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Abstract. Simultaneous monitoring of greenhouse gases and air pollutant emissions is crucial for combating 11 

global warming and air pollution. We previously established an air pollution satellite-based carbon dioxide 12 

(CO2) emission inversion system, successfully capturing CO2 and nitrogen oxides (NOx) emission 13 

fluctuations amid socioeconomic changes. However, the system's robustness and weaknesses have not yet 14 

been fully evaluated. Here, we conduct a comprehensive sensitivity analysis with 31 tests on various factors 15 

including prior, model resolution, satellite constraint, and inversion system configuration to assess the 16 

vulnerability of emission estimates across temporal, sectoral, and spatial dimensions. The Relative Change 17 

(RC) between these tests and Base inversion reflects the different configurations' impact on inferred 18 

emissions, with one standard deviation (1σ) of RC indicating consistency. Although estimates show increased 19 

sensitivity to tested factors at finer scales, the system demonstrates notable robustness, especially for annual 20 

national total NOx and CO2 emissions across most tests (RC < 4.0%). Spatiotemporally diverse changes in 21 

parameters tend to yield inconsistent impacts (1σ ≥ 4%) on estimates, and vice versa (1σ < 4%). The model 22 

resolution, satellite constraint, and NOx emission factors emerge as the major influential factors, underscoring 23 

their priority for further optimization. Taking daily national total CO2 emissions as an example, the 1RC   24 

they incur can reach -1.2±6.0%, 1.3±3.9%, and 10.7±0.7%, respectively. This study reveals the robustness 25 

and areas for improvement in our air pollution satellite-based CO2 emission inversion system, offering 26 

opportunities to enhance the reliability of CO2 emission monitoring in the future. 27 

1 Introduction 28 

The knowledge of emissions, i.e., how much, where, and by what activity pollutants are released into the 29 

atmosphere, lays the foundation for understanding the changes in atmospheric compositions and managing 30 

emissions toward climate and air quality targets (Meinshausen et al., 2022; Li et al., 2022; Zhang et al., 2019). 31 

Anthropogenic emissions are strongly modulated by socioeconomic events (e.g., holidays, economic 32 

recession, and recovery), therefore, it is essential to monitor emissions timely to interpret atmospheric species 33 
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concentrations (Shan et al., 2021; Le Quéré et al., 2021; Guevara et al., 2023). Currently, numerous nations, 34 

particularly those within the Global South (i.e., China), grapple with the dual imperatives of mitigating air 35 

pollution and addressing climate change challenges. To effectively navigate these intertwined challenges in 36 

a harmonized and resource-efficient manner, the development of a system capable of disentangling variations 37 

in emissions and their driving factors for greenhouse gases and air pollutants is indispensable (Ke et al., 2023). 38 

Recently, a discernible trend is emerging towards inferring anthropogenic carbon dioxide (CO2) emissions 39 

from well-observed and co-emitted air pollutants (i.e., nitrogen dioxide, NO2) given their co-emission 40 

characteristics in time and space (Wren et al., 2023; Yang et al., 2023; Liu et al., 2020a; Reuter et al., 2019). 41 

NO2 forms rapidly after NO is emitted from sources and is also the primary nitrogen oxide detectable by most 42 

satellites (Ye et al., 2016). This makes NO2 a reliable and widely adopted proxy in nitrogen oxides (NOx = 43 

NO2+NO) emission inversions. However, the co-emission of NOx and CO2 does not imply synchronized 44 

trends in their emissions, as the CO2-to-NOx emission ratios and activity trends vary across different sectors 45 

(Li and Zheng, 2024). The introduction of NO2 in the CO2 emission estimation presents several distinct 46 

advantages. NO2 has a short lifetime of several hours, rendering its source-contributing plumes readily 47 

detectable via remote sensing techniques (Goldberg et al., 2019). This short lifespan of NO2 facilitates mass-48 

balance approaches for estimating NOx emissions, which rely on the assumption of a linear relationship 49 

between NO2 columns and local NOx emissions (Cooper et al., 2017; Mun et al., 2023; Martin et al., 2003). 50 

In contrast, the longevity of CO2, spanning hundreds of years, combined with its elevated background 51 

concentration reaching hundreds of parts per million (ppm), obscures the detection of local source-triggered 52 

concentration enhancements (i.e., several ppm) (Nassar et al., 2017; Reuter et al., 2019). Moreover, remote 53 

sensing technologies for NO2 remain generally more mature, as indicated by the broader coverage and 54 

improved signal-to-noise ratio in column concentration observation (Macdonald et al., 2023; Cooper et al., 55 

2022). Recent advancements in CO2 satellite technology are promising, such as the Orbiting Carbon 56 

Observatory-3 (OCO-3), which can generate CO2 maps with a resolution of up to 1.6 km × 2.2 km and 57 

monitor CO2 columns at different times throughout the daytime to elucidate diurnal emission patterns (Taylor 58 

et al., 2023), while its spatial coverage may not be sufficient for large-area inversions at high temporal 59 

resolution. The synergistic quantification of CO2 and NOx emissions has gained substantial attention, not to 60 

mention that it could provide valuable guidance for a joint effort to monitor and mitigate air pollutants and 61 

carbon emissions concurrently (Miyazaki and Bowman, 2023).  62 

We have developed an air pollution satellite-based CO2 emission inversion system, which is capable of 63 

concurrently estimating the ten-day moving average of sector-specific anthropogenic NOx and CO2 emissions 64 

by integrating top-down and bottom-up methods. This integrated methodology has proven effective in 65 

capturing emission fluctuations, particularly during the coronavirus disease 2019 (COVID-19) pandemic 66 

(Zheng et al., 2020; Li et al., 2023). While previous sensitivity tests have suggested a certain level of accuracy, 67 

the system has not yet undergone a comprehensive evaluation to thoroughly assess its robustness and 68 

weaknesses, and thereby clearly imply its future developmental trajectory. To bridge this gap, we undertake 69 

an extensive sensitivity analysis with 31 tests using the 2022 anthropogenic NOx and CO2 emission estimation 70 
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as a case study. This study investigates how emission outcomes respond to a variety of sensitivity assessments 71 

across temporal, sectoral, and spatial dimensions. This study aims to diagnose and rank the uncertainty 72 

sources, providing insights to prioritize improvements of this inversion system in the future. 73 

2 Materials and methods 74 

Our air pollution satellite-based CO2 emission inversion system has been elucidated in our previous studies 75 

(Zheng et al., 2020; Li et al., 2023). In essence, this system integrates top-down and bottom-up data streams 76 

to infer the ten-day moving average of anthropogenic NOx and CO2 emissions by sector in China based on 77 

the mass-balance approach (Cooper et al., 2017). Comprising three key components, the system involves the 78 

bottom-up inference of prior emissions for NOx and CO2 with sectoral profile, the top-down estimation of 79 

total NOx emissions constrained by satellite observation, and the integration of both sources to derive 80 

satellite-constrained NOx and CO2 emissions by sector (Fig. S1). Each of these processes could introduce 81 

uncertainties in the final emission estimates. To assess the potential uncertainties, we establish a baseline 82 

(Base) for emissions computed using our conventional settings (Li et al., 2023; Zheng et al., 2020) and further 83 

investigate sensitivity tests to characterize the impacts of the different configurations on final estimates. 84 

2.1 Inversion methodology and Base inversion 85 

We use the Base inversion as a case to provide a detailed explanation of this inversion system. In the Base 86 

inversion, we adhered to the same parameters and configurations outlined in previous studies for estimating 87 

the ten-day moving average of anthropogenic NOx and CO2 emissions by sector in 2022 (Table 1) (Li et al., 88 

2023; Zheng et al., 2020). Succinctly, we first updated sectoral NOx and CO2 emissions from the Multi-89 

resolution Emission Inventory for China (MEIC) inventory (Zheng et al., 2018) through the bottom-up 90 

process. This involved utilizing indicators including industrial production, thermal power generation, freight 91 

turnover, and population-weighted heating degree days as proxies for changes in industry, power, transport, 92 

and residential activity levels (Details seen in Text S1 and Table S1). Notably, to reconcile the resolution 93 

between the prior emissions and the model, we aggregated the original MEIC emissions from a resolution of 94 

0.25°×0.25° (Fig. S2) to 0.5°×0.625°. Secondly, we inferred the total anthropogenic NOx emissions 95 

constrained by TROPOspheric Monitoring Instrument (TROPOMI) NO2 retrievals (v2.4) (Van Geffen et al., 96 

