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Abstract. Partitioning soil organic carbon (SOC) in fractions with different biogeochemical stability is useful to better 

understand and predict SOC dynamics, and provide information related to soil health. Multiple SOC partition schemes exist 

but few of them can be implemented on large sample sets and therefore be considered as relevant options for soil monitoring. 

The well-established particulate- (POC) vs. mineral-associated organic carbon (MAOC) physical fractionation scheme is one 

of them. Introduced more recently, Rock-Eval® thermal analysis coupled with the PARTYSOC machine-learning model can 20 

also fractionate SOC into active (Ca) and stable SOC (Cs). A debate is emerging as to which of these methods should be 

recommended for soil monitoring. To investigate the complementarity or redundancy of these two fractionation schemes, we 

compared the quantity and environmental drivers of SOC fractions obtained on an unprecedented dataset from mainland 

France. About 2,000 topsoil samples were recovered all over the country, presenting contrasting land covers and pedoclimatic 

characteristics, and analysed. We found that the environmental drivers of the fractions were clearly different, the more stable 25 

MAOC and Cs fractions being mainly driven by soil characteristics, whereas land cover and climate had a greater influence on 

more labile POC and Ca fractions. The stable and labile SOC fractions provided by the two methods strongly differed in 

quantity (MAOC/Cs = 1.88 ± 0.46 and POC/Ca = 0.36 ± 0.17; n = 843) and drivers, suggesting that they correspond to fractions 

with different biogeochemical stability. We argue that, at this stage, both methods can be seen as complementary and 

potentially relevant for soil monitoring. As future developments, we recommend comparing how they relate to indicators of 30 

soil health such as nutrient availability or soil structural stability, and how their measurements can improve the accuracy of 

SOC dynamics models. 



2 
 

1 Introduction 

Evaluating the biogeochemical stability of soil organic carbon (SOC) is crucial for predicting future SOC stock changes and 

assessing soil health. SOC biogeochemical stability depends on many interacting factors such as soil organic matter (SOM) 35 

molecular composition, and interactions with the mineral matrix (von Lützow et al., 2006; Schmidt et al., 2011). For a given 

soil, SOC represents a continuum of mean residence times (MRT) ranging from days to millennia (Balesdent, 1996). However, 

this continuum cannot be measured directly and then used efficiently for evaluating SOC biogeochemical stability. For this 

reason, many studies have proposed SOC fractionation schemes to distinguish fractions with contrasting residence times, 

enabling a practical assessment of SOC biogeochemical stability (Poeplau et al., 2018). Nevertheless, many of these 40 

fractionation methods are expensive and time-consuming, making their use on large datasets almost impossible. 

Recently, Lavallee et al. (2020) proposed a drastic simplification of the SOC biogeochemical stability continuum by dividing 

SOC into two fractions of contrasted stability: particulate (POC) and mineral-associated (MAOC) fractions, following on early 

work by Cambardella & Elliott (1992). This physical fractionation scheme is relatively quick, can be implemented on hundreds 

of samples (Lugato et al., 2021), and recent studies have underlined the potential interest of such a dualistic view of the SOC 45 

persistence continuum (Cécillon et al., 2021b; Angst et al., 2023; Lugato et al., 2021). 

Less popular than physical fractionation, thermal fractionation has also been proposed as an efficient method to evaluate SOC 

quality (Plante et al., 2009). In particular, Rock-Eval® thermal analysis has been the subject of a growing interest in recent 

years for assessing SOC biogeochemical stability (Saenger et al., 2013; Barré et al., 2016; Sebag et al., 2016; Soucémarianadin 

et al., 2018). This method is relatively fast and can be used to analyse a series of thousands of samples (Delahaie et al., 2023). 50 

Moreover, Cécillon et al. (2018; 2021a) developed a machine learning model, PARTYSOC, which uses Rock-Eval® thermal 

analyses results as input variables to estimate the proportion of SOC that is stable at a centennial scale and, by difference, the 

proportion of SOC that is active at this timescale. Kanari et al. (2022) showed that the fractions determined by PARTYSOC 

match the “stable” and “active” fractions of the AMG model (Clivot et al., 2019), improving its simulations of SOC stock 

evolutions in croplands. As a result, Rock-Eval® thermal analysis associated with PARTYSOC allows partitioning SOC in a 55 

more labile fraction (Ca) with an MRT ranging from 20 to 40 years, and a stable fraction (Cs) which can be considered inert at 

a centennial timescale. The Ca and Cs fractions cannot be physically isolated. They must therefore be seen as conceptual 

fractions defined by their biogeochemical stability. 

The POC/MAOC physical fractionation and the Ca/Cs thermal fractionation are therefore two methods that can potentially be 

used to split SOC in fractions with contrasted biogeochemical stability and be implemented on large sample sets. With the 60 

growing interest in monitoring programs of soil health and the need for better initialization methods able to improve the 

accuracy of SOC dynamics models, it is necessary to assess the extent to which these two fractionation approaches are 

complementary or redundant. 

Our hypotheses were that as they do not target the same SOC pools (Balesdent, 1996; Poeplau et al., 2018; Kanari et al., 2022), 

POC and Ca as well as MAOC and Cs fractions may represent different quantities and have different environmental drivers 65 
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(soil characteristics, land cover, and climate variables) and can therefore be considered as complementary. To test our 

hypotheses, we used an unprecedented dataset comprising ca. 2,000 Rock-Eval® thermal analyses and ca. 1,000 POC/MAOC 

physical fractionation data from the analysis of topsoil (0–30 cm) samples that are part of the French soil monitoring network 

(RMQS).  

2 Material and methods  70 

2.1 RMQS soil samples 

The soil samples used in this article are part of the French “Réseau de mesures de la qualité des sols” (RMQS) network and 

were previously described in Gogé et al. (2012) and Delahaie et al. (2023). A complete description of this monitoring network 

is available in Jolivet et al. (2006; 2022). Briefly, French mainland soils are monitored every 15 years following a 16 km × 16 

km regular square grid, resulting in 2,170 sites. When possible, the sampling site is set at the centre of the cell; alternatively, 75 

another site is selected if needed within a 1 km radius from the centre of the cell. At each sampling site, 25 topsoil samples (0 

to 30 cm or tilled layer depth, whichever depth is smaller) are taken from a 20 m × 20 m area using a spiral auger, and then 

mixed, resulting in a composite sample of 5 to 10 kg. 

