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Abstract. The CICERO Simple Climate Model (CICERO-SCM) is a lightweight, semi-empirical model of global climate.
Here we present a new open-source Python port of the model for use in climate assessment and research. The new version of
CICERO-SCM has the same scientific logic and functionality as the original FORTRAN version but it is considerably more
flexible and open source via Github. We describe the basic structure, improvements compared to the previous FORTRAN
version, together with technical descriptions of the global thermal dynamics and carbon cycle components and the emissions
module, before presenting a range of standard figures demonstrating its application. A new parameter calibration tool is
demonstrated to make an example calibrated parameter set to span and fit a simple target specification. CICERO-SCM is

fully open source and available through GitHub (https://github.com/ciceroOslo/ciceroscm).

1 Introduction

Simple Climate Models (SCMs), also termed Reduced-Complexity Models (RCMs), have an important role in climate
modelling. While Earth System Models (ESMs) are used to resolve climate processes on a resolved grid, they remain
extremely resource intensive, however, much simpler models can reproduce key globally aggregated outputs (e.g., globally
averaged surface temperature) (Balaji et al., 2017; Schneider and Thompson, 1981; Wigley and Raper, 1992). Thus, simple
models can be used to both help understand and explain physical processes (e.g. Peters et al., 2011) or be calibrated to
replicate the behaviour and uncertainty across a range of more complex ESMs (Meinshausen et al., 2011). SCMs can be used
to estimate the climate uncertainties across thousands of emissions scenarios in a short run time (Kikstra et al., 2022),
something which remains impossible for ESMs with today’s computing power, and have been used to quantify uncertainty in
key climate indicators such as climate sensitivity (Sherwood et al., 2020) and the remaining carbon budget (Lamboll et al.,
2023).

Even though SCMs can be used to emulate more complex models, there remains value in maintaining a diversity of SCMs
because the reduced form representation of the climate often rests on a set of structural assumptions and modeling
philosophies which limit the response of the model (Nicholls et al., 2021, 2020). SCMs can exhibit a wide range of

complexity, ranging from simple one- or two-layer energy-balance models which are used in the operational calculation of
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emission metrics (Aamaas et al., 2013) up to more comprehensive representation of the carbon cycle and energy balance
(e.g. (Gasser et al., 2020; Meinshausen et al., 2011)). There are also Intermediate Complexity Models, sitting somewhere
between an SCM and ESM, but for the purpose of this article, we consider SCMs to be models which allow simulation of a
scenario on a single CPU in seconds or less.

The different complexity levels of SCMs can lead to different outcomes when key physical processes are constrained from
data, such as tradeoffs in climate forcers, and carbon-climate feedbacks on different time scales, such that models with
different structures constrained on the same data can exhibit different future constrained projection distributions (Jenkins et
al., 2021; Kikstra et al., 2022; Lamboll et al., 2023). While SCMs can be calibrated to replicate the behaviour of more
complex models, there is also a diversity of ways to do this. Calibration could be done only on the historical period using
observational based data (e.g., (Aldrin et al., 2012)), or on complex model simulations over longer time periods using
scenarios (e.g., out to 2100, (Meinshausen et al., 2011)) or using idealized simulations (e.g. response to abrupt or gradual
changes in CO; concentration) (Olivié and Stuber, 2010). Further, different variables could be used in the calibration, such as
concentrations, surface temperature, and ocean heat content (Smith et al., 2021b). Subjective calibration choices can also
lead to differences in climate outcomes (Sanderson, 2020). Each level of model complexity and calibration method has
advantages and disadvantages, and to ensure robust and policy relevant results, it is necessary to maintain and develop a
range of SCMs.

The original version of the CICERO*! Simple Climate Model (CICERO-SCM) was developed in 1999 (Fuglestvedt and
Berntsen, 1999) to study the effects of future emissions on global mean surface temperature and sea level rise. Atmospheric
carbon dioxide (CO,) was estimated using an ocean mixed-layer pulse response function (Alfsen and Berntsen, 1999; Joos
and Bruno, 1996). The response to other long lived greenhouse gas emissions were estimated using simple first-order decay
equations, and the radiative forcing was estimated using simple proportionality between concentration and forcing for each
gas. Direct and indirect radiative forcing of aerosols, radiative forcing of tropospheric and stratospheric ozone (Os) and
stratospheric water vapor were implemented using simplified expressions. The total radiative forcing provided boundary
conditions for an energy-balance upwelling-diffusion ocean model (Schlesinger et al., 1992). A time-varying lifetime of
methane (CH.) was introduced after the IPCC (Integovernmental Panel on Climate Change) Third Assessment Report based
on a linear interpolation of the changes in the hydroxyl radical (OH) concentration with CH4 concentration, nitrogen oxides
(NOx), carbon monoxide (CO) and non-methane volatile organic carbon (NMVOC) emissions (table 4.11 footnote b of
(Ehhalt et al., 2001)). Since then, the core structure of the CICERO-SCM has remained relatively unchanged, though

parameters have been constantly updated in line with the best available science. The model has been used in a range of
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studies, such as, historical contributions to global warming (den Elzen et al., 2005, 2013; Hohne et al., 2011; Skeie et al.,
2017, 2021), global warming from different economic sectors (Skeie et al., 2009; Tronstad Lund et al., 2012) estimates of
the climate sensitivity (Aldrin et al., 2012; Skeie et al., 2014, 2018), simple model intercomparisons (Nicholls et al., 2021,
2020) and assessment of specific mitigation strategies (Myhre et al., 2011; Torvanger et al., 2012, 2013). The CICERO-SCM
was also used in the IPCC Sixth Assessment Report (Guivarch et al., 2022; Kikstra et al., 2022; Smith et al., 2021b).

In this article we describe and assess an updated version of the CICERO-SCM, now written in Python and made openly
accessible to encourage community development and engagement. The model has also been supplemented with features for

parameter calibration, and easier parallel runs.

2 Model structure

CO,: Carbon
cycle model. CO,, CH,, N,O: Etminan et al

Other LLGHGs: IPCC ARG

Concentration

concentrations_emissions_handler.py

upwelling_diffusion_model.py

Effective
Radiative Forcing

Temperature and
ocean heat
content

Short lived Climate Forcers,
Emission to forcing
relationship

Energy
Balance
Model

ciceroscm.py

Figure 1: The core model structure. The concentrations_emissions_handler.py module calculates concentrations from emissions
using a carbon cycle model for atmospheric COz and first order decay equations for other components. It then calculates forcing
from concentrations using the (Etminan et al. 2016) scheme for CO2, CH4 and N20, and updated proportionality relationships for
other gases. Simplified expressions calculate forcing directly from emissions for aerosols, Os and stratospheric water vapour. The
effective radiative forcing is passed to the upwelling_diffusion_model.py where it is used as input to the ocean energy balance model
(Schlesinger, Jiang, and Charlson 1992) to calculate temperature and ocean heat content. This process is repeated for each time
step, and looping and information passing is handled by the ciceroscm.py control module.

Figure 1 shows the overall structure and flow of the CICERO-SCM. The core of the model consists of one module,
concentrations_emissions_handler.py (see section 2.1), which calculates concentrations from emissions, and forcing from
concentrations or directly from emissions, and another module, upwelling_diffusion_model.py, which calculates temperature
from forcing, using an upwelling diffusion energy balance model (UDM/EBM) (see section 2.2). A main control module,
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ciceroscm.py, calls these two, transfers data from the emissions to forcing module to upwelling diffusion module, loops over
years, and takes care of outputs. The model can be run directly from input concentrations or forcing time series, in addition
to running all the way from emissions to temperatures. Inputs and outputs are all global and on yearly time resolution with
some exceptions. The upwelling_diffusion_model.py has two hemispheres and does calculations using 12 sub yearly
timesteps to ensure convergence. The forcing input is therefore for two hemispheres. Volcanic forcing input is on a monthly
time resolution (see section 2.2 and Appendix C for further details). The carbon cycle uses 24 sub yearly timesteps to
integrate the carbon response, however, inputs and outputs only yearly values (see section 2.1.1). In section 2.3 we describe

the main differences between the new Python port version and the previous FORTRAN implementation.

The code also includes various modules and help functions to handle perturbations (perturbations.py), utilities used by
multiple modules (pub_utils.py and _utils.py), handling of input in various formats (input_handler.py) and making default
summary plots (make_plots.py). It also ships with a subpackage for handling parallel runs including a parallelization wrapper
(cscmparwrapper.py), a module to define a distribution run (distributionrun.py) and modules to build and define a
distribution and do calibration (_configdistro.py and calibrator.py). All these tools will be described in more detail in section
2.4,

A regular run of the code will start by defining a CICERO-SCM instance, that can then be used to run the model for the
same experiment, but with various parameter values. Table 1 shows the parameters for creation of such an instance. A
default run will lead to output files being generated, but the outputs can also be held in a dictionary with separate keys and
corresponding values for outputs from the upwelling_diffusion_model.py and additional keys for datasets for concentration,
emissions and forcing. A run can also produce automatic plots. Appendix A contains figures showing the automatic plots

generated from a default configuration emission to forcing run of the CMIP6 historical experiment (Figs. A1-All).

Name Description

Mandatory parameters

gaspam_file List of gases and aerosols to be used in the model. See
also Table 3.

Optional parameters

Sunvolc Parameter to include solar and volcanic forcing. If set to
1, they will be included, see section 2.1.12. Datasets for
this forcing can be supplied by the user or taken from

defaults that come with the model.

rf_sun_file Path to solar forcing file, see section 2.1.12

rf_volc_file Path to volcanic forcing file, see section 2.1.12




perturb_forc_file

Forcing timeseries to be added as a perturbation to the
forcing timeseries calculated from the
concentrations_emissions_handler. See section 2.1.13

for details.

perturb_em_file

Emissions timeseries to be added as a perturbation to
emissions from a predefined emissions file. See section
2.1.13 for details.

