
1 
 

Potential of carbon uptake and local aerosol production in boreal 

and hemi-boreal ecosystems across Finland and in Estonia 

Piaopiao Ke1, Anna Lintunen1,2, Pasi Kolari1, Annalea Lohila1,3, Santeri Tuovinen1, Janne 

Lampilahti1, Roseline Thakur1, Maija Peltola1, Otso Peräkylä1, Tuomo Nieminen1, Ekaterina 

Ezhova1, Mari Pihlatie4,5, Asta Laasonen1, Markku Koskinen4,5, Helena Rautakoski3, Laura 5 

Heimsch3, Tom Kokkonen1, Aki Vähä1, Ivan Mammarella1, Steffen Noe6, Jaana Bäck2, Veli-Matti 

Kerminen1, Markku Kulmala1 

1 Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of Helsinki, 

Helsinki, 00014, Finland 
2 Institute for Atmospheric and Earth System Research (INAR) / Forest Sciences, Faculty of Agriculture and Forestry, 10 
University of Helsinki, Helsinki, 00014, Finland 
3 Finnish Meteorological Institute, Finland 
4 Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, 

Finland 
5 Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, 15 
Finland 
6 Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia 

 

Correspondence: Markku.Kulmala (markku.kulmala@helsinki.fi) and Piaopiao Ke 

(piaopiao.ke@helsinki.fi) 20 
 

https://doi.org/10.5194/egusphere-2024-1967
Preprint. Discussion started: 26 July 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

Abstract: Continental ecosystems play an important role in carbon dioxide (CO2) uptake and 

aerosol production, which helps to mitigate climate change. The concept of ‘CarbonSink+ 

potential’ enables a direct comparison of CO2 uptake and local aerosol production at ecosystem 

scale. Following this concept, momentary net ecosystem exchange (NEE) and number 25 

concentration of negative intermediate ions at 2.0-2.3 nm (Nneg) were analysed for boreal and hemi-

boreal ecosystems across Finland and in Estonia. Nneg can tell us how effectively biogenic 

emissions from an ecosystem initiate the new particle formation. Four forests, three agricultural 

fields, an open peatland, an urban garden, and a coastal site were included focusing on summertime. 

We compared the NEE and Nneg at each site to the Hyytiälä forest as it is the dominant ecosystem 30 

type in Finland. Nneg was highest at the urban garden and lowest at the coastal site. The agricultural 

fields had higher or similar net CO2 uptake rate and higher Nneg than all studied forests. The median 

net CO2 uptake rate of the open peatland was only 31% of that in Hyytiälä, while the median Nneg 

was 77% of that in Hyytiälä. The median net CO2 uptake rate in the urban garden was 63% of that 

in Hyytiälä, implying the importance of urban green areas in CO2 sequestration. The coastal site 35 

was a minor CO2 source. Considering the combined effect of CO2 uptake and aerosol formation 

and the large area of forests in Finland, the forests are the most important ecosystems helping to 

mitigate climate warming.  

1. Introduction 

Carbon dioxide (CO2) is one of the most abundant greenhouse gases in the atmosphere and the 40 

most important cause of global warming (e.g. Jia et al., 2022). Terrestrial ecosystems have an 

essential role in the global CO2 budget through carbon uptake from the atmosphere by 

photosynthesis and its consequent sequestration to various pools (Walker et al., 2021; 

Friedlingstein et al., 2022). Globally, the net terrestrial ecosystem uptake of CO2 (i.e. the net 

carbon sink) is 3.1 Gt C yr-1, which accounts for 32% of CO2 emissions from fossil fuel combustion 45 

(Friedlingstein et al., 2022). Terrestrial carbon sequestration, i.e., the process of storing carbon in 

a carbon pool (IPCC 2022), takes place in both belowground carbon storages (Walker et al., 2021; 

and the reference therein). Belowground storage includes soil carbon pools, while aboveground 

storage is primarily in biomass. As a transition between land and open ocean, the coastal 

environment is identified as an import carbon sink and estimated to uptake 0.4 Gt C yr-1 (Regnier 50 
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et al., 2022). Large spatiotemporal variation of continental CO2 uptake is assumed due to different 

ecosystem and land-use types, climatic conditions, and management pathways (Chang et al., 2021; 

Friedlingstein et al., 2022). The challenge of increasing the carbon sequestration of ecosystems 

has been attracting more and more attention with the global goal of reducing CO2 concentrations 

in the atmosphere. 55 

Apart from acting as CO2 sinks, terrestrial ecosystems can influence climate by contributing to the 

formation of new aerosol particles (Kulmala et al., 2004; Kulmala et al., 2014; Kulmala et al., 

2020; Yli-Juuti et al., 2021; Junninen et al., 2022; Petäjä et al., 2022, Räty et al., 2023). Globally, 

aerosols have been reported to induce a net climate cooling effect. The bets estimate of the 

effective radiative forcing is −1.06 W m-2 (Jia et al., 2022). However, large uncertainties exist in 60 

the aerosol net radiative forcing estimation, which is tightly associated with the large 

spatiotemporal heterogeneity in their origin, number concentration and chemical properties.  