The composite samples are then placed in trays and air-dried at 30 °C for 8 to 10 days, and quartered according to NF ISO 

11464, resulting in a subsample of ca. 650 g. They are then hand-crushed and sieved at 2 mm, and an aliquot is ground under 80 

250 µm by a Cyclotec 1093 (FOSS) (Gogé et al., 2012). The remains of the samples are stored in plastic buckets. 

A total of 2,037 samples from the 1st sampling campaign (2000–2009) out of 2170 were recovered and analysed by Rock-

Eval® thermal analysis in Delahaie et al. (2023). 

 

2.2 Soil and environmental data associated to each RMQS site and topsoil sample 85 

2.2.1 Soil data 

Physical and chemical analyses were carried out on the composite soil samples at the Laboratoire d’Analyse des Sols (INRAE, 

Arras, France). The inorganic carbon content (Cinorg) was derived from the total carbonate content, in grams per kilogram of 

sample (volumetric method, NF EN ISO 10693), and calculated as Cinorg = total carbonate × 0.12; the total carbon content, in 

grams per kilogram of sample, was determined by elemental analysis using dry combustion on non-decarbonated soil; the 90 

organic carbon content was derived from the elemental analysis (TOCea), in grams per kilogram of sample, and calculated as 

total carbon content minus inorganic carbon content: TOCea - Cinorg (NF ISO 10694 ; “NF” standing for French standard); the 

total nitrogen, in grams per kilogram of sample, was determined by dry combustion (NF ISO 13878); the particle size 

distribution was measured without decarbonation, in grams per kilogram of sample (Robinson pipette and underwater sieving, 

method validated in relation to standard NF X31-107); pH was measured in a suspension of soil diluted with water (dilution 95 

1 : 5, NF ISO 10390); the exchangeable calcium content, in centimoles per kilogram of sample, was measured by 

cobaltihexammine chloride extraction (NF X31-130); the exchangeable magnesium content, in centimoles per kilogram of 
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sample, was measured by cobaltihexammine chloride extraction (NF X31-130); the exchangeable potassium content, in 

centimoles per kilogram of sample, was measured by cobaltihexammine chloride extraction (NF X31-130); the free iron 

oxides, in grams per 100 g, measured with the Tamm method in the dark (amorphous oxides) and Mehra–Jackson method 100 

(crystalline oxides) (INRA standard/NF ISO 22036). 

 

2.2.2 Climate data 

We allocated to each sampling site the climatic data corresponding to the SAFRAN 8 km x 8 km grid-cell based on where the 

cell was located (https://publitheque.meteo.fr/okapi/accueil/okapiWebPubli/index.jsp, last access: 31 March 2022). The daily 105 

data were averaged over the 1969–1999 period (i.e. the 30-year common period before the first sampling campaign starting in 

2000) in order to compute the mean annual temperature (MAT) and mean annual precipitation (MAP) for each site. 

2.2.3 Land cover data 

Land cover data were recorded during sampling. Four main categories of land cover were considered for this study: 

“croplands”, “forests”, “grasslands”, and “vineyards & orchards”. A few samples were collected in “wastelands”, “urban 110 

parks”, and “sites with little human disturbance”. Considering the very small number of samples, “wastelands” (ca. 10) and 

“gardens” (n = 3) were not included in this study. The number of samples from environments with little human disturbance 

(ca. 30) could potentially be considered sufficient for statistical treatment; however, these samples represent a very 

heterogeneous set (10 miscellaneous subclasses, such as peatlands, alpine grasslands, water edge vegetation, heath, and dry 

siliceous meadows). Thus, those sites were also discarded. 115 

 

2.3 Thermal SOC fractionation 

2.3.1 Rock-Eval® thermal analyses 

In total, 2,037 samples were analysed by Rock-Eval® thermal analysis (Disnar et al., 2003; Baudin et al., 2015). For each 

sample, ca. 60 mg of finely ground matter (< 250 µm) was placed in a special high-temperature-resistant stainless-steel pod, 120 

allowing the transport gas to pass through, and then placed inside a Rock-Eval® 6 (RE6) Turbo device (Vinci Technologies). 

There, it underwent a first phase of pyrolysis under an inert atmosphere (N2) from ambient temperature to 650 °C (three-minute 

isotherm at 200°C and then a temperature ramp of 30°C min-1), and a second phase of oxidation under the laboratory 

atmosphere purged from water and CO2, from 300 °C to 850 °C (one-minute isotherm at 300°C and then a temperature ramp 

of 20°C min-1). During the pyrolysis phase, hydrocarbon effluents were monitored by a flame ionisation detector, and CO and 125 

CO2 were monitored by infrared detectors. During the oxidation phase, CO and CO2 were monitored by infrared detectors. 

The resulting thermograms were processed using the Geoworks software (Geoworks V1.6R2, Vinci Technologies, 2021). 

The organic carbon yield was defined as the ratio of the total organic carbon amount measured by Rock-Eval® thermal analysis 

(TOCre6, calculated from thermogram area integration) over the total organic carbon amount measured by elemental analysis 

(TOCea). We chose to apply a quality criterion on this yield: further study was conducted only on samples with an organic 130 

carbon yield ranging from 0.7 to 1.3. This range was set to identify the acceptable yields ensuring the quality of the Rock-
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Eval® analysis as well as the identity of the sample. Of the 2,037 samples analysed by Rock-Eval® thermal analysis, 1,891 

presented an organic carbon yield ranging from 0.7 to 1.3 (Delahaie et al., 2023). We also removed 12 samples with TOCea > 

120 g kg-1 to avoid organic soils (Eggleston et al., 2006), resulting in a dataset of 1,879 samples. 