2022) (Eq. 1). A critical step in this process was establishing a linear relationship between NO2 tropospheric 97 

vertical column densities (TVCDs) and anthropogenic NOx emissions under the mass balance assumption 98 

(Eq. 2) through GEOS-Chem simulation (v12.3.0, https://geoschem.github.io/) at a horizontal resolution of 99 

0.5°×0.625°. Our analysis focused on the grids where anthropogenic emissions prevail (Liu et al., 2020b), 100 

characterized by a ten-day moving average of NO2 TVCDs exceeding 1×1015 molecules cm-2.  101 
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Where t, i, and y represent the ten-day window, model grid cell (i.e., 0.5°×0.625°), and target year 2022, 105 

respectively. Et,i,TROPOMI,y is the anthropogenic total NOx emissions constrained by TROPOMI NO2 TVCDs. 106 

Et,i,bottom-up,2019 is the anthropogenic NOx emissions in 2019 from the MEIC. βt,i is a unitless factor relating the 107 

changes in NO2 TVCDs to anthropogenic NOx emissions (Lamsal et al., 2011). ∆Et,i,bottom-up,2019/Et,i,bottom-up,2019 108 

represent the implemented 40% reduction in anthropogenic NOx emissions over China. The 40% reduction 109 

was selected after a series of sensitivity tests, which demonstrated that this perturbation level exerts a limited 110 

impact on the β estimates (Zheng et al., 2020). t,i,-40%emi,2019 and t,i,base,2019 are GEOS-Chem simulated NO2 111 

TVCDs at the TROPOMI overpass time in 2019 with a 40% emission reduction and without any emission 112 

reduction, respectively. (∆/)t,i,anth,y refers to the relative changes in NO2 TVCDs due to anthropogenic NOx 113 

emission changes between 2019 and 2022. t,i,sate,y/t,i,sate,2019 indicates the relative differences in TROPOMI 114 

NO2 TVCDs between 2019 and 2022, and t,i,simu_fixemis,y/t,i,simu,2019 represents the relative changes in NO2 115 

TVCDs caused by inter-annual meteorological variation, which are derived from GEOS-Chem simulations 116 

with the fixed 2019 emissions and meteorological field in target year. 117 

Thirdly, we integrated the bottom-up and top-down data flows to yield TROPOMI-constrained sectoral NOx 118 

emissions. Assuming that each grid's emission variability was primarily driven by its dominant source sectors 119 

(contributing over 50%), we utilized the discrepancy between the bottom-up and top-down estimates in grid 120 

cells dominated by a particular sector to derive sector-specific scaling factors, which were subsequently 121 

applied to correct the bottom-up sectoral NOx emissions (Eq. 4). For grids without a sector contributing over 122 

50%, we excluded them from sectoral scaling factor calculations, instead applying scaling factors derived 123 

from grids meeting this criterion. The number of these grids accounts for less than 20% of total grids, making 124 

their impact negligible. Following this adjustment, we rescaled the corrected bottom-up emissions to ensure 125 

alignment with the TROPOMI-constrained total emissions. The overall sectoral correction factors mainly 126 

range from 0.5 to 1.5 (Fig. S3). 127 
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Where t, s, i, and y represent the ten-day window, sector, grid cell (i.e., 0.5°×0.625°), and year 2022, 129 

respectively. Es
t,i,sate,y and Es

t,i,bottom-up,y are TROPOMI-constrained and bottom-up estimated NOx emissions 130 

on grid cell i with dominated source sector s, respectively. The scalefactort,s,y is the scaling factor used to 131 

correct the bottom-up estimated NOx emissions from sectors in time t in year y.  132 

Finally, we converted the sectoral NOx emissions to corresponding CO2 emissions with the CO2-to-NOx 133 

emission ratios derived from the bottom-up process (Eq. 5). The CO2-to-NOx emission ratios in 2022 are 134 

updated by reducing NOx emission factors (EFs) while keeping CO2 EFs unchanged based on 2019 MEIC. 135 
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The default assumption that the reduction rate halves annually is due to the limited potential for further 136 

reductions. In contrast, the CO2 EFs are assumed to remain unchanged, as they are primarily determined by 137 

fuel type and combustion conditions (Cheng et al., 2021) (details seen in Text S2). 138 
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Where Cs,t,i,TROPOMI,y and Es,t,i,TROPOMI,y are CO2 and NOx emissions from sector s. EFco2 s,i,bottom-up,2019 and 140 

EFNOx s,i,bottom-up,2019 are the sectoral EFs of CO2 and NOx in 2019 derived from the MEIC emission model. 141 

rNOx s,i,y is the reduction ratio in NOx EFs by sector from 2019 to 2022 derived from the bottom-up estimation.  142 

We approximate the annual NOx and CO2 emissions as the sum of the ten-day moving average of NOx and 143 

CO2 emissions in 2022 with a vacancy in the first and last five days. This approximation, however, does not 144 

impact our analysis, as our primary objective is to identify potential sources of uncertainty within the system 145 

and thereby highlight areas for future improvement. 146 

Table 1. Configurations of Base inversion. 147 

Factors/parameters Base setting 

GEOS-Chem (GC) resolution GEOS-Chem simulation with the resolution of 0.5°×0.625° 

TROPOMI retrievals version v2.4 of TROPOMI NO2 

TROPOMI screening schemes Cloud fraction (CF)<0.4, quality flag (QA)>0.5 

Reference year 2019 

NOx emission factors (EFs) The reduction ratio of NOx EFs halves annually* 

Threshold value to identify dominant 
emission source sectors for each grid 

50% 

Sectors in bottom-up estimation 
8 sectors (power, industry, cement, iron, residential, 

residential-bio, on-road, and off-road) 

*Each year’s reduction rate for NOx EFs is set to decrease by half compared to the previous year. For example, if the reduction of NOx 148 
EFs from 2019 to 2020 was 4%, the reduction from 2020 to 2021 would be set at 2%. 149 

2.2 Sensitivity settings 150 

The sensitivity inversion experiments comprise 31 tests designed to provide a comprehensive evaluation of 151 

the system. To facilitate a clearer discussion of their impacts, we categorized these tests into four classes 152 

based on their roles within the system: prior information, GEOS-Chem model resolution, satellite 153 

observational constraints, and inversion system parameters (Fig. 1 and Table 2). Each test is conducted as a 154 

controlled experiment, where only one parameter is altered while the rest remain the same as their Base 155 

inversion setting. The rationale behind the settings and their design will be elaborated in the following 156 

sections.157 
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Table 2. Settings of 31 sensitivity inversion tests. 158 

Category Num Name Settings description Test objectives 

GC 1 Res_2×2.5 GEOS-Chem simulation with the resolution of 2°×2.5° Model resolution 

Satellite 

constraint 

2 Trop_fill Complementing TROPOMI NO2 with machine learning Sampling coverage 

3 Trop_v2.3 Substituting TROPOMI NO2 from v2.4 to v2.3 
Satellite data 

version 

4 Trop_cf03 Changing CF limit from 0.4 to 0.3 

Satellite data 

filtering condition 

5 Trop_cf05 Changing CF limit from 0.4 to 0.5 

6 Trop_qa06 Changing QA limit from 0.5 to 0.6 

7 Trop_qa07 Changing QA limit from 0.5 to 0.7 

Inversion 

system 

parameters 

8 2021_base Changing the reference year from 2019 to 2021 Reference year 

9 β_-20% Scaling β down by 20% 

β 

10 β_-15% Scaling β down by 15% 

11 β_-10% Scaling β down by 10% 

12 β_-5% Scaling β down by 5% 

13 β_-1% Scaling β down by 1% 

14 β_1% Scaling β up by 1% 

15 β_5% Scaling β up by 5% 

16 β_10% Scaling β up by 10% 

17 β_15% Scaling β up by 15% 

18 β_20% Scaling β up by 20% 

Prior 

19 ef_-10% Scaling changes in NOx EFs down by 10% 

NOx EFs 

20 ef_-9% Scaling changes in NOx EFs down by 9% 

21 ef_-8% Scaling changes in NOx EFs down by 8% 

22 ef_-7% Scaling changes in NOx EFs down by 7% 

23 ef_-6% Scaling changes in NOx EFs down by 6% 

24 ef_-5% Scaling changes in NOx EFs down by 5% 

25 ef_-4% Scaling changes in NOx EFs down by 4% 

26 ef_-3% Scaling changes in NOx EFs down by 3% 

27 ef_-2% Scaling changes in NOx EFs down by 2% 

28 ef_-1% Scaling changes in NOx EFs down by 1% 

29 thre_40% Changing the dominant sector threshold from 50% to 40% 
Threshold 

30 thre_60% Changing the dominant sector threshold from 50% to 60% 

31 4_sectors Aggregating the sectors from 8 to 4 in prior estimates 
Sector's 

classification 

 159 
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 160 

Figure 1. Overview of the sensitivity inversion tests in this study. Details of the processes and settings are 161 
presented in Fig. S1 and Table 2. 162 