Atmospheric new particle formation (NPF) is an important source of cloud condensation nuclei 

(CCN) (e.g. Gordon et al., 2017; Ren et al., 2021; Zhang et al., 2023), which significantly 

contributes to aerosol-cloud and aerosol-radiation interaction (Rosenfeld et al., 2014; Ezhova et 65 

al., 2018, Artaxo et al., 2022; Petäjä et al., 2022). NPF takes place frequently in many environments, 

such as forests, urban cities, and coastal areas (e.g. Kerminen et al., 2018; Nieminen et al., 2018; 

Zheng et al., 2021). It has been reported that NPF is greatly enhanced due to the emission of 

biogenic volatile organic compounds (BVOCs) in boreal forests and peatlands (Junninen et al., 

2022; Petäjä et al., 2022). Notably, NPF events often take place regionally, extending over 70 

distances up to over 1000 kilometres (Kerminen et al., 2018). Multiple types of ecosystems may 

contribute to the NPF events in a region depending, for example, on the diversity of land use types. 

It remains unclear whether and how various ecosystems differ in their contributions to regional 

NPF, and what is the magnitude of such differences. 

To overcome the challenge of analysing the role of local ecosystems in regional aerosol formation, 75 

the concept of ‘CarbonSink+ potential’ was recently established (Kulmala et al., 2024). The 

CarbonSink+ potential enables a direct, ecosystem-scale comparison of CO2 uptake and the 

intensity of local intermediate ion formation (LIIF) in the atmosphere at the ecosystem scale. The 

LIIF can be approximated as the number concentration of negative intermediate ions in 2.0-2.3 nm 

size range (Tuovinen et al., 2024), to which the aerosol formation at 3-6 nm size range is 80 

proportional (Kulmala et al., 2024). The survival probability of small aerosol particles, which 
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describes the probability of a single particle growing to a certain size without being scavenged, is 

generally high for particles from 6 nm to CCN size in rural and remote environments (Kulmala et 

al., 2024; Stolzenburg et al., 2023). The local contributions of certain ecosystems to regional 

aerosol formation can thus be quantified by LIIF. 85 

This study utilized long-term datasets of intermediate ion concentrations and CO2 fluxes from 

various boreal and hemi-boreal ecosystems across Finland and in Estonia. In summary, four forests, 

one open peatland, three agricultural fields, one urban garden, and one coastal site were 

investigated. The negative intermediate ion concentrations and CO2 fluxes for these ecosystems 

were compared in different seasons with a focus on the summer. Based on the CarbonSink+ 90 

potential concept (Kulmala et al., 2024), the potential of these ecosystems to mitigate climate 

warming regarding CO2 uptake and aerosol production is discussed. 

2. Method 

2.1 Site description 

In this study, various ecosystem types, including forests, open peatland, agricultural fields, coastal 95 

area, and an urban garden were studied (Figure 1; Table 1). All stations are utilizing the SMEAR 

(Station for Measuring Ecosystem-Atmosphere Relations; Hari and Kulmala, 2005) concept. The 

detailed location, ecosystem type, meteorological characteristics and soil type for each site are 

presented in Table 1. The SMEAR I in Värriö in northern Finland and SMEAR II in Hyytiälä in 

southern Finland are forest sites both dominated by Scots pine (Kulmala et al., 2019; Kolari et al., 100 

2022), while the forests in Ränskälänkorpi and SMEAR Estonia at Järvselja are mixtures of 

coniferous and broadleaf trees (Table 1). While Hyytiälä and Värriö are upland forests, i.e., 

growing on mineral soil, Ränskälänkorpi is a drained-peatland forest (Laurila et al., 2021) and 

Järvselja has a mosaic of drained swamp, drained peat, and leached gleyic pseudo-podzols (Kangur 

et.al., 2021; Noe et al., 2015). Two of the agricultural (SMEAR-Agri) sites, i.e.  Haltiala, a cereal 105 

cropland and Viikki, a managed grassland which was renewed in 2023 with a cereal crop (Pihlatie 

et al., in preparation), are located in Helsinki. The third agricultural site, Qvidja, is a managed 

grassland located in southwest Finland (Heimsch et al., 2021). The SMEAR II site at Siikaneva is 

an open, pristine peatland site ~5 km southwest from the Hyytiälä forest site (Rinne et al., 2018). 

