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Abstract. The CICERO Simple Climate Model (CICERO-SCM) is a lightweight, semi-empirical model of global climate. 

Here we present a new open-source Python port of the model for use in climate assessment and research. The new version of 

CICERO-SCM has the same scientific logic and functionality as the original FORTRAN version but it is considerably more 

flexible and open source via Github. We describe the basic structure, improvements compared to the previous FORTRAN 10 

version, together with technical descriptions of the global thermal dynamics and carbon cycle components and the emissions 

module, before presenting a range of standard figures demonstrating its application. A new parameter calibration tool is 

demonstrated to make an example calibrated parameter set to span and fit a simple target specification. CICERO-SCM is 

fully open source and available through GitHub (https://github.com/ciceroOslo/ciceroscm).  

1  Introduction 15 

Simple Climate Models (SCMs), also termed Reduced-Complexity Models (RCMs), have an important role in climate 

modelling. While Earth System Models (ESMs) are used to resolve climate processes on a resolved grid, they remain 

extremely resource intensive, however, much simpler models can reproduce key globally aggregated outputs (e.g., globally 

averaged surface temperature) (Balaji et al., 2017; Schneider and Thompson, 1981; Wigley and Raper, 1992). Thus, simple 

models can be used to both help understand and explain physical processes (e.g. Peters et al., 2011) or be calibrated to 20 

replicate the behaviour and uncertainty across a range of more complex ESMs (Meinshausen et al., 2011). SCMs can be used 

to estimate the climate uncertainties across thousands of emissions scenarios in a short run time (Kikstra et al., 2022), 

something which remains impossible for ESMs with today’s computing power, and have been used to quantify uncertainty in 

key climate indicators such as climate sensitivity (Sherwood et al., 2020) and the remaining carbon budget (Lamboll et al., 

2023).  25 

Even though SCMs can be used to emulate more complex models, there remains value in maintaining a diversity of SCMs 

because the reduced form representation of the climate often rests on a set of structural assumptions and modeling 

philosophies which limit the response of the model (Nicholls et al., 2021, 2020). SCMs can exhibit a wide range of 

complexity, ranging from simple one- or two-layer energy-balance models which are used in the operational calculation of 
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emission metrics (Aamaas et al., 2013) up to more comprehensive representation of the carbon cycle and energy balance 30 

(e.g. (Gasser et al., 2020; Meinshausen et al., 2011)). There are also Intermediate Complexity Models, sitting somewhere 

between an SCM and ESM, but for the purpose of this article, we consider SCMs to be models which allow simulation of a 

scenario on a single CPU in seconds or less.  

The different complexity levels of SCMs can lead to different outcomes  when key physical processes are constrained from 

data, such as  tradeoffs in climate forcers, and carbon-climate feedbacks on different time scales, such that models with 35 

different structures constrained on the same data can exhibit different future constrained projection distributions  (Jenkins et 

al., 2021; Kikstra et al., 2022; Lamboll et al., 2023). While SCMs can be calibrated to replicate the behaviour of more 

complex models, there is also a diversity of ways to do this. Calibration could be done only on the historical period using 

observational based data (e.g., (Aldrin et al., 2012)), or on complex model simulations over longer time periods using 

scenarios (e.g., out to 2100, (Meinshausen et al., 2011)) or using idealized simulations (e.g. response to abrupt or gradual 40 

changes in CO2 concentration) (Olivié and Stuber, 2010). Further, different variables could be used in the calibration, such as 

concentrations, surface temperature, and ocean heat content (Smith et al., 2021b). Subjective calibration choices can also 

lead to differences in climate outcomes (Sanderson, 2020). Each level of model complexity and calibration method has 

advantages and disadvantages, and to ensure robust and policy relevant results, it is necessary to maintain and develop a 

range of SCMs. 45 

 

The original version of the CICERO1 Simple Climate Model (CICERO-SCM) was developed in 1999 (Fuglestvedt and 

Berntsen, 1999) to study the effects of future emissions on global mean surface temperature and sea level rise. Atmospheric 

carbon dioxide (CO2) was estimated using an ocean mixed-layer pulse response function (Alfsen and Berntsen, 1999; Joos 

and Bruno, 1996). The response to other long lived greenhouse gas emissions were estimated using simple first-order decay 50 

equations, and the radiative forcing was estimated using simple proportionality between concentration and forcing for each 

gas. Direct and indirect radiative forcing of aerosols, radiative forcing of tropospheric and stratospheric ozone (O3) and 

stratospheric water vapor were implemented using simplified expressions. The total radiative forcing provided boundary 

conditions for an energy-balance upwelling-diffusion ocean model (Schlesinger et al., 1992). A time-varying lifetime of 

methane (CH4) was introduced after the IPCC (Integovernmental Panel on Climate Change) Third Assessment Report based 55 

on a linear interpolation of the changes in the hydroxyl radical (OH) concentration with CH4 concentration, nitrogen oxides 

(NOx), carbon monoxide (CO) and  non-methane volatile organic carbon (NMVOC) emissions (table 4.11 footnote b of 

(Ehhalt et al., 2001)). Since then, the core structure of the CICERO-SCM has remained relatively unchanged, though 

parameters have been constantly updated in line with the best available science. The model has been used in a range of 
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studies, such as, historical contributions to global warming (den Elzen et al., 2005, 2013; Höhne et al., 2011; Skeie et al., 60 

2017, 2021), global warming from different economic sectors (Skeie et al., 2009; Tronstad Lund et al., 2012) estimates of 

the climate sensitivity (Aldrin et al., 2012; Skeie et al., 2014, 2018), simple model intercomparisons (Nicholls et al., 2021, 

2020) and assessment of specific mitigation strategies (Myhre et al., 2011; Torvanger et al., 2012, 2013). The CICERO-SCM 

was also used in the IPCC Sixth Assessment Report (Guivarch et al., 2022; Kikstra et al., 2022; Smith et al., 2021b).  

In this article we describe and assess an updated version of the CICERO-SCM, now written in Python and made openly 65 

accessible to encourage community development and engagement. The model has also been supplemented with features for 

parameter calibration, and easier parallel runs. 

2  Model structure 

 

 70 

Figure 1: The core model structure. The concentrations_emissions_handler.py module calculates concentrations from emissions 

using a carbon cycle model for atmospheric CO2 and first order decay equations for other components. It then calculates forcing 

from concentrations using the (Etminan et al. 2016) scheme for CO2, CH4 and N2O, and updated proportionality relationships for 

other gases. Simplified expressions calculate forcing directly from emissions for aerosols, O3 and stratospheric water vapour. The 

effective radiative forcing is passed to the upwelling_diffusion_model.py where it is used as input to the ocean energy balance model 75 
(Schlesinger, Jiang, and Charlson 1992) to calculate temperature and ocean heat content. This process is repeated for each time 

step, and looping and information passing is handled by the ciceroscm.py control module. 

Figure 1 shows the overall structure and flow of the CICERO-SCM. The core of the model consists of one module, 

concentrations_emissions_handler.py (see section 2.1), which calculates concentrations from emissions, and forcing from 

concentrations or directly from emissions, and another module, upwelling_diffusion_model.py, which calculates temperature 80 

from forcing, using an upwelling diffusion energy balance model (UDM/EBM) (see section 2.2). A main control module, 
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ciceroscm.py, calls these two, transfers data from the emissions to forcing module to upwelling diffusion module, loops over 

years, and takes care of outputs.  The model can be run directly from input concentrations or forcing time series, in addition 

to running all the way from emissions to temperatures. Inputs and outputs are all global and on yearly time resolution with 

some exceptions. The upwelling_diffusion_model.py has two hemispheres and does calculations using 12 sub yearly 85 

timesteps to ensure convergence. The forcing input is therefore for two hemispheres. Volcanic forcing input is on a monthly 

time resolution (see section 2.2 and Appendix C for further details). The carbon cycle uses 24 sub yearly timesteps to 

integrate the carbon response, however, inputs and outputs only yearly values (see section 2.1.1). In section 2.3 we describe 

the main differences between the new Python port version and the previous FORTRAN implementation. 

 90 

The code also includes various modules and help functions to handle perturbations (perturbations.py), utilities used by 

multiple modules (pub_utils.py and _utils.py), handling of input in various formats (input_handler.py) and making default 

summary plots (make_plots.py). It also ships with a subpackage for handling parallel runs including a parallelization wrapper 

(cscmparwrapper.py), a module to define a distribution run (distributionrun.py) and modules to build and define a 

distribution and do calibration (_configdistro.py and calibrator.py). All these tools will be described in more detail in section 95 

2.4. 

 

A regular run of the code will start by defining a CICERO-SCM instance, that can then be used to run the model for the 

same experiment, but with various parameter values. Table 1 shows the parameters for creation of such an instance. A 

default run will lead to output files being generated, but the outputs can also be held in a dictionary with separate keys and 100 

corresponding values for outputs from the upwelling_diffusion_model.py and additional keys for datasets for concentration, 

emissions and forcing. A run can also produce automatic plots. Appendix A contains figures showing the automatic plots 

generated from a default configuration emission to forcing run of the CMIP6 historical experiment (Figs. A1-A11). 

Name Description 

Mandatory parameters  

gaspam_file List of gases and aerosols to be used in the model. See 

also Table 3. 

Optional parameters  

Sunvolc Parameter to include solar and volcanic forcing. If set to 

1, they will be included, see section 2.1.12. Datasets for 

this forcing can be supplied by the user or taken from 

defaults that come with the model. 

rf_sun_file Path to solar forcing file, see section 2.1.12 

rf_volc_file Path to volcanic forcing file, see section 2.1.12 
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perturb_forc_file Forcing timeseries to be added as a perturbation to the 

forcing timeseries calculated from the 

concentrations_emissions_handler. See section 2.1.13 

for details. 

perturb_em_file Emissions timeseries to be added as a perturbation to 

emissions from a predefined emissions file. See section 

2.1.13 for details. 

Parameters for concentrations or emissions 

configurations 

 

concentrations_file File with concentration timeseries of gases. Used in 

concentration driven run. For emission driven run, the 

pre-industrial values from this file is used and the 

values from nystart to emstart for all gases except CO2. 

emissions_file File with emission timeseries of gases. (Used even in 

concentration driven runs for short lived climate 

forcers) 

nat_ch4_file File with natural emissions of CH4. See section 2.1.3 for 

details 

nat_n2o_file File with natural emissions of N2O. See section 2.1.4 

for details 

Idtm Sub yearly timesteps in concentration emission model, 

used to calculate the CO2 concentrations from 

emissions. 

Nystart Start year of the run 

Nyend End year of the run 

Emstart Emissions start year, with concentrations used between 

nystart and emstart if they are different 

rs_function Custom mixed layer pulse response function. Argument 

must be a function that takes in step number and idtm, 

can be generated from an array using 

make_rs_function_from_arrays in pub_utils. See 

section 2.1.1 for description of default value and use. 

rb_function Custom mixed layer pulse response function. Argument 
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must be a function that takes in step number and idtm, 

can be generated from an array using 

make_rb_function_from_arrays in pub_utils. See 

section 2.1.1 for description of default value and use 

conc_run Optional Boolean parameter too specify that the run is 

meant as a concentration driven run. 