2.2.1 Modifying prior emission estimates 163 

The prior provides the sectoral profile for subsequent emission attribution. We conducted a comprehensive 164 

examination of associated parameters when updating the prior from 2019 MEIC (0.5°×0.625°), including 165 

NOx EFs influencing the conversion of NOx to CO2 emissions by sector, threshold value defining the 166 

dominant sector for each grid, and sector classification. For NOx EFs settings, we devised a ten-level gradient 167 

ranging from -10% to -1% (referred to as ef_[-10%, -1%]). Regarding the threshold value, we varied it from 168 

50% to 40% and 60% (referred to as thre_40% and thre_60%), respectively. For sector classification, the 169 

original prior NOx and CO2 emissions were updated based on eight sectors in the bottom-up process: power, 170 

industry, cement, iron, residential, residential-bio, on-road, and off-road. This detailed sectoral structure 171 

facilitates relatively detailed bottom-up estimations with specific sectoral activity levels. These eight sectors 172 

were then aggregated into four categories: power, industry (sum of original industry, cement, and iron), 173 

residential (sum of original residential and residential-bio), and transport (sum of original on-road and off-174 

road) when allocating TROPOMI-constrained total NOx emissions into sectors. Here, this sector 175 

consolidation, specifically implemented before the bottom-up estimation (4_sectors), was designed to 176 

evaluate the influence of sector classification on the inversion results. 177 

2.2.2 Employing coarser model resolution 178 

The model resolution of the GEOS-Chem simulation inherently shapes the localized relationship between 179 

NO2 TVCDs and NOx emissions established in the top-down process. Finer resolution is advantageous for 180 

establishing localized connections between air pollutant emissions and atmospheric concentrations, and the 181 

attribution of sectoral emissions. However, excessively fine resolution is not applicable due to the inter-grid 182 
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transport when employing the mass-balance method (Turner et al., 2012). To explore the impact of resolution 183 

on emission estimates, we performed an inversion experiment with simulations at a coarser resolution of 184 

2°×2.5° (Res_2×2.5).  185 

2.2.3 Changing satellite observational constraints 186 

The TROPOMI NO2 retrievals serve as a constraint in the top-down NOx emission estimation. We conducted 187 

experiments on the TROPOMI NO2 retrievals through three distinct approaches. Firstly, we used Extreme 188 

Gradient Boosting (XGBoost) to fill the invalid satellite retrievals in v2.4 TROPOMI (Trop_fill) by 189 

establishing relationships between TROPOMI NO2 TVCDs and meteorological variables, as well as GEOS-190 

Chem simulated NO2 TVCDs (modeled_NO2 in Eq. 6) (Wei et al., 2022). The meteorological variables were 191 

derived from European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset (Hersbach et 192 

al., 2020), including boundary layer height (BLH), surface pressure (SP), temperature (TEM), dewpoint 193 

temperature (DT), 10m u-component (WU), 10m v-component of winds (WV), total precipitation (TP), 194 

evaporation (EP), downward uv radiation at the surface (surUV), and mean surface downward uv radiation 195 

flux (downUV). In the XGBoost process, we trained the relationship for daily NO2 TVCDs throughout the 196 

year grid-by-grid, with 80% of the data used as the training set and 20% as the test set. 197 

2 XGBoost 2TROPOMI_NO (modeled_NO , BLH, SP, TEM, DT, WU, WV, TP, EP, surUV, downUV)f     (6) 198 

The comparison of NO2 TVCDs before and after data filling revealed minimal impact from the original 199 

missing data (Fig. S4). This is attributed to our system's utilization of a ten-day moving average of NO2 200 

TVCDs, which effectively mitigates the influence of missing data at the grid scale. 201 

Secondly, we evaluated the impact of different versions of TROPOMI NO2 retrievals by substituting the v2.4 202 

TROPOMI data with the older v2.3 TROPOMI NO2 columns (Trop_v2.3). Updates in TROPOMI data 203 

products generally help address the low bias of NO2 concentrations, particularly in heavily polluted regions 204 

(Lange et al., 2023; Van Geffen et al., 2022). Thirdly, we adjusted the satellite data screening protocols to 205 

investigate the uncertainties associated with satellite observations on emission estimates, which involved 206 

varying the cloud fraction (CF) limit to 0.3 (Trop_cf03) or 0.5 (Trop_cf05) and modifying the quality flag 207 

(QA) limit to 0.6 (Trop_qa06) or 0.7 (Trop_qa07), respectively. CF and QA serve as crucial parameters in 208 

screening applicable NO2 TVCDs, representing primary sources of uncertainty in satellite observations (Van 209 

Geffen et al., 2022; Lange et al., 2023). 210 

2.2.4 Tests on inversion system parameters 211 

In previous studies, the reference year for updating emissions for target years was 2019. Here, we modified 212 

the reference year to 2021 (2021_base) to assess its impact. The parameter β represents the localized 213 

relationship between changes in NO2 TVCDs and changes in anthropogenic NOx emissions (Eq. 2), 214 

determining the transition from observed changes in NO2 TVCDs to changes in anthropogenic NOx emissions 215 
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in the top-down process. To explore potential nonlinear responses in the estimated results to this parameter, 216 

we devised a ten-level gradient for β, ranging from -20% to 20% (refer to as β_[-20%, 20%]). 217 

2.3 Evaluation of different configurations’ impact 218 

The sensitivity analysis of the NOx and CO2 emissions estimated by our inversion system has illuminated 219 

potential sources of uncertainty and the magnitude of their impacts. To quantify the influence of sensitivity 220 

tests on emission estimates, we calculated the Relative Change (RC) between emissions estimated under 221 

different tests and the Base inversion, and one standard deviation (1σ) of RC to evaluate the consistency of 222 

their impact across temporal, sectoral, and spatial scales (details seen in Table 3). It is noteworthy that on the 223 

annual national total emission scale (maximization of all three dimensions), the value of 1σ equals 0.0%.  224 

Table 3. Calculation of RC and 1σ across different dimensions.  225 

Dimension Equations Parameters 
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 t represents timescale, denoting year, month, or 

ten-day window.  

 Et,sensi and Et,base denote the national total 

emissions under a specific sensitivity test and 

Base on corresponding temporal scale t. 

 RCt and σt indicate the RC and its 1σ of national 

total emissions across temporal scales. The σt 

equals 0.0% when t is the yearly scale. 
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 s represents sector source.  

 Et,s,sensi and Et,s,base refer to national sectoral 

emissions under sensitivity test and Base on 

temporal scale t (annual and daily). 

 RCt,s indicates the RC of national sectoral 

emissions on a temporal scale t. 

  σs indicates 1σ of RC of national sectoral 

emissions on a daily scale. 
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 p and r represent province and region (i.e., 

provincial clusters), respectively.  

 Et,p/r,sensi and Et,p/r,base refer to 

provincial/regional total emissions under 

sensitivity test and Base on temporal scale t 

(annual and daily). 

 RCt,p/r indicates the RC of provincial/regional 

total emissions on a temporal scale t. 

 σp indicates 1σ of RC of annual total emissions 

on the provincial scale. 

 σr indicates 1σ of RC of regional total emissions 

on a daily scale. 