Parameters for concentrations or emissions

configurations

concentrations_file

File with concentration timeseries of gases. Used in
concentration driven run. For emission driven run, the
pre-industrial values from this file is used and the

values from nystart to emstart for all gases except COx.

emissions_file

File with emission timeseries of gases. (Used even in

concentration driven runs for short lived climate

forcers)

nat_ch4 file File with natural emissions of CH4. See section 2.1.3 for
details

nat_n2o_file File with natural emissions of N,O. See section 2.1.4
for details

Idtm Sub yearly timesteps in concentration emission model,
used to calculate the CO: concentrations from
emissions.

Nystart Start year of the run

Nyend End year of the run

Emstart Emissions start year, with concentrations used between
nystart and emstart if they are different

rs_function Custom mixed layer pulse response function. Argument
must be a function that takes in step number and idtm,
can be generated from an array using
make_rs_function_from_arrays in  pub_utils. See
section 2.1.1 for description of default value and use.

rb_function Custom mixed layer pulse response function. Argument
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must be a function that takes in step number and idtm,
can be generated from an array using
make_rb_function_from_arrays in  pub_utils. See

section 2.1.1 for description of default value and use

conc_run Optional Boolean parameter too specify that the run is
meant as a concentration driven run.

Parameters for a pure forcing configuration

forc_file Can be single column of data, contain years as a
column, have forcings per various forcing components,
or contain columns for FORC_NH and FORC_SH for a
hemispherically split of forcing

Table 1: Parameters used in defining a ciceroscm model object.
2.1 Emissions to radiative forcing — concentrations_emissions_handler

The module concentrations_emissions_handler.py calculates the effective radiative forcing time series. Each timestep this is
done by first calculating concentrations from emissions. In a concentration driven run, this is done by simply reading the
concentrations in. Otherwise, a carbon cycle described in section 2.1.1 is employed to calculate the CO, concentrations, a
mass balance equation is used for the other components as described in section 2.1.2, with special modifications to account
for multiple decay processes and natural emission for CH4 (section 2.1.3) and nitrous oxide (N2O) (section 2.1.4). When
concentrations have been calculated, forcing is derived. For this, the scheme described in (Etminan et al., 2016) is first used
to calculate the forcing from CO;, CH4 and N,O (section 2.1.5). Then looping over all other chemical components, forcing
will be calculated using tabulated concentrations to forcing values (section 2.1.6) or calculated specifically for various
species (see section 2.1.7 for tropospheric Os, section 2.1.8 for stratospheric Os, 2.1.9 for stratospheric water vapour, for

aerosol forcing, 2.1.10 for albedo from land use change, 2.1.11 for aerosol forcing and 2.1.12 for solar and volcanic forcing).

Inputs to the module (Table 1) are files or datasets of emission and concentrations time series (Table 1), a file or dataset to
define what gases and substances to consider, and optional integers to define the start year, end year, year at which to start
running from emissions, number of sub yearly timesteps for carbon cycle calculations and a Boolean option to make the runs
pure concentrations runs. Additional optional parameters giving files or datasets for natural emissions of CH4 and NO and

custom pulse response functions for the carbon cycle model can also be passed.

Some concentrations data are needed even in emissions-driven mode for pre-industrial concentrations and to define

concentrations prior to the chosen year of emission start. The default year of run start is 1750, the model uses CO emissions
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from the outset, whereas non-CO, emissions start in the emissions start year, default year in 1850, so up to the year of
emission start all other components have forcing calculated directly from concentrations. After the emissions start, all
components will have forcing calculated from emissions. Alternatively, the model can be configured to use prescribed
concentrations for all gases for the duration of the run.

When the model is to be run, an array of parameters to control the properties of calculations can be adjusted. Table 2 shows

these parameters, most of which control the forcing strength of various substances.

Parameter Default value Unit Description

gbmb 0.0 W m Biomass burning aerosol forcing in
ref_yr. Scaled using the amount of
biomass burning organic carbon
(BMB_AEROS_0OC)

go3 0.5 W m?2 Tropospheric Oz forcing in ref_yr, see
section 2.1.7

qdirso2 -0.36 W m2 Direct forcing sulphate in ref_yr, see
section 2.1.10

gindso2 -0.97 W m Indirect RF sulphate in ref yr, see
section 2.1.10

gbc 0.16 W m BC (fossil fuel+biofuel) forcing in
ref_yr, see section 2.1.10

goc -0.08 W m?2 OC (fossil fuel+biofuel) forcing in
ref_yr, see section 2.1.10

gh20_ch4 0.091915 Forcing from CH, induced changes to
stratospheric water vapour, see section
2.1.9

ref_yr 2010 Reference year for the forcing values

above. To construct radiative forcing
time series, these forcing values are
scaled backwards and forwards using
emissions. The forcing in ref_yr is

equal to the forcing value above.

beta_f 0.287 Fertilisation factor in (Joos and Bruno,
1996) scheme carbon cycle, see section
2.1.1
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just_one Option parameter that allows you to
run the upwelling diffusion model with
forcing from just a single component

lifetime_mode Lifetime mode for CHa, valid options

are “TAR” (table 4.11 footnote b of
(Ehhalt et al., 2001),
“CONSTANT _12” (for a constant
value of 12 years) or “WIGLEY”, a
wigley exponent behaviour (Osborn
and Wigley, 1994). “TAR” is the
default but using a flat OH lifetime
from the gaspam_file is a hidden
default if you send a value for this
option which is not “TAR” nor
“CONSTANT_12” nor “WIGLEY”.

For details see section 2.1.3.

Table 2: Parameters to the concentration_emissions_handler

The gaspam_file or corresponding dataset defines which substances for the model to consider and includes properties

defining the calculations to be performed for them. Table 3 shows the default shipped gaspam_file and its structure.

Information from this file is used in the calculations of both concentrations from emissions and when mapping

concentrations to forcing.

NATURAL

CONC_UN TAUL(YEA _EMISSIO SARF_TO_
GAS EM_UNIT IT BETA  ALPHA RS) TAU2  TAU3 NS ERF
co2 Pg C ppm 2.123 0 150 0 0 0 1.05
CH4 Tg ppb 2.78 0 9.6 120 160 275 0.877193
N20 Tg_N ppb 4.81 0 121 0 0 95 1.07
s02 Tg.S - 0 0 0 0 0 0 1
CFC-11  Gg ppt 226 0.000259 52 0 0 0 1.13
CFC-12  Gg ppt 20.8 0.00032 102 0 0 0 1.12
CFC-113 Gg ppt 325 0.000301 93 0 0 0 1
CFC-114 Gg ppt 29.7 0.000314 189 0 0 0 1



CFC-115 Gg

CH3Br Gg
CCl4 Gg
CH3CCI3 Gg
HCFC-22 Gg
HCFC-141bGg
HCFC-123 Gg
HCFC-142bGg
H-1211 Gg
H-1301 Gy
H-2402 Gy
HFC125 Gg
HFC134a Gg
HFC143a Gg
HFC227ea Gg
HFC23 Gy
HFC245fa Gg
HFC32 Gy
HFC4310m
ee Gg
C2F6 Gg
C6F14 Gg
CF4 Gg
SF6 Gy
NOXx Mt_N
Co Mt
NMVOC Mt
NH3 Mt
SO4_IND X
TROP_0O3 X
STRAT_03X
STRAT_H2
O X

ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt
ppt

ppt
ppt
ppt
ppt
ppt

27.1
16.4
25.3

22

14.9
26.3
20.1
16.8852
28.37
25.55
45.9564
21.27
18.09
14.9
30.14
12.41
23.76
9.22

44.68
24.46
59.92
15.6

25.89

o O o o o o o

0.000246
0.000004
0.000166
0.000065
0.000214
0.000161
0.00016
0.000193
0.0003
0.000299
0.000312
0.000234
0.000167
0.000168
0.000273
0.000191
0.000245
0.000111

0.000357
0.000261
0.000449
0.000099
0.000567
0

o O o o o o

540
0.8
32

11.9
9.4
13
18
16
72
28
30
14
51
36
228
7.9
5.4

17
10000
3100
50000
3200

o O O o o o o
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O O O O O O O o o o o o
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BMB_AER

0S BC Tg - 0 0 0 0 0 0 1
BMB_AER

0S OC Tg - 0 0 0 0 0 0 1
BMB_AER

0s X - 0 0 0 0 0 0 1
LANDUSE X - 0 0 0 0 0 0 1
BC Tg - 0 0 0 0 0 0 1
oc Tg - 0 0 0 0 0 0 1
OTHER X - 0 0 0 0 0 0 1

Table 3: The structure of the gaspam_file. In it, properties of greenhouse gases and short-lived climate gases or precursors used in
calculations are defined. This is the standard shipped version of the gaspam_file, but the user is free to define their own file adding
or subtracting gases and adjusting values for lifetimes, forcing strength and so on as they see fit. The column headers are: the
name of the gas or substance in the run (GAS), emissions unit (EM_UNIT), concentration unit (CONC_UNIT), the conversion unit
between concentration and mass (unit is the ratio of the emissions unit to the concentration unit) (BETA), radiative efficiency
(ALPHA) in W m2 ppb, lifetime in years, in the case of CH4 the lifetime is split into the OH lifetime in years (TAUL), soil lifetime
in years (TAU2) and stratospheric lifetime in years (TAU3), natural emissions (NATURAL_EMISSIONS) where the unit should
be the same as the emissions unit , and a unitless conversion factor from stratospheric adjusted radiative forcing (SARF) to
effective radiative forcing (ERF) (SARF_TO_ERF). In the current implementation, TAU2 and TAU3 are only used for CH4 and
the ALPHA parameter is unused for CO2, CHs, N2O and aerosols. Gases with “— in the CONC_UNIT column are not converted
from emissions to concentrations and concentrations of these are not outputted or used in calculations. Gases with X in the
emissions column are not read from the emissions files, but the forcing is calculated through other means from emissions of other
components.

