-month periods in different years. The following 

statistical model was used by Fioletov et al., (2022):  

   TROPOMI NO2 = α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0) + αp Ωp + Σ αiΩi + ε                                             (1) 

where α0, αp, αi, β0, β1, and β2 are the unknown regression parameters of the statistical model; H is the elevation above sea level 

and the empirical scaling factor H0=1.0 km was introduced to make the exponential argument dimensionless and to account 25 

for altitudinal dependence better; and ε is the residual noise. Plumes are described by Ωp and Ωi functions for the population 

density-related distributed source (or area source) and for industrial point sources respectively. The plume function for an 

industrial source i has a form Ωi =Ω (θ, φ, ω, s, θi, φi) where θ and φ are the satellite pixel coordinates; ω and s are the wind 

direction and speed for that pixel on that day and time; and θi and φi are the source coordinates.  

 The α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0) term (four fitted coefficients) represents the mean background 30 

tropospheric NO2 distribution around the location with coordinated θ0 and φ0. It is assumed that that term to be declining 

https://www.epa.gov/egrid/download-data
https://globalenergymonitor.org/projects/global-coal-plant-tracker/
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exponentially with elevation, i.e., within the analyzed 3° by 4° area, the higher is the elevation the lower the background 

tropospheric NO2 VCD is as mentioned in Section 2.3. It was also assumed that this contribution from elevation depends on 

geographical coordinates only and not on the winds. The α0 parameter was added to the model to account for remaining free-

tropospheric NO2 at high elevations where exp(-H/H0) is very close to 0. 

 Plumes are described by functions Ωp and Ωi for the population density-related distributed source (or area source) and 5 

for industrial point sources respectively. These plume functions Ω are two-dimensional EMG functions that are commonly 

used to approximate plumes of VCDs of trace gases such as NO2, SO2, and ammonia (Beirle et al., 2011, 2014; Dammers et 

al., 2019; Fioletov et al., 2017, 2015; de Foy et al., 2015;Liu et al., 2016; McLinden et al., 2020).  See Fioletov et al., (2022), 

their Appendix A for details. The plume function for an industrial source i has a form Ωi =Ω (θ, φ, ω, s, θi, φi) where θ and φ 

are the satellite pixel coordinates; ω and s are the wind direction and speed for that pixel on that day and time; and θi and φi 10 

are the source coordinates. The Σ αiΩi term (variable number of coefficients αi from zero to few dozens) reflects contributions 

of plumes from individual industrial point sources.  An unknown parameter (αi) represents the total NO2 mass emitted from 

the point source i. On a given day, Ωi is a contribution to tropospheric NO2 VCD over the location with coordinates θ and φ 

from a source that contributes one unit of NO2 mass to total NO2 around that source. It was restricted to αi ≥0. 

 The ap Ωp term represents urban emissions and the composite plume function Ωp is a sum of plume functions of all 15 

individual cell centres multiplied by the grid cell population. It was assumed that emissions from each grid cell are proportional 

to the cell population and the coefficient of proportionality is the same for the entire analysed area. Thus, we just need to 

estimate one coefficient (αp) that is proportional to the annual emissions per capita. A 0.2° by 0.2° population density grid was 

used in the analysis and original population density data were converted to that grid by averaging population density data 

within each grid cell.  20 

 The Σ αiΩi term (variable number of coefficients αi from zero to few dozens) reflects contributions of plumes from 

individual industrial point sources.  An unknown parameter (αi) represents the total NO2 mass emitted from the point source i. 

On a given day, Ωi is a contribution to tropospheric NO2 VCD over the location with coordinates θ and φ from a source that 

contributes one unit of NO2 mass to total NO2 around that source. It was restricted to αi ≥0.  

 Accounting for the industrial plume this plume contribution makes estimates of urban emissions more accurate. Since 25 

this study is focused on urban emissions and since the contribution of industrial sources is very different from one urban area 

to another, industrial emissions are not discussed in detail. If an emission source is located within an urban area, it could be 

difficult to separate its emissions from urban emissions since Ωp and Ωi functions would be correlated. For this reason, 

industrial point sources located in the 0.2° by 0.2° cells where the population is greater than 600,000 people were excluded. 

This is an empirically estimated limit, and, in a few cases of very large cities (New York, Moscow), it was manually adjusted. 30 

Note that for point sources located in close proximity, their plume functions Ωi could be highly correlated. In such cases, 

emissions from individual industrial sources often cannot be estimated. Fioletov et al., (2022) suggested an algorithm to group 

the sources into independent clusters, so total emissions from such clusters can be estimated. We used that algorithm in this 



8 

 

study, although it is not necessary if only total emissions from all point sources in the area are estimated to separate them from 

urban emissions or if all industrial sources are isolated remote sources. 