 226 

In this context, a condition where 1σ is below 4.0% is deemed as a consistent impact on emission outcomes 227 

within certain dimensions (the determination of 4.0% seen in Fig. S5). Conversely, when 1σ exceeds or equals 228 

4.0%, it is indicative of an inconsistent impact. For instance, a daily scale σt value of 6.2% in the Res_2×2.5 229 

test (Fig. S6) suggests that the model resolution exerts a temporally inconsistent influence on daily emission 230 

estimates, whereas a daily scale σt = 0.0% under ef_-10% indicates temporal consistency in its influence. 231 
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These principles extend to other dimensions (i.e., sectoral and spatial). Factors whose sensitivity tests yield 232 

large and inconsistent RC across finer time, sector, or region scales tend to introduce high uncertainty and 233 

become a priority for future optimization. Conversely, small and consistent RC suggests sources with low 234 

uncertainty and a higher level of robustness in the system to those particular factors. 235 

3 Results 236 

3.1 Overview of the emission responses to sensitivity tests 237 

For a comprehensive understanding of emission sensitivity across various dimensions, we compute the sum 238 

of absolute average RC and 1σ (i.e., +1RC  ) to delineate potential most likely uncertainties associated with 239 

tested factors across spatial, temporal, and sectoral scales (Fig. 2). The impact of these tests on emissions are 240 

comparable between NOx and CO2, except for the NOx EFs tests (first column in Fig. 2), which distinctly 241 

influence NOx and CO2 emissions. CO2 emissions display high sensitivity to NOx EFs across all dimensions 242 

compared to NOx emissions, except in the residential sector where NOx emissions are more responsive while 243 

CO2 emissions are not. For instance, ef_-10% (maximum reduction in NOx EFs tests) incurs a +1RC   of 244 

10.7% in annual national CO2 emissions, with no corresponding impact on NOx emissions. The relationship 245 

between annual national CO2 emissions and NOx EFs exhibits linearity (Fig. S7), remaining within a 4.0% 246 

range if NOx EFs reductions are kept below 4.0% (i.e., ef_[-4%, -1%]). In contrast, daily residential emissions 247 

show a RC  of only 1.0% in CO2 but up to 9.1% in NOx emissions under the ef_-10% test.  248 

The remaining sensitivity tests, excluding the NOx EFs, demonstrate comparable influences on both NOx and 249 

CO2 emissions. Among all dimensions examined, the annual national total NOx and CO2 emissions emerge 250 

as robust results, with a +1RC   of no more than 4.0% across tests. At a finer temporal scale (i.e., daily 251 

basis), the impacts of model resolution, reference year, and satellite constraint on estimated emissions are 252 

amplified, with their +1RC   tripling compared to the annual scale. This amplification primarily arises from 253 

the increased 1σ on the daily scale (Fig. S6), indicating the substantial impact of these factors on daily 254 

emission estimates. At a finer spatial scale, provincial emissions are vulnerable to changes in model 255 

resolution, reference year, and satellite constraint due to their impacts’ inconsistency in space (Fig. S6). 256 

Concerning sectoral emissions, industry and power sector emissions exhibit robustness, whereas transport 257 

and residential emissions present vulnerabilities to model resolution and dominant sector threshold value, 258 

respectively. In the following sections, we elaborate on the impacts of all sensitivity tests on NOx and CO2 259 

emissions from temporal, sectoral, and spatial perspectives. To clarify the RC across different dimensions, 260 

we adopt RCt, RCs, and RCp/r to signify RC in temporal, sectoral, and spatial contexts, respectively. 261 
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 262 

Figure 2. An overview of sensitivity inversion tests’ impacts on (a) NOx and (b) CO2 emissions. The 263 
color blocks in this figure represent the sum of absolute average RC and 1σ (i.e., +1RC  ), which reflect 264 

the extent of the corresponding tests' impact. The numbers within each grid represent the maximum value of 265 

+1RC   under tests on corresponding factors. For example, the +1RC   noted in the Emission factors 266 

column refers to ef_-10%. It is noteworthy that the sectoral dimensions in this figure display their absolute 267 
average RC on the daily scale, with their corresponding 1σ shown separately in Fig. S6. 268 

3.2 Emission sensitivity at different temporal scales 269 

To exclusively examine emission sensitivities in the temporal dimension, this section focuses on the variation 270 

of national total emissions in each test. Tests influencing both NOx and CO2 emissions exhibit comparable 271 

effects, while prior tests exclusively influence CO2 emissions (Fig. 3). For conciseness, we focus on the RCt 272 

in CO2 emissions in tests here (discussion on NOx emissions seen in Text S3). The average RCt of national 273 

total emissions are comparable across temporal scales with differences below 1% (lines in Fig. 3, Figs. S8-274 

S9). However, the consistency of RCt weakens from yearly to monthly to daily scales (increased 1σt as shown 275 

by the shadow in Fig. 3). To better characterize the extent of the tests’ impact, the discussion here focuses on 276 

the 1t tRC   on a daily scale, reflecting the magnitude and consistency of the impact concurrently. 277 

At the national total scale, prior tests (ef_[-10%, -1%], thre_40%/60%, and 4 sectors) influence CO2 278 

emissions consistently over time while leaving NOx emissions unaffected (Fig. 3). This occurs because these 279 

tests only impact sectoral attribution and CO2-to-NOx emission ratios. Total NOx emissions are determined 280 

in the top-down process before sectoral attribution, thus remaining unchanged (Fig. S1). However, sector-281 

specific CO2 emissions, derived from NOx emissions, are influenced due to the varying CO2-to-NOx emission 282 
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ratios among sectors (Fig. S10). A reduction in NOx EFs increases rNOx, thereby increasing the sectoral CO2-283 

to-NOx emission ratios since CO2 EFs are assumed to be unchanged (Eq. 5). This results in a linear elevation 284 

of CO2 emissions in tandem with the decreased NOx EFs (Fig. S7), with CO2 emission variations reaching 285 

up to 10.7%±0.7% under ef_-10%. Similarly, modifications in threshold values and sector classification alter 286 

the identification of dominant sectors per grid, changing the sectoral attribution. Thre_40%/60% and 287 

4_sectors bring about 1t tRC   of 0.6%±1.5%, -0.2%±1.7%, and 0.2%±0.8% in CO2 emissions, respectively, 288 

demonstrating their low influence on emission estimates. Despite differences in the magnitude of prior tests' 289 

impacts ( tRC ), they share a consistency at finer temporal scales, with daily 1σt below 4.0%.  290 

Changes in model resolution (Res_2×2.5) introduce the largest variation in estimates among all sensitivity 291 

tests, triggering 1t tRC   of -1.2%±6.0% in daily CO2 emissions. Its notable inconsistency of impact on the 292 

finer temporal scale (1σt > 4.0%) can be traced back to its induced spatiotemporally diverse changes in β 293 

(Figs. S11a and S11b). The overall low estimate of β under Res_2×2.5 results in negative RCt, and the uneven 294 

spatial distribution of β explains the large 1σt. 295 

As for the impact of satellite constraint, the systematic changes such as missing value supplementation 296 

(Trop_fill) or version changes (Trop_v2.3) have a larger impact with daily CO2 emission variations of 297 

1.3%±3.9% and -0.4%±5.9%, while alterations in satellite data quality screening conditions 298 

(Trop_cf/Trop_qa) exert a relatively minor impact on estimates with 1t tRC   less than 0.5%±1.8%. The 299 

spatiotemporal changes in satellite NO2 retrievals contribute to the inconsistent effects of Trop_fill and 300 

Trop_v2.3 on daily emissions. However, the small 1σt in screening condition tests suggests that the 301 

uncertainty of satellite retrievals has a minor impact on estimates unless there are systematic changes, 302 

possibly because we used the ten-day moving average of satellite observation data to constrain emissions. 303 

Among inversion system parameter tests, the alteration of the reference year (2021_base) exhibits a notable 304 

temporally inconsistent impact, with 1t tRC   of -0.6%±6.9% in daily CO2 emissions. This inconsistency 305 

can be attributed to the spatiotemporally diverse changes in β, similar to the model resolution test (Figs. S11c 306 

and S11d). In contrast, changes in β (β_[-20%, 20%]) exert a more notable but consistent impact on estimates, 307 

linearly strengthening as the tested amplitude increases (Fig. S7), with β_-20% triggering variations of 308 

2.6%±3.0% in CO2 emissions. The spatiotemporally uniform changes in β act linearly on the inversion 309 

estimate of NOx emissions (Eq. 1), and then on CO2 emissions. Therefore, their impact remains consistent on 310 

a daily scale.  311 
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 312 

Figure 3. Comparison of the impacts of various tests on national total (a) NOx and (b) CO2 emissions 313 
at different time scales. Gray lines correspond to the RCt in annual emissions. Blue lines depict the average 314 
RCt in monthly emissions, with the blue shadow indicating monthly scale 1σt. Red lines illustrate the average 315 
RCt in daily emissions, accompanied by the red shadow indicating daily scale 1σt. 316 

3.3 Emission sensitivity across source sectors 317 

Regarding daily national sectoral NOx and CO2 emissions, their responses to different sensitivity tests, in 318 

terms of both emission magnitude and consistency ( 1s sRC  ), are largely similar, except for NOx EFs tests 319 