2.1.1 CO2 — emissions to concentrations

The carbon cycle in the CICERO-SCM includes one part for the decay -of CO; into the deep ocean, and one part, for impacts
from the terrestrial ecosystem.

The deep ocean sink is modelled using a scheme for CO; from (Joos et al., 1996) and an explanation of the CICERO-SCM
implementation can be found in (Alfsen and Berntsen, 1999). The CO, module uses an a diffusive air-sea exchange model,
combined with a decay function which represents transfer of carbon to the deep ocean (Alfsen and Berntsen, 1999;
Siegenthaler and Joos, 1992). Atmospheric CO, partial pressures 6pC0, ,(t), in ppm are calculated as follows:

e(t) _ffer
Cppm_to_PgC

d
dat 5p602_a (t) = - Aocfa,s (1)

Where e(t) are the total emissions at time t (in PgC yr?), f., is the net carbon uptake of the terrestrial carbon cycle (PgC yr

1), Copm_to_pgc = 2.123 ;i; is a conversion factor between partial atmospheric concentration of CO, and emitted Pg of

carbon. A is the ocean area (in m?). fasis the transfer rate between ocean and atmosphere (in ppm yr* m2), represented as

a function of the atmospheric and ocean carbon partial pressures:

10
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fa,s = kg ' [6PC02,a - SPCOZ,S]’ (2)

Where k, is the gas exchange coefficient (k, = yr~tm~2) and 8pC O, ; is the partial pressure of the slab ocean, itself

9.06'Aoc
calculated as a function of the ocean temperature (T) and the carbon content of the mixed layer (cSZCO2 (t)).
8pC0s) = F(SZC0,(1), T) 3
F is the polynomial approximation given in equation 6b) of (Joos et al., 1996). Though this equation could include
temperature feedback to the carbon cycle, the CICERO-SCM does not currently include this, implementing instead a static
T=18.2°C giving
F(x) = 1.3021x +3.7929 - 1073x2 + 9.1193 - 107%x3 + 1.488 - 1078x* + 1.2425 - 107195 4

0ZCO, is calculated as a historical integral of past air-sea fluxes f, ;modulated by a decay function rywhich represents

transfer of carbon from the mixed layer to an (infinite) deep ocean sink.
§TCO (D) = "2 [ £, (¢ (¢ — )t (5)

017 pmol-m3

Where h is the height of the mixing layer in meters, c.ony = 1.7221 ™ is a conversion factor from the flux from

ppm to umol and sea water from volume (m?) to mass (kg). The function r; is defined by two empirical decay functions, the

first for a period of less than two years, with a second empirical formulation for periods of two years or greater:

t t t
= 0.12935 + 0.21898 - ¢ 0.034569 + 0.17003 - e 026936 + 0.24071 - ¢  0.96083
t

+0.24093 - ¢ 29792 ift<2.0
t t t

s\ = 0.022936 +0.24278 - 712679 + 0.13963 - ¢ 52528 + 0.089318 - e 18.601
t
+0.03782 - e 68736 + 0.035549 ift >2.0

(6)

where t is measured in years.

Different versions of both r, and the biotic decay function r;,, described below and with standard form according to equation
(8) can be sent by sending a function as input when defining the concentrations_emissions_handler object according to
Table 1.

The CICERO-SCM also includes the impacts of the terrestrial ecosystem, including CO- fertilization and subsequent impact
on decay of biospheric material (Joos and Bruno, 1996). Net primary productivity is described as a function of the

atmospheric CO; concentration, which modifies the emissions timeseries directly according to equation (1).

The carbon uptake of the terrestrial cycle fz.,. is represented as:

t

frer(t) = 6 fpp(t) +J 8 frpp (1, (8 — £)dt”, (M

11
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Where 6fnyp (t) is the instantaneous Net Primary Productivity (NPP) from the current CO; concentration (in units of PgC per
year = PgC per year) and r;, is an impulse-response function which represents the decay of the historically fertilized material
produced during previous timesteps:

1, = 0.70211 - 7935t 4+ 13.4141-1073 - e_ﬁ —0.71846 - e_% +2.9323-1073- e_TtO-O (8)
The various terms represent the decay of ground vegetation, wood, detritus and soil organic carbon, and time t is measured in
years. & fo,, (t) is represented as a function of the atmospheric CO, concentrations:

COZ,a (t)) (9)

8fupp () = fapp By In (278ppm

Where f,,,,,, is a measure of global terrestrial NPP (here taken as 60PgC yr* (Atjay et al., 1979; Joos and Bruno, 1996),

C0,,4(t) is the atmospheric concentration of CO, measured in ppm. B(beta_f in the model and Table 2) is the ‘fertilization

factor’.
CICERO SCM simulation, concentrations
a) co2 b) CH4 c) N20
—— CICERO-SCM —— CICERO-SCM —— CICERO-SCM
4001 —— cMIPGinput —— CMIP6input —— CMIPGinput
1750 A 300 +
350 A
1500 - 250 |
300 -
1250 A
250 | 200 -
£ o) )
Q [« X Q
= 2 1000 - =
N 200 3 e
9 5 & 150
750
150
100 -
1004 500
50 4
50 | 250
0 ‘ . : . . 0 . ‘ . ‘ . 0 ‘ . : . .
1750 1800 1850 1900 1950 2000 1750 1800 1850 1900 1950 2000 1750 1800 1850 1900 1950 2000
Years Years Years

205 Figure 2: Calculated concentration of CO2, CHs and N20 from the CICERO-SCM from CMIP6 emissions time series

(Meinshausen et al., 2017) compared to the concentrations of these gases prepared for CMIP6 (black line) from the same emissions
inputs (Meinshausen et al., 2017). Note that the natural emissions of CHs and N2O are adjusted so that the calculated
concentrations match the observational based concentrations prepared for CMIP6.

12
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Figure 2a shows the calculated concentrations of CO, from the CICERO-SCM using CO- emissions from (Meinshausen et
al., 2017, 2020). For reference, the CO, emissions in 2014 split into 9.7 Pg carbon of fossil fuel emissions and 1.1 Pg carbon

of landuse change emissions.

2.1.2 Non-CO2 components concentration calculations

The atmospheric concentration of non-CO; gases is determined by a mass balance equation:
dC _P_q.C= E c 1
dt Bgas Tgas

(10)

where C is the concentration or mixing ratio of the gas (ppm, ppb), P is the production rate and Q is the loss rate. The
production, P, is given by the emissions per year, E, converted to mixing ratio units with Sy, Tg,s is the lifetime (in years).
Bgas (BETA) and 74,5 (TAUL) are both gas specific constants read from the gaspam_file (see Table 3). The production
(emissions) is a function of time t (in years), E=E(t), while the loss rate (Q) is assumed to be constant, except for the case of
CHa (see section 2.1.3).

To solve this equation numerically, we use a first-order exponential integrator method. We first rearrange the equation as

dc 1 E®
o Tew:

1D

Tgas ﬁgas ’

t

multiply both sides by exp ( ) and combine:

d o t \\_ E@® ¢ "
dt () - exp <Tga8> - Bgas P <Tga5> (12)

The emissions (E) and mixing ratios (C) are annual, and we assume that over each one-year period they are constant. This

Tgas

means that we can solve the equation exactly for each time step, t to t + At , where At = 1 as the data is annualized. First,

integrate both sides of the equation from t to t+1, noting that E(t) is constant between t+1 and t:

t+1 t E(t)7gas [ (t + 1> ( t >]
C(t+1)-ex — C(t) -ex = - |ex —ex 13
( ) P < Tgas ) ( ) P <Tgas> .Bgas P Tgas P Tgas ( )
Then multiply both sides by exp <— ﬂ) noting that exp (— Hl) . exp< : ) = exp (— ! )), leads to
Tgas Tgas Tgas Tgas
1 E(t)t 1
C(t+1) = C(t) exp <— ) + O gas [1 — exp (— )] (14)
Tgas ﬁgas Tgas

This implementation is appropriate for discrete input data only, where the emissions (and concentrations) are assumed

constant throughout the year. For a timestep of less than one year, the emissions (E) and mixing ratio (C) would need to have
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a resolution of less than one year to match the time step. If working with emissions not assumed static over the sub yearly
timescale, the original equation would be solved either analytically or using a numerical solution to the original differential
equation (Aamaas et al., 2013). This version of the model only works for yearly data that follows this assumption.

Given this assumption, the method outlined here is an exact solution, for each time step, utilizing the fact that emissions are
constant in each time step. The solution can also be interpreted in terms of production and loss. The first term on the right-
hand side represents the mixing ratio at the start of the time-period (C;), which decays according to the loss rate over one
year. The second term on the right-hand side represents the emissions added in that year (E:), which are assumed constant,
and thus accumulate as sustained emissions over the year (Aamaas et al., 2013). At the end of the time-period, Cw1, the
mixing ratio is thus the contribution from material already in the atmosphere (first term) plus the contribution from material
added to the atmosphere over the year (second term).

Several simplifications can help explain equation (14) and the unique characteristics of different non-CO, components. For a
long-lived species, where t>>1, such as N,O, then the exponential term is close to one, and Cw1=CrtA, where A is a small
contribution from new emissions. For a short-lived species, where t<<1, such as sulfur dioxide (SO), then the exponential

Tgas

term is close to zero, and C(t) = E(t) -

5 showing that the mixing ratio is approximately a linear scaling of the emissions.
gas

And in fact, for SO, and other aerosols, such a direct emissions scaling is used to obtain forcing directly from emissions with

no separate calculation of concentrations.