  135 

2.3.2 The PARTYSOC fractionation 

The PARTYSOC model (Cécillon et al., 2018; 2021a) is a machine-learning model using the results of the Rock-Eval® thermal 

analysis of mineral topsoils as entry variables. This model, trained on data from long-term agronomic experiments, uses 18 

Rock-Eval® parameters – associated with either thermal stability or chemical composition – as input variables and determines 

the proportion of the centennially-persistent organic carbon pool in a mineral topsoil sample. By taking into account both the 140 

chemical recalcitrance and the stabilisation brought by the organo-mineral interactions, this model recognizes different aspects 

of the biogeochemical stability, not limited to the chemistry alone (Chassé et al., 2021). The stable SOC proportion is now 

calculated routinely by the Geoworks software (Geoworks V1.6R2, Vinci Technologies, 2021) using the model PARTYSOC 

v2.0EU published in Cécillon et al. (2021a). For each site, we multiply the proportion of stable C by the TOCea to calculate 

the conceptual Cs pool (g C kg-1 sample); the conceptual active pool Ca (g C kg-1 sample) is obtained by difference: Ca = TOCea 145 

- Cs. 

  

2.4 Physical SOC fractionation 

The physical SOC fractionation, i.e. particle size fractionation was conducted by the SADEF laboratory (Aspach-Le-Bas, 

France) on a subset of the RMQS (997 sites) following a protocol based on the norm NF X 31-516, itself based on Balesdent 150 

et al. (1991; 1998). The dispersion was carried out with a solution of sodium hexametaphosphate at a concentration of 5 g L-1. 

50 g of soil sieved at 2 mm was stirred in 180 ml of hexametaphosphate solution with 10 glass beads of 5 mm diameter and 

underwent rotary agitation for 16 hours at 20 °C at 45 rpm in a 250 mL flask. The fractions were then sieved by hand at 0.2 

mm with rotative movements, and sprays of demineralised water were used to complete the sieving process. The matter 

remaining on the sieve was transferred in a capsule, dried, and crushed. The suspension containing the fine particles (< 0.2 155 

mm) and rinsing water were collected for further sieving to 0.05 mm. The same principle was then applied for the sieving at 

0.05 mm, but it was conducted on three or four successive fractions of the suspension to avoid clogging the sieve. The liquid 

fraction containing the particles below 0.05 mm was recovered in a 1 L crystallizer and dried. The drying of the fractions was 

carried out in a ventilated oven at 105 °C. 

This fractionation process thus resulted in three fractions: the mineral-associated organic matter fraction (MAOM) corresponds 160 

to the 0–50 µm fraction, the fine particulate organic matter fraction corresponds to the 50–200 µm fraction, and the coarse 

particulate organic matter fraction corresponds to the 200–2000 µm fraction. The carbon contained in the MAOM fraction 

constitutes the MAOC while the carbon contained in both the fine POM and coarse POM constitutes the POC. 
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After drying, all the dry matter in each fraction was recovered. Each fraction was introduced into a corundum bowl and ground 

with corundum balls (Retch PM400 planetary ball mill) at 400 rpm for 5 minutes to ensure the final matter is ground at < 250 165 

µm and homogenised. 

Carbon and nitrogen measurements were carried out on a Flash 2000 Elemental Analyzer for soils without carbonates 

(determined by acid test) following the norms NF ISO 10694 and NF ISO 13878, respectively. For carbonated soils, only 

nitrogen was measured on the Flash 2000 Elemental Analyzer (Dumas method NF ISO 13878). Organic carbon was analysed 

by chemical oxidation (NF ISO 14235). The total organic carbon retrieved after physical fractionation is noted TOCfr and the 170 

organic carbon yield for this fractionation was defined as the ratio of TOCfr over TOCea. 

The C yield was on average 93.4% for the 997 samples. For the same reasons as above, we also introduced a quality criterion 

on this yield, identical to the one for the Rock-Eval® results (0.7 to 1.3). Following this rule, 33 samples were removed from 

the dataset. Then, four samples with TOCea > 120 g kg-1 were also removed to avoid organic soils (Eggleston et al., 2006), 

resulting in a final dataset comprising 960 fractionation results. The removed samples showed no particular pedoclimatic 175 

characteristics (Fig. A1, Appendix). 

  

As the physical and thermal fractionations were not conducted on all the samples, there are samples for which data of only one 

method was available. The intersection of the physical fractionation dataset and thermal fractionation dataset consists of 843 

samples and is thereafter designated as the “intersection dataset”. 180 

  

2.5 Statistical analysis 

2.5.1 The determination of drivers of the POC, MAOC, Ca, Cs, and TOCea quantities 

In this study, we tested the influence of different environmental variables on the Cs, Ca, MAOC, and POC content by using 

Random Forest regression models based on the method used by Georgiou et al. (2022). One advantage of Random Forest 185 

models is that they can cope with non-normally distributed and correlated variables (Breiman, 2001). The considered 

environmental drivers were related to soil characteristics (particle size distribution, pH, inorganic carbon content, exchangeable 

cations contents (calcium, magnesium, potassium), amorphous and crystalline iron oxyhydroxides contents), climate (mean 

annual precipitation, mean annual temperature), and land cover. The relative importance of each of these features as estimated 

by the Random Forest model allowed us to evaluate the main drivers of the quantity of each fraction. 190 

The modelling pipeline was divided into two steps. The first preprocessing step used one-hot encoding (creating one boolean 

column per class for any categorical variable; one-hot encoding was chosen in order to handle categorical variables without 

establishing any artificial order between them), while all the numeric variables were standardised by removing their mean and 

dividing them by their variances. In the second step, a bootstrapped Random Forest regressor was used to calibrate the actual 

model. Grid search and cross-validation were used to choose the model's hyper-parameters (Table A1, Appendix), using cross-195 

validated R2 (determination coefficient) as a performance metric. These hyper-parameters define the structure and construction 
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of the forest’s trees, and as such they are crucial and must be chosen wisely to ensure that the model does not overfit or underfit 

the training data.  