 The plume functions Ω are EMG functions that are commonly used to approximate plumes of VCDs of trace gases 

such as NO2, SO2, and ammonia (Beirle et al., 2011, 2014; Dammers et al., 2019; Fioletov et al., 2017, 2015; de Foy et al., 

2015; Liu et al., 2016; McLinden et al., 2020).  See Fioletov et al., (2022), their Appendix A for details. The plume functions 5 

Ω depends on two prescribed parameters, the lifetime () reflects the rate at which NO2 is removed from the plume due to 

chemical conversion or physical removal such as deposition, and the plume width (w) that largely depends on the satellite pixel 

size. The same values of w=8 km as in Fioletov et al., (2022) is used and the value of  will be discussed later. 

 The parameters α0, αp, αi, β0, β1, and β2 were estimated from the fit of TROPOMI data using the statistical model Eq.1 

The fitting was done for all satellite pixels centered within 3° by 4° areas around large cities and collected during the analyzed 10 

period by minimization of the squares of the residuals (ε). 

 The model parameters αp and αi represent the total NO2 mass emitted from the population grid and from the source i. 

respectively. The lifetime τ determines the emission rate (E): for an industrial point source i can be expressed as Ei =αi/τ. 

Similarly, the urban emission rate is Ep =αp/τ. Although seasonal emissions were calculated, emissions rates were expressed 

in kt y-1 to make it easier to compare with available annual emissions inventories.  15 

  In this study, three different variants of the statistical model discussed above were used. Model 1 was the model 

given by Eq.(1). The fitting was done for each season for years from 2018 to 2023. This model was used to estimate the 

evolution of the urban and background components over time. The Model 2 was developed to estimate the mean emissions 

and NO2 distribution and study the workday vs. weekend effect, and it had the form: 

               TROPOMI NO2 = (α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0)) ·(1+γ11I1+γ12I2+γ3I13)   20 

  + αp Ωp·(1+γ21I1+γ22I2+γ23I3) + Σ αiΩi ·(1+γ31I1+γ322I32+γ333I23) + ε                                             (2) 

where I1 is an indicator function for Friday: it equals 1 if for Friday measurements and 0 otherwise. Similarly, I2 and I3 are 

indicator functions for Saturday and Sunday and γ2j are the regression model parameters that represent the departure of 

Friday’s-Sunday’s characteristics from these on workdays. In other words, the urban component term is αpΩp when 

measurements taken workday are fit and αp Ωp·(1+γ21) for measurements on Friday (and similar terms for Saturday and 25 

Sunday). The fitting was done for each month of the year using all available years, i.e., it has 12 sets of parameters. This model 

estimates the average urban and industrial emissions and background component and does not include terms that depend 

individual years. As Model 2 is focused on typical (mean) characteristics, the period affected by the COVID-19 restriction 

(March-June 2020) was excluded from the analysis. 

 The Model 3 was focused on estimating changes of urban emissions over time:  30 

              TROPOMI NO2 = (α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0))  

  + αp Ωp·(1+γ1I1+γ2I2+γ3I3) ·(δ2018I2018+…+ δ2023I2023)   + Σ αiΩi + ε                                        (3) 
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where I1, I2,  I3  are indicator function for Friday, Saturday and Sunday, respectively, γ1, γ2, γ3 are the corresponding regression 

model parameters; I2018 - I2023 are indicator functions for years 2018-2023 (e.g., I2018 =1 for 2018 measurements and 0 

otherwise); and δ2018- δ2023 are the corresponding regression parameters. As in case of Model 2, the fitting was done separately 

for each month of the year, but unlike Model 2, it can be used to estimate urban emissions for individual years. We preferred 

to estimate emissions for each year rater then to use a functional form for long-term changes (e.g., a linear or quadratic trend) 5 

because such functional term could be different from area to area and because the measurement record is relatively short. 

 We used these three different statistical models instead of one model that included all possible parameters to reduce 

the number of parameters of the models and their uncertainties. That was particularly important for cities with relatively small 

urban emissions. As discussed below in Sect. 4, emissions from Model 2 demonstrated that the weekend effect is relatively 

small in the industrial and background components, that led to the introduction of Model 3.  10 

 Note that the plume functions Ω used in Eqs. (1)-(3) depend on the effective lifetime τ. While τ can be estimated from 

the observations, this would lead to larger uncertainties of all estimated parameters. Instead, we used a prescribed value of τ 

based on a parameterization for seasonal and latitudinal dependence of τ that was derived from results of the study by Lange 

et al., 2022: τ = 1.8 × exp ( lat / ν), where τ is in hours, lat is the absolute value of the latitude in degrees and ν = 40, 50, 55, 

50 for winter, spring, summer, and fall respectively. This parameterisation gives τ values of 1.8 h at the equator and 5.5-8 h at 15 

60° depending on the season. The parameterization suggests a slightly stronger increase in τ with the latitude than in (Lange 

et al., 2022), but it better matches the estimates for cities in USA and China (τ =3.9 h for May-September) by (Liu et al., 2016). 

It should be noted that the uncertainty of τ estimates and the scattering of τ values as a function of the latitude is rather large. 