Parameters for a pure forcing configuration  

forc_file Can be single column of data, contain years as a 

column, have forcings per various forcing components, 

or contain columns for FORC_NH and FORC_SH for a 

hemispherically split of forcing 

Table 1: Parameters used in defining a ciceroscm model object. 

2.1 Emissions to radiative forcing – concentrations_emissions_handler 105 

The module concentrations_emissions_handler.py calculates the effective radiative forcing time series. Each timestep this is 

done by first calculating concentrations from emissions. In a concentration driven run, this is done by simply reading the 

concentrations in. Otherwise, a carbon cycle described in section 2.1.1 is employed to calculate the CO2 concentrations, a 

mass balance equation is used for the other components as described in section 2.1.2, with special modifications to account 

for multiple decay processes and natural emission for CH4 (section 2.1.3) and nitrous oxide (N2O) (section 2.1.4). When 110 

concentrations have been calculated, forcing is derived. For this, the scheme described in (Etminan et al., 2016) is first used 

to calculate the forcing from CO2, CH4 and N2O (section 2.1.5). Then looping over all other chemical components, forcing 

will be calculated using tabulated concentrations to forcing values (section 2.1.6) or calculated specifically for various 

species (see section 2.1.7 for tropospheric O3, section 2.1.8 for stratospheric O3, 2.1.9 for stratospheric water vapour, for 

aerosol forcing, 2.1.10 for albedo from land use change, 2.1.11 for aerosol forcing and 2.1.12 for solar and volcanic forcing). 115 

 

 

Inputs to the module (Table 1) are files or datasets of emission and concentrations time series (Table 1), a file or dataset to 

define what gases and substances to consider, and optional integers to define the start year, end year, year at which to start 

running from emissions, number of sub yearly timesteps for carbon cycle calculations and a Boolean option to make the runs 120 

pure concentrations runs. Additional optional parameters giving files or datasets for natural emissions of CH4 and N2O and 

custom pulse response functions for the carbon cycle model can also be passed. 

 

Some concentrations data are needed even in emissions-driven mode for pre-industrial concentrations and to define 

concentrations prior to the chosen year of emission start. The default year of run start is 1750, the model uses CO2 emissions 125 
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from the outset, whereas non-CO2 emissions start in the emissions start year, default year in 1850, so up to the year of 

emission start all other components have forcing calculated directly from concentrations. After the emissions start, all 

components will have forcing calculated from emissions. Alternatively, the model can be configured to use prescribed 

concentrations for all gases for the duration of the run. 

When the model is to be run, an array of parameters to control the properties of calculations can be adjusted. Table 2 shows 130 

these parameters, most of which control the forcing strength of various substances. 

Parameter Default value Unit Description 

qbmb 0.0 W m-2 Biomass burning aerosol forcing in 

ref_yr. Scaled using the amount of 

biomass burning organic carbon 

(BMB_AEROS_OC) 

qo3 0.5 W m-2 Tropospheric O3 forcing in ref_yr, see 

section 2.1.7 

qdirso2 -0.36 W m-2 Direct forcing sulphate in ref_yr, see 

section 2.1.10 

qindso2 -0.97 W m-2 Indirect RF sulphate in ref_yr, see 

section 2.1.10 

qbc 0.16 W m-2 BC (fossil fuel+biofuel) forcing in 

ref_yr, see section 2.1.10 

qoc -0.08 W m-2 OC (fossil fuel+biofuel) forcing in 

ref_yr, see section 2.1.10 

qh2o_ch4 0.091915  Forcing from CH4 induced changes to 

stratospheric water vapour, see section 

2.1.9 

ref_yr 2010  Reference year for the forcing values 

above. To construct radiative forcing 

time series, these forcing values are 

scaled backwards and forwards using 

emissions. The forcing in ref_yr is 

equal to the forcing value above. 

beta_f 0.287  Fertilisation factor in (Joos and Bruno, 

1996) scheme carbon cycle, see section 

2.1.1 
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just_one   Option parameter that allows you to 

run the upwelling diffusion model with 

forcing from just a single component 

lifetime_mode   Lifetime mode for CH4, valid options 

are “TAR” (table 4.11 footnote b of 

(Ehhalt et al., 2001), 

“CONSTANT_12” (for a constant 

value of 12 years) or “WIGLEY”, a 

wigley exponent behaviour (Osborn 

and Wigley, 1994). “TAR” is the 

default but using a flat OH lifetime 

from the gaspam_file is a hidden 

default if you send a value for this 

option which is not “TAR” nor 

“CONSTANT_12” nor “WIGLEY”. 

For details see section 2.1.3. 

Table 2: Parameters to the concentration_emissions_handler 

The gaspam_file or corresponding dataset defines which substances for the model to consider and includes properties 

defining the calculations to be performed for them. Table 3 shows the default shipped gaspam_file and its structure. 

Information from this file is used in the calculations of both concentrations from emissions and when mapping 135 

concentrations to forcing. 

 

GAS EM_UNIT 

CONC_UN

IT BETA ALPHA 

TAU1(YEA

RS) TAU2 TAU3 

NATURAL

_EMISSIO

NS 

SARF_TO_

ERF 

CO2 Pg_C ppm 2.123 0 150 0 0 0 1.05 

CH4 Tg ppb 2.78 0 9.6 120 160 275 0.877193 

N2O Tg_N ppb 4.81 0 121 0 0 9.5 1.07 

SO2 Tg_S - 0 0 0 0 0 0 1 

CFC-11 Gg ppt 22.6 0.000259 52 0 0 0 1.13 

CFC-12 Gg ppt 20.8 0.00032 102 0 0 0 1.12 

CFC-113 Gg ppt 32.5 0.000301 93 0 0 0 1 

CFC-114 Gg ppt 29.7 0.000314 189 0 0 0 1 
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CFC-115 Gg ppt 27.1 0.000246 540 0 0 0 1 

CH3Br Gg ppt 16.4 0.000004 0.8 0 0 0 1 

CCl4 Gg ppt 25.3 0.000166 32 0 0 0 1 

CH3CCl3 Gg ppt 22 0.000065 5 0 0 0 1 

HCFC-22 Gg ppt 14.9 0.000214 11.9 0 0 0 1 

HCFC-141b Gg ppt 26.3 0.000161 9.4 0 0 0 1 

HCFC-123 Gg ppt 20.1 0.00016 1.3 0 0 0 1 

HCFC-142b Gg ppt 16.8852 0.000193 18 0 0 0 1 

H-1211 Gg ppt 28.37 0.0003 16 0 0 0 1 

H-1301 Gg ppt 25.55 0.000299 72 0 0 0 1 

H-2402 Gg ppt 45.9564 0.000312 28 0 0 0 1 

HFC125 Gg ppt 21.27 0.000234 30 0 0 0 1 

HFC134a Gg ppt 18.09 0.000167 14 0 0 0 1 

HFC143a Gg ppt 14.9 0.000168 51 0 0 0 1 

HFC227ea Gg ppt 30.14 0.000273 36 0 0 0 1 

HFC23 Gg ppt 12.41 0.000191 228 0 0 0 1 

HFC245fa Gg ppt 23.76 0.000245 7.9 0 0 0 1 

HFC32 Gg ppt 9.22 0.000111 5.4 0 0 0 1 

HFC4310m

ee Gg ppt 44.68 0.000357 17 0 0 0 1 

C2F6 Gg ppt 24.46 0.000261 10000 0 0 0 1 

C6F14 Gg ppt 59.92 0.000449 3100 0 0 0 1 

CF4 Gg ppt 15.6 0.000099 50000 0 0 0 1 

SF6 Gg ppt 25.89 0.000567 3200 0 0 0 1 

NOx Mt_N - 0 0 0 0 0 0 1 

CO Mt - 0 0 0 0 0 0 1 

NMVOC Mt - 0 0 0 0 0 0 1 

NH3 Mt - 0 0 0 0 0 0 1 

SO4_IND X - 0 0 0 0 0 0 1 

TROP_O3 X - 0 0 0 0 0 0 1 

STRAT_O3 X - 0 0 0 0 0 0 1 

STRAT_H2

O X - 0 0 0 0 0 0 1 
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BMB_AER

OS_BC Tg - 0 0 0 0 0 0 1 

BMB_AER

OS_OC Tg - 0 0 0 0 0 0 1 

BMB_AER

OS X - 0 0 0 0 0 0 1 

LANDUSE X - 0 0 0 0 0 0 1 

BC Tg - 0 0 0 0 0 0 1 

OC Tg - 0 0 0 0 0 0 1 

OTHER X - 0 0 0 0 0 0 1 

 

Table 3: The structure of the gaspam_file. In it, properties of greenhouse gases and short-lived climate gases or precursors used in 

calculations are defined. This is the standard shipped version of the gaspam_file, but the user is free to define their own file adding 140 
or subtracting gases and adjusting values for lifetimes, forcing strength and so on as they see fit. The column headers are: the 

name of the gas or substance in the run (GAS), emissions unit (EM_UNIT), concentration unit (CONC_UNIT), the conversion unit 

between concentration and mass (unit is the ratio of the emissions unit to the concentration unit) (BETA),  radiative efficiency 

(ALPHA) in W m-2 ppb-1, lifetime in years, in the case of CH4 the lifetime is split into the OH lifetime in years (TAU1), soil lifetime 

in years (TAU2) and stratospheric lifetime in years (TAU3), natural emissions ((NATURAL_EMISSIONS) where the unit should 145 
be the same as the emissions unit , and a unitless conversion factor from stratospheric adjusted radiative forcing (SARF) to 

effective radiative forcing (ERF) (SARF_TO_ERF). In the current implementation, TAU2 and TAU3 are only used for CH4 and 

the ALPHA parameter is unused for CO2, CH4, N2O and aerosols. Gases with “–“ in the CONC_UNIT column are not converted 

from emissions to concentrations and concentrations of these are not outputted or used in calculations. Gases with X in the 

emissions column are not read from the emissions files, but the forcing is calculated through other means from emissions of other 150 
components. 

2.1.1 CO2 – emissions to concentrations 

The carbon cycle in the CICERO-SCM includes one part for the decay -of CO2 into the deep ocean, and one part, for impacts 

from the terrestrial ecosystem. 

The deep ocean sink is modelled using a scheme for CO2 from (Joos et al., 1996) and an explanation of the CICERO-SCM 155 

implementation can be found in (Alfsen and Berntsen, 1999). The CO2 module uses an a diffusive air-sea exchange model, 

combined with a decay function which represents transfer of carbon to the deep ocean (Alfsen and Berntsen, 1999; 

Siegenthaler and Joos, 1992). Atmospheric CO2 partial pressures 𝛿𝑝𝐶𝑂2,𝑎(𝑡), in ppm are calculated as follows: 

𝑑

𝑑𝑡
𝛿𝑝𝐶𝑂2,𝑎(𝑡) =

𝑒(𝑡)−𝑓𝑓𝑒𝑟

𝐶ppm_to_PgC
− 𝐴𝑜𝑐𝑓𝑎,𝑠 (1)  

 160 

Where e(t) are the total emissions at time t (in PgC yr-1), 𝑓𝑓𝑒𝑟 is the net carbon uptake of the terrestrial carbon cycle (PgC yr-

1), 𝐶ppm_to_PgC = 2.123 
PgC

ppm
 is a conversion factor between partial atmospheric concentration of CO2 and emitted Pg of 

carbon. Aoc is the ocean area (in m2).  fa,s is the transfer rate between ocean and atmosphere (in ppm yr-1 m-2), represented as 

a function of the atmospheric and ocean carbon partial pressures: 
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𝑓𝑎,𝑠 = 𝑘𝑔 ∙ [𝛿𝑝𝐶𝑂2,𝑎 − 𝛿𝑝𝐶𝑂2,𝑠], (2) 165 

Where 𝑘𝑔 is the gas exchange coefficient (𝑘𝑔 =
1

9.06∙𝐴𝑜𝑐
yr−1m−2) and 𝛿𝑝𝐶𝑂2,𝑠 is the partial pressure of the slab ocean, itself 

calculated as a function of the ocean temperature (T) and the carbon content of the mixed layer (𝛿ΣCO2(𝑡)). 