The SMEAR III at Kumpula, Helsinki is an urban background site and the University of Helsinki 110 
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botanical garden, and the city of Helsinki allotment garden are located in the southwest of SMEAR 

III station with high fraction of vegetation (Järvi et al., 2012). The coastal site is in Tvärminne 

Zoological Station (TZS). TZS is a 600-ha nature reserve at the Gulf of Finland entrance (northern 

Baltic Sea), southwest Finland (Virtasalo et al., 2023; Vähä et al., 2024). During the measurement 

period, the annual mean temperature for these sites ranged between 0.4 and 7.2°C, while the annual 115 

precipitation ranged between 500 and 750 mm (Table 1). SMEAR Estonia, Tvärminne, and Qvidja 

belong to hemi-boreal climate, while the other ecosystems are characterized by boreal climate. 

 

 

Figure 1. Land type distribution across Finland (Copernicus Land Monitoring Service 2018) and 120 

the studied sites with their ecosystem type shown.  
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Table 1. Meteorological and other main characteristics of the studied sites.  

Stations Location 
Selected 

period 

Mean air 

tempera-

ture (°C) 

Rainfall 

(mm/yr) 

Dominant 

plant species 

Peak 

LAI 
Soil type 

Forest 

Hyytiälä, 

SMEAR II 

61°51’N, 

24°17’E 

11/2009-

12/2022 
4.8 7091 

Scots pine 

and Norway 

spruce 

4.6 
Haplic 

podzol 

Värriö,  

SMEAR I 

67°46’N, 

29°35’ E 

3/2019-

12/2022 
0.4 6012 Scots pine 3.2 

Haplic 

podzol 

Ränskälän-

korpi 

61°10’N, 

25°16’E 

4/2021-

12/2022 
5.4 6003 

Norway 

spruce, Scots 

pine, downy 

birch 

---- 
Drained 

peat 

Järvselja 
58°16’N, 

27°16’E 

10/2016-

12/2020 
6.8 500-7504 

Birch spe-

cies, Scots 

pine, Nor-

way spruce 

6 
Pseudo 

podzolic 

Agricultural 

fields 

Haltiala,  

SMEAR 

Agri 

60°16’N, 

24°57’E 

6/2021-

12/2022 
6.5 7005 Oat 5.5 Silty clay 

Qvidja 
60°18’N, 

22°24’E 

12/2018-

8/2022 
7.0 6796 

Timothy, 

meadow fes-

cue 

6.2 
Clay 

loam 

Viikki,  

SMEAR 

Agri 

60°13’N, 

25°01’E 

7/2022-

6/2023 
6.5 7925 

Timothy 

(2022), Bar-

ley (2023) 

5.2 
Clay 

loam 

Peatland 
Siikaneva,  

SMEAR II 

61°50’N, 

24°12’E 

11/2019-

12/2022 
5.0 7107 

Moss and 

sedges 
0.6 Peat 

Urban garden 

Kumpula, 

SMEAR 

III 

60°12’N, 

24°58’E 

5/2016-

12/2022 
6.35 7315 Mixed ------ ------- 

Coastal area Tvärminne 
59°51’N, 

23°15’E 

6/2022-

8/2023 
7.25 6395 

Seagrass and 

seaweed 
----- 

Sedi-

ments 

1 Neefjes et al. (2022); 2 Kulmala et al. (2019); 3 Laurila et al. (2021); 4 Noe et al. (2015); 5 Finnish Meterology Insititute, 

only data at the same calendar year of selected period and same or nearby stations as NAIS and eddy covariance 125 

measurements were applied; 6 Heimsch et al. (2021); 7 Rinne et al. (2018); ---- data not available. 
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2.2 Atmospheric measurements: intermediate ions, CO2 flux, and meteorological parameters 

The number concentration of ions and particles and net ecosystem exchange of CO2 (NEE) were 

measured using a Neutral cluster and air ion spectrometer (NAIS, Airel Ltd; Mirme and Mirme, 130 

2013) and eddy covariance method (Aubinet et al., 1999), respectively. The meteorological data, 

e.g., air temperature, air humidity, and photosynthetic photon flux density (PPFD), were measured 

simultaneously at same heights with the eddy covariance setup. If the meteorological measurement 

at the same height was not available, it was replaced by the one from the nearest height. The types 

of analysers and detectors at each site are listed in Table S1.  135 

The NAIS is capable of continuous monitoring of ion and total particle concentrations and size 

distributions over the diameter range of 0.8-42 nm. The ions can be divided into three different 

size ranges, namely small ions (also named as cluster ions) in sub-2 nm size range, intermediate 

ions (2-7 nm), and large ions (>7 nm; Tammet et al., 2014). The time resolution was set to five 

minutes to optimize signal-to-noise ratio (Mirme and Mirme, 2013). The data were cleaned and 140 

quality-checked, considering e.g. the potential interference of rainfall and snow events on the 

measurements (Manninen et al., 2016). The ion and total particle concentration were further 

averaged over half an hour.  