Moreover, the lifetime may be changing over time (Laughner and Cohen, 2019) as NO2 concentration declines, although other 

studies suggest that such changes are minor (Stavrakou et al., 2020). Liu et al., 2016, also found that the average NO2 lifetime 20 

for power plants (3.5 h) may be slightly shorter than for cities (3.9 h). We neglected that possible difference and used the same 

parameterization for the lifetime for industrial and urban sources. 

  TROPOMI measurements and all the coefficient estimates in Eqs. (1)-(3) as well as emission calculations are 

performed for NO2, while actual emissions are in the form of NOx. For NOx emission estimates, the ratio between NOx and 

NO2 is required. Beirle et al., (2021) suggested an algorithm to estimate the NOx to NO2 ratio for different parts of the world 25 

and found that the ratio is about 1.4 over the U.S. and typically between 1.2 and 1.6 elsewhere. The NO2 to NOx ratio was 

derived from surface temperature, surface ozone mixing ratio, and the solar zenith angle. We also applied Beirle et al., 

(2021)the same upscaling algorithm and some of the NOx emission estimates are presented in Appendix A.  

4 Emission estimates for individual urban areas and large regions 

4.1 Case studies 30 

As an illustration for the method results, Fig. 1 shows mean TROPOMI tropospheric NO2, the fitting results (using Model 2) 

and three components for Houston, USA, and Guangzhou, China, for four seasons. The fitting results (Fig. 1, column b) is a 
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sum of the background, population density-related and industrial source-related components (Fig. 1, columns d, e, f, 

respectively). The residuals (Fig. 1, column c) are the difference between the mean TROPOMI NO2 and the fitting results. 

Maps of elevation and population density for both cities are shown in Appendix B (Fig. B1). The average characteristics of 

the background, urban, and industrial component were analysed using Model 2 that did not contain any year-specific terms. 

The estimates were done for each month of the year and the results are presented as seasonal values that were calculated as 5 

inverse-variance weighted averages of monthly values. For both cities, the fitting results can explain the complex NO2 

distribution seen on the TROPOMI map rather well. The residuals are larger for Guangzhou than for Houston due to larger 

absolute NO2 values.  For Houston, the range of the elevation values in the Houston area is small, between 0 and 150 m, and 

the background component reflects the gradient in NO2 that is caused by higher NO2 concentrations over the land and lower 

over the Gulf of Mexico. For Guangzhou, the background component reflects uneven terrain in the area. For the Guangzhou 10 

area, the range of elevations is between 0 to 900 m, and it is a case where topography is a substantial factor. In particular, the 

population density is very low in the northern and western half of the area and the background NO2 distribution there is 

comping from topography. 

Fig. 1 (columns d, e, f) shows that There there is a clear annual cycle on in all three components for both cities. The 

values are higher in winter and lower in summer that can be, at least, partially explained by a longer lifetime in winter and 15 

shorter in summer. The amplitude of this annual cycle is the smallest for the background component: average summer values 

are 63% and 76% of average winter values for Houston and Guangzhou, respectively. For the industrial component, these 

values are 42% and 39% of winter values.  From Fig. 1, it appears that tThe seasonal changes in the urban component are the 

largest among all the three components and summer values are only 20% and 32% of winter values for Houston and 

Guangzhou, respectively, so they may be caused by a difference in emissions themselves.  20 

4.2 Background levels 

 Model 1 was used to estimate the background component and urban emissions per capita. The estimates were done 

for individual seasons from June-August 2018 and to September-November 2023. To illustrate the distribution of the 

background component for different urban areas, Fig. 2 shows the mean seasonal NO2 values of that component or, in other 

words, the mean value of α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0)) in DU. There are seasonal patterns in the background 25 

component: winter values are higher than summer values at the middle and high latitudes. The background component is 

particularly large (0.1—0.2 DU or 2.7×1015—5.4×1015 molec cm-2) in winter over Central Europe and China. Background 

values over India and China are higher than these over other regions at the same latitudes. In contrast, the background values 

over Ulaanbaatar, located in central Mongolia far away from large industrial regions, are lower than over Europe and North 

America at the same latitudes. Another region of high background values is southern Africa, where high values are caused by 30 

biomass burning that is particularly extensive in June-October, i.e., austral winter and spring, although the background values 

in other African regions and seasons without major biomass burning are low. Low background values can be also seen over 
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South America, Australia, and New Zealand. Not surprisingly, these results suggest that high background values are related to 

the areas of large anthropogenic emissions and dense emission sources.  

Individual cities were grouped into 14 large geographical regions with 10–20 areas in each: the US and Canada, 

Europe-1 and Europe-2, China, India, South-East Asia (also included Pakistan and Bangladesh), the Japan region (that also 

included Taiwan and South Korea), northern Eurasia (former USSR countries and Mongolia), the Middle East, South and 5 

North Africa, Australia and New Zealand, Central America, and South America. Johannesburg (South Africa) and Pyongyang 

(North Korea) were not included in any particular region because their NOx2 emissions were very different from those from 

neighbouring countries and therefore may bias regional statistics. Note, that there are two regions comprised of mostly 

European Union (EU) countries. Europe (EU)-1 includes Italy, France, Spain, Portugal, Belgium, Ireland, and the UK, and 

EU-2 includes all other countries EU countries plus a few other European cities. These two regions demonstrated very different 10 

changes in NO2 during the COVID-19 lockdown (Barré et al., 2021; Fioletov et al., 2022) and we decided to analyse them 

separately. 