(ef_[-10%, -1%]) (Fig. 4). Therefore, we primarily discuss the impacts of tests on sectoral emissions using 320 

CO2 as a representative (refer to Text S4 for discussion on sectoral NOx emission), and then delve into 321 

elucidating the divergent impact of NOx EFs on sectoral NOx and CO2 emissions. 322 

Irrespective of NOx emission factor changes (ef_[-10%, -1%]), industrial and power emissions exhibit greater 323 

robustness than transport and residential emissions, which are more susceptible to different configurations. 324 

Specifically, residential emissions demonstrate the highest susceptibility to reference year, showing 325 

1s sRC   of up to -6.7%±7.3% in CO2 emissions in 2021_base test, and exclusively display notable 326 

sensitivity to prior tests (4_sectors and thre_40%/60%) compared to other sectors (Fig. 4). In contrast, 327 

transport emissions are notably influenced by model resolution, with Res_2×2.5 incurring CO2 emission 328 

variations of -7.8%±12.2%. Among all sensitivity tests, the model resolution stands out as the most influential 329 
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factor on sectoral emissions, because the resolution of grid cells affects the determination of the dominant 330 

source sector. 331 

The overall largest sensitivity of residential emissions to sensitivity tests is potentially attributed to its low 332 

proportion to total emissions (Fig. S12). Take thre_40%/60% as an example, lowering the threshold from 50% 333 

to 40% results in identifying more grids as residential source dominant. This, in turn, leads to an increase in 334 

residential emission proportions when allocating the total TROPOMI-constrained NOx emissions into sectors 335 

and subsequently CO2 emissions. Conversely, fewer grids are assigned as residential-dominant when the 336 

threshold rises from 50% to 60%, resulting in lower residential emissions (Fig. S13). The next sensitive sector 337 

is transport, particularly vulnerable to model resolution, which may be associated with its characteristics in 338 

spatial distribution. Transport-dominant grids, particularly those with truck emissions, are typically located 339 

close to industry-dominant grids whose NOx emissions outweigh those from the transport (Zheng et al., 2020). 340 

The use of a coarser horizontal resolution could result in a diminished attribution of emissions to transport 341 

(Fig. S14). 342 

The reduction in NOx EFs (ef_[-10%, -1%]) is the only test impacting sectoral NOx and CO2 emissions 343 

differently. For NOx emissions, the residential sector shows the strongest sensitivity with 1s sRC   of up to 344 

-9.1%±4.5% under ef_-10%. However, its influence on CO2 emissions is most pronounced in all sectors 345 

except residential, with variations of 12.4%±1.1% in CO2 emissions from industry, 11.9%±1.9% from 346 

transport, 10.8%±1.2% from power, but only 1.0%±4.9% from residential sectors under ef_-10%. The 347 

reduction in NOx EFs shifts the dominant sector attribution, substantially lowering NOx emissions from the 348 

residential sector due to its vulnerability to these changes, similar to the impact seen with the thre_60%. The 349 

other sectoral (industry, transport, and power) CO2 emissions present stronger sensitivity to NOx EFs tests, 350 

linearly correlated with the extent of EFs changes. The decline in sectoral NOx EFs linearly reduces rNOx 351 

(Eq. 5), raising the corresponding CO2 emissions by increasing sectoral CO2-to-NOx emission ratios. 352 
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 353 

Figure 4. Response of sectoral national NOx and CO2 emissions to different sensitivity tests on a daily 354 
scale. From left to right, the panels correspond to the (a) industry, (b) power, (c) transport, and (d) residential 355 
source sectors, as the label notes. The dots inside each figure are the average RCs of daily NOx (deep color) 356 
and CO2 (light color) emissions incurred by corresponding tests. The shading area indicates the 1σs of RCs of 357 
daily sectoral emissions in different tests. 358 

3.4 Emission sensitivity at subnational scales 359 

Refining spatial coverage from national to subnational level (i.e., province) reveals that factors causing 360 

inconsistent impacts over finer time scales also tend to induce inconsistent impacts on more granular spatial 361 

regions (Fig. 5). On the annual total scales, the RCp of NOx and CO2 emissions at the provincial scale closely 362 

resemble each other under most sensitivity tests, except for prior tests that only influence CO2 emissions (Fig. 363 

S15). When comparing across provinces, the sensitivity of emissions to tests correlates with the size of the 364 

provincial area, with smaller regions exhibiting greater susceptibility. Shanghai, the smallest provincial-level 365 

administrative unit in China in terms of area, experiences the largest RCp throughout China in nearly all tests. 366 

Conversely, Inner Mongolia, one of China's top three largest provinces, undergoes the minimum RCp in all 367 

tests. Under Res_2×2.5, the RCp of annual total NOx and CO2 emissions in Shanghai are 19.6% and 22.6%, 368 

respectively, while in Inner Mongolia, they are -3.2% and -3.3%. Employing a resolution of 2°×2.5° in 369 
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Shanghai is impractical in real-world applications, as it would result in fewer than two grids covering the 370 

area. Henan also encounters substantial RCp under Res_2×2.5, reaching as high as -15.8% and -12.4% in 371 

annual total NOx and CO2 emissions. This could be attributed to its proximity to Shandong, a province with 372 

approximately twice the emissions of Henan, making Henan particularly sensitive to the changes in model 373 

resolution due to the overlapping grid cells. It is noteworthy that Guizhou exhibits the highest sensitivity to 374 

satellite constraint, with RCp reaching up to 11.9% and 11.8% in annual total NOx and CO2 emissions under 375 

Trop_v2.3. This sensitivity is attributed to the high cloudiness of the Yunnan-Guizhou Plateau, causing 376 

satellite observations to be highly uncertain over Guizhou (Wang et al., 2023; Li et al., 2021; Cai et al., 2022).  377 

 378 

Figure 5. Response of provincial annual total NOx and CO2 emissions to different tests. (a) and (b) show 379 
RCp of NOx emissions incurred by tests. (c) and (d) are plotted for CO2 emission as (a) and (b). Lines refer 380 
to the RCp caused by the corresponding test or the averaged RCp caused by corresponding test clusters (ef_[-381 
10%, -1%] and β_[-20, 20%]), and the shadow refers to the RCp range in test clusters. Only provinces with 382 
enough TROPOMI observations are shown here (i.e., grids with NO2 TVCDs larger than 1×1015 383 
molecules/cm2 cover more than 90% of anthropogenic NOx emissions within provinces). The provinces are 384 
arranged by area. 385 

To further investigate the daily total emission response ( 1r rRC  ) to tests at the regional scale, we select 386 

and analyze Jing-Jin-Ji clusters (JJJ, including Beijing, Tianjin, and Hebei), Inner Mongolia, Yangtze River 387 

Delta clusters (YRD, including Shanghai, Zhejiang, and Jiangsu), and Guangdong (the location of the Pearl 388 

River Delta). These regions respectively represent an industrialized region with high population density, an 389 

industrialized region with sparse population density, and two major economic development zones with high 390 

population density in China (Fig. 6). Geographically, these regions span North China (JJJ and Inner 391 

Mongolia), East China (YRD), and South China (Guangdong), thereby covering different meteorological and 392 
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geographic factors. Overall, the 1r rRC   of daily regional emissions are similar for NOx and CO2 except for 393 

ef_[-10%, -1%], resembling their daily national emission responses (Fig. 3). The 1r rRC   of daily regional 394 

emissions is especially notable in YRD and Guangdong (southern part of China). This could be attributed to 395 

the relatively low NO2 concentration in southern China (Fig. S4), making them particularly sensitive to spatial 396 

variations in parameters, such as the β in 2021_base (Fig. S11) and NO2 TVCDs in Trop_v2.3 test. Besides, 397 

the cloud fraction is higher in southern China, introducing larger uncertainties in remote sensing (Liu et al., 398 

2019; Latsch et al., 2022). The emission responses to prior and β_[-20%, 20%] tests are close for these four 399 

regions, particularly in the prior tests, suggesting that these impacts on emissions are less dependent on 400 

geographic factors. 401 

 402 

Figure 6. Response of regional total NOx and CO2 emissions to tests on a daily scale. (a), (b), (c), and (d) 403 

show the 1r rRC   of daily NOx (deep color) and CO2 (light color) emissions in different tests in Jing-Jin-Ji 404 

clusters (Beijing, Tianjin, and Hebei), Inner Mongolia, Yangtze River Delta clusters (Shanghai, Zhejiang, 405 
and Jiangsu), and Guangdong. The shading area inside each figure refers to the corresponding 1σr. It is worth 406 
noting that the Res_2×2.5 test is not shown here since the resolution of 2°×2.5° proves too coarse for certain 407 
regions, rendering it unrealistic for real-world applications. The result containing Res_2×2.5 is present in SI 408 
as Fig. S16 for reference. 409 