After the model was calibrated, the importance of the environmental predictors was calculated using two different methods: 

the mean decrease in impurity (MDI) and the Permutation Importance (PI) score (Louppe, 2014). Both methods gave a 200 

measurement of the importance of the environmental variables selected in the model. MDI aims at selecting the predictors 

that, on average, produce trees with the purest nodes and leaves. In this case, purity refers to the similarity of the samples 

contained in a single leaf. MDI is calculated using the training set and it is the default decision metric used in constructing 

scikit-learn’s random forests. However, the MDI has a known tendency to lower the importance of the low-cardinality variables 

and possibly has a bias towards highly-correlated variables (Louppe et al. 2013). The PI score measures the impact of each 205 

individual predictor by randomly permuting it and then calculating the increase in prediction error as opposed to using the 

non-permuted predictor. By construction, PI can be calculated on both the training and the test set. Its main advantage over 

MDI is that it shows no bias towards high-cardinality predictors. Highly-correlated variables can be detected using PI as their 

permutation will have little to no impact on the model’s prediction accuracy. 

In order to analyse the variable importance results, the environmental variables were grouped into three broad categories: “land 210 

cover”, “pedology” (particle size distribution, pH, inorganic carbon content, exchangeable calcium content, exchangeable 

magnesium content, exchangeable potassium content, amorphous, and crystalline iron oxyhydroxides contents), and “climate” 

(mean annual temperature and mean annual precipitation). These groupings were used to guide visual analysis of the variable 

importance plots generated for the Cs, Ca, MAOC, and POC models. 

The Random Forest modelling (and associated metrics) was done in Python as implemented in the the scikit-learn v1.3.0 215 

library (Pedregosa et al, 2011), while the least-squares linear regression used the scipy v1.10.1 library (Virtanen et al., 2020). 

  

2.5.2 Assessments of the effect of land cover on fractions 

To assess the effect of land cover on the different fractions, we performed pairwise comparisons of medians using non-

parametric Kruskal–Wallis tests (p < 0.05) followed by Wilcoxon tests, with p < 0.05 for each pair. The correction of p values 220 

within the framework of the multiple comparisons was done using the Holm–Bonferroni method. Correlations between 

parameters were calculated using the Spearman method. 

The data processing and statistical analysis were carried out using R software (V4.1.2; R Core Team 2021): the corrplot (Wei 

and Simko, 2021), car (Fox and Weisberg, 2019), ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2023a), factoextra 

(Kassambara and Mundt, 2020), plot3D (Soetaert, 2021), and rstatix (Kassambara, 2023b) packages were added. 225 

 

3 Results 

3.1 POC vs. Ca, MAOC vs. Cs: fractions in different quantities 

Figure 1 shows the quantities of Cs plotted against MAOC and the quantities of Ca plotted against POC, comparing two by two 

the more stable and more labile fractions for each fractionation scheme for the intersection dataset (samples having been 230 
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subjected to both thermal and physical fractionation schemes). Regarding the more stable fractions (Fig. 1a), the MAOC 

content was much higher than the Cs content (on average 19.13 g kg-1 of sample versus 10.06 g kg-1 of sample for the 843 

samples of the intersection dataset). The average ratio of MAOC/Cs for the samples of the intersection dataset was 1.88 ± 0.46. 

For the more labile fractions (Fig. 1b), the POC content was much lower than the Ca content (on average 5.32 g kg-1 of sample 

versus 14.40 g kg-1 of sample for the 843 samples of the intersection dataset). The average ratio of POC/Ca for the samples of 235 

the intersection dataset was 0.36 ± 0.17. The correlations between Cs and MAOC on one side (0.90) and between Ca and POC 

on the other side (0.87) are both very significant. In comparison, the correlation coefficients between Cs, MAOC, Ca and POC 

on the one hand, and TOC on the other hand are 0.91, 0.96, 0.98, and 0.86 respectively.  

 

 240 

  

Figure 1: Comparison of the quantities of the more stable and more labile fractions for the physical and thermal SOC 

fractionation schemes, with their correlation coefficient R2 and linear regression. Panel (a) shows the quantities of 

MAOC plotted against Cs. Panel (b) shows the quantities of POC plotted against Ca. The dataset is the intersection 

dataset, i.e. samples for which thermal and physical data are available (n = 843). 245 

   

3.2 Differences in SOC fractions’ proportions under different land covers 

Figure 2 shows Ca and POC as a proportion of TOC for the four considered land covers. As Ca+Cs and POC+MAOC were 

equal to TOC, the analysis on Cs or MAOC proportions would have given the same information. Figure 2 shows that the 

proportion of Ca of the TOC followed the order vineyards & orchards < croplands < grasslands < forests (and similarly for 250 

POC). The mean values of the proportion of Ca were 0.48, 0.60, 0.63, and 0.35 in croplands, grasslands, forests, and vineyards 
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respectively. It also shows that POC as a proportion of TOC was significantly smaller in croplands compared to forests, 

grasslands, and vineyards & orchards, but the median value of POC in croplands was close to the median value in grasslands 

(0.13 in croplands, 0.17 in grasslands, 0.27 in forests, and 0.19 in vineyards & orchards). As with the median values, the mean 

values showed a similar difference between croplands (0.15 ± 0.05) and grasslands (0.19 ± 0.07), with forests displaying a 255 

higher value (0.28 ± 0.09). While the Ca fraction generally represents a high proportion of TOC (up to 0.75 in forests; 

proportion of Ca > 0.5 in 1277 out of 1879 samples), POC most often represented only a minority of TOC (proportion of POC 

> 0.5 in 17 out of 960 samples). 

 

Figure 2: Proportion of the Ca and POC fractions depending on the land cover. The black line in each box is the median, 260 

the lower and upper edges of the black rectangle are the respective first (Q1) and third (Q3) quartiles, and the lower 

and upper whiskers are the maximum between the minimum value or the first quartile minus 1.5 times the interquartile 

range (max [min; Q1-1,5×(Q3-Q1)]) and the minimum between the maximum or the third quartile plus 1.5 times the 

interquartile range (min [max; Q3+1,5×(Q3-Q1)]), respectively. Different letters indicate significant differences in the 

distribution of the values for the land covers according to a Kruskal–Wallis test (p < 0.05) and a pairwise Wilcoxon 265 

rank sum test (p < 0.05); lowercase letters are used for Ca and uppercase letters for POC. 