Regional mean background values are shown in Fig. 3a. The regional means further demonstrated that the highest 

background values were over China followed by Europe, the Japan region, and India. The background levels over the two 

European regions are very similar. The lowest background values can be seen in Australia and New Zealand, South America, 15 

and summer and fall seasons in South Africa. The spread of the mean background values between the regions is rather large: 

for example, the background levels over China are 3 times as high as over South America.   

4.3 Emissions per capita 

As mentioned, the urban emission-related term is based on the assumption that every population grid cell’s emission 

is proportional to the cell population only.  Therefore, it is natural to express urban emissions as emission per capita and that 20 

also makes it possible to compare emissions in different regions.   

Estimated seasonal urban NO2 emissions per capita (or to be precise, NOx emissions reported at NO2) for individual 

cities are shown in Fig. 4 and the regional means in Fig. 3b. The highest emissions per capita can be seen over the Middle 

East, while the lowest occur in India and South Africa (except Johannesburg). The average annual emissions per capita are 

typically between 7 and 3 kg y-1 and lower, about 2kg y-1 for India and South Africa. There is also a clear seasonal cycle with 25 

a maximum in winter and a minimum in summer. Recall that the urban emission rate is Ep =αp/τ and τ is larger in winter than 

in summer. Therefore, the seasonal cycle in the total mass αp is even greater than in the emission rate.  

According to the estimates in Fig. 3b for mid- and high-latitude regions, per capita emissions in winter are almost 

twice as high as in summer. Lifetimes depends on NOx and volatile organic compound concentrations are different from city 

to city (Laughner and Cohen, 2019).  Wintertime emissions could exceed summertime ones due to NOx from heating. Some 30 

studies indeed demonstrated that, at least for some types of fuel, NOx emissions during the cold seasons are higher than during 

the hot season  (Tu et al., 2021; Zare et al., 2021).  
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Urban emissions and background component often demonstrate very different seasonal behaviour. For example, the 

background component for Australia and New Zealand is almost the same in all seasons, while the estimated winter emissions 

are twice that of summer. The opposite is true for South Africa, where background values for winter and spring are more than 

twice larger than these for summer and fall due to biomass burning, while urban emissions do not show a large seasonal 

dependence. Thus, although the background component is affected by urban emissions, these two characteristics are not 5 

identical.  

5 The weekend effect 

Terms responsible for the differences between NO2 on workdays and weekends were included in Model 2 to study 

the weekend effect in the urban, background, and industrial components separately. Please note that TROPOMI takes 

measurements the early afternoon, and the weekend effect estimates presented in this section may not reflect the difference 10 

between workdays and weekends for mornings or evenings. The results for the background and urban components are shown 

in Fig. 5-8 in percent of weekday values.  Most countries have a 5-day workweek with Saturday and Sunday as a two-day 

weekend, although many Muslim countries have a two-day weekend on Friday and Saturday. Lower, compared to workdays, 

NO2 values on Fridays were reported for Saudi Arabia (Butenhoff et al., 2015), Egypt (Khoder, 2009), and Iran (Yousefian et 

al., 2020). As Fig. 5a shows, a significant difference between the urban component values on Fridays vs. workdays take place 15 

in the countries where Friday is a rest day. We grouped all such countries in a special region and excluded them from all other 

regions when regional averages were calculated for Fig. 7. On average, for the region where Friday is a rest day, the difference 

is about 30% with 1-σ uncertainly of about 5% for all seasons (Fig. 7a). For all other regions, the difference between workdays 

and Fridays is not significant.  

 For Sundays, the difference with workdays is about 40%-50% for most of the developed countries and between 20% 20 

and 40% for the others except for the region with the rest day on Friday and China. The absence of the difference for the former 

region was expected. The lack of a weekend effect in China has been noticed before (Kuerban et al., 2020). Beirle et al. (2003) 

demonstrated the absence of the weekend effect in China and attributed it to the domination of emissions from power plants 

and industry in total NOx2 emissions. In our study, however, such emissions are largely separated from the urban emissions. 

Moreover, if industrial emissions are misinterpreted as urban emissions, this would inflate the emissions per capita. As Fig. 25 

3b shows, Chinese emissions per capita are not very different from those in other regions. More likely, the lack of the difference 

is related to the traffic control measures, such as the license plate rationing system: First introduced in Beijing in the late 2000s, 

such measures on workdays are allowing cars that have an even last number of their license plates to be able to drive on roads 

one day while the cars that have an odd last number of their license plates could go on the road the next day. The rule is now 

implemented in many Chinese cities including Beijing, Chengdu, Changchun, Shanghai, Guangzhou, Nanchang, and Wuhan 30 

used in our study (https://www.beijingesc.com/news/84-beijing-traffic-control-2012-tail-number-limits.html accessed on 

March 12, 2024). Such measures cut the number of cars on roads by as much as a half on workdays, but they do not limit the 

https://www.beijingesc.com/news/84-beijing-traffic-control-2012-tail-number-limits.html
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number of cars on weekends. Moreover, for major Chinese cities, trucks are not allowed to entre enter the cities during daytime 

on workdays to reduce traffic congestion (Wang et al., 2023).  No weekend effect was also found in North Korea. 