𝛿𝑝𝐶𝑂(2,s) = F(𝛿ΣCO2(𝑡), T) (3) 

F is the polynomial approximation given in equation 6b) of (Joos et al., 1996). Though this equation could include 

temperature feedback to the carbon cycle, the CICERO-SCM does not currently include this, implementing instead a static 170 

T= 18.2°C giving  

𝐹(𝑥) =  1.3021𝑥 + 3.7929 ∙ 10−3𝑥2 + 9.1193 ∙ 10−6𝑥3 + 1.488 ∙ 10−8𝑥4 + 1.2425 ∙ 10−10𝑥5 (4) 

 

𝛿ΣCO2  is calculated as a historical integral of past air-sea fluxes 𝑓𝑎,𝑠modulated by a decay function 𝑟𝑠which represents 

transfer of carbon from the mixed layer to an (infinite) deep ocean sink. 175 

𝛿ΣCO2(𝑡) =
𝑐conv

ℎ
∫ 𝑓𝑎,𝑠(𝑡

′)𝑟𝑠(𝑡 − 𝑡
′)𝑑𝑡′

𝑡

𝑡𝑜
 (5)  

Where h is the height of the mixing layer in meters, 𝑐conv = 1.72210
17 𝜇mol∙m

3

ppm∙kg
 is a conversion factor from the flux from 

ppm to μmol and sea water from volume (m3) to mass (kg). The function 𝑟𝑠  is defined by two empirical decay functions, the 

first for a period of less than two years, with a second empirical formulation for periods of two years or greater: 

𝑟𝑠

{
  
 

  
 = 0.12935 + 0.21898 ∙ 𝑒

−
𝑡

0.034569 + 0.17003 ∙ 𝑒−
𝑡

0.26936 + 0.24071 ∙ 𝑒−
𝑡

0.96083

+0.24093 ∙ 𝑒−
𝑡

4.9792                                                                           𝐢𝐟 𝐭 < 𝟐. 𝟎

= 0.022936 + 0.24278 ∙ 𝑒−
𝑡

1.2679
 + 0.13963 ∙ 𝑒−

𝑡
5.2528 + 0.089318 ∙ 𝑒−

𝑡
18.601

+0.03782 ∙ 𝑒−
𝑡

68.736 + 0.035549                                                𝐢𝐟 𝐭 ≥ 𝟐. 𝟎

 (6)

⬚

 180 

where t is measured in years.  

Different versions of both 𝑟𝑠 and the biotic decay function 𝑟𝑏, described below and with standard form according to equation 

(8) can be sent by sending a function as input when defining the concentrations_emissions_handler object according to 

Table 1. 

 185 

The CICERO-SCM also includes the impacts of the terrestrial ecosystem, including CO2 fertilization and subsequent impact 

on decay of biospheric material (Joos and Bruno, 1996). Net primary productivity is described as a function of the 

atmospheric CO2 concentration, which modifies the emissions timeseries directly according to equation (1). 

 

The carbon uptake of the terrestrial cycle 𝑓𝑓𝑒𝑟  is represented as: 190 

𝑓𝑓𝑒𝑟(𝑡) = 𝛿𝑓𝑛𝑝𝑝(𝑡) + ∫ 𝛿𝑓𝑛𝑝𝑝(𝑡
′)𝑟𝑏(𝑡 − 𝑡

′)𝑑𝑡′
𝑡

−∞

, (7) 
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Where δfnpp (t) is the instantaneous Net Primary Productivity (NPP) from the current CO2 concentration (in units of PgC per 

year = PgC per year) and 𝑟𝑏 is an impulse-response function which represents the decay of the historically fertilized material 

produced during previous timesteps: 195 

𝑟𝑏 = 0.70211 ∙ 𝑒
−0.35𝑡 + 13.4141 ∙ 10−3 ∙ 𝑒−

𝑡
20.0 − 0.71846 ∙ 𝑒−

55𝑡
120.0 + 2.9323 ∙ 10−3 ∙ 𝑒−

𝑡
100.0 (8) 

The various terms represent the decay of ground vegetation, wood, detritus and soil organic carbon, and time t is measured in 

years. 𝛿𝑓𝑛𝑝𝑝(𝑡) is represented as a function of the atmospheric CO2 concentrations: 

𝛿𝑓𝑛𝑝𝑝(𝑡) = 𝑓𝑛𝑝𝑝 𝛽𝑓 ln (
𝐶𝑂2,𝑎(𝑡)

278ppm
) , (9) 

Where 𝑓𝑛𝑝𝑝 is a measure of global terrestrial NPP (here taken as 60PgC yr-1 (Atjay et al., 1979; Joos and Bruno, 1996), 200 

𝐶𝑂2,𝑎(𝑡) is the atmospheric concentration of CO2 measured in ppm. 𝛽𝑓(beta_f in the model and Table 2) is the ‘fertilization 

factor’. 

 

 

Figure 2: Calculated concentration of CO2, CH4 and N2O from the CICERO-SCM from CMIP6 emissions time series 205 
(Meinshausen et al., 2017) compared to the concentrations of these gases prepared for CMIP6 (black line) from the same emissions 

inputs (Meinshausen et al., 2017). Note that the natural emissions of CH4 and N2O are adjusted so that the calculated 

concentrations match the observational based concentrations prepared for CMIP6. 
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Figure 2a shows the calculated concentrations of CO2 from the CICERO-SCM using CO2 emissions from (Meinshausen et 

al., 2017, 2020). For reference, the CO2 emissions in 2014 split into 9.7 Pg carbon of fossil fuel emissions and 1.1 Pg carbon 210 

of landuse change emissions.   

 

2.1.2 Non-CO2 components concentration calculations 

The atmospheric concentration of non-CO2 gases is determined by a mass balance equation:  

d C

dt
=  P –  Q ⋅ C =  

E

𝛽gas
 –  C ⋅

1

𝜏gas
 (10) 215 

 

where C is the concentration or mixing ratio of the gas (ppm, ppb), P is the production rate and Q is the loss rate. The 

production, P, is given by the emissions per year, E, converted to mixing ratio units with 𝛽gas, 𝜏gas is the lifetime (in years). 

𝛽gas (BETA) and 𝜏gas  (TAU1) are both gas specific constants read from the gaspam_file (see Table 3). The production 

(emissions) is a function of time t (in years), E=E(t), while the loss rate (Q) is assumed to be constant, except for the case of 220 

CH4 (see section 2.1.3).  

 

To solve this equation numerically, we use a first-order exponential integrator method. We first rearrange the equation as 

d C(t)

dt
+ C(t) ∙

1

𝜏gas
= 
E(t)

𝛽gas
, (11) 

multiply both sides by exp (
𝑡

𝜏gas
) and combine: 225 

d

dt
(C(t) ∙ exp (

𝑡

𝜏gas
)) =  

E(𝑡)

𝛽gas
∙ exp (

𝑡

𝜏gas
) (12) 

The emissions (E) and mixing ratios (C) are annual, and we assume that over each one-year period they are constant. This 

means that we can solve the equation exactly for each time step, t to 𝑡 + ∆𝑡 , where ∆𝑡 = 1 as the data is annualized. First, 

integrate both sides of the equation from t to t+1, noting that E(t) is constant between t+1 and t:  

C(𝑡 + 1) ∙ exp (
𝑡 + 1

𝜏gas
) −  C(𝑡) ∙ exp (

𝑡

𝜏gas
) =  

E(𝑡)𝜏gas

𝛽gas
∙ [exp (

𝑡 + 1

𝜏gas
) − exp (

𝑡

𝜏gas
)] (13) 230 

 

Then multiply both sides by exp (−
𝑡+1

𝜏gas
), noting that exp (−

𝑡+1

𝜏gas
) ∙ exp (

𝑡

𝜏gas
) =  exp (−

1

𝜏gas
)), leads to 

𝐶(𝑡 + 1) =  𝐶(𝑡) exp (−
1

𝜏gas
) + 

𝐸(𝑡)𝜏gas

𝛽gas
∙ [1 −  exp (−

1

𝜏gas
)] (14) 

This implementation is appropriate for discrete input data only, where the emissions (and concentrations) are assumed 

constant throughout the year. For a timestep of less than one year, the emissions (E) and mixing ratio (C) would need to have 235 
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a resolution of less than one year to match the time step. If working with emissions not assumed static over the sub yearly 

timescale, the original equation would be solved either analytically or using a numerical solution to the original differential 

equation (Aamaas et al., 2013). This version of the model only works for yearly data that follows this assumption. 

Given this assumption, the method outlined here is an exact solution, for each time step, utilizing the fact that emissions are 

constant in each time step. The solution can also be interpreted in terms of production and loss. The first term on the right-240 

hand side represents the mixing ratio at the start of the time-period (Ct), which decays according to the loss rate over one 

year. The second term on the right-hand side represents the emissions added in that year (Et), which are assumed constant, 

and thus accumulate as sustained emissions over the year (Aamaas et al., 2013). At the end of the time-period, Ct+1, the 

mixing ratio is thus the contribution from material already in the atmosphere (first term) plus the contribution from material 

added to the atmosphere over the year (second term).  245 

Several simplifications can help explain equation (14) and the unique characteristics of different non-CO2 components. For a 

long-lived species, where τ>>1, such as N2O, then the exponential term is close to one, and Ct+1≈Ct+∆, where ∆ is a small 

contribution from new emissions. For a short-lived species, where τ<<1, such as sulfur dioxide (SO2), then the exponential 

term is close to zero, and 𝐶(𝑡) ≈ 𝐸(𝑡) ∙
𝜏gas

𝛽gas
, showing that the mixing ratio is approximately a linear scaling of the emissions. 

And in fact, for SO2 and other aerosols, such a direct emissions scaling is used to obtain forcing directly from emissions with 250 

no separate calculation of concentrations. 

2.1.3 CH4 - emissions to concentrations 

The atmospheric concentration of CH4 is determined by the mass balance equation (equation 14), leading to the solution and 

treatment as described above in section 2.1.2. But for CH4, the lifetime τ is not necessarily constant. The total lifetime is a 

combination of the lifetime with respect to OH (τOH), stratospheric lifetime (τstrat) representing the chemical losses in 255 

stratosphere, and soil lifetime (τsoil) representing the soil loss. The total lifetime and the individual lifetimes are related by: 

1

𝜏
= 

1

𝜏OH
+ 

1

𝜏soil
+ 

1

𝜏strat
. The values of 𝛽CH4  (BETA), τOH (TAU1), τsoil (TAU2), τstrat (TAU3) are specified in the 

gaspam_file (Table 3) with default values of 2.78 Tg CH4 ppbv-1, 9.6 years, 120 years, and 160 years (Ehhalt et al., 2001), 

used. The total lifetime of CH4 is 8.4 years. 