  

Additionally, different ratios (MAOC/Cs and POC/Ca) are given in Figure A2, Appendix. Croplands and grasslands exhibited 

a similar and small POC/Ca ratio, while forests and vineyards & orchards show a higher POC/Ca ratio. On the contrary, the 

MAOC/Cs ratio is very small in the vineyards & orchards, and the highest in grasslands, with a significant difference between 270 

croplands and grasslands.  

 

3.3 Drivers of the different SOC fractions quantities 
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The Random Forest models fitted for the four different SOC fractions aimed at elucidating the relative importance of the soil 

and environmental variables. Their explanatory capacity was evaluated based on the R2 values obtained for each fraction. The 275 

Random Forest models' R2 scores on the test set were 61 % for Cs, 53 % for MAOC, 57 % for Ca, 36 % for POC, and 58 % for 

TOCea (Fig. A2, Appendix). The R2 values obtained on cross-validation for the train set were higher but close (Table A1, 

Appendix), except for the POC which has a strongly higher train set score. Overall, the models’ performance was satisfactory, 

and allowed their variable importance to be analysed.   

Figure 3 shows the importance of the different categories of environmental variables on the quantities of POC, Ca, MAOC, 280 

and Cs, evaluated using two different methods. The results with both the MDI and the PI showed a higher importance of the 

pedological features and a smaller importance of climate and land cover in the more stable fractions (Cs and MAOC). On the 

contrary, the more labile fractions (Ca and POC) showed a higher importance of land cover and, to a lesser extent, climate, 

compared to Cs and MAOC. Ca tended to show a slightly stronger influence of climate and weaker influence of land cover, 

while POC rather showed the opposite. Among the more stable fractions, climate and land cover tended to have a slightly 285 

higher importance for MAOC than for Cs. The results for the TOCea showed a mixture of drivers, in between stable and labile 

fractions. 

The results for the Spearman correlation coefficients between all environmental variables and fractions quantities are given in 

Appendix in Table A2. Soil variables favouring organic matter/mineral interactions (clay, metallic oxides, CEC, exchangeable 

calcium) were positively correlated with fractions. Overall, these correlations were stronger for the Cs and MAOC fractions. 290 

On average, iron oxyhydroxides and exchangeable cations are the most important factors influencing the size of the fractions 

(Figure 3). Inorganic carbon and pH little influenced the size of the fractions and texture had a minor role but for Cs. Regarding 

climate variables, MAT had a higher influence than MAP except for Cs fractions. 

 

 295 
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Figure 3: Importance of the different categories of soil and environmental variables (climate, pedology, and land cover) 

for the four fractions Cs, MAOC, Ca, and POC, and TOCea as a comparison (in g C kg-1 sample), assessed using MDI 

and PI. 

 

4 Discussion 300 

4.1 A strong influence of land cover on the more labile SOC fractions 

  

This study, based on an unprecedented number of measurements (n = 960 for POC/MAOC and n = 1,879 for Ca/Cs), shows 

the high influence of land cover on the relative quantity of SOC labile and stable fractions (Fig. 2). 

The higher proportion of POC in forest than in grassland and cropland soils (0.13, 0.17, and 0.27 in croplands, grasslands, and 305 

forests, respectively) was also observed in Lugato et al. (2021) who used results from 352 physical fractionations obtained 

using a fractionation protocol similar to ours on samples from the LUCAS soil monitoring network. It was also observed by 

Hansen et al. (2024) on a global dataset combining physical fractions obtained with different protocols. Other studies showed 

similar results for POC, but comparisons are less straightforward as the physical fractionation protocols used are significantly 

different from those used in our study. For instance, some studies used the protocol of Zimmerman et al. (2007), where the 310 

sorting size for POC is > 63 µm (compared with > 50 µm in our protocol) and part of POC is also recovered after the disruption 

of sand-sized aggregates. When combining free POC and occluded POC (which corresponds to what is called POC in our 

study), Poeplau & Don (2013) found proportions of POC of 0.15 in croplands, 0.21 in grasslands, and 0.27 in forests in a 

variety of sites across Europe which is very close to the values observed here for French soils. The value of 0.13 for the 

proportion of POC in croplands is also close to the 0.15 value used in Angers et al. (2011) to estimate the proportion of POC 315 

from TOC. Chen et al. (2019) gathered data from multiple previous studies to derive POC proportion values of 0.15 for 

croplands, 0.31 for grasslands and 0.34 for forests.  

Regarding the Ca conceptual pool, we found a higher proportion of Ca in forest than in grassland and cropland soils (0.48, 0.62, 

and 0.65 in croplands, grasslands, and forests, respectively). This was also observed in previous works, but the body of 

literature available for discussion is much more limited than for physical fractionation. We can note that the median value of 320 

Ca for croplands is close to the mean value (0.48 vs 0.42) obtained by Kanari et al. (2022) on nine long-term field experiments 

in mainland France. Moreover, the proportion of Ca is set to 0.60 in the AMG model for grasslands (Clivot et al., 2019) in its 

default parameterisation which is also in line with the Ca proportions observed for grassland sites of the RMQS (0.62 on 

average). The difference is bigger regarding croplands as the default parameterisation for Ca is set to 0.35 while the value 

found for the RMQS is 0.48. This may be explained by the fact that the AMG model was developed on long-term experimental 325 

sites that have been cropped for several decades, whereas French agricultural soils have probably on average undergone more 

changes in vegetation cover. The higher Ca value in RMQS cropland soils could thus be due to a difference in land-cover 

history in French cropland soils compared to cropland sites of long-term experiments. Indeed the land cover history is likely 

to be reflected in the results: the croplands with lower Cs proportions could likely be former grasslands or forests recently (>20 
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years) converted to agriculture. On the other hand, grasslands or forests with high Cs proportions were probably former 330 

croplands before being afforested or converted to grasslands. Of note, the results for forests shall be taken with caution, as the 

PARTYSOC model has not been trained on forests soils. However, the results appears realistic and consistent. The fact that the 

Rock-Eval® parameter values of the majority of forest RMQS soil samples are not different from the parameter values of the 

most carbon-rich samples in the PARTYSOC model learning set may explain this consistent behavior. 