4 Discussion 410 

This study delineates an approximate spectrum of uncertainties inherent in deriving conclusions of varying 411 

precision with our air pollution satellite-based CO2 emission inversion system. When interpreting conclusions 412 

based on the emission data derived from such an inversion system, it is practical and imperative to aggregate 413 

emissions across different dimensions to fulfill specific usage requirements. Direct utilization of data with 414 

all fine-grained resolutions at temporal, sectoral, and spatial dimensions poses challenges. If adhering to a 415 
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variation tolerance of 5%, the reliability of annual national NOx and CO2 emissions is established in most 416 

cases. Notably, careful attention is needed when selecting model resolution and attributing sectoral emissions. 417 

Expanding the tolerance to 10%, which is still below the conventional bottom-up method's uncertainty range 418 

of 13%-37% (Zhao et al., 2011; Huo et al., 2022), renders annual regional or daily national emissions robust 419 

from an average perspective. Nevertheless, meticulous scrutiny is advised when drawing conclusions based 420 

on daily sectoral or daily regional emissions, especially in specific regions (e.g., Shanghai, Guizhou). The 421 

large uncertainty of daily sectoral emission is typically observed in other emission datasets, such as Carbon 422 

Monitor (up to 40% uncertainty) (Liu et al., 2020c; Huo et al., 2022). Further liberalizing the tolerance to 423 

25%, which is quite uncertain for scientific and policy-making purposes, the majority of conclusions derived 424 

from our estimates stand as reliable. The extensive tolerance range primarily stems from regional emissions, 425 

posing a challenging issue for many emission inversion techniques. For example, the uncertainty in NOx 426 

emissions derived from the 2D MISATEAM (chemical transport Model-Independent SATellite-derived 427 

Emission estimation Algorithm for Mixed-sources) method is approximately 20% for large and mid-size US 428 

cities (Liu et al., 2023), and the uncertainty for daily NOx and CO2 emissions based on the superposition 429 

model ranges from 37% to 48% on a city scale (Zhang et al., 2023). Notably, remarkable advancements have 430 

been achieved in estimating subnational CO2 emissions through CO2-observing satellites, such as sectoral 431 

CO2 assessments with OCO-3 (Roten et al., 2023), and urban emission optimizations utilizing the Orbiting 432 

Carbon Observatory-2 (OCO-2) (Yang et al., 2020; Ye et al., 2020). Yet, reducing uncertainties at subnational 433 

scales remains an ongoing challenge.  434 

This study paves the way for the continuous improvement of the current air pollution satellite-based CO2 435 

emission inversion system. Firstly, prioritizing a nimble and appropriate horizontal resolution is crucial for 436 

establishing accurate localized relationships between NO2 TVCDs and NOx emissions, contributing to 437 

improved NOx and CO2 emission estimations from temporal, sectoral, and spatial perspectives. Secondly, the 438 

more accurate satellite observation is conducive to reducing the uncertainty in final results, presenting 439 

increasing promise with advancements in remote sensing technology. Besides, the progress in multi-species 440 

synchronous observations through satellite and aircraft platforms offers alternative verification for multi-441 

species emission inversion, such as the Copernicus Anthropogenic Carbon Dioxide Monitoring constellation 442 

(CO2M) (Sierk et al., 2021). Thirdly, the reliability of sectoral NOx EFs changes, which determine CO2-to-443 

NOx emission ratios, is essential for the accurate conversion from NOx to CO2 emissions. This underscores 444 

the need to acquire more accurate NOx EFs. While obtaining on-site measurements of CO2-to-NOx emission 445 

ratios is challenging, efforts are underway to enhance its configuration. An iterative modification of NOx EFs 446 

within the current system could be incorporated, minimizing the gap between bottom-up updated and 447 

TROPOMI-constrained sectoral NOx emissions to below 2%. This approach yields more accurate CO2-to-448 

NOx emission ratios and CO2 emissions (Fig. S17). The optimized CO2 emission change from 2021 to 2022 449 

is +0.6%, reflecting a more precise representation of the growth in fossil fuel consumption (+1.9%). Fourthly, 450 

utilizing a more refined approach to determine dominant sectors at a grid level can reduce the uncertainty of 451 

small-contributing sectoral emissions, particularly in the residential sector. These enhancements will improve 452 
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the system’s accuracy in estimating emissions across all dimensions, positioning it as a valuable tool for 453 

simultaneous inversion-based monitoring of greenhouse gas and air pollutants emissions, ultimately 454 

supporting a strategic roadmap for the vision of clean air and climate warming mitigation.  455 

 456 

Code and data availability. The source code of the GEOS-Chem model is available at 457 

https://geoschem.github.io/. The prior NOx and CO2 emissions of 2019 MEIC (v1.4) are available at 458 

http://meicmodel.org.cn/?page_id=541&lang=en. The v2.4.0 TROPOMI NO2 column concentrations are 459 

publicly available at https://www.temis.nl/airpollution/no2col/no2regio_tropomi.php. The activity level data 460 

of China from 2019 to 2022 including the industrial production of cement, iron, thermal electricity, etc., are 461 

available at https://data.stats.gov.cn/english/easyquery.htm?cn=C01.  462 

Supplement. The supplement related to this article is available online. 463 

Author Contributions. Bo Zheng designed the research and led the analysis. Hui Li performed the simulation, 464 

analyzed the data, and created the graphs. Bo Zheng, Jiaxin Qiu, and Hui Li wrote the manuscript. 465 

Competing interests. The authors declare that they have no conflict of interest. 466 

Acknowledgements. The authors thank the editor and the anonymous referees for helpful comments that have 467 

improved the paper. 468 

Financial support. This work was supported by the National Key R&D Program of China (2023YFC3705601) 469 

and National Natural Science Foundation of China (Grant No. 42375096).  470 

https://geoschem.github.io/
http://meicmodel.org.cn/?page_id=541&lang=en
https://www.temis.nl/airpollution/no2col/no2regio_tropomi.php
https://data.stats.gov.cn/english/easyquery.htm?cn=C01


20 

 

References 471 

Cai, D., Tao, L., Yang, X.-Q., Sang, X., Fang, J., Sun, X., Wang, W., and Yan, H.: A climate 472 

perspective of the quasi-stationary front in southwestern China: structure, variation and impact, 473 

Climate Dynamics, 59, 547-560, 10.1007/s00382-022-06151-1, 2022. 474 

Cheng, J., Tong, D., Liu, Y., Bo, Y., Zheng, B., Geng, G., He, K., and Zhang, Q.: Air quality and 475 

health benefits of China’s current and upcoming clean air policies, Faraday Discussions, 226, 476 

584-606, https://doi.org/10.1039/D0FD00090F, 2021. 477 

Cooper, M., Martin, R. V., Padmanabhan, A., and Henze, D. K.: Comparing mass balance and 478 

adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide 479 

emissions, Journal of Geophysical Research: Atmospheres, 122, 4718-4734, 480 

10.1002/2016JD025985, 2017. 481 

Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. 482 

A., Brook, J. R., and McLinden, C. A.: Global fine-scale changes in ambient NO2 during COVID-19 483 

lockdowns, Nature, 601, 380-387, https://doi.org/10.1038/s41586-021-04229-0, 2022. 484 

Goldberg, D. L., Lu, Z., Oda, T., Lamsal, L. N., Liu, F., Griffin, D., McLinden, C. A., Krotkov, N. A., 485 

Duncan, B. N., and Streets, D. G.: Exploiting OMI NO2 satellite observations to infer fossil-fuel 486 

CO2 emissions from U.S. megacities, Science of The Total Environment, 695, 133805, 487 

10.1016/j.scitotenv.2019.133805, 2019. 488 

Guevara, M., Petetin, H., Jorba, O., Denier van der Gon, H., Kuenen, J., Super, I., Granier, C., 489 

Doumbia, T., Ciais, P., Liu, Z., Lamboll, R. D., Schindlbacher, S., Matthews, B., and Pérez García-490 

Pando, C.: Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned 491 

from multiple estimates during the COVID-19 pandemic, Atmospheric Chemistry and Physics, 23, 492 

8081-8101, https://doi.org/10.5194/acp-23-8081-2023, 2023. 493 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., and Thépaut, J.: The ERA5 global reanalysis, 494 