The lifetime of CH4 due to OH depends both on the CH4 itself and emissions of NOx, CO and NMVOCs. CH4 influences its 260 

own lifetime since the reaction between CH4 and OH also is a significant loss reaction for OH. Increased emissions and 

higher atmospheric levels of CH4 thus decrease the levels of OH. This will increase the chemical lifetime of CH4, thereby 

further increasing the atmospheric levels of CH4. CO and NMVOCs also have OH as a main loss reaction, and increased 

emissions of these components will decrease the levels of OH and increase the lifetime of CH4. Enhanced levels of NOx will 

work in the opposite direction, as NOx acts as a source of OH. Enhanced NOx will increase OH and decrease the CH4 levels.  265 

Several parameterization options are available in the CICERO-SCM to deal with these effects on the CH4 lifetime. The 

"lifetime_mode" can be set to the following in the pamset_emiconc (Table 2): 
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"TAR" (default) where the τOH is adjusted following (Ehhalt et al., 2001) (Table 4.11 footnote b). 
1

𝜏
= 𝑞 = 𝑞 ∙

(d lnCOH + 1), where 

d lnCOH = −0.32 ∙ {ln[CCH4(𝑦𝑟)]− ln[1751.0]}+ 0.0042 ∙ [ENO𝑥(𝑦𝑟)− ENO𝑥(2000)]+ 0.000105270 

∙  [ECO(𝑦𝑟)− ECO(2000)]− 0.000315 ∙  [ENMVOC(𝑦𝑟)− ENMVOC(2000)],  

“WIGLEY” , where 𝜏OH = 𝜏OH
0 ∙ (

C

C0
)
𝑁

where C is the CH4 concentration, C0 is a reference CH4 concentration of 1700 

ppb and the exponent N is 0.238 (Osborn and Wigley, 1994). 

 "CONSTANT_12" where 𝜏OH =  12.0 

If some other string is sent for this parameter, a flat lifetime from the gaspam_file is used. This flexibility in OH lifetime 275 

options can allow the user to explore hypothesis, and also allows for the user to add and adapt a new OH lifetime scheme in 

a separate fork of the code without much effort. 

There are also natural emissions of CH4 which maintain a CH4 concentration in the atmosphere in the absence of 

anthropogenic emissions (Saunois et al., 2020). To accurately represent the observed concentration, natural emissions of CH4 

can be precalculated (precalculate_natural_emissions.py in scripts/prescripts subfolder) with the same set up (lifetime mode 280 

and anthropogenic emissions) and these are added to E(t) before the calculation in eq. 14. Further details on this can be 

found in Appendix B on natural emissions of CH4 and N2O. Precalculated natural emissions time series can be specified as 

an input file or input dataset (see Table 1). The model can also be run with fixed natural emissions specified in the 

gaspam_file (Table 3), and this is the model behavior when no data or files with natural emissions are sent and can also be 

used to provide constant natural emissions for other chemical components.  285 

With the adjusted historical natural emissions of CH4, the calculated CH4 concentrations by design match observations of 

CH4 concentration (Fig. 2b). The model can also be run with fixed natural emissions specified in the gaspam_file (Table 3) 

and then the calculated concentration will give rise to discrepancies compared to observations, due to the large uncertainties 

in the CH4 budget terms (Saunois et al., 2020).  

2.1.4 N2O - emissions to concentrations 290 

The atmospheric concentration of N2O is determined by the same mass balance equation (equation 14) as for CH4, but with a 

single constant lifetime of 109 years (Smith et al., 2021b), specified in the gaspam_file (Table 3). The parameter 𝛽𝑁2𝑂 

(BETA) is given as 4.81 Tg[N] ppbv-1, and hence the emission input to the model is given in Tg[N].  

As for CH4, the natural emissions can either be kept fixed with a value prescribed in the gaspam_file or sent as a 

precalculated file or dataset so that total (natural and anthropogenic) emissions timeseries and the model setup will reproduce 295 

the historical concentration (Fig. 3c). For more on how natural emissions are estimated including assumptions for the future, 

see Appendix B on natural emissions of CH4 and N2O. 
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2.1.5 CO2, CH4 and N2O – concentrations to forcing 

Based on the calculated concentrations, radiative forcing for CO2, CH4 and N2O is calculated based on the simplified 

expressions in Table 1 of (Etminan et al., 2016) that accounts for the overlap between the three components. The equations 300 

in (Etminan et al., 2016) represent the radiative forcing that include adjustment to stratospheric temperatures (SARF). The 

initial concentrations of CO2, CH4 and N2O used for the calculations are the concentration in the nystart year from the input 

file.  

 

To include additional tropospheric adjustments, an adjustment factor can be specified in the gaspam_file (Table 3) to convert 305 

from SARF to Effective Radiative Forcing (ERF) for each of the components.  The default values in Table 3 are taken from 

AR6 and the additional adjustments will increase the radiative forcing by 5% for CO2, decrease it by 14% for CH4 and 

increasing it by 7% for N2O (Forster et al., 2021). 

 

The calculated CO2 ERF is less than the ERF timeseries from IPCC AR6 (Forster et al., 2021) based on observed 310 

concentrations before 1950, and larger after 1950 (Fig. 3a). The reason for this is the under and overestimation of the CO2 

concentration (Fig. 2a) and that 2xCO2ERF, that is the effective forcing strength of a doubling of CO2, based on (Etminan et 

al., 2016) is stronger than the 2xCO2ERF in AR6 based on (Meinshausen et al., 2020). The CH4 ERF in Fig. 3b shows a 

reasonably good match. The N2O ERF timeseries is in the lower range compared to the timeseries presented in IPCC AR6 

(Forster et al., 2021). The difference can be explained by assuming a different pre-industrial concentration value in the run, 315 

and by the fact that (Forster et al., 2021) uses simplified expression as used in (Meinshausen et al., 2020) rather than the 

expressions from (Etminan et al., 2016) used in CICERO-SCM. 
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Figure 3: Calculated ERF from CICERO-SCM for selected components from 1750 to 2020. For comparison, the ERF timeseries 

from IPCC  and uncertainty ranges from this same dataset are also shown (Smith et al., 2021a, b). a) for CO2, b) CH4, c) N2O d) 320 
other well mixed GHGs that is the sum of contribution from CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CHBr, CCl4, 

CH3CCl3, HCFC-22, HCFC-141b, HCFC-142b, C2F6, C6F14, CF4, SF6, HCFC-123, H-1211, H-1301, H-2402, HFC125, 

HFC134a, HFC143a, HFC227ea, HFC23, HFC245fa, HFC32 and HFC4310mee e) total O3, sum of tropospheric and stratospheric 

O3, f) stratospheric water vapor, g) land use (note that the CICERO-SCM uses the IPCC ERF timeseries as input), h) total aerosol 

ERF and i) Total anthropogenic forcing. Note the different scales on the y-axis. Beyond 2014 the ssp245 future projections have 325 
been used as inputs. 
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2.1.6 Effective radiative forcing for other long lived greenhouse gases 

For the other long lived or medium lifetime greenhouse gases (CFCs, HFCs, HCFCs), the atmospheric concentrations are 

calculated based on the mass balance equation, emission time series, BETA values and a single lifetime both specified in the 330 

gaspam_file (Table 3) as described in section 2.1.2. The lifetimes are  as in IPCC (7.SM.7 in (Smith et al., 2021b) ).  

For these components radiative forcing is calculated based on a radiative efficiency (Table 7.SM.7 in (Smith et al., 2021b): 

SARF = ALPHA ∙ (𝐶 − 𝐶0) (15) 

Where ALPHA is read from the gaspam_file (Table 3), 𝐶 is the concentration and 𝐶0 the concentration in the nystart year. 

As most of these components are of anthropogenic origin, 𝐶0  will be zero when starting from pre-industrial. Some 335 

components, however, have natural background concentrations. The pre-industrial concentrations are provided in the 

concentration file and natural emissions are expected to be included for each year in the emission file, otherwise a flat natural 

emission component can be specified in the gaspam_file.  

Each component also has an option to include a conversion from SARF to ERF (ERF = SARF_TO_ERF ∙  SARF), to get the 

ERF that will be output and passed to the upwelling_diffusion_model.py. 340 

In (Forster et al., 2021) CFC11 and CFC12 have SARF to ERF adjustment factors of 13 and 12 % respectively. All other 

components have SARF to ERF factors of 1. However, different SARF to ERF conversion factors can be specified in the 

gaspam_file (see Table 3).  

The calculated ERFs for the other GHGs compare well with IPCC AR6 timeseries (Fig. 3d). 

 345 

2.1.7 Tropospheric O3 

The tropospheric O3 forcing is specified in the pamset_emiconc as qo3 (Table 2), that is the radiative forcing in the reference 

year (ref_year) specified in the same parameter set. The default values are 0.5 Wm-2 in ref_year 2010, based on (Smith et al., 

2021b). The qo3 can include adjustments and be treated as ERF, or a factor converting SARF to ERF can be included in the 

gaspam_file (Table 3).  350 

The time series of tropospheric O3 forcing is calculated by combining the concentrations of CH4 and emissions of NOx, CO 

and NMVOC following (Table 4.11 footnote b of (Ehhalt et al., 2001)) 

Assuming a tropospheric O3 burden of 30 DU (Dobson Units) in the reference year, the tropospheric O3 burden is calculated 

as:  

CO3(𝑡) = 30.0 + 6.7 ∙ {ln[CCH4(𝑡)] − ln[CCH4(𝑡ref)]} + 0.17 ∙ [ENO𝑥(𝑡) − ENO𝑥(𝑡ref)] +

0.0014 ∙  [ECO(𝑡) −  ECO(𝑡ref)] + 0.0042 ∙  [ENMVOC(𝑡) −  ENMVOC(𝑡ref)] (16)
 355 

where C-terms denote concentrations, E-terms are emissions, t is time in years and is 𝑡ref is the reference year, the default 

value for this is 2010. 
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The radiative forcing is calculated by scaling the qo3 (tropospheric ozone SARF in the reference year in W m-2) by changes 

in O3 burden:  

SARF = qo3 ∙
CO3(𝑡) − CO3(𝑡emstart) 

CO3(𝑡ref) − CO3(𝑡emstart)
(17) 360 

where 𝑡emstart is the year when running with everything from emissions start. 

Before emissions start, the forcing is scaled by fossil fuel CO2 emissions and 𝑡0 is the first year of the run, i.e. nystart.  

SARF = qo3 ∙
ECO2FF(𝑡) − ECO2FF(𝑡0) 

ECO2FF(𝑡ref) − ECO2FF(𝑡0)
(18) 

 

Tropospheric O3 is a short-lived component, and the global forcing is split into hemispheric forcing. The hemispheric 365 

weights for the global forcing is taken from the multimodel results in (Skeie et al., 2020) and is 1.45 for the Northern 

Hemisphere and 0.55 for the Southern Hemisphere as implemented in the routine calculate_hemispheric_forcing. The total 

O3 forcing (tropospheric and stratospheric) is shown in Fig. 3d, and tropospheric O3 ERF alone is shown in Fig. S8. 