2.1.3 CHa - emissions to concentrations

The atmospheric concentration of CHa is determined by the mass balance equation (equation 14), leading to the solution and
treatment as described above in section 2.1.2. But for CHy, the lifetime t is not necessarily constant. The total lifetime is a
combination of the lifetime with respect to OH (ton), stratospheric lifetime (tswar) representing the chemical losses in

stratosphere, and soil lifetime (tsoit) representing the soil loss. The total lifetime and the individual lifetimes are related by:

1o,

T TOH Tsoil Tstrat
gaspam_file (Table 3) with default values of 2.78 Tg CH, ppbv?, 9.6 years, 120 years, and 160 years (Ehhalt et al., 2001),
used. The total lifetime of CHa4is 8.4 years.

The lifetime of CH4 due to OH depends both on the CHy, itself and emissions of NOx, CO and NMVOCs. CH, influences its

own lifetime since the reaction between CH,4 and OH also is a significant loss reaction for OH. Increased emissions and

. The values of Bcy, (BETA), ton (TAUL), tail (TAU2), Tt (TAU3) are specified in the

higher atmospheric levels of CH4 thus decrease the levels of OH. This will increase the chemical lifetime of CHa, thereby
further increasing the atmospheric levels of CHs. CO and NMVOCs also have OH as a main loss reaction, and increased
emissions of these components will decrease the levels of OH and increase the lifetime of CH4. Enhanced levels of NOy will
work in the opposite direction, as NOy acts as a source of OH. Enhanced NOy will increase OH and decrease the CHa levels.
Several parameterization options are available in the CICERO-SCM to deal with these effects on the CHs lifetime. The
"lifetime_mode" can be set to the following in the pamset_emiconc (Table 2):
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"TAR" (default) where the ton is adjusted following (Ehhalt et al., 2001) (Table 4.11 footnote b). % =q=q-
(dInCoy + 1), Where
dInCoy = —0.32 - {In[Ccy, (yr)] — In[1751.01} + 0.0042 - [Eno,(y7) — Eno,(2000)] + 0.000105
* [Eco(yr) — E¢0(2000)] — 0.000315 - [Enmyoc(YT) — Enxmvoc(2000)],

N
“WIGLEY” , where Toy = 19y (Ci) where C is the CH4 concentration, C, is a reference CH, concentration of 1700
0
ppb and the exponent N is 0.238 (Osbhorn and Wigley, 1994).

"CONSTANT 12" where 7oy = 12.0

If some other string is sent for this parameter, a flat lifetime from the gaspam_file is used. This flexibility in OH lifetime
options can allow the user to explore hypothesis, and also allows for the user to add and adapt a new OH lifetime scheme in
a separate fork of the code without much effort.

There are also natural emissions of CHs which maintain a CH4 concentration in the atmosphere in the absence of
anthropogenic emissions (Saunois et al., 2020). To accurately represent the observed concentration, natural emissions of CHa4
can be precalculated (precalculate_natural_emissions.py in scripts/prescripts subfolder) with the same set up (lifetime mode
and anthropogenic emissions) and these are added to E(t) before the calculation in eq. 14. Further details on this can be
found in Appendix B on natural emissions of CH4 and N»O. Precalculated natural emissions time series can be specified as
an input file or input dataset (see Table 1). The model can also be run with fixed natural emissions specified in the
gaspam_file (Table 3), and this is the model behavior when no data or files with natural emissions are sent and can also be
used to provide constant natural emissions for other chemical components.

With the adjusted historical natural emissions of CHa, the calculated CH4 concentrations by design match observations of
CHj,4 concentration (Fig. 2b). The model can also be run with fixed natural emissions specified in the gaspam_file (Table 3)
and then the calculated concentration will give rise to discrepancies compared to observations, due to the large uncertainties
in the CH4 budget terms (Saunois et al., 2020).

2.1.4 N2O - emissions to concentrations

The atmospheric concentration of N2O is determined by the same mass balance equation (equation 14) as for CH,, but with a
single constant lifetime of 109 years (Smith et al., 2021b), specified in the gaspam_file (Table 3). The parameter By, o
(BETA) is given as 4.81 Tg[N] ppbv’, and hence the emission input to the model is given in Tg[N].

As for CH,, the natural emissions can either be kept fixed with a value prescribed in the gaspam_file or sent as a
precalculated file or dataset so that total (natural and anthropogenic) emissions timeseries and the model setup will reproduce
the historical concentration (Fig. 3c). For more on how natural emissions are estimated including assumptions for the future,

see Appendix B on natural emissions of CH4 and N»O.
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2.1.5 CO2, CH4 and N20 - concentrations to forcing

Based on the calculated concentrations, radiative forcing for CO,, CH4 and N;O is calculated based on the simplified
expressions in Table 1 of (Etminan et al., 2016) that accounts for the overlap between the three components. The equations
in (Etminan et al., 2016) represent the radiative forcing that include adjustment to stratospheric temperatures (SARF). The
initial concentrations of CO2, CH4 and N0 used for the calculations are the concentration in the nystart year from the input
file.

To include additional tropospheric adjustments, an adjustment factor can be specified in the gaspam_file (Table 3) to convert
from SARF to Effective Radiative Forcing (ERF) for each of the components. The default values in Table 3 are taken from
ARG and the additional adjustments will increase the radiative forcing by 5% for CO,, decrease it by 14% for CH, and
increasing it by 7% for N.O (Forster et al., 2021).

The calculated CO; ERF is less than the ERF timeseries from IPCC AR6 (Forster et al., 2021) based on observed
concentrations before 1950, and larger after 1950 (Fig. 3a). The reason for this is the under and overestimation of the CO,
concentration (Fig. 2a) and that 2xCO-ERF, that is the effective forcing strength of a doubling of CO,, based on (Etminan et
al., 2016) is stronger than the 2xCO2ERF in ARG6 based on (Meinshausen et al., 2020). The CH4 ERF in Fig. 3b shows a
reasonably good match. The N2O ERF timeseries is in the lower range compared to the timeseries presented in IPCC AR6
(Forster et al., 2021). The difference can be explained by assuming a different pre-industrial concentration value in the run,
and by the fact that (Forster et al., 2021) uses simplified expression as used in (Meinshausen et al., 2020) rather than the
expressions from (Etminan et al., 2016) used in CICERO-SCM.
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CICERO-SCM simulation, Radiative Forcing
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Figure 3: Calculated ERF from CICERO-SCM for selected components from 1750 to 2020. For comparison, the ERF timeseries
from IPCC and uncertainty ranges from this same dataset are also shown (Smith et al., 20213, b). a) for COz, b) CHj4, c) N2O d)
other well mixed GHGs that is the sum of contribution from CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CHBr, CCl4,
CH3CCI3, HCFC-22, HCFC-141h, HCFC-142b, C2F6, C6F14, CF4, SF6, HCFC-123, H-1211, H-1301, H-2402, HFC125,
HFC134a, HFC143a, HFC227ea, HFC23, HFC245fa, HFC32 and HFC4310mee e) total Os, sum of tropospheric and stratospheric
O3, f) stratospheric water vapor, g) land use (note that the CICERO-SCM uses the IPCC ERF timeseries as input), h) total aerosol
ERF and i) Total anthropogenic forcing. Note the different scales on the y-axis. Beyond 2014 the ssp245 future projections have
been used as inputs.
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2.1.6 Effective radiative forcing for other long lived greenhouse gases

For the other long lived or medium lifetime greenhouse gases (CFCs, HFCs, HCFCs), the atmospheric concentrations are

calculated based on the mass balance equation, emission time series, BETA values and a single lifetime both specified in the

gaspam_file (Table 3) as described in section 2.1.2. The lifetimes are as in IPCC (7.SM.7 in (Smith et al., 2021b) ).

For these components radiative forcing is calculated based on a radiative efficiency (Table 7.SM.7 in (Smith et al., 2021b):
SARF = ALPHA - (C — C,) (15)

Where ALPHA is read from the gaspam_file (Table 3), C is the concentration and C, the concentration in the nystart year.

As most of these components are of anthropogenic origin, C, will be zero when starting from pre-industrial. Some

components, however, have natural background concentrations. The pre-industrial concentrations are provided in the

concentration file and natural emissions are expected to be included for each year in the emission file, otherwise a flat natural

emission component can be specified in the gaspam_file.

Each component also has an option to include a conversion from SARF to ERF (ERF = SARF_TO_ERF - SARF), to get the

ERF that will be output and passed to the upwelling_diffusion_model.py.

In (Forster et al., 2021) CFC11 and CFC12 have SARF to ERF adjustment factors of 13 and 12 % respectively. All other

components have SARF to ERF factors of 1. However, different SARF to ERF conversion factors can be specified in the

gaspam_file (see Table 3).

The calculated ERFs for the other GHGs compare well with IPCC ARG timeseries (Fig. 3d).

2.1.7 Tropospheric Os

The tropospheric O3 forcing is specified in the pamset_emiconc as qo3 (Table 2), that is the radiative forcing in the reference
year (ref_year) specified in the same parameter set. The default values are 0.5 Wm2 in ref_year 2010, based on (Smith et al.,
2021b). The qo3 can include adjustments and be treated as ERF, or a factor converting SARF to ERF can be included in the
gaspam_file (Table 3).
The time series of tropospheric Os forcing is calculated by combining the concentrations of CH4 and emissions of NOx, CO
and NMVOC following (Table 4.11 footnote b of (Ehhalt et al., 2001))
Assuming a tropospheric O3 burden of 30 DU (Dobson Units) in the reference year, the tropospheric Oz burden is calculated
as:
Co,(t) = 30.0 4+ 6.7 - {In[Ccn, ()] — In[Cep, (tren)]} + 0.17 - [Eno, () — Eno, (trep)| +

0.0014 * [Eco(t) — Eco(trer)] +0.0042 - [Exmyvoc(t) — Enmvoc(trer)] (16)
where C-terms denote concentrations, E-terms are emissions, t is time in years and is t..r is the reference year, the default
value for this is 2010.
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The radiative forcing is calculated by scaling the qo3 (tropospheric ozone SARF in the reference year in W m) by changes

in O3z burden:
Co.(t) — Co. (¢
SARF = q03 . 03( ) 03( emstart) (17)
CO3 (tref) - C03 (temstart)
where tomstart 1S the year when running with everything from emissions start.
Before emissions start, the forcing is scaled by fossil fuel CO, emissions and t,, is the first year of the run, i.e. nystart.
E t)—E t
SARF = qo3 - co,Fr(t) = Eco,rr(to) (18)

Eco,rr(trer) — Eco,rr(to)

Tropospheric Oz is a short-lived component, and the global forcing is split into hemispheric forcing. The hemispheric
weights for the global forcing is taken from the multimodel results in (Skeie et al., 2020) and is 1.45 for the Northern
Hemisphere and 0.55 for the Southern Hemisphere as implemented in the routine calculate_hemispheric_forcing. The total

05 forcing (tropospheric and stratospheric) is shown in Fig. 3d, and tropospheric Oz ERF alone is shown in Fig. S8.