In this study, we identified the concentration of negative intermediate ions, specifically within the 

range of 2.0-2.3 nm (Nneg), as an indicator of the local intermediate ion formation (LIIF). It is 145 

important to note that the intensity of LIIF can serve as an estimate of the local contribution to the 

regional NPF (Kulmala et al., 2024). It has been observed that Nneg displays distinct difference 

between new particle formation and non-formation periods of intermediate ions (2-7 nm; Tuovinen 

et al., 2024), thereby making Nneg a reliable indicator of LIIF. Moreover, the measurement of 

negative intermediate ions between 2.0 and 2.3 nm by NAIS provides a relatively high degree of 150 

accuracy, and their footprints are constrained within the ecosystem scale (sub-1 km; Tuovinen et 

al., 2024; Kulmala et al., 2024). Moreover, the median values of Nneg between 00:00 and 06:00, 

i.e. outside the active hours of the ecosystem, were taken as the background concentration at each 

site. The background value of Nneg was calculated separately for each season. A narrower time 

window for background concentration compared to the one proposed by Aliaga et al. (2023), 155 

21:00-06:00, was applied due to the more northern site Värriö with longer day length in the 

summer in this study. We then calculated the changes of Nneg (ΔNneg) by subtracting the 

background concentration in each season from Nneg. The diurnal variation of median ΔNneg were 
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presented together with Nneg (Section 3). The use of ΔNneg was assumed to eliminate the influence 

of background clustering at different sites, so that it reflects the intensity of negative intermediate 160 

ion production from the specific ecosystem. 

The eddy covariance measurement of CO2 fluxes is based on the turbulence theory, i.e. assumption 

that the turbulent flux remains relatively stable in a constant flux layer above the canopy (Lee and 

Hu, 2002), and it is equal to the covariance of vertical wind speed and ambient CO2 concentration 

in flat and horizontally homogeneous surface (Aubinet et al., 1999). The measurement system 165 

requires a fast-response analyser of the CO2 concentration (10 Hz) and 3-D sonic anemometer. 

The raw eddy covariance 10 Hz-data were pre-processed with standard steps, including despiking, 

detrending, dilution correction and 2-D coordinate rotation (Aubinet et al., 1999). The fluxes were 

further lag-time adjusted and corrected for spectral loss (Aubinet et al., 1999). Either EddyUH 

(Mammarella et al., 2016) or EddyPro (Fratini and Mauder, 2014), or the program introduced by 170 

Heimsch et al. (2021) were applied for the pre-processing for one site. The processed fluxes were 

accepted only if they met the stationarity and developed turbulence criterion (Foken and Wichura, 

1996) exceeding the site-specific friction velocity thresholds (Table S1). The quality-checked CO2 

fluxes at the forest sites were further partitioned into gross primary production (GPP) and 

ecosystem respiration (R) using site-specific dependence of R on the air and/or soil temperature 175 

and GPP on the PPFD and air and/or soil temperature (Kulmala et al., 2019).  

2.3 Data selection criteria 

In this study, the analyses were restricted to periods when both negative intermediate ion 

concentration and NEE were available (Table 1). Therefore, different time periods were applied 

for each of different sites. For Hyytiälä, Värriö, Järvselja, Qvidja, Siikaneva, and Kumpula sites, 180 

the long-term data were available for more than 3 years. At Hyytiälä, 12 years of continuous 

observations were used. For the sites with recently established atmospheric measurement, 

Tvärminne, Ränskälänkorpi, Haltiala and Viikki - data were available for approximately one to 

one and a half years. In total, 35 site-years of data were utilized in this study. As we focused on 

the potential of the ecosystem to uptake CO2 and form intermediate ions, the inter-annual variation 185 

at the sites was not discussed in this study (Kulmala et al., 2019; Alekseychik et al., 2021; Heimsch 

et al., 2021).  
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Due to the thinning of Hyytiälä forest in the beginning of year 2020, when 30% of tree basal area 

was removed (Aalto et al., 2023), data from that year were discarded from the analyses to exclude 

the immediate thinning effect on the studied variables. In the Ränskälänkorpi forest, the western 190 

part of the site was selectively harvested (~60% of basal area removed) and the eastern part of the 

site was clear-cut in the spring and summer of 2021 with control site left in the middle. The NAIS 

equipment was located in the border between the control and clear-out. The location was ~230 m 

east from the eddy covariance tower located in the border between control and selective harvested 

sites. In this study, only data with wind blowing from the selective harvested site from the west 195 

(WD>180°) and wind speed higher than 2 m s-1, were considered. Note that carbon removed from 

the site in harvested tree biomass is not accounted in the measured flux of CO2. At Kumpula site, 

data from the garden area, i.e., 180°-320°, were utilized (Järvi et al., 2012).  