Quarterly Journal of the Royal Meteorological Society, 2020. 495 

Huo, D., Liu, K., Liu, J., Huang, Y., Sun, T., Sun, Y., Si, C., Liu, J., Huang, X., Qiu, J., Wang, H., Cui, D., 496 

Zhu, B., Deng, Z., Ke, P., Shan, Y., Boucher, O., Dannet, G., Liang, G., Zhao, J., Chen, L., Zhang, Q., 497 

Ciais, P., Zhou, W., and Liu, Z.: Near-real-time daily estimates of fossil fuel CO2 emissions from 498 

major high-emission cities in China, Sci Data, 9, 684, 10.1038/s41597-022-01796-3, 2022. 499 

Ke, P., Deng, Z., Zhu, B., Zheng, B., Wang, Y., Boucher, O., Arous, S. B., Zhou, C., Andrew, R. M., 500 

Dou, X., Sun, T., Song, X., Li, Z., Yan, F., Cui, D., Hu, Y., Huo, D., Chang, J.-P., Engelen, R., Davis, S. 501 

J., Ciais, P., and Liu, Z.: Carbon Monitor Europe near-real-time daily CO2 emissions for 27 EU 502 

countries and the United Kingdom, Scientific Data, 10, 374, 10.1038/s41597-023-02284-y, 2023. 503 

Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C. E., Chance, 504 

K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite observations for timely updates 505 

to global anthropogenic NOx emission inventories, Geophysical Research Letters, 38, 506 

https://doi.org/10.1029/2010gl046476, 2011. 507 

Lange, K., Richter, A., Schönhardt, A., Meier, A. C., Bösch, T., Seyler, A., Krause, K., Behrens, L. K., 508 

Wittrock, F., Merlaud, A., Tack, F., Fayt, C., Friedrich, M. M., Dimitropoulou, E., Van Roozendael, 509 

M., Kumar, V., Donner, S., Dörner, S., Lauster, B., Razi, M., Borger, C., Uhlmannsiek, K., Wagner, 510 

T., Ruhtz, T., Eskes, H., Bohn, B., Santana Diaz, D., Abuhassan, N., Schüttemeyer, D., and 511 

Burrows, J. P.: Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison 512 

with NO2 measurements from airborne imaging DOAS, ground-based stationary DOAS, and 513 

mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign, Atmos. Meas. Tech., 16, 514 

1357-1389, https://doi.org/10.5194/amt-16-1357-2023, 2023. 515 

Latsch, M., Richter, A., Eskes, H., Sneep, M., Wang, P., Veefkind, P., Lutz, R., Loyola, D., Argyrouli, 516 

A., Valks, P., Wagner, T., Sihler, H., van Roozendael, M., Theys, N., Yu, H., Siddans, R., and 517 

https://doi.org/10.1039/D0FD00090F
https://doi.org/10.1038/s41586-021-04229-0
https://doi.org/10.5194/acp-23-8081-2023
https://doi.org/10.1029/2010gl046476
https://doi.org/10.5194/amt-16-1357-2023


21 

 

Burrows, J. P.: Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace 518 

gas retrievals, Atmos. Meas. Tech., 15, 6257-6283, 10.5194/amt-15-6257-2022, 2022. 519 

Le Quéré, C., Peters, G. P., Friedlingstein, P., Andrew, R. M., Canadell, J. G., Davis, S. J., Jackson, 520 

R. B., and Jones, M. W.: Fossil CO2 emissions in the post-COVID-19 era, Nature Climate Change, 521 

11, 197-199, https://doi.org/10.1038/s41558-021-01001-0, 2021. 522 

Li, H. and Zheng, B.: Toward monitoring daily anthropogenic CO2 emissions with air pollution 523 

sensors from space, One Earth, 7, 1846-1857, 10.1016/j.oneear.2024.08.019, 2024. 524 

Li, H., Zheng, B., Ciais, P., Boersma, K. F., Riess, T. C. V. W., Martin, R. V., Broquet, G., van der A, 525 

R., Li, H., Hong, C., Lei, Y., Kong, Y., Zhang, Q., and He, K.: Satellite reveals a steep decline in 526 

China’s CO2 emissions in early 2022, Science Advances, 9, eadg7429, 527 

https://doi.org/10.1126/sciadv.adg7429, 2023. 528 

Li, J., Sun, Z., Liu, Y., You, Q., Chen, G., and Bao, Q.: Top-of-Atmosphere Radiation Budget and 529 

Cloud Radiative Effects Over the Tibetan Plateau and Adjacent Monsoon Regions From CMIP6 530 

Simulations, Journal of Geophysical Research: Atmospheres, 126, e2020JD034345, 531 

10.1029/2020JD034345, 2021. 532 

Li, L., Zhang, Y., Zhou, T., Wang, K., Wang, C., Wang, T., Yuan, L., An, K., Zhou, C., and Lu, G.: 533 

Mitigation of China's carbon neutrality to global warming, Nat Commun, 13, 5315, 534 

10.1038/s41467-022-33047-9, 2022. 535 

Liu, F., Duncan, B. N., Krotkov, N. A., Lamsal, L. N., Beirle, S., Griffin, D., McLinden, C. A., 536 

Goldberg, D. L., and Lu, Z.: A methodology to constrain carbon dioxide emissions from coal-fired 537 

power plants using satellite observations of co-emitted nitrogen dioxide, Atmos. Chem. Phys., 538 

20, 99-116, https://doi.org/10.5194/acp-20-99-2020, 2020a. 539 

Liu, F., Beirle, S., Joiner, J., Choi, S., Tao, Z., Knowland, K. E., Smith, S. J., Tong, D. Q., Ma, S., 540 

Fasnacht, Z. T., and Wagner, T.: High-resolution Mapping of Nitrogen Oxide Emissions in Large 541 

US Cities from TROPOMI Retrievals of Tropospheric Nitrogen Dioxide Columns, EGUsphere, 542 

2023, 1-18, 10.5194/egusphere-2023-1842, 2023. 543 

Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L. N., Li, C., Krotkov, N. A., 544 

Eskes, H., van der A, R., Veefkind, P., Levelt, P. F., Hauser, O. P., and Joiner, J.: Abrupt decline in 545 

tropospheric nitrogen dioxide over China after the outbreak of COVID-19, Science Advances, 6, 546 

eabc2992, https://doi.org/10.1126/sciadv.abc2992, 2020b. 547 

Liu, Y., Tang, Y., Hua, S., Luo, R., and Zhu, Q.: Features of the Cloud Base Height and Determining 548 

the Threshold of Relative Humidity over Southeast China, Remote Sensing, 11, 2900, 2019. 549 

Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., 550 

Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., 551 

Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., 552 

Zhang, N., Chen, B., Xi, F., Liu, M., Bréon, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. 553 

M., He, K., and Schellnhuber, H. J.: Near-real-time monitoring of global CO2 emissions reveals the 554 

effects of the COVID-19 pandemic, Nature Communications, 11, 5172, 555 

https://doi.org/10.1038/s41467-020-18922-7, 2020c. 556 

MacDonald, C. G., Mastrogiacomo, J. P., Laughner, J. L., Hedelius, J. K., Nassar, R., and Wunch, 557 

D.: Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide 558 

using satellite observations, Atmos. Chem. Phys., 23, 3493-3516, https://doi.org/10.5194/acp-559 

23-3493-2023, 2023. 560 

Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: Global 561 

inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, 562 

Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2003JD003453, 563 

2003. 564 

https://doi.org/10.1038/s41558-021-01001-0
https://doi.org/10.1126/sciadv.adg7429
https://doi.org/10.5194/acp-20-99-2020
https://doi.org/10.1126/sciadv.abc2992
https://doi.org/10.1038/s41467-020-18922-7
https://doi.org/10.5194/acp-23-3493-2023
https://doi.org/10.5194/acp-23-3493-2023
https://doi.org/10.1029/2003JD003453


22 

 

Meinshausen, M., Lewis, J., McGlade, C., Gutschow, J., Nicholls, Z., Burdon, R., Cozzi, L., and 565 

Hackmann, B.: Realization of Paris Agreement pledges may limit warming just below 2 degrees 566 

C, Nature, 604, 304-309, https://doi.org/10.1038/s41586-022-04553-z, 2022. 567 

Miyazaki, K. and Bowman, K.: Predictability of fossil fuel CO2 from air quality emissions, Nature 568 