  The difference between emission estimates for workdays and Saturday, in general, shows the same pattern as for 

Sunday, although with a lower amplitude. The difference is about 15%-30% for the developed countries and under 20% for 

the rest of the world.  Saturdays are not always rest days India and the difference is not significant there. Saturday is also a rest 5 

day in many Muslim countries and the difference for the region with Friday as a rest day is significant, although not very large, 

under 10%.   

 The difference between workdays and weekends for the background component is very different from that for the 

urban component. It is under 10% and not significant almost everywhere (Fig. 8). The only exception are the cities in the 

Canada and USA region, Europe, and the Japan region, where we can see difference greater than 10% in winter-spring season. 10 

These regions and seasons correspond to the areas of the highest background component values (Fig. 2).  However, even in 

these regions, the difference is nearly zero in summer. This may suggest that even large changes, up to 50%, in urban emissions 

over a time period of one-two days lead to a rather weak response in the background component even over the areas of its 

highest levels.  

 The industrial component is not in the focus of this study. The study only includes industrial sources in the vicinity 15 

of major cities, the number of such sources and their emissions varies greatly from city to city and do not represent total 

industrial emissions for a particular country or large region. The plot of the difference between the industrial components on 

workdays and weekend is included in the Appendix CB (Fig. C1).  It does show smaller emissions on Sundays in most of the 

regions, although the annual mean difference is typically under 20% and the uncertainties are large. For the region, where 

Friday is a rest day, the difference is about 15%, i.e., about a half of that for the urban component.  20 

6 Changes in NOx urban emissions 

The 5–6-year period of available TROPOMI observations is still too short to accurately estimate long-term trends, but the plots 

of NO2 emission changes over different regions during the TROPOMI period can be used to illustrate some regional differences 

in NO2 assuming that the lifetime is not changing with time. Two statistical models, Model 1 and Model 3, were used for such 

estimates. Model 1 can be used to estimate urban and industrial emissions as well as the background component for each 25 

season in 2018-2023. While the model was used to estimate the components for every city, in this study we focus on major 

features of the NO2 distribution and results for large regions are presented here. Estimates for seasonal (3-month period) were 

averaged for large regions and the standard errors of these averages were calculated. Fig. 9 shows the background NO2 

estimates for the 14 regions described in Section 4.2. 

 There are clear differences between seasons and between regions as already shown in Fig. 3a. However, the 30 

background component does not demonstrate any substantial changes during the analyzed period. Year-to-year variability is 

typically within the uncertainties with no clear trend. Note that the proxy functions for the urban and background components 
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still can be correlated, that leads to correlation of the parameter estimates: the urban component could be overestimated, and, 

at the same time, the background component would be underestimated and vice versa. That makes the interpretation of results 

more difficult: changes in the urban component could be partially attributed to the background component changes. To avoid 

that problem, Model 3 was introduced.  Model 3 assumes that there are no changes in the background and industrial emissions 

over time. This can potentially affect the urban emission estimates in the opposite side: if there are changes in background or 5 

industrial components, they could be misinterpreted as changes in the urban component. Model 3 also takes the weekend effect 

into accounts that reduces the uncertainties of the parameters. We found that both models give very similar results. Changes 

in urban emissions are shown in Fig. 10 for Model 1, while the Model 3 results are available from Appendix CD (Fig. D1). 

Note that there was not enough data to estimate wintertime urban emissions for some high latitudinal cities, particularly in 

Northern Eurasia. To calculate the regional average, estimates from at least four cities were required. 10 

Urban emissions per capita estimated using Model 1 for 14 regions in different years and seasons are shown in Fig. 

10.  For the Middle East, the region with the highest emissions per capita, there is an overall increase in emissions. A positive 

trend in  that region was also noticed by Goldberg et al. (2021b). The lowest emissions were seen in the spring and summer of 

2020, and they are likely related to the emissions decline due to the COVID-19 restrictions. The region with the second highest 

emissions per capita, Australia and New Zealand, demonstrates the opposite tendency: emissions there tend to decline in all 15 

seasons.  The COVID-19 restriction apparently had some impact on urban emissions during the austral fall of 2020 and the 

values were lower than in the springs of 2019 and 2021, although 2022-2023 values were even lower. For the Canada and the 

US region and for northern Eurasia, there is no clear trend in all seasons. The 2020 values were the lowest in spring and 

summer for both regions.  

Both European regions demonstrate nearly the same urban emission values and declining tendencies in all seasons 20 

except winter. Note that winter values have high uncertainties due to unfavorable measurement conditions and limited number 

of high-quality data. The spring 2020 values were about 40% and 20% lower than these 2019 for Europe -1 and -2 regions. 