The similar proportions of POC in vineyards & orchards and grasslands were less expected as C inputs and contents are reduced 335 

in vineyards & orchards (grass cover was very sparse in vineyards & orchards at the time of the sampling). This may be 

explained by differences in the composition of the particulate organic matter for the different land covers, as the particulate 

organic matter groups together particles that can be biochemically quite heterogeneous (Schrumpf et al., 2013; 

Soucémarianadin et al., 2019). In our study, the POC fraction in vineyard & orchard topsoils might be much more 

biogeochemically stable than the same fraction in cropland and grassland topsoils because of the presence of more lignified 340 

woody debris and pyrogenic C derived from the combustion of vine shoots. An extreme example of soil with high proportion 

of POC and Cs can be found at the Versailles long-term bare fallow site where topsoils have a proportion of Cs close to 1 and 

a POC proportion around 0.30, constituted essentially of charcoal (Chassé et al., 2021). Our results therefore suggest that 

POC/MAOC fractionation gives an erroneous view of biogeochemical stability for vineyards & orchards, which have the same 

POC proportion as grassland but are very C depleted (9.5 vs 24 g C kg-1). The biochemical nature of the fractions is 345 

unaccounted for in our study as this data is not available, but it is probably an important driver for POC quantities. The fact 

that such an important driver is not taken into account may explain the poorer performance of the model for POC compared to 

the other fractions (36% vs 55-60% for the other fractions). This result suggests that considering the POC proportion as an 

indicator of SOC vulnerability (see for instance Viscarra Rossel et al., 2019) may not be always appropriate. 

Regarding the mean values of all the fractions and conceptual pools in the four major land covers (Table A3), it is interesting 350 

to notice that there is on average a 45% loss of SOC between grasslands and croplands (50% between forests and croplands). 

Specifically, this loss between grasslands and croplands (respectively between forests and croplands) is of 61% (respectively 

74%) for POC, 55% (respectively 61%) for Ca, 41% (respectively 35%) for MAOC, and 27% (respectively 30%) for Cs. It 

highlights a loss ranking as follow: POC > Ca > MAOC > Cs, with the bulk SOC having intermediate loss values, which is 

consistent with the results from Sanderman et al. (2021) showing a 30% loss of bulk SOC between grasslands and croplands. 355 

4.2 SOC fractions with different quantities, drivers and biogeochemical stabilities 

The significant differences between the Cs and MAOC quantities on one side, and Ca and POC quantities on the other side 

(Fig. 1), show that they do not correspond to the same fractions. This result was expected due to the definition of the four 

fractions, but it is evidenced for the first time on a large dataset. Indeed, previous studies using isotopic measurements observed 

that the mean residence times for MAOC ranged from decades to centuries (Anderson & Paul, 1984; Balesdent et al. 1987; 360 

Balesdent 1996; von Lützow et al., 2007; Kleber et al., 2015). By definition, Cs corresponds to the conceptual pool of 

centennially stable SOC (Cécillon et al., 2018; 2021a). This implies that MAOC encompasses also a certain amount of 

relatively labile SOC and therefore explains its larger quantity compared to Cs. Potentially, this could partly be related to the 
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fractionation method itself, in which only size fractionation is employed to separate fractions, so that the MAOC fraction might 

also contain a certain amount of fine POC or soluble compounds (Lavallee et al., 2020; Cotrufo et al., 2023). Conversely, the 365 

Ca fraction which corresponds to SOC fraction with a mean residence time of 20-40 years (Kanari et al., 2022) is larger than 

the POC fractions dominated by SOC with a generally shorter MRT (Balesdent, 1996; von Lützow et al., 2007). 

This ranking in terms of MRT, Cs > MAOC > Ca > POC, is also in line with the different environmental drivers explaining the 

quantities of these four fractions, whatever the selected method (MDI or permutation) (Fig. 3). Indeed, we observed that the 

importance of land cover is much higher for POC and Ca than it is for Cs and MAOC, whereas pedological variables are much 370 

more important for Cs and MAOC fractions. The importance of land cover for SOC with lower MRT has already been 

documented in several studies. For instance, Poeplau and Don (2013) observed that POC fractions are very sensitive to land 

cover in topsoils and Balesdent et al. (2018) showed that land cover is a major driver of the incorporation of “young” C in 

topsoils indicating on average a smaller portion of SOC with low MRT in croplands compared to grassland and forest topsoils. 

The fact that SOC with higher MRT is mostly driven by soil variables and that SOC with lower MRT is mainly explained by 375 

land cover and climate was also evidenced by Mathieu et al. (2015) using 14C in 122 profiles of mineral soil across the world. 

They observed that the age of topsoil organic carbon, which is on average less biogeochemically stable than deep SOC, was 

primarily affected by climate and land cover whereas, the age of deep soil carbon was affected more by soil type and soil 

characteristics such as clay content and mineralogy. With a slightly different physical fractionation – POC, humus OC and 

resistant OC (predicted using IR spectroscopy) – and different explanatory variables, Viscarra Rossel et al. (2019) showed that 380 

POC was influenced by climate (mostly MAT) but little by land cover; the resistant OC showed less influence of climate and 

vegetation compared to the POC and humus OC but were not clearly more influenced by soil characteristics. These different 

results may be explained by the differences in protocols or in pedo-climatic contexts between the two studies. The little 

influence of land cover on the stable fractions was somehow expected as most of French soils have undergone a series of land 

cover changes during the last millennia during which the stable fraction formed. Regarding the bulk SOC, our results are in 385 

line with those of Edlinger et al. (2023), who used a similar methodology on a smaller dataset to investigate the drivers of 

SOC. While their features were not strictly identical to ours (no iron oxyhydroxides for instance, but more climatic features), 

the main categories that stand out as drivers of the SOC are pedology (mostly exchangeable calcium) and climate, which is 

what we observed. 