2.1.8 Stratospheric O3

Loss of stratospheric O3 is calculated from the concentration of chlorine and bromine containing components three years
prior to the year in question to account for transport from the troposphere to the stratosphere, and scaled by the number of

chlorine or bromine atoms they contain:

0.287737

SARF = ——500.0

1.7
-{0.000552 Z (Ncll.  Cy,(t — 3)) +3.048 - Z Nar, - Co, (t = 3) (19)
i j

where the sums run over the chlorine and bromine containing components respectively, the C-terms are concentrations
(pptv) of each of these, and the N-terms are the numbers of chlorine or bromine atoms in each of them, t is the time in years.
The functional form is based on Appendix 2 of (Harvey et al., 1997) and the scaling has been updated in line with (Forster et
al., 2007). This has been generalized a bit from the Fortran version, where the exact chlorine and bromine components
considered were hard coded, rather than identified from the substances contained in the gaspam_file (Table 3).

The total Os ERF (tropospheric plus stratospheric) is shown in Fig. 3e and stratospheric O3 separately in Fig. S8.

2.1.9 Stratospheric water vapour

CH, oxidized in the stratosphere produces water vapour. In the dry stratosphere, this additional water vapour will cause
additional radiative forcing. The CHa induced stratospheric water vapor ERF is calculated by scaling the CHs ERF by a
factor gh2o_ch4 specified in the pam_emiconc parameter set. The default value is 0.092, that is 9.2 % of the CH. forcing in
the reference year (Forster et al., 2021; Winterstein et al., 2019). The ERF timeseries for stratospheric water vapour is shown
in Fig. 3f.
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2.1.10 Albedo from land use change

The historical surface albedo land-use change forcing used in the model is a prescribed forcing timeseries. The default time
series used in the model is from IPCC ARG (Forster et al., 2021; Smith et al., 2021b) and extended for RCMIP (Nicholls et
al., 2021, 2020). ERF timeseries of this is show in Fig. 3g, beyond 2014, the albedo forcing projections for ssp245 are used.

The hemispheric split of forcing is based on the multi model results from (Smith et al., 2020) and implemented in the routine

calculate_hemispheric_forcing.

2.1.11 Aerosol effective radiative forcing

The ERF for aerosol radiation interaction (ERFari) of sulfate, fossil fuel and biofuel (FFBF) black carbon (BC), organic
carbon (OC) and biomass burning (BMB) aerosols are included in CICERO-SCM, and the aerosol forcing in ref_year (t,y)
for each aerosol component is specified in the pamset_emiconc (Table 2). The ERFari values in ref_yr are scaled by
corresponding historical emissions of SO,, BC FFBF, OC FFBF and biomass burning aerosols (BMB_AEROS).

The ERFari timeseries for individual aerosol components are shown in Fig. 4a. The total aerosol ERFari timeseries is shown
in Fig. 4b and shows a good match with IPCC ARG timeseries.

E(t) — E(to)

, (20)
Eref

Eref = E(tref) - E(tO)' ERF = Qaer

where E(t) is the emissions of each aerosol species at time t in years and q,., is the forcing for this component in t,..; and is
tunable parameter (see Table 2) for each component.

The net ERF from biomass burning aerosols (BMB_AEROS) is calculated using the input BMB_AEROS_OC as biomass
burning emissions from OC and BC are assumed to be correlated and scaled according to equation 20 with the parameter
gbmb. The default value of this parameter is 0, so the user needs to set it to a different value to include the effects of biomass
burning aerosols.

The ERF for aerosol cloud interaction (ERFaci) in ref_year is linearly scaled with SO, emissions, and calculated as ERFari
according to equation (20), as studies indicate that the total global effect is linear with SO, (Kretzschmar et al., 2017). The
aerosol forcing components from a default run of the CICERO-SCM are shown in Fig. 4a. The split in ERFari and ERFaci
timeseries are show in Fig. 4b and compared to the IPCC ARG results (Forster et al., 2021). ERFari follows the ARG results

quite closely, while ERFaci are not as close to the AR6 mean, however, the uncertainty range for this is very large.

The hemispheric split of aerosol forcing is based on multi-model results from (Smith et al., 2020) and implemented in the

routine calculate_hemispheric_forcing.
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CICERO-SCM simulation, Aerosol Radiative Forcing
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Figure 4: Part a shows aerosol radiation interaction forcing per aerosol component, and part b shows aerosol cloud interaction
and sum of aerosol radiation interactions for all the components compared to ARG6 results (Forster et al., 2021).

2.1.12 Solar and volcanic forcing

Solar forcing and volcanic forcing can be added as input time series. If the sunvolc parameter is set to 1, the model will
either use user defined files or datasets or use default files. Volcanic forcing series can be defined differently in each of the
hemispheres, and even with monthly time resolution. Figure 5 shows default input timeseries of solar and volcanic forcing.
These defaults are taken from (Nicholls et al., 2021, 2020), however, for values beyond year 2015 the following
approximation has been made; solar forcing is assumed to be zero, whereas volcanic forcing is set to the mean forcing value
in years 2006-2015.
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CICERO SCM simulation, Radiative Forcing
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Figure 5: Default natural ERF timeseries for solar forcing (a) and volcanic forcing (b) used in the CICERO-SCM taken from
RCMIP (Nicholls et al., 2021, 2020) compared to ARG results (Forster et al., 2021; Smith et al., 2021b).

430 2.1.13 Perturbing forcing or emissions timeseries

A common application of SCMs is to isolate and quantify the contributions to global radiative forcing and temperature

change over time from individual anthropogenic emissions or sources, such as economic sectors. While there are different

approached to such attribution (e.g. (Boucher et al., 2021; Grewe, 2013)), a well-established method is to have a perturbed

case where the emissions of interest are subtracted from a baseline case that includes all emissions. The attribution is thus the
435 difference between the baseline case and the perturbed case (den Elzen et al., 2005; Fuglestvedt et al., 2008).
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The CICERO SCM includes built-in options that enable this type of simulation, baseline and perturbation. Specifically, two
additional files can be input to the run, one that that gives emission trajectories to be subtracted and one that gives the
radiative forcing to be subtracted. The former is used in the case of the well-mixed greenhouse gases, while the radiative
forcing perturbations are applied for the short-lived climate forcers.

In some cases, a given sector may affect climate through radiative forcing mechanisms that are not included in the SCM. A
notable example is the formation of contrail-cirrus from aviation emissions. It is possible to also include such ERF
perturbations, which are then grouped in a category “OTHER” and subtracted from the total net RF at the end of the
concentrations-to-forcing step of the model flow.

The time series of emissions and ERF to be extracted must be pre-defined in a specific format (sample files provided in the
open-source code base). If not directly available from more complex models, ERF time series are commonly derived by
scaling best-estimate present-day radiative efficiencies (i.e., ERF per unit emission) by available historical and/or future
emissions trajectories. For examples of how this has previously been done, including more chemically complex climate

drivers such as NOx-induced changes in Oz and CHya, see e.g. (Skeie et al., 2009)

2.2 Upwelling diffusion/ energy balance model

To calculate temperature change and storage of heat in the ocean as a response to the radiative forcing, an energy
balance/upwelling diffusion model is used. The model is the hemispheric version (Schlesinger et al., 1992) of the global
energy balance/upwelling diffusion model described in (Schlesinger and Jiang, 1990), and the structure of the model is
shown in Fig. 6.

For each hemisphere the ocean is subdivided into 40 vertical layers where the uppermost ocean layer is the mixed layer. The
ocean also has a polar region, where heat is transported from the mixed layer into the deep ocean representing deep water

formation, i.e. sinking of cold water masses with relatively high salinity. Figure 6 shows the schematic ocean in the model.

The model is forced by hemispheric radiative forcing and the climate response is governed by climate sensitivity, which is an
explicit parameter in the model that takes the feedback processes in the climate system into account. The climate sensitivity
parameter, A (lambda), is the equilibrium climate sensitivity (defined as the equilibrium temperature response following a
doubling of the CO; concentration) divided by the radiative forcing of a doubling of CO,. Based on the formula in (Etminan
et al., 2016), SARF is 3.8 W m2for a CO; doubling, and taking into account the adjustments of 5% (Forster et al., 2021) the
2xCO2 ERF is 4.0 W m™2,

In each hemisphere heat is exchanged between the atmosphere and the ocean in the upper mixed layer of the ocean. Heat is
exchanged between each layer and the layers next to it via both diffusion and vertical upwelling advection, and horizontally
through interhemispheric heat exchange. Heat is also transported into the polar ocean in the mixed layer, and back into the

main ocean in the bottom most layer. This leads to a set of coupled differential equations which are solved by a mix of
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forward and backward implicit calculations, to find the temperature change in each ocean layer. Equations are taken and

470 implemented according to appendix B of (Schlesinger et al., 1992), and the strengths of the various processes are defined by
parameters listed in Table 4, and the equations and their implementations are also detailed in Appendix C.
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Figure 6: Redrawn from (Schlesinger et al., 1992). The difference in ocean and land fraction between northern and southern
hemisphere is considered in the model, but not illustrated in the figure.
475
Parameter Default value Unit Description and range”
Rlamdo 15.0 W m?2K?1 | Air-sea heat exchange parameter, 4,, in Fig. 6, range 5-25
Akapa 0.66 cm?s?t Vertical heat diffusivity, « in Fig. 6, range 0.06-0.8
Cpi 0.21 unitless Polar parameter, scale between polar and non-polar
temperatures, range 0.161-0.569
W 2.2 myr? Vertical velocity, upwelling rate, W in Fig. 6, range 0.55-6
When threshtemp is not zero, the vertical velocity is effectively
lower than this.
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Beto 6.9 W m2K?1 | Oceanic interhemispheric heat exchange coefficient, A,in Fig.

