Supplement Materials for

Air pollution satellite-based CO² emission inversion: system evaluation, sensitivity analysis, and future perspective

- 4 Hui Li^{1,2}, Jiaxin Qiu^{1,2}, Bo Zheng^{1,2,*}
- 5 ¹ Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment

 and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

- ² State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
- *Correspondence to*: Bo Zheng (bozheng@sz.tsinghua.edu.cn)

This PDF file includes:

- 12 \triangleright Texts S1 to S2
- 13 \triangleright Figures S1 to S15

14 **Text S1. Tests affecting NO^x and CO² emissions result in similar impacts**

- Among tests, Res₁ 2×2.5 and 2021 base are the most influential ones, triggering $RC_t \pm 1\sigma_t$ 15
- 16 of -2.8% \pm 6.2% (-1.2% \pm 6.0%) and 0.5% \pm 8.6% (-0.6% \pm 6.9%) in daily national total NO_x
- 17 (CO_2) emissions, respectively. Trop fill and Trop v2.3 come next, causing variations of
- 18 1.1% \pm 5.3% (1.3% \pm 3.9%) and -0.5% \pm 6.7% (-0.4% \pm 5.9%) in daily national total NO_x (CO₂)
- 19 emissions. In contrast, β [-20%, 20%] leads to notable but consistent variations in NO_x and
- 20 CO₂, linearly strengthening its impact as the adjustment amplitude increases, wherein β 20%
- 21 triggers $3.0\% \pm 3.2\%$ in NO_x emissions and $2.6\% \pm 3.0\%$ in CO₂ emissions (Fig. S5).
- 22

23 **Text S2. Response of sectoral NO^x emissions to tests**

- 24 The residential sector is the most vulnerable to 2021 base, with variations up to $-6.0\% \pm 6.7\%$
- 25 in daily NO_x emissions. Residential emissions exclusively present sensitivity to 4 sectors,
- 26 thre 04, and thre 06, with variations of $-6.1\% \pm 2.5\%$, 7.4% $\pm 7.8\%$, and $-6.4\% \pm 5.6\%$ in its
- 27 NO_x emissions, respectively. The industry and transport emissions are more sensitive to
- the β [-20%, 20%], with $RC_s \pm 1\sigma_s$ up to 4.1% $\pm 4.5\%$ and 4.5% $\pm 6.1\%$ in NO_x emissions 28
- under $β_2-20%$. Res₂×2.5 incurs the $RC_s ±1σ_s$ of $-8.3% ±12.4%$ and $-2.7% ±8.8%$ in daily 29
- 30 national NO_x emissions in transport and power sectors, respectively.

Figure S1. **The methodology of inversion system and the tests we introduced.**

Sensitivity tests include prior (red labeled), model resolution (orange labeled), satellite data

(blue labeled), and inversion system parameters (purple labeled). Detailed settings are seen

in Tables 1 and 2.

 Figure S2. **The comparison of XGBoost filled TROPOMI and original TROPOMI NO² TVCDs in 2022.** (**a**) shows the annual mean NO² TVCDs of original TROPOMI sampling. (**b**) shows the annual mean NO² TVCDs of filled TROPOMI using XGBoost method. (**c**) compares the daily national mean NO² TVCDs between original and filled TROPOMI. (**d**) shows the correlation between original and filled TROPOMI NO² TVCDs grid-by-grid.

 Figure S3. *RC* **distribution of daily national total emissions under all tests.** The overall 48 distribution of *RC* of daily national total emissions of NO_x and $CO₂$ across all tests adheres 49 to a normal distribution. For NO_x, the mean (μ) and standard deviation (σ) are -0.03% and 2.92%, respectively, while for CO2, they are 1.90% and 4.08%. Given our discussion 51 focusing on CO_2 emissions, $1\sigma = 4.0\%$ is thus chosen as the threshold for distinguishing between consistent and inconsistent impacts.

 Figure S4. **An overview of consistency of tests' impacts on (a) NO^x and (b) CO²** 56 **emissions across finer scales.** The orange color signifies one standard deviation (1σ) , reflecting the degree of consistency in the impact of the corresponding test. A larger 1*σ* indicates greater inconsistency. Sectoral emissions consistency is depicted on a daily scale, and spatial results are depicted on an annual provincial scale. The numbers within each grid represent the corresponding 1*σ* on a certain dimension under tests.

 Figure S5. **Sensitivity of annual national total NO^x and CO² emissions to** *β* **and NO^x emission factor.** (**a**) and (**c**) present the estimated NO^x emissions under ten-level gradient 65 for *β* and emission factor variations. (**b**) and (**d**) are plotted for CO_2 emissions as (**a**) and (**c**).

Figure S6. **Ten-day moving average NO^x and CO² emissions in 2022 under different**

sensitivity tests. (**a**) and (**b**) present the ten-day moving NO^x emissions under all tests and

71 Base. (c) and (d) are plotted for CO_2 emissions as (a) and (b).

Figure S7. **Comparison of total (a) NO^x and (b) CO² emissions in 2022 under various**

- **sensitivity tests.** Label above each column refer to the corresponding tests.
-

 Figure S8. **Comparison of** *β* **between Res_2×2.5 and Base, 2021_base and Base.** (**a**) and 81 (c) compare the daily β dynamics between Res 2×2.5 and Base, and between 2021 base and Base, respectively. (**b**) and (**d**) present the spatial distribution of *β* variance between 83 Res_2×2.5 and Base, and between base and Base, respectively. The gray shaded area is not calculated in this study.

Figure S9. **Sectoral CO2-to-NO^x emission ratios in 2022 under Base inversion.** Sectors

are color coded.

Figure S10. Sectoral contribution to total NO^x and CO² emissions in 2022 under Base

inversion. Sectors are color coded.

Figure S11. **The comparison of proportion attributing total TROPOMI-constrained**

 NO^x emissions to the residential sector. Black, red, and blue lines refer to the Base, thre_40% and thre_60% inversions, respectively.

Figure S12. **The comparison of sectoral proportion of TROPOMI-constrained NO^x**

 emissions. Sectors are color coded. Deep color refers to the Base inversion, and light color represents the Res_2×2.5.

 Figure S13. **Correlation between** *RC^p* **in provincial annual total NO^x and CO² emissions.** Scatters in red, orange, blue, and purple colors show the results from the tests on prior, model resolution, satellite retrievals, and inversion system parameters, respectively.

Figure S14. Response of regional total NO^x and CO² emissions under tests on a daily

scale. (a), (b), (c), and (d) show the $RC_r \pm 1\sigma_r$ of daily NO_x (deep color) and CO₂ (light color) emissions triggered by different tests in Jing-Jin-Ji clusters (Beijing, Tianjin, and

Hebei), Inner Mongolia, Yangtze River Delta clusters (Shanghai, Zhejiang, and Jiangsu),

and Guangdong.

 Figure S15. **Comparison of daily NO^x and CO² emissions between Base and situation with iteratively optimized modification on NO^x emission factors.** (**a**) and (**c**) present the 120 total and sectoral NO_x emissions under Base (deep color) and situation with iteratively optimized modification on NO^x emission factors (light color). (**b**) and (**d**) are plotted for CO² as (**a**) and (**c**).