Among pedological variables, iron oxyhydroxides (mostly crystalline oxides) and exchangeable cations (mainly calcium 390 

cations) were the factors with the greatest influence on the size of the most stable Cs and MAOC fractions. The strong influence 

of exchangeable cations and oxides on MAOC has also been recently documented in a study involving 16 agricultural sites in 

the United States (King et al., 2023). The influence of iron oxides and hydroxides on SOC biogeochemical stability is a well-

known fact (Kögel-Knabner et al., 2008), although it was pointed out that crystalline oxides were less efficient at providing 

bonding sites for SOM. The importance of exchangeable cations, notably calcium, on SOC biogeochemical stability was 395 

previously documented (Rowley et al., 2018; 2021). Indeed, calcium cations can strengthen the interactions between 2:1 clay 

minerals and SOM, both negatively charged, or enable the formation of co-precipitates with SOM. 
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Overall, our study confirms results from recent studies conducted at regional and global scales showing that physical fractions 

have different drivers (King et al., 2023 ; Hansen et al., 2024) and strongly supports the idea that it is relevant and informative 

to consider SOC fractions (either physical or thermal) instead of TOC alone. However, it is difficult to compare our results 400 

directly with those of these recent studies. Indeed, the data processing strategies are different and the explanatory variables 

considered are not the same. Notably, we observed that land cover and soil variables such as exchangeable calcium and iron 

oxides were explanatory variables of primary importance in explaining the quantities of POC and MAOC respectively. These 

variables were not considered as explanatory variables in the path analyses developed by Hansen et al. (2024) which likely 

explains the low explained variations provided by these path analyses. Conversely, we did not consider net primary 405 

productivity as explanatory variable which was found to be a significant driver of MAOC quantities by Hansen et al. (2024). 

We therefore consider that new data that will probably arrive in the next few years will enable us to refine the drivers of 

physical and thermal fractions at different spatial scales. 

 

4.3 Which fractionation method to use to assess SOC biogeochemical stability in soil monitoring networks? 410 

Several recent high-level political initiatives have highlighted the importance of soil health for food security and climate change 

mitigation and adaptation. These include, for instance, the UNFCCC Koronivia joint work action, the 4p1000 initiative 

(www.4p1000.org, Rumpel et al., 2020) and the new “Soil Monitoring Law” proposed by the EU. These initiatives emphasize 

the importance of SOC by highlighting the C sequestration potential of soils, or by stressing the strong influence of SOC on 

soil health. This general political context is favourable to the development and support of soil monitoring networks. In these 415 

networks, SOC content is always measured. While this data is important, information on SOC biogeochemical stability would 

be particularly useful. Indeed, most soil functions related to SOM, such as nitrogen mineralization, actually depend on its 

decay (Janzen, 2006) and assessing biogeochemical stability is also of primary importance to simulate SOC stock evolution 

(Luo et al., 2016). In this context, the development of indicators of SOC biogeochemical stability that can be implemented on 

large sample sets is of particular relevance. 420 

Both physical and thermal fractionation methods are good candidates for this. Indeed, they both split SOC in two fractions or 

conceptual pools of different biogeochemical stability using protocols that can be applied to large sample sets. Each has its 

advantages and drawbacks regarding its large-scale implementation for soil monitoring. The thermal method is faster (one 

hour per sample), highly reproducible (Pacini et al., 2023) and, at least in France, less costly than the physical method (< 50€ 

per sample vs > 100€ per sample in commercial laboratories), but only provides virtual fractions. POC/MAOC fractionation, 425 

on the other hand, requires much time but no expensive equipment, and is already used worldwide. Moreover some studies 

have proposed to predict POC/MAOC fractions using a machine learning model to make the method faster (e.g. Cotrufo et al., 

2019; Lugato et al., 2021). However, a recent study showed that the results of such prediction methods can be questionable 

and even misleading (Begill et al., 2023). 

In this context, the question arises as to what method should be used to determine biogeochemical stability in soil monitoring 430 

networks. Our study, based on an unprecedented sample set, reveals that the POC vs Ca and MAOC vs Cs fractions are 

http://www.4p1000.org/
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significantly different in size and do not have exactly the same environmental drivers, meaning that they are not 

biogeochemically equivalent. This suggests that the two fractionation methods provide, at least partly, different information, 

and could be, at that stage, be seen as complementary. Furthermore, they can also be used to answer different questions: For 

example, physical fractionation methods can be used in combination with isotopic measurements (e.g. 13C), to study 435 

transformation and stabilisation processes of organic matter in soils (Cotrufo et al., 2015). Moreover, it is probably premature 

to assess the relevance of the two protocols at this stage, as interesting data will be provided by the monitoring networks over 

the next few years. For instance, with new SOC stock measurement campaigns, it will be possible to have measurements of 

SOC stock evolution allowing the proper evaluation of model SOC stock projections at network scales (Le Noë et al., 2023). 

In addition, several indicators of soil functions are to be measured at large scale for soil health assessment. All these new data 440 

will enable us to assess the extent to which the information on SOC biogeochemical stability provided by fractionation results 

can be used to improve the accuracy of SOC stock evolution simulations, and to gain a better understanding of soil functioning. 

Such upcoming studies are likely to bring new key elements to the emerging question of the redundancy or complementarity 

of physical and thermal fractionation schemes. 

 445 

5 Conclusion 

This study allowed us to compare the POC/MAOC physical fractionation and thermal fractionation on an unprecedented 

amount of samples with an interesting diversity with respect to pedological characteristics, climatic characteristics and land 

covers. We showed that both the stable (Cs and MAOC) and labile (Ca and POC) fractions strongly differ in quantities. While 

the environmental drivers were close for the two stable fractions (respectively the two labile fractions) with a predominance 450 

of the soil characteristics (respectively the climate and land cover), they still presented differences suggesting that Cs and 

MAOC (respectively Ca and POC) correspond to different fractions with different biogeochemical stability. This means that 

both fractionation techniques display different thus complementary information. Future work will enable us to discuss the 

relevance of one technique rather than the other on a case-by-case basis, depending on the soil properties studied. 