6, range 0-7

Threstemp 7.0 unitless Scales vertical velocity (W) as a function of mixed layer
temperature, not shown in Fig. 6. Set to 0 if you don’t want to
include this parameter. Default is a 30% drop in vertical

velocity at 7 K increase in mixed layer temperature.

Lambda 0.61 KW1m?2 | Equilibrium climate sensitivity divided by 2xCO2 radiative
forcing (4.00 W m?), i.e. A. Calibration range 0.5-1.25

Mixed 107 m Mixed layer depth, h in Fig. 6, range 25-125

Foan 0.61 unitless Fraction of Northern Hemisphere covered by ocean

Foas 0.81 unitless Fraction of Southern Hemisphere covered by ocean

Ebbeta 0.0 Atmospheric interhemispheric heat exchange, not normally

used and not shown in Fig. 6, but equations including this

parameter are included in the code

Fnso 0.7531 unitless Ratio between ocean areas in Northern and Southern

Hemispheres, should equal foan/foas

Lm 40 unitless Number of vertical layers of the ocean, including the mixed

layer.

Table 4: pamset_udm. Parameters in the Energy Balance/Upwelling diffusion model, default values and possible ranges. *Ranges
taken from (Aldrin et al., 2012) except the ranges for W and lambda which are as used in the calibration run proof-of-concept.

In addition to what is included in the (Schlesinger et al., 1992), the CICERO-SCM includes a threstemp parameter, which
changes the upwelling advection velocity depending on temperature according to (Raper et al., 2001). The parameter
threstemp is the temperature when the upwelling velocity is reduced by 30%. With threstemp equal to 0, W will be constant,
and is a way of omitting upwelling velocity dependency on temperature. Otherwise, the way this parameter is scaled means
that when AT = 10/3*threstemp the advection will stop completely, and if the temperature surpasses this, that advection

speed will become negative.

The temperature changes in the ocean layer calculated in the energy balance/upwelling diffusion model is finally used to
calculate values for the ocean heat content (OHC) and ocean heat content of the upper most 700 meters (OHC700). For each
hemisphere separately and as a global average of the two, it is used to calculate the three temperature quantities: T,;, that is
the global surface air temperature (GSAT), Tsea, the global sea surface temperature, and Tyjengeq. the combined quantity

calculated from the mixed layer ocean temperature over the ocean and atmospheric temperature over land (GMST), Finally
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hemispheric and global averages for the radiative imbalance (RIB) is obtained. All these quantities are derived from
calculations of the temperature T in the 40 layers of the ocean for each month of the year.

The temperature values are calculated from the ocean mixed layer temperature T; according to:

J— q + f " /1 " Tl
Toea = Ty, Lir = 1 e ’ Toiended = focean * Tsea + (1 — focean) * Tairs 21)

1 + focean * Ao

where means are taken over twelve sub-yearly timesteps, q is the mean forcing over the preceding year (in Wm2), f; cean IS

the ocean fraction in the area under consideration (Northern Hemisphere, Southern Hemisphere or global), 4,, and 2 are the
tunable parameters rlamdo and lambda respectively (see Table 4 for details and units) and T; is the temperature in uppermost

ocean layer i.e. in the mixed layer.

The radiative imbalance (RIB) and ocean heat content (OHC) are similarly derived according to:
maxdepth

’ OHC = z pCp- Agarth " 21 Ty * focean (22)
=1

Ti
RIB = ERF — blended

where p is the density of seawater (assumed here to be constant at 1030 kg m'3), ¢, is the specific heat capacity of seawater
(3.997-103 kgLK), Agaren 1S the surface area of the earth (in m?), z, is the height of the layer in meters. The sum goes over all

the layers of the ocean either down to 700 meters, in which case the last layer is only a fractional layer, or all the way down,
depending on whether the calculation is for OHC down to 700 meters, or for total OHC. In practice the ocean heat content in
each hemisphere is added together for each layer in the sum, hence the area used, Ag,.h, 1S rather the area of a hemisphere
(2.55 - 10** m?).

2.3 Model differences between new Python version and old FORTRAN version

The Python version is overall quite faithful to the previous FORTRAN version (at least it is possible to run it quite
comparably). However, the Python version has more flexibility in what can be changed using parameters rather than what is
hardcoded. For instance, the addition of SARF_TO_ERF parameters in the gaspam_file is a new addition, as is the option to
run for different sets of years not starting in 1750, and many new tunable parameters have been added. In the FORTRAN
version you could tune the parameters lambda, akapa, cpi, W, rlamdo, beto, mixed, gbmb, qdirso2, qindso2, gbc, goc and
qo3 using a parameter file needed for every run. In the Python version you can also tune threstemp, gh2o0_ch4 and beta_f.
You can also change parameters like the reference year, the ocean fractions in each hemisphere (foan and foas). You can also
choose and even tune the functional forms for the carbon mixed layer pulse response function (eq. 5) and the biotic decay
function (eq. 8). With the Python version, swapping between emissions or concentrations driven runs or simply accessing

functions from the code is much easier than it was in the FORTRAN version, where such changes required producing a new
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compiled executable from a modified version of the code. Since the code is openly available and more readable, a user can
also much more easily change some part of the code to make even more parameters tunable, or even swap out some of the
modules, running for instance with a simplified energy balance model. In addition, the model can be run with both file input
and dataset inputs, and functionality for reading from files or handling dataset inputs is separated from the main code.

The Python code is also fully open and can be included as a regular Python package using pip. It includes automatic tests
including regression test to make sure the results from the energy balance model can be directly comparable to the previous
version, and the emissions to forcing part can be comparable enough (this part of the calculation includes quite a lot of
subtractions of nearly equal numbers, which means the comparison is less direct between the two versions). The regression
tests directly compare energy balance output from the FORTRAN version to check that given the same forcing input,
temperatures and ocean heat content are the same up to a relative error less than 1% throughout the run for a few different
forcing scenarios (including a single year forcing change, a 1% increase in CO2 per year experiment and running with and
without volcanic and solar forcing). The modelling flow from concentrations from to forcing and temperature is tested in a
similar way using a typical historical run, but when going all the way from emissions, the beginning of the run involves
small values calculated by subtracting numbers of very similar size from each other, meaning that rounding differences
become important, hence we only require regression up to 1% for a couple of years for the test to pass.

The code also includes plotting capabilities, and tools for distribution runs and calibration which we will describe in further
detail below. The automatic plots generated include time series plots of ocean heat content, radiative imbalance, temperature,
and component separated plots for emissions, concentrations, and radiative forcing. Examples of these plots for a historical
run using all default parameters are included in Appendix A.

With the publicly available Python version on GitHub, there are also various example scripts to show usage, as well as
scripts to prepare natural emission files for CH, and N2O and perturbation files. Automatically generated documentation for
the code, as well as a descriptive readme file to describe usage is also included.

Currently the code is somewhat slower than the original FORTRAN code was. A standard run from 1750 to 2100 from
emissions to concentrations with the FORTRAN version usually takes under half a second, whereas the updated code takes
around three seconds to do the same. This is a point for future improvement; however, the readability is considerably
improved.

Figure 7 shows how temperature output from the same parameter distributions used in the AR6 process results compares
when run in the new version and the original FORTRAN version. Both the new Python version, and the original FORTRAN
version are included in the openscm-runner (Nicholls et al., 2021). Clearly the results are not very different between the two

versions.
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CICERO-SCM simulation, Temperature
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Figure 7: Shows how GMST from the ensemble used for the AR6 report (Kikstra et al., 2022; Smith et al., 2021b) as run with the
current updated version, and the old FORTRAN version panel a) and in the new Python version panel b), compared to
observations from the observational dataset HadCRUT (Morice et al., 2021). In panel c) for easier comparison, only the results for
ssp245 are shown for both the FORTRAN version (in blue) and the Python version (in green). The comparison between the plots
mainly shows that the ported Python version reproduces the old results quite faithfully given the same parameter set, though there
are some changes, generally making the FORTRAN version a bit warmer than the Python version given the exact same
parameters.

2.4 New parallel and calibration tools

Additions to the Python version are integrated parallelisation and calibration tools. These include the options to run over a
parameter distribution set defined in a json-file or over multiple scenarios in parallel, or some combination of both.

The parameter distribution may also be generated using the calibration tools, these can both simply be used to produce either
a latin hypercube or Gaussian distributions of a given size over any subset of the tunable parameters to be run over directly,
or saved as a json-file for later use, or they can be used to tune parameters over such a prior distribution to fit the distribution
of one or more output parameters, resulting in a tuned parameter ensemble to be run over, and saved in a json-file for later
use.