At the agricultural sites, the management activity is relatively intense and can distinctly influence 

the CO2 fluxes (Heimsch et al., 2021). Note that the carbon removed in harvested crop biomass 200 

and the carbon added to the site in fertilizers do not directly contribute to the measured net flux of 

CO2. For the Qvidja site, only measurements from wind direction between 0° and 30° or 140° and 

360° were included to avoid interference from the nearby experimental areas. Similarly, at the 

Viikki site, only measurements from wind direction between 145° and 245° were included in the 

analysis to avoid data from other nearby fields. 205 

The open peatland at Siikaneva is surrounded by forests. By applying a footprint model (Kljun et 

al., 2015), 90% of the CO2 flux footprint is within ~200 m from the measurement tower, i.e., 

constrained within the peatland. At the coastal Tvärminne site, the NAIS instrument trailer is on 

the shore, and the eddy covariance mast is on an island, ~110 m east of the shore. Only data with 

wind direction from 95° to 165° and from 205° to 240°, i.e., from the coastal water without being 210 

disturbed by trees on nearby islands, were included in the analysis at this site. 

3. Results and discussion 

3.1 Comparison of momentary NEE in different ecosystems  

The diurnal variation of NEE between the studied forests, urban garden area, agricultural fields, 

open peatland, and coastal site in spring (MAM) and summer (JJA) are presented in Figures 2-4. 215 
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The corresponding comparison in the autumn (SON) and winter (DJF) are presented in Figures 

S1-S3.  

For the forest sites, the hemi-boreal Järvselja site tended to have the highest net CO2 uptake rate 

(absolute values of NEE when it is negative) at midday (10:00-14:00) in both spring and summer. 

The median net CO2 uptake rate at midday in Järvselja forest reached 12.2 μmol m-2 s-1 in summer. 220 

The lowest net CO2 uptake rate at midday was found in the northern Värriö site, with the median 

being 4.69 μmol m-2 s-1. This difference may be due to the higher air temperature in the hemi-

boreal Estonian site and lower temperature at Värriö (Figure S4), as the ecosystem productivity at 

high latitudes in Europe is typically temperature limited (Yi et al., 2010).  

In summer, the net CO2 uptake rate in the urban garden area at Kumpula was comparable with the 225 

drained peatland forest in Ränskälänkorpi. In the other seasons, the urban garden area was a net 

source of CO2 most of the time, similar to the results previously reported for the years 2006-2010 

from the same site (Järvi et al., 2012).  
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 230 

 

 

Figure 2. The 50th percentile (a), 25th percentile (b), and mean values (c) of NEE at each hour for 

the forest sites and urban garden in spring (MAM) and the corresponding 50th percentile, 25th 

percentile, and mean values in summer (JJA), (d), (e), (f), respectively. 235 

 

In the case of agricultural fields in summer (Figure 3), the Haltiala site had higher momentary net 

CO2 uptake than the other two agricultural sites. Notably, in spring, the croplands in Viikki and 

Haltiala were net sources of CO2, while the grassland in Qvidja was a CO2 sink during daytime 

with a similar uptake rate to the Hyytiälä forest. The different plant species (Table 1) and 240 

management activities between the agricultural fields likely caused the differences in their 

seasonal CO2 fluxes. The upper quartile of the momentary net CO2 uptake, i.e., absolute values of 

25th percentile NEE, was also about two times higher in Haltiala cropland than in Hyytiälä forest 

in summer. The midday momentary net CO2 uptake rate in Viikki cropland was slightly higher 

than that in Hyytiälä forest, while that in Qvidja agricultural grassland was slightly lower than in 245 

Hyytiälä. It is also important to note that the harvests of plant biomass decreased local carbon 
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storage which was not accounted for in the measured CO2 fluxes. Qvidja and Viikki agricultural 

sites were harvested twice in summer and the harvest in Haltiala cropland was done only at the 

end of the growing season, whereas the typical rotation length in managed boreal are 60-100 years 

in Southern Finland.  250 

 

 

 

Figure 3. The 50th percentile (a), 25th percentile (b), and mean values (c) of NEE at each hour for 

the agricultural fields in spring (MAM) and the corresponding 50th percentile, 25th percentile, and 255 

mean values, (d), (e), (f), in summer (JJA), respectively.  

 

The CO2 uptake rate and respiration rate (nighttime CO2 fluxes) in the open peatland and coastal 

area (Figure 4) were much lower than those in the agricultural fields and forests during spring and 

summer. Still, the Siikaneva peatland remained a weak net sink of CO2 during daytimes in all the 260 

seasons except in winter. The midday NEE at Tvärminne were -0.26 and 0.01 μmol m-2 s-1 in 

spring and summer, respectively. Hence, net CO2 uptake possibly appears in spring in this Baltic 

coastal area under certain conditions, i.e., when the partial pressure of CO2 in the water is lower 
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than that in the air (Roth et al., 2023). This may be induced by phytoplankton and submerged 

vegetation CO2 uptake in the spring (Roth et al., 2023). 265 

 

 

 

Figure 4. The 50th percentile(a), 25th percentile (b), and mean values (c) of NEE at each hour for 

the peatland and coastal area in spring (MAM) and the corresponding 50th percentile, 25th 270 

percentile, and mean values in summer (JJA), respectively. 