Code availability 455 
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Data availability 
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Appendices 

 

Figure A1: Score of the 993 samples on axes 1 and 2 of the principal component analysis on 14 pedoclimatic parameters: 

clay, fine silt, coarse silt, fine sand and coarse sand contents; pH in water; carbonate content; mean annual temperature 

and mean annual precipitation; Tamm and Mehra–Jackson iron oxyhydroxide contents; exchangeable calcium, 685 

magnesium and potassium ions. Samples with an organic carbon yield between 0.7 and 1.3 are plotted in light yellow, 

whereas samples with an organic carbon yield < 0.7 or > 1.3 are plotted in dark red. 
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 690 

Figure A2: Ratios of the fractions for the four major land covers. The black line in each box is the median, the lower 

and upper edges of the black rectangle are the respective first (Q1) and third (Q3) quartiles, and the lower and upper 

whiskers are the maximum between the minimum value or the first quartile minus 1.5 times the interquartile range 

(max [min; Q1-1,5×(Q3-Q1)]) and the minimum between the maximum or the third quartile plus 1.5 times the 

interquartile range (min [max; Q3+1,5×(Q3-Q1)]), respectively. Different letters indicate significant differences in the 695 

distribution of the values for the land covers according to a Kruskal–Wallis test (p < 0.05) and a pairwise Wilcoxon 

rank sum test (p < 0.05). 
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 700 

Figure A3: Histograms of the fractions and conceptual pools contents in g kg-1 of soil, depending on the four major land 

covers. 
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Table A1: Hyper-parameters used by the Random Forest model for TOC and the four fractions of SOC. 
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Table A2: Spearman correlation coefficients of the Ca content, Cs content, Cs proportion, POC content, MAOC 

content, POC proportion, Cs/MAOC, MAOC - Cs, POC/Ca, and Ca - POC with the following pedoclimatic variables 

for the RMQS topsoil (0–30 cm) samples: clay, total silt, total sand, TOCea, C/N ratio, mean annual temperature (MAT) 

averaged over 1969–1999, mean annual precipitation (MAP) averaged over 1969–1999, pH in water, carbonate content, 710 

Tamm iron oxyhydroxides (crystalline), Mehra–Jackson iron oxyhydroxides (amorphous), cation exchange capacity 

(CEC), exchangeable calcium, exchangeable magnesium, exchangeable potassium, exchangeable aluminium, 

exchangeable iron, exchangeable sodium, and exchangeable manganese. The analysis was limited to samples meeting 

the required criterion for Rock-Eval® thermal analysis and/or physical fractionation. The number of samples 

presenting data for each calculation is indicated. Absolute values ≥ 0.3 are in bold. The asterisks and superscript letters 715 

indicate the p value: *** between 0 and 0.001, ** between 0.001 and 0.01, * between 0.01 and 0.05, a between 0.05 and 

0.1, and b > 0.1. The values in grey have non significant p values. 
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Table A3: Mean values of the different fractions and conceptual pools in g kg-1 of soil for the four major land covers. 720 


	1 Introduction

	Evaluating the biogeochemical stability of soil organic carbon (SOC) is crucial for predicting future SOC stock changes and assessing soil health. SOC biogeochemical stability depends on many interacting factors such as soil organic matter (SOM) molecular composition, and interactions with the mineral matrix (von Lützow et al., 2006; Schmidt et al., 2011). For a given soil, SOC represents a continuum of mean residence times (MRT) ranging from days to millennia (Balesdent, 1996). However, this continuum cannot be measured directly and then used efficiently for evaluating SOC biogeochemical stability. For this reason, many studies have proposed SOC fractionation schemes to distinguish fractions with contrasting residence times, enabling a practical assessment of SOC biogeochemical stability (Poeplau et al., 2018). Nevertheless, many of these fractionation methods are expensive and time-consuming, making their use on large datasets almost impossible.

	Recently, Lavallee et al. (2020) proposed a drastic simplification of the SOC biogeochemical stability continuum by dividing SOC into two fractions of contrasted stability: particulate (POC) and mineral-associated (MAOC) fractions, following on early work by Cambardella & Elliott (1992). This physical fractionation scheme is relatively quick, can be implemented on hundreds of samples (Lugato et al., 2021), and recent studies have underlined the potential interest of such a dualistic view of the SOC persistence continuum (Cécillon et al., 2021b; Angst et al., 2023; Lugato et al., 2021).

	Less popular than physical fractionation, thermal fractionation has also been proposed as an efficient method to evaluate SOC quality (Plante et al., 2009). In particular, Rock-Eval® thermal analysis has been the subject of a growing interest in recent years for assessing SOC biogeochemical stability (Saenger et al., 2013; Barré et al., 2016; Sebag et al., 2016; Soucémarianadin et al., 2018). This method is relatively fast and can be used to analyse a series of thousands of samples (Delahaie et al., 2023). Moreover, Cécillon et al. (2018; 2021a) developed a machine learning model, PARTYSOC, which uses Rock-Eval® thermal analyses results as input variables to estimate the proportion of SOC that is stable at a centennial scale and, by difference, the proportion of SOC that is active at this timescale. Kanari et al. (2022) showed that the fractions determined by PARTYSOC match the “stable” and “active” fractions of the AMG model (Clivot et al., 2019), improving its simulations of SOC stock evolutions in croplands. As a result, Rock-Eval® thermal analysis associated with PARTYSOC allows partitioning SOC in a more labile fraction (Ca) with an MRT ranging from 20 to 40 years, and a stable fraction (Cs) which can be considered inert at a centennial timescale. The Ca and Cs fractions cannot be physically isolated. They must therefore be seen as conceptual fractions defined by their biogeochemical stability.

	The POC/MAOC physical fractionation and the Ca/Cs thermal fractionation are therefore two methods that can potentially be used to split SOC in fractions with contrasted biogeochemical stability and be implemented on large sample sets. With the growing interest in monitoring programs of soil health and the need for better initialization methods able to improve the accuracy of SOC dynamics models, it is necessary to assess the extent to which these two fractionation approaches are complementary or redundant.

	Our hypotheses were that as they do not target the same SOC pools (Balesdent, 1996; Poeplau et al., 2018; Kanari et al., 2022), POC and Ca as well as MAOC and Cs fractions may represent different quantities and have different environmental drivers (soil characteristics, land cover, and climate variables) and can therefore be considered as complementary. To test our hypotheses, we used an unprecedented dataset comprising ca. 2,000 Rock-Eval® thermal analyses and ca. 1,000 POC/MAOC physical fractionation data from the analysis of topsoil (0–30 cm) samples that are part of the French soil monitoring network (RMQS). 
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