Communications, 14, 1604, https://doi.org/10.1038/s41467-023-37264-8, 2023. 569 

Mun, J., Choi, Y., Jeon, W., Lee, H. W., Kim, C.-H., Park, S.-Y., Bak, J., Jung, J., Oh, I., Park, J., and 570 

Kim, D.: Assessing mass balance-based inverse modeling methods via a pseudo-observation test 571 

to constrain NOx emissions over South Korea, Atmospheric Environment, 292, 119429, 572 

https://doi.org/10.1016/j.atmosenv.2022.119429, 2023. 573 

Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., and Crisp, D.: Quantifying CO2 574 

Emissions From Individual Power Plants From Space, Geophysical Research Letters, 44, 10,045-575 

010,053, 10.1002/2017GL074702, 2017. 576 

Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O'Dell, C. W., Richter, A., Bovensmann, 577 

H., and Burrows, J. P.: Towards monitoring localized CO2 emissions from space: co-located 578 

regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites, Atmos. Chem. 579 

Phys., 19, 9371-9383, https://doi.org/10.5194/acp-19-9371-2019, 2019. 580 

Roten, D., Lin, J. C., Das, S., and Kort, E. A.: Constraining Sector-Specific CO2 Fluxes Using Space-581 

Based XCO2 Observations Over the Los Angeles Basin, Geophysical Research Letters, 50, 582 

e2023GL104376, https://doi.org/10.1029/2023GL104376, 2023. 583 

Shan, Y., Ou, J., Wang, D., Zeng, Z., Zhang, S., Guan, D., and Hubacek, K.: Impacts of COVID-19 584 

and fiscal stimuli on global emissions and the Paris Agreement, Nature Climate Change, 11, 200-585 

206, https://doi.org/10.1038/s41558-020-00977-5, 2021. 586 

Sierk, B., Fernandez, V., Bézy, J.-L., Meijer, Y., Durand, Y., Bazalgette Courrèges-Lacoste, G., 587 

Pachot, C., Löscher, A., Nett, H., Minoglou, K., Boucher, L., Windpassinger, R., Pasquet, A., Serre, 588 

D., and te Hennepe, F.: The Copernicus CO2M mission for monitoring anthropogenic carbon 589 

dioxide emissions from space, International Conference on Space Optics — ICSO 2021, SPIE2021. 590 

Taylor, T. E., O'Dell, C. W., Baker, D., Bruegge, C., Chang, A., Chapsky, L., Chatterjee, A., Cheng, 591 

C., Chevallier, F., Crisp, D., Dang, L., Drouin, B., Eldering, A., Feng, L., Fisher, B., Fu, D., Gunson, 592 

M., Haemmerle, V., Keller, G. R., Kiel, M., Kuai, L., Kurosu, T., Lambert, A., Laughner, J., Lee, R., 593 

Liu, J., Mandrake, L., Marchetti, Y., McGarragh, G., Merrelli, A., Nelson, R. R., Osterman, G., 594 

Oyafuso, F., Palmer, P. I., Payne, V. H., Rosenberg, R., Somkuti, P., Spiers, G., To, C., Weir, B., 595 

Wennberg, P. O., Yu, S., and Zong, J.: Evaluating the consistency between OCO-2 and OCO-3 596 

XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm, Atmos. Meas. Tech., 597 

16, 3173-3209, 10.5194/amt-16-3173-2023, 2023. 598 

Turner, A. J., Henze, D. K., Martin, R. V., and Hakami, A.: The spatial extent of source influences 599 

on modeled column concentrations of short-lived species, Geophysical Research Letters, 39, 600 

https://doi.org/10.1029/2012GL051832, 2012. 601 

van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J. C., Sneep, M., ter 602 

Linden, M., Ludewig, A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO2 retrieval: 603 

impact of version v2.2 improvements and comparisons with OMI and ground-based data, 604 

Atmos. Meas. Tech., 15, 2037-2060, https://doi.org/10.5194/amt-15-2037-2022, 2022. 605 

Wang, Z., Zhang, M., Li, H., Wang, L., Gong, W., and Ma, Y.: Bias correction and variability 606 

attribution analysis of surface solar radiation from MERRA-2 reanalysis, Climate Dynamics, 607 

10.1007/s00382-023-06873-w, 2023. 608 

Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R. T., Dickerson, R. R., Lin, J., Boersma, K. F., 609 

Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., and Wang, J.: Ground-Level NO2 Surveillance from Space 610 

Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial 611 

Intelligence, Environ Sci Technol, 56, 9988-9998, 10.1021/acs.est.2c03834, 2022. 612 

https://doi.org/10.1038/s41586-022-04553-z
https://doi.org/10.1038/s41467-023-37264-8
https://doi.org/10.1016/j.atmosenv.2022.119429
https://doi.org/10.5194/acp-19-9371-2019
https://doi.org/10.1029/2023GL104376
https://doi.org/10.1038/s41558-020-00977-5
https://doi.org/10.1029/2012GL051832
https://doi.org/10.5194/amt-15-2037-2022


23 

 

Wren, S. N., McLinden, C. A., Griffin, D., Li, S.-M., Cober, S. G., Darlington, A., Hayden, K., Mihele, 613 

C., Mittermeier, R. L., Wheeler, M. J., Wolde, M., and Liggio, J.: Aircraft and satellite 614 

observations reveal historical gap between top–down and bottom–up CO2 emissions from 615 

Canadian oil sands, PNAS Nexus, 2, https://doi.org/10.1093/pnasnexus/pgad140, 2023. 616 

Yang, E. G., Kort, E. A., Ott, L. E., Oda, T., and Lin, J. C.: Using Space-Based CO2 and NO2 617 

Observations to Estimate Urban CO2 Emissions, Journal of Geophysical Research: Atmospheres, 618 

128, e2022JD037736, https://doi.org/10.1029/2022JD037736, 2023. 619 

Yang, E. G., Kort, E. A., Wu, D., Lin, J. C., Oda, T., Ye, X., and Lauvaux, T.: Using Space-Based 620 

Observations and Lagrangian Modeling to Evaluate Urban Carbon Dioxide Emissions in the 621 

Middle East, Journal of Geophysical Research: Atmospheres, 125, e2019JD031922, 622 

https://doi.org/10.1029/2019JD031922, 2020. 623 

Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin, R. L., 624 

Campos, T., Weinheimer, A., Hornbrook, R. S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B., Karl, 625 

T., Haggerty, J., Hall, S., Ullmann, K., Smith, J. N., Ortega, J., and Knote, C.: Rapid cycling of 626 

reactive nitrogen in the marine boundary layer, Nature, 532, 489-491, 10.1038/nature17195, 627 

2016. 628 

Ye, X., Lauvaux, T., Kort, E. A., Oda, T., Feng, S., Lin, J. C., Yang, E. G., and Wu, D.: Constraining 629 

Fossil Fuel CO2 Emissions From Urban Area Using OCO-2 Observations of Total Column CO2, 630 

Journal of Geophysical Research: Atmospheres, 125, e2019JD030528, 631 

https://doi.org/10.1029/2019JD030528, 2020. 632 

Zhang, Q., Boersma, K. F., Zhao, B., Eskes, H., Chen, C., Zheng, H., and Zhang, X.: Quantifying 633 

daily NOx and CO2 emissions from Wuhan using satellite observations from TROPOMI and OCO-634 

2, Atmos. Chem. Phys., 23, 551-563, 10.5194/acp-23-551-2023, 2023. 635 

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., 636 

Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., 637 

Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., 638 

He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, Proc Natl 639 

Acad Sci USA, 116, 24463-24469, 10.1073/pnas.1907956116, 2019. 640 

Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a 641 

bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. 642 

Phys., 11, 2295-2308, 10.5194/acp-11-2295-2011, 2011. 643 

Zheng, B., Geng, G., Ciais, P., Davis, S. J., Martin, R. V., Meng, J., Wu, N., Chevallier, F., Broquet, 644 

G., Boersma, F., van der A, R., Lin, J., Guan, D., Lei, Y., He, K., and Zhang, Q.: Satellite-based 645 

estimates of decline and rebound in China's CO2 emissions during COVID-19 pandemic, Science 646 

Advances, 6, eabd4998, https://doi.org/10.1126/sciadv.abd4998, 2020. 647 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, 648 

Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 649 

2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095-14111, 650 

10.5194/acp-18-14095-2018, 2018. 651 

 652 

https://doi.org/10.1093/pnasnexus/pgad140
https://doi.org/10.1029/2022JD037736
https://doi.org/10.1029/2019JD031922
https://doi.org/10.1029/2019JD030528
https://doi.org/10.1126/sciadv.abd4998