They were also lower than the 2021 values. It is interesting to note that springtime 2023 values for Europe-2 were even lower 

than the 2020 values. The Japan region also demonstrated some decline in urban emissions. The 2020 springtime values were 

also lower than these in 2019 and 2021. A decline in spring, summer, and fall can be also seen in China. In winter, the 2020 25 

value are clearly an outlier that is almost 40% lower than the values in 2019 and 2021. It is probably a result of the COVID-

19 restrictions that started in January (Tian et al., 2020). All other regions do not demonstrate any clear tendencies in urban 

emissions. One interesting feature is a very large, about 50%, decline in urban emissions from India in spring and summer of 

2020 that is probably likely also related to the COVID-19 restrictions.   

7 Discussion and conclusion  30 

Contribution from industrial sources, urban areas, and background levels to the observed satellite tropospheric NO2 VCDs 

were studied using statistical regression models. Three models were developed to analyse these three components, asses the 
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weekend impact on each of them, and look at the changes during 2018-2023. The analysis was done for 261 major 3° by 4° 

urban areas around the world grouped into 14 large regions.  The statistical models and estimation algorithms were based on 

our previous study (Fioletov et al., 2022). The background component was considered as a function of the elevation with 

assumption of a linear gradient in tropospheric NO2 VCD within the analyzed 3° by 4° areas. It was assumed that urban 

emission depend on the population density and each population grid cell was considered as an emissions source with the 5 

emissions proportional the cell population. The industrial component was calculated as emissions from point sources with 

known locations. 

 The Middle East is the region of largest emissions per capita. In summer, they are nearly twice of these from, for 

example, Europe. Moreover, there are indications that the emissions are growing there. It is the only region, where a clear 

overall increase in emissions occurred. It is possible that per capita emissions for some cities in the Middle East are 10 

overestimated if some industrial sources are located in populated areas, however high per capita values for many cities in that 

region makes this explanation unlikely. It is also possible that population density data in that region are not as accurate as, e.g., 

over Europe. We saw some examples that the population density data did not exactly match the maps of populated areas. 

However, again, it is not likely that such problem exists for multiple cities located in different countries. Also, the upward 

trend in emissions per capita in that region and a downward trend or an absence of any trend elsewhere may suggest that per 15 

capita emissions in the Middle East would likely surpass emissions in other regions. 

 Emissions per capita for most regions show a clear annual cycle with the highest values in winter and nearly twice 

lower in summer. The average annual emissions per capita are typically between 7 and 3 kg y-1 at mid- and high-latitudes and 

lower, about 2 kg y-1 for India and South Africa.  Our emission estimates are based on a parameterization of average lifetime 

as a function of latitude and season (Lange et al., 2022). However, lifetimes for individual cities could be different from this 20 

parameterization. In some extreme cases, the difference could be as large as factor of two (Lange et al., 2022, their Figure 2d) 

resulting in a factor of two difference in the estimated emissions.   A further investigation of the lifetime dependence on 

location and season is needed. 

 Emissions per capita and their changes over time in two European subregions are very similar probably because they 

were the subject of the same EU regulations.  The spring 2020 (the COVID-19 restriction period) values appeared as an outlier 25 

with about 40% lower emission than in the previous year for Europe-1 and about 20%- lower for Europe-2.   The 2023 spring 

values in Europe were almost as low as the 2020 values in the absence of any restriction measures probably due to an overall 

long-term decline in emissions.  

   TROPOMI data demonstrate a strong weekend effect in urban emissions. For cities where Sunday is a rest day, the 

average difference between Sunday and workday values are 40%-50% for developed countries and 20%-40% for other 30 

countries. China is an exception since it does not show any weekend effect. It may be related to the license plate rationing 

system that substantially decreases the number of cars on the streets on workdays. For countries where Friday is a rest day, the 

difference is about 30%. The difference between emission estimates for workdays and Saturday, in general, shows the same 

pattern as for Sunday, although the difference is smaller, 15%-30% for the developed countries and under 20% for the rest of 
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the world.  The industrial component only included industrial sources in the vicinity of major cities and did not represent total 

industrial emissions for a particular country or large region.  It shows similar patterns as the urban component, although with 

about twice lower amplitude.  

 This study further highlights the importance of the background component isolation for studies that use satellite 

tropospheric NO2 VCD data. The distribution of background NO2 within the analysed areas is modulated by the terrain. The 5 

background component includes NO2 from natural sources such as lightning, soil emissions, and wildfires (Hudman et al., 

2012; Sha et al., 2021; Zhang et al., 2012) as well as NO2 from anthropogenic emissions that is not directly associated with 

urban and industrial plumes. The largest background values are seen over the regions of very high anthropogenic emissions 

such as China and parts of Europe. Nevertheless, the background component is very different from the urban component. The 

background component does not show the weekend effect, except for Sundays in winter-spring season for some regions in 10 

mid- and high latitudes but even there the difference is 3-4 times smaller than for the urban component. Note that the 

uncertainties of the difference estimates in winter are large due to unfavourable measurement conditions.  A much smaller 

amplitude of the weekend effect for the background component suggests, that large abrupt short-term changes in urban 

emissions on the time scale of 1-2 days does not immediately affect the background component. It means that the NO2 lifetime 

in the background component is much longer than the lifetime in the urban and industrial plumes that is only a few hours.  15 