2.1.8 Stratospheric O3 

Loss of stratospheric O3 is calculated from the concentration of chlorine and bromine containing components three years 370 

prior to the year in question to account for transport from the troposphere to the stratosphere, and scaled by the number of 

chlorine or bromine atoms they contain: 

SARF =  −
0.287737

1000.0
∙ [0.000552 ∙∑(𝑁Cl𝑖 ∙ CCl𝑖(𝑡 − 3))

1.7

𝑖

+ 3.048 ∙∑𝑁Br𝑗 ∙ CBr𝑗(𝑡 − 3)

𝑗

] (19) 

where the sums run over the chlorine and bromine containing components respectively, the C-terms are concentrations 

(pptv) of each of these, and the N-terms are the numbers of chlorine or bromine atoms in each of them, t is the time in years. 375 

The functional form is based on Appendix 2 of (Harvey et al., 1997) and the scaling has been updated in line with (Forster et 

al., 2007). This has been generalized a bit from the Fortran version, where the exact chlorine and bromine components 

considered were hard coded, rather than identified from the substances contained in the gaspam_file (Table 3). 

The total O3 ERF (tropospheric plus stratospheric) is shown in Fig. 3e and stratospheric O3 separately in Fig. S8. 

2.1.9 Stratospheric water vapour 380 

CH4 oxidized in the stratosphere produces water vapour. In the dry stratosphere, this additional water vapour will cause 

additional radiative forcing. The CH4 induced stratospheric water vapor ERF is calculated by scaling the CH4 ERF by a 

factor qh2o_ch4 specified in the pam_emiconc parameter set. The default value is 0.092, that is 9.2 % of the CH4 forcing in 

the reference year (Forster et al., 2021; Winterstein et al., 2019). The ERF timeseries for stratospheric water vapour is shown 

in Fig. 3f.  385 
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2.1.10 Albedo from land use change 

The historical surface albedo land-use change forcing used in the model is a prescribed forcing timeseries. The default time 

series used in the model is from IPCC AR6 (Forster et al., 2021; Smith et al., 2021b) and extended for RCMIP (Nicholls et 

al., 2021, 2020). ERF timeseries of this is show in Fig. 3g, beyond 2014, the albedo forcing projections for ssp245 are used. 

The hemispheric split of forcing is based on the multi model results from (Smith et al., 2020) and implemented in the routine 390 

calculate_hemispheric_forcing.  

2.1.11 Aerosol effective radiative forcing 

The ERF for aerosol radiation interaction (ERFari) of sulfate, fossil fuel and biofuel (FFBF) black carbon (BC), organic 

carbon (OC) and biomass burning (BMB) aerosols are included in CICERO-SCM, and the aerosol forcing in ref_year (𝑡𝑟𝑒𝑓) 

for each aerosol component is specified in the pamset_emiconc (Table 2). The ERFari values in ref_yr are scaled by 395 

corresponding historical emissions of SO2, BC FFBF, OC FFBF and biomass burning aerosols (BMB_AEROS).  

 

The ERFari timeseries for individual aerosol components are shown in Fig. 4a. The total aerosol ERFari timeseries is shown 

in Fig. 4b and shows a good match with IPCC AR6 timeseries. 

𝐸𝑟𝑒𝑓 = 𝐸(𝑡𝑟𝑒𝑓) − 𝐸(𝑡0), ERF = 𝑞𝑎𝑒𝑟
𝐸(𝑡) − 𝐸(𝑡0)

𝐸𝑟𝑒𝑓
, (20) 400 

where E(t) is the emissions of each aerosol species at time t in years and 𝑞𝑎𝑒𝑟  is the forcing for this component in 𝑡𝑟𝑒𝑓 and is 

tunable parameter (see Table 2) for each component. 

The net ERF from biomass burning aerosols (BMB_AEROS) is calculated using the input BMB_AEROS_OC as biomass 

burning emissions from OC and BC are assumed to be correlated and scaled according to equation 20 with the parameter 

qbmb. The default value of this parameter is 0, so the user needs to set it to a different value to include the effects of biomass 405 

burning aerosols. 

The ERF for aerosol cloud interaction (ERFaci) in ref_year is linearly scaled with SO2 emissions, and calculated as ERFari 

according to equation (20), as studies indicate that the total global effect is linear with SO2 (Kretzschmar et al., 2017). The 

aerosol forcing components from a default run of the CICERO-SCM are shown in Fig. 4a. The split in ERFari and ERFaci 

timeseries are show in Fig. 4b and compared to the IPCC AR6 results (Forster et al., 2021). ERFari follows the AR6 results 410 

quite closely, while ERFaci are not as close to the AR6 mean, however, the uncertainty range for this is very large. 

 

The hemispheric split of aerosol forcing is based on multi-model results from (Smith et al., 2020) and implemented in the 

routine calculate_hemispheric_forcing. 



21 

 

 415 

 

Figure 4: Part a shows aerosol radiation interaction forcing per aerosol component, and part b shows aerosol cloud interaction 

and sum of aerosol radiation interactions for all the components compared to AR6 results (Forster et al., 2021). 

2.1.12 Solar and volcanic forcing 

Solar forcing and volcanic forcing can be added as input time series. If the sunvolc parameter is set to 1, the model will 420 

either use user defined files or datasets or use default files.  Volcanic forcing series can be defined differently in each of the 

hemispheres, and even with monthly time resolution. Figure 5 shows default input timeseries of solar and volcanic forcing. 

These defaults are taken from (Nicholls et al., 2021, 2020), however, for values beyond year 2015 the following 

approximation has been made; solar forcing is assumed to be zero, whereas volcanic forcing is set to the mean forcing value 

in years 2006-2015. 425 
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Figure 5: Default natural ERF timeseries for solar forcing (a) and volcanic forcing (b) used in the CICERO-SCM taken from 

RCMIP (Nicholls et al., 2021, 2020) compared to AR6 results (Forster et al., 2021; Smith et al., 2021b). 

2.1.13 Perturbing forcing or emissions timeseries 430 

A common application of SCMs is to isolate and quantify the contributions to global radiative forcing and temperature 

change over time from individual anthropogenic emissions or sources, such as economic sectors. While there are different 

approached to such attribution (e.g. (Boucher et al., 2021; Grewe, 2013)), a well-established method is to have a perturbed 

case where the emissions of interest are subtracted from a baseline case that includes all emissions. The attribution is thus the 

difference between the baseline case and the perturbed case (den Elzen et al., 2005; Fuglestvedt et al., 2008). 435 
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The CICERO SCM includes built-in options that enable this type of simulation, baseline and perturbation. Specifically, two 

additional files can be input to the run, one that that gives emission trajectories to be subtracted and one that gives the 

radiative forcing to be subtracted. The former is used in the case of the well-mixed greenhouse gases, while the radiative 

forcing perturbations are applied for the short-lived climate forcers.  

In some cases, a given sector may affect climate through radiative forcing mechanisms that are not included in the SCM. A 440 

notable example is the formation of contrail-cirrus from aviation emissions. It is possible to also include such ERF 

perturbations, which are then grouped in a category “OTHER” and subtracted from the total net RF at the end of the 

concentrations-to-forcing step of the model flow.  

The time series of emissions and ERF to be extracted must be pre-defined in a specific format (sample files provided in the 

open-source code base). If not directly available from more complex models, ERF time series are commonly derived by 445 

scaling best-estimate present-day radiative efficiencies (i.e., ERF per unit emission) by available historical and/or future 

emissions trajectories. For examples of how this has previously been done, including more chemically complex climate 

drivers such as NOx-induced changes in O3 and CH4, see e.g. (Skeie et al., 2009)  

2.2 Upwelling diffusion/ energy balance model 

To calculate temperature change and storage of heat in the ocean as a response to the radiative forcing, an energy 450 

balance/upwelling diffusion model is used. The model is the hemispheric version (Schlesinger et al., 1992) of the global 

energy balance/upwelling diffusion model described in (Schlesinger and Jiang, 1990), and the structure of the model is 

shown in Fig. 6.  

For each hemisphere the ocean is subdivided into 40 vertical layers where the uppermost ocean layer is the mixed layer. The 

ocean also has a polar region, where heat is transported from the mixed layer into the deep ocean representing deep water 455 

formation, i.e. sinking of cold water masses with relatively high salinity. Figure 6 shows the schematic ocean in the model. 

 

The model is forced by hemispheric radiative forcing and the climate response is governed by climate sensitivity, which is an 

explicit parameter in the model that takes the feedback processes in the climate system into account. The climate sensitivity 

parameter, λ (lambda), is the equilibrium climate sensitivity (defined as the equilibrium temperature response following a 460 

doubling of the CO2 concentration) divided by the radiative forcing of a doubling of CO2. Based on the formula in (Etminan 

et al., 2016), SARF is 3.8 W m-2 for a CO2 doubling, and taking into account the adjustments of 5% (Forster et al., 2021) the 

2xCO2 ERF is 4.0 W m-2. 

 

In each hemisphere heat is exchanged between the atmosphere and the ocean in the upper mixed layer of the ocean. Heat is 465 

exchanged between each layer and the layers next to it via both diffusion and vertical upwelling advection, and horizontally 

through interhemispheric heat exchange. Heat is also transported into the polar ocean in the mixed layer, and back into the 

main ocean in the bottom most layer. This leads to a set of coupled differential equations which are solved by a mix of 
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forward and backward implicit calculations, to find the temperature change in each ocean layer. Equations are taken and 

implemented according to appendix B of (Schlesinger et al., 1992), and the strengths of the various processes are defined by 470 

parameters listed in Table 4, and the equations and their implementations are also detailed in Appendix C. 

 

Figure 6: Redrawn from (Schlesinger et al., 1992). The difference in ocean and land fraction between northern and southern 

hemisphere is considered in the model, but not illustrated in the figure. 

 475 

Parameter Default value Unit Description and range* 

Rlamdo 15.0 W m-2 K-1 Air-sea heat exchange parameter, 𝜆𝑎𝑜 in Fig. 6, range 5-25 

Akapa 0.66 cm2 s-1  Vertical heat diffusivity, κ in Fig. 6, range 0.06-0.8 

Cpi 0.21 unitless Polar parameter, scale between polar and non-polar 

temperatures, range 0.161-0.569 

W 2.2 m yr-1 Vertical velocity, upwelling rate, W in Fig. 6, range 0.55-6 

When threshtemp is not zero, the vertical velocity is effectively 

lower than this. 



25 

 

Beto 6.9 W m-2 K-1 Oceanic interhemispheric heat exchange coefficient, 𝜆𝑜in Fig. 

6, range 0-7 

Threstemp 7.0 unitless Scales vertical velocity (W) as a function of mixed layer 

temperature, not shown in Fig. 6. Set to 0 if you don’t want to 

include this parameter. Default is a 30% drop in vertical 

velocity at 7 K increase in mixed layer temperature. 

