Potential of carbon uptake and local aerosol production in boreal

and hemi-boreal ecosystems across Finland and in Estonia

Piaopiao Ke¹, Anna Lintunen^{1,2}, Pasi Kolari¹, Annalea Lohila^{1,3}, Santeri Tuovinen¹, Janne Lampilahti¹, Roseline Thakur¹, Maija Peltola¹, Otso Peräkylä¹, Tuomo Nieminen¹, Ekaterina Ezhova¹, Mari Pihlatie^{4,5}, Asta Laasonen, Markku Koskinen^{4,5}, Helena Rautakoski³, Laura Heimsch³, Tom Kokkonen¹, Aki Vähä¹, Ivan Mammarella¹, Steffen Noe⁶, Jaana Bäck², Veli-Matti Kerminen¹, Markku Kulmala¹

¹ Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland

²Institute for Atmospheric and Earth System Research (INAR) / Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, 00014, Finland

³ Finnish Meteorological Institute, Finland

5

⁴ Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland

⁵ Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland

⁶ Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia

Parameter	Forest				Agricultural fields			Peatland	Urban graden	Coastal area
	Värriö	Hyytiälä	Ränskälänkorpi	Järvselja	Haltiala	Qvidja	Viikki	Siikaneva	Kumpula	Tvärminne
CO ₂ /H ₂ O fast analyzer	LI-7200, LI-COR Bioscien ces, USA	LI-6262 (before 2018.03) and LI- 7200 (after 2018.03), LI- COR, Biosciences, USA	LI-7200, LI- COR Biosciences, USA	LI-7200, LI-COR Bioscience s, USA	LI-7200, LI-COR Bioscien ces, USA	LI-7200, LI- COR Biosciences, USA	LI- 7200, LI- COR Bioscie nces, USA	LI-7200, LI- COR Biosciences, USA	LI-7200, LI- COR Biosciences, USA	LI-7200RS, LI-COR Biosciences, USA
3-D sonic anemometer	METEK uSonic-1, Elmshor n, Germany	Gill HS-50 anemometer, Gill Instruments, UK	METEK uSonic-3, Elmshorn, Germany	METEK uSonic-3, Elmshorn, Germany	METEK uSonic-3, Elmshor n, Germany	METEK uSonic-3, Elmshorn, Germany	Metek uSonic- 3, Elmsho rn, Germa ny	METEK uSonic-1, Elmshorn, Germany	METEK uSonic-1, Elmshorn, Germany	METEK uSonic-3, Elmshorn, Germany
Air Temperature (°C)	PT-100	PT-100	Hmp155	PT-100	HC2, Rotronic, Switzerla nd	HMP155, Vaisala, Finland	HMP11 0, Vaisala	HC2, Rotronic, Switzerland	PT-100	HMP155, Vaisala, Finland
Relative humidity	MP106A , Rotronic, Switzerla nd	MP102H Rotronic, Switzerland (after 2012.06)	HMP155, Vaisala, Finland	WXT520, Vaisala, Finland	HC2, Rotronic, Switzerla nd	HMP155, Vaisala, Finland	HMP11 0, Vaisala	HC2, Rotronic, Switzerland	HMP243, Vaisala, Finland	HMP155, Vaisala, Finland
PAR (mmol/m ² /s)	LI- 190SB, LI-COR	LI-190SZ quantum sensor,	PQS, Kipp & Zonen B.V., Netherlands	Delta-T Pyranomet er (only for	Li-190R, LI-COR	PQS, Kipp & Zonen	Kipp& Zonen PQS 1,	Li-190R, LI- COR	PARlite, Kipp &	

20 Table S1. Analyzer and meteorological sensors for air temperature, humidity, PAR, global radiation

	Bioscien	LI-COR		global	Bioscien	B.V.,	B.V.,	Biosciences,	Zonen B.V.,	
	ce, USA	Biosciences, UK		radiation)	ces, USA	Netherlands	Netherl ands	USA	Netherlands	
Measuremen t height	15 m	23.3 m before 3/2018, 27 m after 3/2018	29 m	30 m	3.0 m	2.3 m	2.5m	3.0 m	29 m	4.2 m

Ecosystem	Site	Spring ΔN_{neg} (1/cm ³ , 50%)	Comparing with Hyytiälä median $\Delta N_{ m neg}$	Comparing with Hyytiälä 75 th percentile ΔN_{neg}	Summer ΔN_{neg} (1/cm ³ , 50%)	Comparing with Hyytiälä median ΔN_{neg}	Comparing with Hyytiälä 75 th percentile <u>∆N_{neg}</u>
	Hyytiälä	2.03	1	1	1.45	1	1
Forest	Värriö	0.84	0.41	0.43	0.98	0.68	0.98
	Järvselja	0.73	0.36	0.28	0.66	0.45	0.55
Drained peatland forest	Ränskälänkorpi	0.76	0.37	0.5	0.67	0.46	0.59
	Haltiala	7.66	3.77	2.22	1.88	1.30	1.29
Agricultural land	Qvidja	2.36	1.16	1.17	1.70	1.17	1.34
	Viikki	2.28	1.12	0.98	1.69	1.17	1.16
Peatland	Siikaneva	1.09	0.54	0.51	1.51	1.04	1.02
Urban vegetated area	Kumpula	4.86	2.4	2.41	5.03	3.47	3.78
Coastal area	Tvärminne	-0.15	-0.07	0.06	0.42	0.29	0.44

Table S2. Comparison of across the hemi-boreal and boreal ecosystems in midday (10:00-14:00) of spring and summer.

Figure S1. The 50th percentile (a), 25th percentile (b), and mean values (c) of NEE at each hour for
the forest sites and urban gardens in the autumn and the corresponding 50th percentile, 25th
percentile, and mean values in the winter, (d), (e), (f), respectively.

Figure S2. The 50th percentile (a), 25th percentile (b), and mean values (c) of NEE at each hour for
the agricultural lands in the autumn and the corresponding 50th percentile, 25th percentile, and
mean values, (d), (e), (f) in the winter, respectively.

Figure S3. The 50th percentile (a), 25th percentile (b), and mean values (c) of NEE at each hour for
the open peatland and coastal area in the autumn and the corresponding 50th percentile, 25th
percentile, and mean values, (d), (e), (f) in the winter, respectively.

Figure S4. The median diurnal variation of the air temperature in the forests (a), agricultural fields(b), and peatland and coastal area (c) in each season.

Figure S5. The 50th percentile (a), 75th percentile (b), and median daily fluctuations (c) of negative
ions at each hour for the forest sites and urban gardens in the autumn and the corresponding 50th
percentile, 75th percentile, and median daily fluctuations in the winter, (d), (e), (f), respectively.

Figure S6. The 50th percentile (a), 75th percentile (b), and median daily fluctuations (c) of negative
ions at each hour for agricultural fields in the autumn and the corresponding 50th percentile, 75th
percentile, and median daily fluctuations in the winter, (d), (e), (f), respectively.

Figure S7. The 50th percentile (a), 75th percentile (b), and median daily fluctuations (c) of negative
ions at each hour for open peatland and coastal area in the autumn and the corresponding 50th
percentile, 75th percentile, and median daily fluctuations in the winter, (d), (e), (f), respectively.