The calibrator tool fits a set of n-samples to distribution functions for some subset of the parameters. The priors over the
distribution space can be Gaussian or latin hypercubes and sampling is continued until a distribution of the required size is
found. Samples are generated according to the prior and run in parallel chunks. Samples are then saved or rejected according
to the calibration distribution over some outputs. In practice this is done by comparing its placement in the distribution for
each variable to a random number, and keeping samples that are placed closer to the mean than the random number. Be
aware that the larger the calibration space, i.e. the dimensionality (number of parameters) and range of the prior parameter
distribution, and the higher the number of datapoints to fit to, the higher the fraction of rejection, and the higher the number

of chosen samples needed to get a good fit. There is also a tunable cap on total sampling to avoid infinite looping. With non-
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informative priors, the calibration might also need to be run for very many loops to get the required number of samples.
Since quite a few of the parameters are independent, relating to specific components and diagnostics, a less compute
intensive calibration workflow might be tuning only a small subset of parameters separately to various outputs at a time. For
instance, carbon cycle parameters can first be tuned to reproduce CO concentration timeseries, before tuning forcing and
climate sensitivity or other energy balance model parameters to get observed ocean heat content and temperature change
distributions. Below we demonstrate how the calibration can be used to get a parameter distribution.

As a proof of concept, we’ve produced 100-member ensemble of parameter sets, calibrating the parameters W (vertical
velocity) and lambda (the climate sensitivity parameter) from the pamset_udm and qindso2 (ERFaci in ref _year) from the
pamset_emiconc, keeping all other parameters at default values. Parameter ranges were 0.55-6, 0.5-1.25 and -1.75- -0.25
respectively. The calibration was made to fit observed temperatures from HadCrut (Morice et al., 2021) and ocean heat
content from GCOS (von Schuckmann et al., 2023) timeseries including uncertainties. However, not to make the fit too
difficult for a quick demonstration, only data from every 30™ year of the timeseries were used. Other approaches to the exact
calibration could be fitting the overall rmse between data and observations for the whole timeseries or fitting mean
difference in time windows. For an even better fit more of the data should be used, more parameters might need to get fitted,
and a larger ensemble should be constructed. Uncertainties that cannot be modelled with this setup, but still exist include
input data uncertainty. The aerosol forcing calibration in this model, can also only scale the aerosol forcing overall, and not
span uncertainties in its overall time evolution. Fig. 8 shows how the 100-member calibrated set compares to the
observational datasets in practice.

CICERO-SCM calibrated dataset

a) Surface Air Temperature Change b) Heat Content|Ocean
500
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2.0 — HadCRUT — GCOos
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Figure 8: Results from a 100 member ensemble calibrating gindso2, W and lambda to fit observed temperature from HadCrut
(Morice et al., 2021) and total ocean heat content from GCOS (von Schuckmann et al., 2023). Part a) shows the temperature for
the 2.5™ to the 97.5™ percentile compared to the same in the HadCRUT dataset, part b) shows the ocean heat content 5" to 90"
percentile compared to the same in GCOS. GMST (Surface Air Temperature Change) is shown as change relative to 1961-1990
period, while ocean heat content is shown relative to 1971 ensemble mean values.

3 Conclusions

In this paper we have described the CICERO-SCM simple climate model in its current incarnation as a Python implemented
open-source model. Though the model has been improved in terms of readability and user friendliness, opportunities for
further development abound. There are also many questions that the model is not currently suited to answer, that it could be

adapted towards answering.

In terms of technical modifications, the Python version is still slower than the FORTRAN model, and opportunities for
further speed-ups should be explored. Quite some time could likely be shaved off the run-time using more efficient data
structures and calculations. However, such modifications may also come at the expense of readability or easy model
adaptation to new usages. Making the calibration more efficient, flexible, and statistically robust is also a technical priority.
Eventually producing and updating calibrated parameter sets that represent good fits to current available knowledge being
the end goal of such an exercise. Keeping the model up to date with libraries and packages should also be a part of the

development moving forward.

As for the functionality, the current modular structure allows for parts of the model to be used independently and provides
options to change either the emissions to forcing or energy balance model with different models altogether. This could allow
for testing and updating, for instance using a more efficient ocean model with fewer layers, or having a simpler, faster, and
less readable emissions to forcing module, which can be interchanged with the current more readable, adaptable, yet slower
version. Though we acknowledge that modularity could be improved further — for example, isolating the carbon cycle
module.

Some updates that could open up for explorations of questions the model currently doesn’t answer properly include, but is
not limited to; regionalization of the temperature response, inclusion of temperature feedbacks into the carbon uptake,
component breakdown of the carbon cycle keeping track of the carbon amounts in the various pools (representing processes
which impact both heat and carbon transport in the ocean, for example), a more proper treatment of aerosol cloud
interactions to account for time delays in cloud formation (Jia and Quaas, 2023), inclusion of nitrate aerosols, updated
formulas for O3 ERF and updated CHj, lifetime treatments reproducing more recent atmospheric chemistry model results
(Skeie et al., 2023; Stevenson et al., 2020), continuous updates of lifetimes and forcing strength for various compounds,

inclusion of more compounds thought to have a climate impact in the future, such as for instance molecular hydrogen
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(Hauglustaine et al., 2022; Paulot et al., 2021; Sand et al., 2023; Warwick et al., 2023) or ammonia (NHs) (Bertagni et al.,
2023).

630 In general, we hope that this open, accessible version of the model will facilitate expanded use, and community development

of the model and hope to see colleagues and users engage with it in whatever way they find most useful.

4 Appendices
4.1 Appendix A — Default plots from a run with all parameters set to default values

The module includes automatic plotting options. Using these options, we can plot the time evolution of emissions,
635 concentrations and forcing changes per component. As well as ocean heat content change, radiative imbalance and
temperature change. Below, such plots from a run with all parameter values set to default values run with the historical
CMIP6 input data are shown:
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Figure Al: Default emissions output plot number 1 for a run with default parameters using historical emissions up to 2014 and
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640 ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for
HCFC-123, hence the values for this gas is zero throughout.
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Figure A2: Default emissions output plot number 2 for a run with default parameters of the historical emissions up to 2014 and
645  ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).
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CICERO SCM simulation, Emissions 3 of 3
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Figure A3: Default emissions output plot number 3 for a run with default parameters of the historical emissions up to 2014 and
ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).
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CICERO SCM simulation, Concentrations 1 of 2
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Figure A4: Default concentration output plot number 1 for a run with default parameters of the historical emissions up to 2014
and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The input dataset did not include data
for HCFC-123, hence the values for this gas is zero throughout.
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CICERO SCM simulation, Concentrations 2 of 2
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Figure A5: Default concentration output plot number 2 for a run with default parameters of the historical emissions up to 2014
and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).
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CICERO SCM simulation, Radiative Forcing 1 of 3
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Figure A6: Default forcing output plot number 1 for a run with default parameters of the historical emissions up to 2014 and
ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for
HCFC-123, hence the values for this gas is zero throughout.
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CICERO SCM simulation, Radiative Forcing 2 of 3
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665 Figure A7: Default forcing output plot number 2 for a run with default parameters of the historical experiment emissions up to
2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).
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Figure A8: Default forcing output plot number 3 for a run with default parameters of the historical emissions up to 2014 and
ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The default settings for the model has
670 gbmb the forcing scaling for biomass burning aerosols set to zero, hence the BMB_AEROS forcing timeseries is zero throughout
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Figure A9: Default temperature change since 1750 output plot for a run with default parameters of the historical emissions up to
2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).

CICERO SCM simulation, Ocean heat content

a) OHC700 b) OHCTOT
60 60
50 4 50
40 4 40 -
30 30 +
P P
— —
— 20 A — 20 4
(8] (8]
I I
=] =]
10 1 10 1
04 04
—=10 A —=10 1
1750 1800 1850 1900 1950 2000 1750 1800 1850 1900 1950 2000
Year Year

675

Figure A10: Default output plot of ocean heat content change since 1750 for a run with default parameters of the historical
emissions up to 2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).
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Figure All: Default plot of radiative imbalance change since 1750 for a run with default parameters of the historical emissions up
to 2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).

4.2 Appendix B - Natural emissions estimates for CH4 and N2O

CH4 and N;O both have considerable natural emissions contributions (Saunois et al., 2020; Tian et al., 2020). In the model
timeseries of these can be fed as separate files or dataset timeseries to the model instance. If not sent, a flat natural emissions
value from the gaspam-file will be sent. However, using a flat natural emissions timeseries will rarely give a good match to
observed concentrations, so the model also comes with a preprocessing script to generate natural emissions time series.
Using a precalculated time series from a different model setup, or input dataset, will lead to different fits to concentration
time series for both components. But a finely tuned input time series, will also make the emissions to concentration
calculation for these species superfluous, as the natural emissions are constructed to fit whatever is missing from the
anthropogenic distribution, and the run will effectively be concentration driven for these components.

In the FORTRAN version the method for calculating the natural emissions time series used a calibration per time step
method, iterating and adjusting the natural emissions from the previous step by five percent until the concentration matched
with less than five percent discrepancy. As we know that we have an exact solution for converting emissions to
concentrations in each timestep, though, we can solve the equation exactly for the missing emissions in each time step for a
much more efficient, though somewhat more noisy solution. Both options are available as options from the
precalculate_natural_emissions.py script in the scripts/prescripts subfolder. When the historical data finishes, the future

value of natural emissions is however assumed constant with a value that is the mean of the last 11 values. Figure Al shows

40



these estimates from CMIP6 (Smith et al., 2021b) concentration data as used throughout this article, alongside the input

anthropogenic emissions and the flat emissions from the default gaspam_file.
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700 Figure B1: Timeseries of the estimated natural emissions and anthropogenic input emissions for historical and the ssp245 scenario
for CH4 and N20. The old data is data constructed using the method used to make natural emissions for the FORTRAN model.
The ode method is using script that is included with the Python version relying on the exact solution. In both cases the “TAR”
lifetime mode for CH4 is used for the estimates. The flat background is the flat natural emissions value from the gaspam_file
(Table 3).