 

Additionally, the Ränskälänkorpi and Järvselja forests turned into a CO2 source 1-2 hours earlier 

in the late afternoon of summer than the other two forests (Figure 2). Note that the soil at 

Ränskälänkorpi and Järvselja is mainly drained peatland and water-logged soil (Table 1), 275 

respectively, which is indicated by high organic carbon content (Laurila et al., 2021; Noe et al., 

2015). The higher air temperature and soil organic carbon content may drive higher respiration at 

the two sites, which is reflected in the nighttime fluxes (Figure 2). Hence, even though the GPP at 

Järvselja and Ränskälänkorpi in the late afternoon were close to that at Hyytiälä forest (Figure 5), 
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net emissions of CO2, i.e., positive NEE values, were observed at these two forest sites in the 280 

earlier and later hours of the day.  

 

 

 

 285 

Figure 5. The 50th percentile (a), 75th percentiles (b), and mean values (c) of GPP at each hour for 

the forest sites in spring (MAM) and the corresponding 50th percentile, 75th percentile, and mean 

values in summer (JJA), (d), (e), (f), respectively. 

3.2 Comparison of negative intermediate ion concentrations across different ecosystems  

The comparison of Nneg between different ecosystems in spring and summer are presented in 290 

Figures 6-8. It was assumed that negative intermediate ions at 2.0-2.3 nm can describe how 

efficiently the ecosystem can produce new aerosol particles (Kulmala et al., 2024; Tuovinen et al., 

2024). The corresponding values of Nneg in autumn and winter were much lower than those in 

spring and summer (Figures S5-S7). The median values of Nneg in the daytime in spring were 

higher than those in the Haltiala and Viikki croplands, Siikaneva peatland, and Kumpula urban 295 
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garden area. At the other sites, summer median values were higher. In contrast, the difference 

between 75th and 50th percentile of Nneg in spring was higher than that in summer in all the studied 

sites. The larger upper quartile deviation of Nneg in spring implied that the LFII were either more 

frequent or stronger in spring than in summer at all the sites (Dal Maso et al., 2005; Dada et al., 

2018; Nieminen et al., 2018). For all the sites, the diurnal variation of negative intermediate ions 300 

in spring and summer was clear, i.e., a distinct peak in the daytime. In the winter, the diurnal cycle 

of Nneg was not visible in any of the studied sites (Figures S6-S8). This agrees with the observation 

that the global radiation and air temperature are observed to correlate positively with concentration 

of negative intermediate ions at 2-4 nm in the Hyytiälä boreal forest (Neefjes et al., 2022). 

 305 

 

 

 

Figure 6. The 50th percentile (a) and 75th percentile (b) of negative intermediate ions (Nneg) at 2.0-

2.3 nm (Nneg) at each hour and the daily fluctuations of Nneg (c) for the forests and urban garden in 310 

spring (MAM) and the corresponding 50th percentile, 75th percentile, and normalized concentration 

for median values in summer (JJA), (d), (e), (f), respectively. 
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Figure 7. The 50th and 75th percentile (b) of negative intermediate ions (Nneg) at 2.0-2.3 nm at each 315 

hour and the daily fluctuations of Nneg (c) for the agricultural fields in spring (MAM) and the 

corresponding 50th percentile, 75th percentile and normalized concentration for median values, (d), 

(e), (f), in summer (JJA), respectively. 
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 320 

 

 

Figure 8. The 50th percentile (a) and 75th percentile (b) of negative intermediate ions (Nneg) at 2.0-

2.3 nm at each hour and the daily fluctuations of Nneg (c) for the peatland and coastal area in spring 

(MAM) and the corresponding 50th percentile, 75th percentile, and normalized concentration for 325 

median values in summer (JJA), (d), (e), (f), respectively. 

 

The daily fluctuations of Nneg (ΔNneg) were calculated by subtracting the background concentration 

from Nneg in each season (Section 2.2). In spring, median ΔNneg in the midday for the forests ranged 

between 0.8 and 2.0 cm-3 (Table S2), with the lowest value in Järvselja and the highest value in 330 

Hyytiälä forest. The midday mean ΔNneg at the Kumpula urban garden area was 4.9 cm-3, which 

was higher than in any of the studied forests. The presence of more abundant nucleation precursors 

at the Kumpula urban area may facilitate the ion formation (Nieminen et al., 2018). In summer, 