 The approach described in this study can be used to decompose the observed monthly or seasonal TROPOMI 

measurements into three components and then analyse them separately. For example, to study industrial sources, the two other 

components can be removed from TROPOMI data. Once the statistical model parameters are estimated, the background 

component can be calculated using elevation data and the urban component can be calculated using population density and 

wind data.  Then these components subtracted from the original TROPOMI measurements. This would make the plumes from 20 

remaining (industrial) sources more pronounced and other conventional methods (e.g. Beirle et al., 2019; Ding et al., 2020; 

McLinden et al., 2016) can be used, to detect the source locations. Long-term trends of impact of the meteorological conditions 

could also be studied for individual components to make the result interpretation easier. Estimates of background NO2 and 

emissions per capita for large regions can be also used as a benchmark. Individual cities can be compared to their regional 

benchmarks to determine if NO2 levels for a particular city are different from average conditions of the region.   25 

 The separation of the background component from urban and industrial plumes could be also very valuable for 

interpreting data from geostationary satellite instruments such as TEMPO, GEMS, and Sentinel-4.  The background component 

should have diurnal variations that are different from these in the plumes. Or, perhaps, it has no diurnal variations at all. 

Estimating and then subtracting diurnal variations of the background component geostationary satellite data would again make 

the urban and industrial plumes more pronounced that would make it easier to study diurnal NO2 variations in such plumes. 30 

Data availability 

The TROPOMI  NO2 product  is  publicly   available  on  the  Copernicus  Sentinel-5P  data  hub 

(https://dataspace.copernicus.eu, accessed 25 June 2024). The NO2 data used were PAL, v 2.3.1reprocessed (RPRO) v2.4 (until 

https://dataspace.copernicus.eu/
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July 2022) and offline mode (OFFL) v2.4 and 2.5 (end of July 2022 - November 2023) were used. The Gridded Population of 

the World (GPW) dataset is available from NASA Socioeconomic Data and Applications Center at 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed 25 June 2024). The European Centre for Medium-Range 

Weather Forecasts (ECMWF) ERA5 reanalysis data are available from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete (accessed 25 June 2024). Elevation data are from 5 

gridded global relief ETOPO2v2 database (https://www.ngdc.noaa.gov/mgg/global/etopo2.html, accessed 25 June 2024). 
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Figure 1. Mean (2018-2023) TROPOMI NO2, the fitting results, and Model 2-based components for four seasons over two 

urban four areas as indicated. The columns represent mean TROPOMI NO2 VCD values (column a), the fitting results (column 

b), the residuals (column c) as well as individual components of the fitting: the background (elevation-related) (column d), the 

urban (population-density-related) (column e), and the industrial-source-related (column f) components. The values are given 5 

in 1015 molecules per cm2 and in tenths of a Donson Unit.  
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Figure 2. The mean NO2 background component in tenths of a Donson Unit DU (×0.1) for individual cities for (a) December-

February, (b) March-May, (c) June-August, and (d) September-November. The background component represents the mean 

tropospheric NO2 VCD when a direct contribution from urban and industrial emissions is removed.  
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Figure 3. (a) The mean background component in in tenths of a Donson Unit for 14 regions for four seasons. Mean values for 

each region were calculated as a mean of the values from all areas for that region. (b) The mean values of urban NOx emissions 

per capita reported at NO2 emissions per capita for the same regions. The uncertainty (σ) was calculated as a standard error of 

the mean. The error bars represent 2σ intervals.  5 
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Figure 4. NO2 emissions in kt y-1 per capita (i.e., NOx emissions reported at NO2) estimated from the urban component for (a) 

December-February, (b) March-May, (c) June-August, and (d) September-November.  
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Figure 5. The percentage difference between urban components on Monday-Thursday and those on (a) Friday, (b) Saturday, 

and (c) Sunday. Cities where the difference is below 3-sigma level are marked by large gray dots and between 3- and 5-sigma 

level by small gray dots. Countries where Sunday is a rest day are in yellow, countries where Friday is a rest day are in green.   
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Figure 6. The percentage difference between background components on Monday-Thursday and those on (a) Friday, (b) 

Saturday, and (c) Sunday. Cities where the difference is below 3-sigma level are marked by large gray dots and between 3- 

and 5-sigma level by small gray dots. Countries where Sunday is a rest day are in yellow, countries where Friday is a rest day 

are in green. Note the difference in the scale with the previous figure.  5 
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Figure 7. The percentage difference between urban components on Monday-Thursday and those on (a) Friday, (b) Saturday, 

and (c) Sunday for different regions in different seasons. The uncertainty (σ) was calculated as a standard error of the mean. 