Lambda 0.61 K W-1 m-2 Equilibrium climate sensitivity divided by 2xCO2 radiative 

forcing (4.00 W m-2), i.e. λ. Calibration range 0.5-1.25 

Mixed 107 m Mixed layer depth, h in Fig. 6, range 25-125 

Foan 0.61 unitless Fraction of Northern Hemisphere covered by ocean 

Foas 0.81 unitless Fraction of Southern Hemisphere covered by ocean 

Ebbeta 0.0  Atmospheric interhemispheric heat exchange, not normally 

used and not shown in Fig. 6, but equations including this 

parameter are included in the code 

Fnso 0.7531 unitless Ratio between ocean areas in Northern and Southern 

Hemispheres, should equal foan/foas 

Lm 40 unitless Number of vertical layers of the ocean, including the mixed 

layer. 

Table 4: pamset_udm. Parameters in the Energy Balance/Upwelling diffusion model, default values and possible ranges. *Ranges 

taken from (Aldrin et al., 2012) except the ranges for W and lambda which are  as used in the calibration run proof-of-concept. 

 

In addition to what is included in the (Schlesinger et al., 1992),  the CICERO-SCM includes a threstemp parameter, which 

changes the upwelling advection velocity depending on temperature according to (Raper et al., 2001). The parameter 480 

threstemp is the temperature when the upwelling velocity is reduced by 30%. With threstemp equal to 0, W will be constant, 

and is a way of omitting upwelling velocity dependency on temperature. Otherwise, the way this parameter is scaled means 

that when ΔT = 10/3*threstemp the advection will stop completely, and if the temperature surpasses this, that advection 

speed will become negative. 

 485 

The temperature changes in the ocean layer calculated in the energy balance/upwelling diffusion model is finally used to 

calculate values for the ocean heat content (OHC) and ocean heat content of the upper most 700 meters (OHC700). For each 

hemisphere separately and as a global average of the two, it is used to calculate the three temperature quantities: 𝑇air, that is 

the global surface air temperature (GSAT),  𝑇sea, the global sea surface temperature, and  𝑇blended, the combined quantity 

calculated from the mixed layer ocean temperature over the ocean and atmospheric temperature over land (GMST), Finally 490 
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hemispheric and global averages for the radiative imbalance (RIB) is obtained. All these quantities are derived from 

calculations of the temperature 𝑇l in the 40 layers of the ocean for each month of the year. 

The temperature values are calculated from the ocean mixed layer temperature 𝑇1 according to: 

𝑇sea = 𝑇1, 𝑇air = 
q + 𝑓ocean ∙ 𝜆𝑎𝑜 ∙ 𝑇1
1
𝜆
+ 𝑓ocean ∙ 𝜆𝑎𝑜

, 𝑇blended = 𝑓ocean ∙  𝑇sea + (1 − 𝑓ocean) ∙ 𝑇air, (21) 

where means are taken over twelve sub-yearly timesteps, q is the mean forcing over the preceding year (in Wm-2), 𝑓ocean is 495 

the ocean fraction in the area under consideration (Northern Hemisphere, Southern Hemisphere or global), 𝜆𝑎𝑜 and 𝜆 are the 

tunable parameters rlamdo and lambda respectively (see Table 4 for details and units) and 𝑇1 is the temperature in uppermost 

ocean layer i.e. in the mixed layer. 

 

The radiative imbalance (RIB) and ocean heat content (OHC) are similarly derived according to: 500 

RIB = ERF − 
𝑇blended

𝜆
, OHC =  ∑ 𝜌 ∙ 𝑐𝑝 ∙ 𝐴Earth ∙ 𝑧𝑙 ∙ 𝑇𝑙 ∙

maxdepth

𝑙=1

𝑓ocean, (22) 

where ρ is the density of seawater (assumed here to be constant at 1030 kg m
-3

),  𝑐𝑝 is the specific heat capacity of seawater 

(3.997 ∙ 103
J

kg K
), 𝐴Earth is the surface area of the earth (in m2), 𝑧𝑙 is the height of the layer in meters. The sum goes over all 

the layers of the ocean either down to 700 meters, in which case the last layer is only a fractional layer, or all the way down, 

depending on whether the calculation is for OHC down to 700 meters, or for total OHC. In practice the ocean heat content in 505 

each hemisphere is added together for each layer in the sum, hence the area used, 𝐴Earth, is rather the area of a hemisphere 

(2.55 ∙ 1014 m2). 

 

2.3 Model differences between new Python version and old FORTRAN version 

The Python version is overall quite faithful to the previous FORTRAN version (at least it is possible to run it quite 510 

comparably). However, the Python version has more flexibility in what can be changed using parameters rather than what is 

hardcoded. For instance, the addition of SARF_TO_ERF parameters in the gaspam_file is a new addition, as is the option to 

run for different sets of years not starting in 1750, and many new tunable parameters have been added.  In the FORTRAN 

version you could tune the parameters lambda, akapa, cpi, W, rlamdo, beto, mixed, qbmb, qdirso2, qindso2, qbc, qoc and 

qo3 using a parameter file needed for every run. In the Python version you can also tune threstemp, qh2o_ch4 and beta_f. 515 

You can also change parameters like the reference year, the ocean fractions in each hemisphere (foan and foas). You can also 

choose and even tune the functional forms for the carbon mixed layer pulse response function (eq. 5) and the biotic decay 

function (eq. 8). With the Python version, swapping between emissions or concentrations driven runs or simply accessing 

functions from the code is much easier than it was in the FORTRAN version, where such changes required producing a new 
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compiled executable from a modified version of the code. Since the code is openly available and more readable, a user can 520 

also much more easily change some part of the code to make even more parameters tunable, or even swap out some of the 

modules, running for instance with a simplified energy balance model. In addition, the model can be run with both file input 

and dataset inputs, and functionality for reading from files or handling dataset inputs is separated from the main code. 

The Python code is also fully open and can be included as a regular Python package using pip. It includes automatic tests 

including regression test to make sure the results from the energy balance model can be directly comparable to the previous 525 

version, and the emissions to forcing part can be comparable enough (this part of the calculation includes quite a lot of 

subtractions of nearly equal numbers, which means the comparison is less direct between the two versions). The regression 

tests directly compare energy balance output from the FORTRAN version to check that given the same forcing input, 

temperatures and ocean heat content are the same up to a relative error less than 1% throughout the run for a few different 

forcing scenarios (including a single year forcing change, a 1% increase in CO2 per year experiment and running with and 530 

without volcanic and solar forcing). The modelling flow from concentrations from to forcing and temperature is tested in a 

similar way using a typical historical run, but when going all the way from emissions, the beginning of the run involves 

small values calculated by subtracting numbers of very similar size from each other, meaning that rounding differences 

become important, hence we only require regression up to 1% for a couple of years for the test to pass. 

The code also includes plotting capabilities, and tools for distribution runs and calibration which we will describe in further 535 

detail below. The automatic plots generated include time series plots of ocean heat content, radiative imbalance, temperature, 

and component separated plots for emissions, concentrations, and radiative forcing. Examples of these plots for a historical 

run using all default parameters are included in Appendix A.  

With the publicly available Python version on GitHub, there are also various example scripts to show usage, as well as 

scripts to prepare natural emission files for CH4 and N2O and perturbation files.  Automatically generated documentation for 540 

the code, as well as a descriptive readme file to describe usage is also included.  

Currently the code is somewhat slower than the original FORTRAN code was. A standard run from 1750 to 2100 from 

emissions to concentrations with the FORTRAN version usually takes under half a second, whereas the updated code takes 

around three seconds to do the same. This is a point for future improvement; however, the readability is considerably 

improved.  545 

Figure 7 shows how temperature output from the same parameter distributions used in the AR6 process results compares 

when run in the new version and the original FORTRAN version. Both the new Python version, and the original FORTRAN 

version are included in the openscm-runner (Nicholls et al., 2021). Clearly the results are not very different between the two 

versions. 
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 550 

 

Figure 7: Shows how GMST from the ensemble used for the AR6 report (Kikstra et al., 2022; Smith et al., 2021b) as run with the 

current updated version, and the old FORTRAN version panel a) and in the new Python version panel b), compared to 

observations from the observational dataset HadCRUT (Morice et al., 2021). In panel c) for easier comparison, only the results for 

ssp245 are shown for both the FORTRAN version (in blue) and the Python version (in green). The comparison between the plots 555 
mainly shows that the ported Python version reproduces the old results quite faithfully given the same parameter set, though there 

are some changes, generally making the FORTRAN version a bit warmer than the Python version given the exact same 

parameters.  

2.4  New parallel and calibration tools 

Additions to the Python version are integrated parallelisation and calibration tools. These include the options to run over a 560 

parameter distribution set defined in a json-file or over multiple scenarios in parallel, or some combination of both. 

The parameter distribution may also be generated using the calibration tools, these can both simply be used to produce either 

a latin hypercube or Gaussian distributions of a given size over any subset of the tunable parameters to be run over directly, 

or saved as a json-file for later use, or they can be used to tune parameters over such a prior distribution to fit the distribution 

of one or more output parameters, resulting in a tuned parameter ensemble to be run over, and saved in a json-file for later 565 

use. 

The calibrator tool fits a set of n-samples to distribution functions for some subset of the parameters. The priors over the 

distribution space can be Gaussian or latin hypercubes and sampling is continued until a distribution of the required size is 

found. Samples are generated according to the prior and run in parallel chunks. Samples are then saved or rejected according 

to the calibration distribution over some outputs. In practice this is done by comparing its placement in the distribution for 570 

each variable to a random number, and keeping samples that are placed closer to the mean than the random number. Be 

aware that the larger the calibration space, i.e. the dimensionality (number of parameters) and range of the prior parameter 

distribution, and the higher the number of datapoints to fit to, the higher the fraction of rejection, and the higher the number 

of chosen samples needed to get a good fit. There is also a tunable cap on total sampling to avoid infinite looping. With non-
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informative priors, the calibration might also need to be run for very many loops to get the required number of samples. 575 

Since quite a few of the parameters are independent, relating to specific components and diagnostics, a less compute 

intensive calibration workflow might be tuning only a small subset of parameters separately to various outputs at a time. For 

instance, carbon cycle parameters can first be tuned to reproduce CO2 concentration timeseries, before tuning forcing and 

climate sensitivity or other energy balance model parameters to get observed ocean heat content and temperature change 

distributions. Below we demonstrate how the calibration can be used to get a parameter distribution. 580 

As a proof of concept, we’ve produced 100-member ensemble of parameter sets, calibrating the parameters W (vertical 

velocity) and lambda (the climate sensitivity parameter) from the pamset_udm and qindso2 (ERFaci in ref_year) from the 

pamset_emiconc, keeping all other parameters at default values. Parameter ranges were 0.55-6, 0.5-1.25 and -1.75- -0.25 

respectively. The calibration was made to fit observed temperatures from HadCrut (Morice et al., 2021) and ocean heat 

content from GCOS (von Schuckmann et al., 2023) timeseries including uncertainties. However, not to make the fit too 585 

difficult for a quick demonstration, only data from every 30th year of the timeseries were used. Other approaches to the exact 

calibration could be fitting the overall rmse between data and observations for the whole timeseries or fitting mean 

difference in time windows. For an even better fit more of the data should be used, more parameters might need to get fitted, 

and a larger ensemble should be constructed. Uncertainties that cannot be modelled with this setup, but still exist include 

input data uncertainty. The aerosol forcing calibration in this model, can also only scale the aerosol forcing overall, and not 590 

span uncertainties in its overall time evolution. Fig. 8 shows how the 100-member calibrated set compares to the 

observational datasets in practice. 
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Figure 8: Results from a 100 member ensemble calibrating qindso2, W and lambda to fit observed temperature from HadCrut 

(Morice et al., 2021) and total ocean heat content from GCOS (von Schuckmann et al., 2023). Part a) shows the temperature for 595 
the 2.5th to the 97.5th percentile compared to the same in the HadCRUT dataset, part b) shows the ocean heat content 5th to 90th 

percentile compared to the same in GCOS. GMST (Surface Air Temperature Change) is shown as change relative to 1961-1990 

period, while ocean heat content is shown relative to 1971 ensemble mean values. 