ΔNneg decreased compared to spring at all the sites except Siikaneva peatland and Tvärminne 

coastal areas. Seasonal changes in the clustering precursors and their dependence on air 335 

temperature and radiation may drive the seasonal variation of ΔNneg at all the sites.  
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It is notable that all the agricultural sites had higher midday ΔNneg than the forest sites in spring, 

varying between 2.3 and 7.7 cm-3. The application of fertilizers in agricultural fields is known to 

remarkably increase the atmospheric concentration of ammonia (NH3) (Olin et al., 2022). NH3 can 

stabilize the critical clusters in the nucleation process driven by sulfuric acid (H2SO4) (Kulmala et 340 

al., 2013). H2SO4 in the air is majorly formed by oxidation of sulphur dioxide, which can be 

transported from a longer range than the intermediate ions. However, the frequency of NPF events 

was found not to increase after the fertilization in Qvidja grasslands (Dada et al., 2023). Similarly, 

the frequency of daytime NPF events did not correlate with agriculture activities in a cropland in 

France (Kammer et al., 2023). Dada et al. (2023) observed that NH3, H2SO4, and low volatile 345 

organic compounds originating from BVOC oxidation play a synergistic role in clustering in 

Qvidja, resulting in a higher formation rate and number concentration of particles than in Hyytiälä 

forest. Note that since the Haltiala and Viikki croplands are located in Helsinki, the nucleation 

precursors and thereby the nucleation rate may be enhanced by anthropogenic pollution in the city. 

The exact reasons why there were higher Nneg and ΔNneg at these agricultural sites require more 350 

measurement of the clustering precursors. 

Furthermore, in spring and summer, the night-time Nneg increased again at around 20:00 for all the 

sites, suggesting a ubiquitous nighttime clustering in warm seasons (Mazon et al., 2016). Moreover, 

in summer, the 75th percentile of nighttime Nneg at Viikki was comparable with the daytime Nneg. 

The decreased boundary layer height (Chen et al., 2016; Neefjes et al., 2022), especially in clear 355 

nights, may also facilitate the accumulation of formed clusters and eventually lead to the nighttime 

peak. 

3.3 Potential of different ecosystems to contribute to CO2 uptake and negative intermediate 

ion production 

Since we aimed to compare the potential of ecosystems for net CO2 uptake and local production 360 

of negative intermediate ions (LIIF), the most active periods for the ecosystem plants are discussed 

in detail in this section, i.e., midday in summertime. The potential of the studied ecosystems for 

net CO2 uptake and LIIF at midday during summertime are listed in Table 2. For median values in 

summer, Nneg was found to be highest in the urban garden, followed by the agricultural fields 

(Figure 9). The agricultural fields generally had higher Nneg than the studied forests. The open 365 

peatland had lower Nneg than Hyytiälä forest but higher than the other forests. The Nneg at the 
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coastal area was the lowest. The momentary net CO2 uptake rate at midday in summer was highest 

in agricultural fields, followed by the forests. The urban garden in this study displayed distinct net 

CO2 uptake, lower than the forests and higher than the open peatland. The coastal area at midday 

in summer was a very weak CO2 sink. In the urban garden area in Kumpula, median Nneg was 2.2 370 

times of that in Hyytiälä forest, while the median NEE only reached 63% of that in Hyytiälä forest.  

The variation of momentary NEE and Nneg were distinct even between a similar type of ecosystem 

in a similar latitude, e.g., within forests and agricultural fields. For forests, the most southern 

Järvselja had the highest net CO2 uptake rate, while the median Nneg in the midday in summer was 

similar to Ränskälänkorpi and 53% of that in Hyytiälä forest. Hyytiälä forest had higher Nneg than 375 

the other forests. For agricultural sites, the net CO2 uptake rate at Qvidja and Viikki were close to 

that in Hyytiälä forest, while it was much higher in Haltiala croplands than in Hyytiälä forest. On 

the contrary, the Nneg were highest in Qvidja between the three agricultural sites, and median Nneg 

in the other two sites were slightly smaller than in Hyytiälä forest.  

Another potent greenhouse gas, methane (CH4) can be emitted through microbial activities in 380 

anoxic conditions, e.g., peatlands and coastal areas (Mathijssen et al., 2022; Roth et al., 2023). 

Considering that CH4 has a sustained-flux global warming potential 45 times of CO2 over 100 

years (Roth et al., 2023; and the reference therein) , the net CO2 equivalent emission of CH4 is 

estimated 2.5-8.6 times of CO2 uptake in Siikaneva peatland (Mathijssen et al., 2022). CH4 

emissions may largely compensate the CO2 uptake in open and non-ditched peatlands. Similarly, 385 

the emission of CH4 from coastal environment around Baltic Sea may offset 28% of the CO2 sink 

in macroalgae-dominated coastal area (Roth et al., 2023). For ions, the summertime midday 

median Nneg at the peatland in Siikaneva was 77% of that in Hyytiälä forests (Table 2). As the open 

peatland is surrounded by forest within 1 km, the negative ion at 2.0-2.3 nm may be influenced by 

nearby forests. Also, the terpene emissions from the peatlands can initiate stronger NPF than in 390 

the Hyytiälä boreal forest (Junninen et al., 2022; Huang et al., 2024). However, these events were 

majorly reported to occur at late evening.  