The error bars represent 2σ intervals.   
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Figure 8. The same as Fig.7 but for the background component. 
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Figure 9. The regional mean background component in tenths of a Donson UnitDU (×0.1), 2018-2023 for individual seasons. 

Note that the vertical scale on panels for China, the Japanese region, and two European regions is different from the others. 5 

The error bars represent 2σ intervals. Also note that different versions of TROPOMI NO2 data were used (PAL, v 2.3.1 until 

July 2022 and OFFL v2.4 - v2.5 for late July 2022- November 2023) that may have a small relative bias (see section 2.1).  
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Figure 10. The regional mean urban NO2 emissions in kt y-1 per capita (i.e., NOx emissions reported at NO2) by region, 2018-

2023 for individual seasons estimated using Model 1. Note that the vertical scale on four the top-left panels is different from 

the others. The error bars represent 2σ intervals. Also note that different versions of TROPOMI NO2 data were used (PAL, v 

2.3.1 until July 2022 and OFFL v2.4 - v2.5 for late July 2022- November 2023) that may have a small relative bias (see section 5 

2.1). 
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Appendix A: NO2 to NOx upscaling 

Beirle et al., (2021) suggested a way to scale tropospheric NO2 VCD to tropospheric NOx VCD using temperature and ozone 

mixing ratio reanalysis data. The same approach was also used by Lange et al., (2022).  In this study we estimated potential 

impact of such NO2 to NOx upscaling for the calculated emissions per capita.  

[𝑁𝑂𝑥]

[𝑁𝑂2]
= 1 +

[𝑁𝑂]

[𝑁𝑂2]
= 1 +

𝐽

𝑘[𝑂3]
 5 

 

where J is the photolysis frequency and k is the reaction rate constant for the reaction of NO with O3 (Dickerson et al., 1982; 

Atkinson et al., 2004): 

J=0.0167 × exp(-0.575/cos(SZA)) (s-1); 

k=2.07 × 10-12 × exp(-1400/T)  (cm-3 molec-1 s-1) 10 

 The ozone concentration and temperature profiles as well as surface pressure and geopotential height were obtained 

from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis 

(https://daac.gsfc.nasa.gov/datasets/M2I3NPASM_5.12.4/summary, accessed 25 June 2024).  The reanalysis data has a 3-hour 

temporal resolution and only the data within SZA<65 degrees are included in the ratio calculation. To match with TROPOMI 

observations, winter-time data have also been excluded (i.e., for cities that latitude > 40 degrees, December, January, and 15 

February data been removed; for cities that latitude <-40 degrees, June, July, and August data been removed).  The average 

estimated ratios are typically between 1.3 and 1.8 as shown in Fig. A1 with some seasonal dependence. Thus, the NOx 

emissions per capita are typically 30%-80% higher than NO2 emissions (Fig. A2).  

 

 20 
Figure A1. The estimated annual mean NOx to NO2 ratios for the analysed urban areas. 

 

 

https://daac.gsfc.nasa.gov/datasets/M2I3NPASM_5.12.4/summary
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Figure A2. Similar to Fig. 10, but for NOx emissions. The regional mean urban NOx emissions in kt y-1 per capita by region, 

2018-2023 for individual seasons estimated using Model 12. The error bars represent 2σ intervals. 
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Appendix B:  

 

Figure B1. Elevation (a, c) and population density (b, d) maps for Houston (a, b) and Guangzhou (c, d). The elevation map is 

on a colour scale that is similar to that for the elevation-related (“background”) component (Figure 1). The elevation range is 

from 0 to 150 m for Houston and from 0 m to 900 m for Guangzhou. 5 

  



39 

 

Appendix CB: The weekend effect for the industrial component 

 
Figure CB1. The percentage difference between industrial components on Monday-Thursday and those on (a) Friday, (b) 

Saturday, and (c) Sunday for different regions in different seasons. The uncertainty (σ) was calculated as a standard error of 

the mean. The error bars represent 2σ intervals.   5 
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Appendix DC: Model 3 estimates 

Changes in the urban component estimated using Model 1 could be partially attributed to the background and 

industrial component changes. To avoid that problem, Model 3 was introduced.  Unlike Model 1, Model 3 assumes that there 

are no changes in the background and industrial emissions over time. Thus, all changes over time in NO2 would be attributed 

to the urban component. However, Fig. C1 shows that Model 3 results are similar to these for Model 1 (Fig. 10). Note that 5 

Model 3 also includes terms that accounts for the weekend effect in order to produce a better fit. Model 3 includes the 

(1+γ21I1+γ22I2+γ23I3) term and the total emissions can be calculated as αp Ωp·(1+(γ21+γ22+γ23)/7).  

 

 

 10 

Figure DC1. Similar to Fig. 10, but for Model 3 outputs. The regional mean urban NO2 emissions in kt y-1 per capita (i.e., 

NOx emissions reported at NO2) by region, 2018-2023 for individual seasons estimated using Model 3. Note that the vertical 

scale on four the top-left panels is different from the others.  The error bars represent 2σ intervals. 
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