3 Conclusions 

In this paper we have described the CICERO-SCM simple climate model in its current incarnation as a Python implemented 600 

open-source model. Though the model has been improved in terms of readability and user friendliness, opportunities for 

further development abound. There are also many questions that the model is not currently suited to answer, that it could be 

adapted towards answering. 

 

In terms of technical modifications, the Python version is still slower than the FORTRAN model, and opportunities for 605 

further speed-ups should be explored. Quite some time could likely be shaved off the run-time using more efficient data 

structures and calculations. However, such modifications may also come at the expense of readability or easy model 

adaptation to new usages. Making the calibration more efficient, flexible, and statistically robust is also a technical priority. 

Eventually producing and updating calibrated parameter sets that represent good fits to current available knowledge being 

the end goal of such an exercise. Keeping the model up to date with libraries and packages should also be a part of the 610 

development moving forward. 

 

As for the functionality, the current modular structure allows for parts of the model to be used independently and provides 

options to change either the emissions to forcing or energy balance model with different models altogether. This could allow 

for testing and updating, for instance using a more efficient ocean model with fewer layers, or having a simpler, faster, and 615 

less readable emissions to forcing module, which can be interchanged with the current more readable, adaptable, yet slower 

version.  Though we acknowledge that modularity could be improved further – for example, isolating the carbon cycle 

module. 

Some updates that could open up for explorations of questions the model currently doesn’t answer properly include, but is 

not limited to; regionalization of the temperature response, inclusion of temperature feedbacks into the carbon uptake, 620 

component breakdown of the carbon cycle keeping track of the carbon amounts in the various pools (representing processes 

which impact both heat and carbon transport in the ocean, for example), a more proper treatment of aerosol cloud 

interactions to account for time delays in cloud formation (Jia and Quaas, 2023), inclusion of nitrate aerosols, updated 

formulas for O3 ERF and updated CH4 lifetime treatments reproducing more recent atmospheric chemistry model results 

(Skeie et al., 2023; Stevenson et al., 2020), continuous updates of lifetimes and forcing strength for various compounds, 625 

inclusion of more compounds thought to have a climate impact in the future, such as for instance molecular hydrogen 
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(Hauglustaine et al., 2022; Paulot et al., 2021; Sand et al., 2023; Warwick et al., 2023) or ammonia (NH3) (Bertagni et al., 

2023). 

 

In general, we hope that this open, accessible version of the model will facilitate expanded use, and community development 630 

of the model and hope to see colleagues and users engage with it in whatever way they find most useful. 

4 Appendices 

4.1 Appendix A – Default plots from a run with all parameters set to default values 

The module includes automatic plotting options. Using these options, we can plot the time evolution of emissions, 

concentrations and forcing changes per component. As well as ocean heat content change, radiative imbalance and 635 

temperature change. Below, such plots from a run with all parameter values set to default values run with the historical 

CMIP6 input data are shown: 

Figure A1: Default emissions output plot number 1 for a run with default parameters using historical emissions up to 2014 and 
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ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for 640 
HCFC-123, hence the values for this gas is zero throughout. 

 

 

Figure A2: Default emissions output plot number 2 for a run with default parameters of the historical emissions up to 2014 and 

ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). 645 
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Figure A3: Default emissions output plot number 3 for a run with default parameters of the historical emissions up to 2014 and 

ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020).  
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Figure A4: Default concentration output plot number 1 for a run with default parameters of the historical emissions up to 2014 

and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The input dataset did not include data 

for HCFC-123, hence the values for this gas is zero throughout. 
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Figure A5: Default concentration output plot number 2 for a run with default parameters of the historical emissions up to 2014 

and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). 



36 

 

 

 660 

Figure A6: Default forcing output plot number 1 for a run with default parameters of the historical emissions up to 2014 and 

ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for 

HCFC-123, hence the values for this gas is zero throughout. 
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Figure A7: Default forcing output plot number 2 for a run with default parameters of the historical experiment emissions up to 665 
2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). 
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Figure A8: Default forcing output plot number 3 for a run with default parameters of the historical emissions up to 2014 and 

ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). The default settings for the model has 

qbmb the forcing scaling for biomass burning aerosols set to zero, hence the BMB_AEROS forcing timeseries is zero throughout 670 
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Figure A9: Default temperature change since 1750 output plot for a run with default parameters of the historical emissions up to 

2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). 

 675 

Figure A10: Default output plot of ocean heat content change since 1750 for a run with default parameters of the historical 

emissions up to 2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). 
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Figure A11: Default plot of radiative imbalance change since 1750 for a run with default parameters of the historical emissions up 

to 2014 and ssp245 emission year 2014 to the end year 2020 all from RCMIP (Nicholls et al., 2020). 680 

4.2 Appendix B - Natural emissions estimates for CH4 and N2O 

CH4 and N2O both have considerable natural emissions contributions (Saunois et al., 2020; Tian et al., 2020). In the model 

timeseries of these can be fed as separate files or dataset timeseries to the model instance. If not sent, a flat natural emissions 

value from the gaspam-file will be sent. However, using a flat natural emissions timeseries will rarely give a good match to 

observed concentrations, so the model also comes with a preprocessing script to generate natural emissions time series. 685 

Using a precalculated time series from a different model setup, or input dataset, will lead to different fits to concentration 

time series for both components. But a finely tuned input time series, will also make the emissions to concentration 

calculation for these species superfluous, as the natural emissions are constructed to fit whatever is missing from the 

anthropogenic distribution, and the run will effectively be concentration driven for these components. 

In the FORTRAN version the method for calculating the natural emissions time series used a calibration per time step 690 

method, iterating and adjusting the natural emissions from the previous step by five percent until the concentration matched 

with less than five percent discrepancy. As we know that we have an exact solution for converting emissions to 

concentrations in each timestep, though, we can solve the equation exactly for the missing emissions in each time step for a 

much more efficient, though somewhat more noisy solution. Both options are available as options from the 

precalculate_natural_emissions.py script in the scripts/prescripts subfolder. When the historical data finishes, the future 695 

value of natural emissions is however assumed constant with a value that is the mean of the last 11 values. Figure A1 shows 
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these estimates from CMIP6 (Smith et al., 2021b) concentration data as used throughout this article, alongside the input 

anthropogenic emissions and the flat emissions from the default gaspam_file. 

 

Figure B1: Timeseries of the estimated natural emissions and anthropogenic input emissions for historical and the ssp245 scenario 700 
for CH4 and N2O. The old data is data constructed using the method used to make natural emissions for the FORTRAN model. 

The ode method is using script that is included with the Python version relying on the exact solution. In both cases the “TAR” 

lifetime mode for CH4 is used for the estimates. The flat background is the flat natural emissions value from the gaspam_file 

(Table 3). 

For CH4, the amount of estimated natural emissions will vary significantly with choice of lifetime mode, as the natural 705 

emissions are effectively masking over whatever is needed to make up the expected concentration time series. For now, this 

means that running the model with estimated natural emissions, we are effectively only modelling CH4 and N2O forcing 

from concentrations in the historical period. The choice of lifetime mode may play a much larger part, when natural 

emissions are unknown and estimated using a flat background value, or a flat mean as the script calculates for the future. 

Figure A2 shows how the lifetime of CH4 evolves using different lifetime modes. It also displays how different the natural 710 

emissions estimates are depending on which lifetime mode is chosen. 
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Figure B2: CH4 lifetime timeseries with different lifetime modes in the ssp245 scenario in part a), and in part b) the corresponding 

estimated lifetime emissions made to match the concentration time series throughout the span of the experiment. The time series of 

the anthropogenic emissions is also shown. 715 

4.3 Appendix C - Upwelling diffusion model equations 

The equations used to describe the how energy is exchanged through the ocean system can be found in appendix B of 

(Schlesinger et al., 1992). They consist of differential equation sets for each of the layers in the ocean, accounting for all 

processes transporting heat in and out of the layer in each hemisphere. The equation for each hemisphere is completely 

symmetrical, so we will state only the equations for the Northern Hemisphere here for simplicity. The equations include 720 

terms relating to heat transfer between the hemispheres, and these terms are even included in the code and scaled by the 

atmospheric interhemispheric heat exchange parameter 𝛽𝑎  (ebbeta). However, we will omit these terms here, as the 

equations simplify without them, and the parameter is mostly not used.  

In the mixed (uppermost) ocean layer, the equation reads: 

𝛾𝑁 𝜌𝑐∆𝑧1
𝛿𝑇1
𝛿𝑡

= 𝑞 −  𝜆𝑇1 +  2𝛾𝑁𝜌𝑐𝑝𝜅
𝑇2 − 𝑇1
∆𝑧2

+ 𝛾𝑁𝜌𝑐𝑝𝑊(𝑇1 − 𝑇𝑃) −  𝛾𝑁𝛽𝑜(𝑇1 − 𝑇1,𝑆) (𝑆1) 725 

 where 𝛾𝑁 = 𝜎𝑁 + 
𝜆

𝜆𝑎,𝑜
 , with 𝜎𝑁  the Northern Hemisphere ocean fraction (foan), and 𝜆𝑎,𝑜  (rlamdo) the air-sea heat 

exchange parameter and 𝜆 the equilibrium climate sensitivity divided by 2xCO2 radiative forcing (see Table 4 for details and 

units). Both temperature and forcing values all denote changes from the temperature and forcing at the start of the model run, 

rather than absolute temperatures. Subscript numbers denote the ocean layer number, counted from the top, so layer 1 is the 

mixed layer. All quantities are the versions of the quantities in the Northern hemisphere non-polar ocean unless otherwise 730 

specified. 𝑇1,𝑆  is the temperature in the Southern Hemisphere, 𝑇𝑃  is the Northern Hemisphere polar ocean temperature 

assumed to change according to B8 of (Schlesinger et al., 1992), i.e. just following the change in the main ocean temperature 

mixed layer times Π (the cpi parameter in Table 4).  

𝑇𝑝 =  Π ∙ 𝑇1 (𝑆2) 

 735 

q is the Northern Hemisphere forcing (in Wm-2), 𝜌  is the seawater density (1030 kg m3), 

𝑐𝑝 is the specific heat capacity of seawater (3.997 ∙ 10
3 J

kg K
), ∆𝑧𝑙 is the height of layer 𝑙 in meters . 𝜅 is the vertical heat 

diffusivity (akapa), 𝛽𝑜 is the oceanic interhemispheric heat exchange rate (beto) and W is the upwelling rate. These three are 

tunable parameters (see Table 4 for details and units). Finally, when the parameter threstemp is non-zero, the upwelling rate 

W, is not equal to the parameter W in Table 4, but it is rather given as: 740 

𝑊 = 𝑊Table 4 ∙ (1 −
10

3
∙
𝑇1

𝑇thres
) (𝑆3) 
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i.e. the threstemp parameter is the mixed layer temperature change at which the upwelling velocity decreases by 30%. This 

decrease in upwelling velocity was not included in the  model described in (Schlesinger et al., 1992), but is an updated based 

on the work of (Raper et al., 2001). 