705 For CHa, the amount of estimated natural emissions will vary significantly with choice of lifetime mode, as the natural
emissions are effectively masking over whatever is needed to make up the expected concentration time series. For now, this
means that running the model with estimated natural emissions, we are effectively only modelling CH4 and N»O forcing
from concentrations in the historical period. The choice of lifetime mode may play a much larger part, when natural
emissions are unknown and estimated using a flat background value, or a flat mean as the script calculates for the future.

710 Figure A2 shows how the lifetime of CH. evolves using different lifetime modes. It also displays how different the natural

emissions estimates are depending on which lifetime mode is chosen.
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Figure B2: CHa lifetime timeseries with different lifetime modes in the ssp245 scenario in part a), and in part b) the corresponding
estimated lifetime emissions made to match the concentration time series throughout the span of the experiment. The time series of
the anthropogenic emissions is also shown.

4.3 Appendix C - Upwelling diffusion model equations

The equations used to describe the how energy is exchanged through the ocean system can be found in appendix B of
(Schlesinger et al., 1992). They consist of differential equation sets for each of the layers in the ocean, accounting for all
processes transporting heat in and out of the layer in each hemisphere. The equation for each hemisphere is completely
symmetrical, so we will state only the equations for the Northern Hemisphere here for simplicity. The equations include
terms relating to heat transfer between the hemispheres, and these terms are even included in the code and scaled by the
atmospheric interhemispheric heat exchange parameter S, (ebbeta). However, we will omit these terms here, as the
equations simplify without them, and the parameter is mostly not used.
In the mixed (uppermost) ocean layer, the equation reads:
5T, T, —T,
14 PCAZ1E =q— AT, + ZVNPCpKA—Zz + ynpcp,W(T, — Tp) — VN.Bo(Tl - Tl,S) S1)

where yy = oy + , with oy the Northern Hemisphere ocean fraction (foan), and 4,, (rlamdo) the air-sea heat

A
a0
exchange parameter and A the equilibrium climate sensitivity divided by 2xCO2 radiative forcing (see Table 4 for details and
units). Both temperature and forcing values all denote changes from the temperature and forcing at the start of the model run,
rather than absolute temperatures. Subscript numbers denote the ocean layer number, counted from the top, so layer 1 is the
mixed layer. All quantities are the versions of the quantities in the Northern hemisphere non-polar ocean unless otherwise
specified. Ty s is the temperature in the Southern Hemisphere, Tp is the Northern Hemisphere polar ocean temperature
assumed to change according to B8 of (Schlesinger et al., 1992), i.e. just following the change in the main ocean temperature
mixed layer times II (the cpi parameter in Table 4).

T,=1M"T, (52)

g is the Northern Hemisphere forcing (in Wm?2), p is the seawater density (1030 kg m?3),

¢, is the specific heat capacity of seawater (3.997 - 103 kg]—K), Az, is the height of layer [ in meters . k is the vertical heat

diffusivity (akapa), B, is the oceanic interhemispheric heat exchange rate (beto) and W is the upwelling rate. These three are
tunable parameters (see Table 4 for details and units). Finally, when the parameter threstemp is non-zero, the upwelling rate
W, is not equal to the parameter W in Table 4, but it is rather given as:

10 T,
T3 Tthre)

W = Wraple s * <1 ($3)
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i.e. the threstemp parameter is the mixed layer temperature change at which the upwelling velocity decreases by 30%. This
decrease in upwelling velocity was not included in the model described in (Schlesinger et al., 1992), but is an updated based
on the work of (Raper et al., 2001).

To simplify the equations, atmospheric transport between the hemispheres is assumed to be zero in this derivation, though it
is included in the code and its strength is controlled by the parameter ebbeta (83,).

The left-hand side represents the rate of change of energy in the mixed layer, where the y, factor accounts for heat exchange
between the ocean and the atmosphere (and when g, is included also with atmospheric interhemispheric heat exchange).
Examining the terms on the right-hand side, they represent radiative forcing, then the temperature longwave radiation and
climate feedback, then the vertical diffusion heat transport to the layer below, then vertical advective heat transport into the
polar ocean and finally interhemispheric heat transport. The polar ocean temperature is assumed to be IIT; throughout.

For all internal ocean layers the equation is:

8T, Tir

CAZ—k=C2K7 T = T
POk 5 = Plp (Azy + Azpyq)

(6Az, + Az _q)
= Bo(T = Tis) (s4)
Here, we have the rate of change of energy per area in the layer on the left, diffusion and advection with the layer below first,

+ W Tk+1] pCp [ZK + W ) (6Tk + (1 - S)Tk_l):l

then diffusion and advection with the layer above, and finally interhemispheric heat transport across the horizontal boundary.
The & in the denominator of the diffusion term and in the second advection term is O for the uppermost of the layers, and 1
otherwise. In the equation for the Southern hemisphere, this last term will also be scaled by the ratio between the two ocean
surfaces to ensure an equal amount of heat is accounted for as seen from both hemispheres. Note also that in the original
formulation in (Schlesinger et al., 1992), the advection terms did not depend on the temperature in the layer from which the

advection came, i.e. they were not on the form given here of pc, - W - Ty, and pc, - W - Ty, but rather on the average

Tr41+Tk

temperature between the layer from which the advection came and the one it advected into, i.e. on the form pc, - W .

and pc, w Ze=1*Tk The same was true for the advection out of the bottom layer (see equation S5).
For the ocean bottom layer L, the equation reads:
A 6T [2 +W-T, ]
P22 = TP K(AZL+AZL D L

+pc,WTp — Bo(T, = Tp5) (85)
Where there is no longer any heat transported from the layer below, as there is none, however, we also account for transport
of heat from the bottom of the polar ocean, and transport to the Southern Ocean. In other words, in the model heat is
transferred into the polar ocean at the top and transported back in from it at the bottom layer.
Now, for the solution of this equation set in the code, the solution involves a separation of terms. First for the forcing,
interhemispheric heat-exchange terms and polar heat exchange terms, a simple forward Euler solution, 8T, (t) = T, (t) —
T, (t — 1) is employed in gathering all these terms in one and solving for them in all layers first. These are then added to

the equations and can be viewed as constant terms in the further differentiation. Then the climate feedback, diffusion and
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advection terms are combined in a backward implicit Euler calculation. l.e., the equations are solved assuming all these
terms are given for the current timestep, and we solve the equations for them.

We rewrite the top layer eq. (S1) as

5T1 T2 - Tl
775 Yn PCpAzy St =q— AT} + ZYNpCpKT + VNPCpW(Tl —Tp) — VNﬁo(Tl - T1,s) (S1)
2
() —Ty(t—1) T,-T,
Yn PCpAzy dt — 2yNpepK Az Ynpc,WTy =q — AT, — Ynpc WIT, — YnBo (Tl - Tl,S) (56)
2
Unless otherwise stated, LHS is time t, RHS is time t-1 Dividing by %?Azl :
280 (O =T, (t— 1) 2kdt T, —T) WdtT _qadt Adt T WIldt T Bodt (T T ) (s7)
! ! Az Az, z ! Az, re Yn PCpAZy Yy pCplzy ! Az, ! pcplzy ! LS
1+ Adt N 2rkdt  Wdt 2kdt _ WIlldt Bodt _— B,dt T+ qdt (s8)
Yn PCplzy Az Az, Az ! Az Az, 2 Az pcplzy ! peplzy LS Yn PCpAZy
Note, for shorthand, LHS is time t, RHS is time t-1
The equation set can in principle can be written this way for the various layers:
b1T1 + C1T2 = dl' aka_1 + kak + Cka+1 == dk! aLTL_1 + bLTL == dL (59)

785 In the code we go through the equations and find the coefficients ay, b, and c,. The d; terms are the results of the forward
Euler solution for the horizontal transport. This now defines a banded matrix problem and can be solved using a suitable
banded matrix solver.

Following this approach, the coefficients a,, b,,and d, are:

Adt 2K dt w dt 2K dt
b1 =1+ - y 64 = — 4
YN pcAzq Az1Az, Azq Az1Az,
nwdt dt dt qdt
d1=<1— — Lo )Tl(t—1)+B°—T15(t—1)+— (510)
Azq pcplhzy pcpAzy YNPCphzy

790 where g is now the mean forcing over the preceding year.

Performing similar transformations as for the top layer on eq. (S4), the coefficients for the internal layers a, by, cyand d;

become:
2K dt W dt 2K dt 2K dt W dt
M= Az (6Az, + Az _y) (- 5)A—zk' be=1+ Az (Azy_q + 6Azy) * Az (Azyyq + Azy) +9 Az’
2K dt W dt
T T Az (Dzpes + Bzp) 207
795 dy = <1 — pf:ZZR)Tk(t -1+ pf;’zzk Tes(t— 1), (511)

where 6 in the expressions for a; and b, is 0 for the second layer and 1 otherwise.

And for the bottom layer (from eq. (S5)):
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2k dt 2k dt W dt

= — ) b = 1 ] = 0:
“ Az, (Az, + Az, ) L + Az, (Az, + Az, ) * Az, ‘L
d, =1 Podt T,(t—1) + Podt T,s(t—1) + ”WdtT t—1) $12)
L= pc,z; L pc,Az; LS ) Az, 1( (

5 Code availability

The Python code is openly available on github at https://github.com/ciceroOslo/ciceroscm with a zenodo doi for the version
used here https://doi.org/10.5281/zenodo.10548720.
The FORTRAN version of the code is not open as such, but executable versions for various operating systems are available

as part of the openscm-runner framework https://github.com/openscm/openscm-runner (last accessed 16.01.2024).

6 Data availability

RCMIP (Nicholls et al., 2020) input data used for running the models and most plots are available from here
https://gitlab.com/rcmip/rcmip with a zenodo doi (Nicholls and Gieseke, 2019).

Model output has also been compared with forcing and temperature output from IPCC ARG chapter 7 (Smith et al., 2021a),
with HadCrut temperature data (Morice et al., 2021), and GCOS ocean heat content data (von Schuckmann et al., 2023), all

openly available datasets.
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