The CarbonSink+ potential, especially CO2 uptake, may largely vary within agricultural fields in 

Finland. Agricultural fields may be highly productive in local formation of negative intermediate 

ions, affected by their vegetation and management practises. However, considering the much 395 

larger area of forests in Finland than that of agricultural fields (Table 2), boreal forests in Finland 
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in total are likely the largest contributor of climate cooling when considering the CO2 uptake and 

local new particle formation. 

 

 400 

Figure 9. Comparison of NEE and negative intermediate ions at 2.0-2.3 nm at midday in summer 

between the sites. The error bars for x axis are 10th and 25th percentile for NEE, while they are 75th 

and 90th percentile of the negative intermediate ions at each site for y axis. 
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Table 2. Comparison of NEE and negative intermediate ions at 2.0-2.3 nm size range across 404 

the hemi-boreal and boreal ecosystems at midday (10:00-14:00) in summer. 405 

Ecosystem Site 

Area in 

Finland 

(ha) 

 Median 

Nneg 

(1/cm3) 

Median 

Nneg/median 

Nneg, Hyytiälä  

75th percentile 

Nneg/75th 

percentile Nneg, 

Hyytiälä  

Midday NEE 

(µmol m-2 s-1) 

Median 

NEE/ 

median 

NEEHyytiälä  

25th percentile 

NEE/25th 

percentile 

NEEHyytiälä  

Forest 

Hyytiälä 

20.3 

milliona 

3.27 1 1 -11.84 1 1 

Värriö 2.18 0.67 0.87 -4.69 0.4 0.52 

Järvselja 1.72 0.53 0.58 -12.23 1.03 1.15 

Drained 

peatland 

forest 

Ränskälänk

orpi 

4.2 

milliona 
1.74 0.53 0.57 -6.35 0.54 0.61 

Agricultural 

field 

Haltiala 

2.3 

milliona 

3.08 0.94 1.06 -19.69 1.66 1.88 

Qvidja 3.32 1.01 1.17 -8.37 0.71 0.86 

Viikki 2.88 0.88 0.97 -13.52 1.14 1.13 

Open 

peatland 
Siikaneva 

0.21 

millionc 
2.51 0.77 0.85 -3.65 0.31 0.31 

Urban 

garden area 
Kumpula ----- 7.33 2.24 2.86 -7.44 0.63 0.73 

Coastal area Tvärminne ----- 1.46 0.45 0.53 0.01 0.00 0.01 

a Natural Resources Institute Finland 2022; b The area of oligotrophic open fens (Turunen and Valpola 2020); 406 

----- data not available 407 

 408 

4. Conclusions 409 

The CarbonSink+ potential concept was established recently and provides a direct comparison 410 

of local contribution to CO2 uptake and aerosol formation at ecosystem scale. The value of 411 

negative intermediate ion concentration at 2.0-2.3 nm size range (Nneg) was applied as an 412 

indicator of the corresponding contribution of each ecosystem to produce new aerosol particles 413 

which, after their subsequent growth to larger sizes, are able to cool the atmosphere in a 414 

regional scale. Following this concept, net ecosystem CO2 exchange fluxes (NEE) and Nneg 415 

were analysed in ten hemi-boreal and boreal ecosystems in Finland and Estonia. The boreal 416 
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forest in Hyytiälä was chosen as a reference site, to which the values of NEE and Nneg at all 417 

other sites were all compared. 418 

The results showed that the agricultural fields had similar or even higher CO2 uptake potential 419 

compared to Hyytiälä forest during the summer. Note that the decreased carbon storage due to 420 

harvest in the fields was not taken into account in this study. A distinct CO2 uptake in the urban 421 

garden at midday in summer was observed, lower than that in Hyytiälä forest but higher than 422 

observed in the open peatland. The coastal area considered in this study remained a very small 423 

CO2 source during summertime. The differences in Nneg between the studied sites were not as 424 

large as those in NEE. Ubiquitous nighttime clustering was observed across the ecosystems. 425 

At midday in summer, Nneg was highest in the urban garden, followed by the agricultural fields. 426 

The coastal area had the lowest Nneg. The forest sites generally had lower Nneg than the 427 

agricultural sites. The Nneg in the open peatland was lower than Hyytiälä forest but higher than 428 

other studied forests. Note that the urban garden and agricultural sites in Helsinki might be 429 

more influenced by air pollution compared to the forests and open peatland that were 430 

background sites. Overall, considering the large area of forests in Finland and Estonia, the 431 

forests in total have the largest potential of climate cooling when considering the CO2 uptake 432 

and local new particle formation. 433 
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