To simplify the equations, atmospheric transport between the hemispheres is assumed to be zero in this derivation, though it 745 

is included in the code and its strength is controlled by the parameter ebbeta (𝛽𝑎). 

The left-hand side represents the rate of change of energy in the mixed layer, where the 𝛾𝑁 factor accounts for heat exchange 

between the ocean and the atmosphere (and when 𝛽𝑎 is included also with atmospheric interhemispheric heat exchange). 

Examining the terms on the right-hand side, they represent radiative forcing, then the temperature longwave radiation and 

climate feedback, then the vertical diffusion heat transport to the layer below, then vertical advective heat transport into the 750 

polar ocean and finally interhemispheric heat transport. The polar ocean temperature is assumed to be 𝛱𝑇1 throughout. 

For all internal ocean layers the equation is: 

𝜌𝑐𝑝∆𝑧𝑘
𝛿𝑇𝑘
𝛿𝑡

=  𝜌𝑐𝑝 [2𝜅
𝑇𝑘+1 − 𝑇𝑘

(∆𝑧𝑘 + ∆𝑧𝑘+1)
+𝑊 ∙ 𝑇𝑘+1] −  𝜌𝑐𝑝 [2𝜅

𝑇𝑘 − 𝑇𝑘−1
(𝛿∆𝑧𝑘 + ∆𝑧𝑘−1)

+𝑊 ∙ (𝛿𝑇𝑘 + (1 − 𝛿)𝑇𝑘−1)]

− 𝛽𝑜(𝑇𝑘 − 𝑇𝑘,𝑆) (𝑆4)

 

Here, we have the rate of change of energy per area in the layer on the left, diffusion and advection with the layer below first, 

then diffusion and advection with the layer above, and finally interhemispheric heat transport across the horizontal boundary.  755 

The δ in the denominator of the diffusion term and in the second advection term is 0 for the uppermost of the layers, and 1 

otherwise. In the equation for the Southern hemisphere, this last term will also be scaled by the ratio between the two ocean 

surfaces to ensure an equal amount of heat is accounted for as seen from both hemispheres. Note also that in the original 

formulation in (Schlesinger et al., 1992), the advection terms did not depend on the temperature in the layer from which the 

advection came,  i.e. they were not on the form given here of  𝜌𝑐𝑝 ∙ 𝑊 ∙ 𝑇𝑘+1 and 𝜌𝑐𝑝 ∙ 𝑊 ∙ 𝑇𝑘, but rather on the average 760 

temperature between the layer from which the advection came and the one it advected into, i.e. on the form 𝜌𝑐𝑝 ∙ 𝑊
𝑇𝑘+1+𝑇𝑘

2
 

and 𝜌𝑐𝑝 ∙ 𝑊
𝑇𝑘−1+𝑇𝑘

2
. The same was true for the advection out of the bottom layer (see equation S5).  

For the ocean bottom layer L, the equation reads: 

𝜌𝑐𝑝∆𝑧𝐿
𝛿𝑇𝐿
𝛿𝑡

=  − 𝜌𝑐𝑝 [2𝜅
𝑇𝐿 − 𝑇𝐿−1

(∆𝑧𝐿 + ∆𝑧𝐿−1)
+𝑊 ∙ 𝑇𝐿]

+𝜌𝑐𝑝𝑊𝑇𝑃 − 𝛽𝑜(𝑇𝐿 − 𝑇𝐿,𝑆) (𝑆5)

 

Where there is no longer any heat transported from the layer below, as there is none, however, we also account for transport 765 

of heat from the bottom of the polar ocean, and transport to the Southern Ocean. In other words, in the model heat is 

transferred into the polar ocean at the top and transported back in from it at the bottom layer. 

Now, for the solution of this equation set in the code, the solution involves a separation of terms. First for the forcing, 

interhemispheric heat-exchange terms and polar heat exchange terms, a simple forward Euler solution,  𝛿𝑇𝑘(𝑡) ≈  𝑇𝑘(𝑡) −

 𝑇𝑘(𝑡 − 1)  is employed in gathering all these terms in one and solving for them in all layers first.  These are then added to 770 

the equations and can be viewed as constant terms in the further differentiation. Then the climate feedback, diffusion and 
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advection terms are combined in a backward implicit Euler calculation. I.e., the equations are solved assuming all these 

terms are given for the current timestep, and we solve the equations for them. 

We rewrite the top layer eq. (S1) as 

𝛾𝑁 𝜌𝑐𝑝∆𝑧1
𝛿𝑇1
𝛿𝑡

= 𝑞 −  𝜆𝑇1 +  2𝛾𝑁𝜌𝑐𝑝𝜅
𝑇2 − 𝑇1
∆𝑧2

+ 𝛾𝑁𝜌𝑐𝑝𝑊(𝑇1 − 𝑇𝑃) − 𝛾𝑁𝛽𝑜(𝑇1 − 𝑇1,𝑆) (𝑆1) 775 

 

𝛾𝑁 𝜌𝑐𝑝∆𝑧1
𝑇1(𝑡) − 𝑇1(𝑡 − 1)

𝑑𝑡
−  2𝛾𝑁𝜌𝑐𝑝𝜅

𝑇2 − 𝑇1
∆𝑧2

− 𝛾𝑁𝜌𝑐𝑝𝑊𝑇1 = 𝑞 −  𝜆𝑇1 − 𝛾𝑁𝜌𝑐𝑝𝑊Π𝑇1 − 𝛾𝑁𝛽𝑜(𝑇1 − 𝑇1,𝑆) (𝑆6) 

 

Unless otherwise stated, LHS is time t, RHS is time t-1 Dividing by 
𝛾𝑁 𝜌𝑐𝑝∆𝑧1

𝑑𝑡
 : 

𝑇1(𝑡) − 𝑇1(𝑡 − 1) −
2𝜅𝑑𝑡

∆𝑧1∆𝑧2
(𝑇2 − 𝑇1) −

𝑊𝑑𝑡

∆𝑧1
𝑇1 =

𝑞𝑑𝑡

𝛾𝑁 𝜌𝑐𝑝∆𝑧1
− 

𝜆𝑑𝑡

𝛾𝑁 𝜌𝑐𝑝∆𝑧1
𝑇1 −

𝑊Π𝑑𝑡

∆𝑧1
𝑇1 − 

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧1
(𝑇1 − 𝑇1,𝑆) (𝑆7) 780 

(1 +
𝜆𝑑𝑡

𝛾𝑁 𝜌𝑐𝑝∆𝑧1
+

2𝜅𝑑𝑡

∆𝑧1∆𝑧2
−
𝑊𝑑𝑡

∆𝑧1
 ) 𝑇1 −

2𝜅𝑑𝑡

∆𝑧1∆𝑧2
𝑇2 = (1 −

𝑊Π𝑑𝑡

∆𝑧1
− 

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧1
)𝑇1 + 

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧1
𝑇1,𝑆 +

𝑞𝑑𝑡

𝛾𝑁 𝜌𝑐𝑝∆𝑧1
 (𝑆8) 

Note, for shorthand, LHS is time t, RHS is time t-1 

 The equation set can in principle can be written this way for the various layers: 

𝑏1𝑇1 + 𝑐1𝑇2 = 𝑑1, 𝑎𝑘𝑇𝑘−1 + 𝑏𝑘𝑇𝑘 + 𝑐𝑘𝑇𝑘+1 = 𝑑𝑘, 𝑎𝐿𝑇𝐿−1 + 𝑏𝐿𝑇𝐿 = 𝑑𝐿 (𝑆9) 

In the code we go through the equations and find the coefficients 𝑎𝑘, 𝑏𝑘  and 𝑐𝑘. The 𝑑𝑘 terms are the results of the forward 785 

Euler solution for the horizontal transport. This now defines a banded matrix problem and can be solved using a suitable 

banded matrix solver.  

Following this approach, the coefficients 𝑎1, 𝑏1,and 𝑑1 are: 

𝑏1 = 1 +
𝜆𝑑𝑡

𝛾𝑁 𝜌𝑐∆𝑧1
+

2𝜅 𝑑𝑡

∆𝑧1∆𝑧2
−

𝑊 𝑑𝑡

∆𝑧1
, 𝑐1 = −

2𝜅 𝑑𝑡

∆𝑧1∆𝑧2
,

𝑑1 = (1 −
𝛱𝑊𝑑𝑡

∆𝑧1
−

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧1
)𝑇1(𝑡 − 1) +

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧1
𝑇1,𝑆(𝑡 − 1) +

𝑞 𝑑𝑡

𝛾𝑁𝜌𝑐𝑝∆𝑧1
(𝑆10)

where q is now the mean forcing over the preceding year. 790 

Performing similar transformations as for the top layer on eq. (S4), the coefficients for the internal layers 𝑎𝑘, 𝑏𝑘, 𝑐𝑘and 𝑑𝑘 

become: 

𝑎𝑘 = −
2𝜅 𝑑𝑡

∆𝑧𝑘(𝛿∆𝑧𝑘 + ∆𝑧𝑘−1)
+ (1 − 𝛿)

𝑊 𝑑𝑡

∆𝑧𝑘
, 𝑏𝑘 = 1 +

2𝜅 𝑑𝑡

∆𝑧𝑘(∆𝑧𝑘−1 +  𝛿∆𝑧𝑘)
+

2𝜅 𝑑𝑡

∆𝑧𝑘(∆𝑧𝑘+1 + ∆𝑧𝑘)
+ 𝛿

𝑊 𝑑𝑡

∆𝑧𝑘
,

 𝑐𝑘 = −
2𝜅 𝑑𝑡

∆𝑧𝑘(∆𝑧𝑘+1 + ∆𝑧𝑘)
−
𝑊 𝑑𝑡

2∆𝑧𝑘
,  

 𝑑𝑘 = (1 −
𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧𝑘
)𝑇𝑘(𝑡 − 1) + 

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧𝑘
𝑇𝑘,𝑆(𝑡 − 1), (𝑆11) 795 

where δ in the expressions for 𝑎𝑘  and  𝑏𝑘  is 0 for the second layer and 1 otherwise. 

And for the bottom layer (from eq. (S5)): 
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𝑎𝐿 = −
2𝜅 𝑑𝑡

∆𝑧𝐿(∆𝑧𝐿 + ∆𝑧𝐿−1)
, 𝑏𝐿 = 1 +

2𝜅 𝑑𝑡

∆𝑧𝐿(∆𝑧𝐿 + ∆𝑧𝐿−1)
+
𝑊 𝑑𝑡

∆𝑧𝐿
, 𝑐𝐿 = 0,

𝑑𝐿 = (1 −
𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧𝐿
)𝑇𝐿(𝑡 − 1) +

𝛽𝑜𝑑𝑡

𝜌𝑐𝑝∆𝑧𝐿
𝑇𝐿,𝑆(𝑡 − 1) +

𝛱𝑊𝑑𝑡

∆𝑧𝐿
𝑇1(𝑡 − 1) (𝑆12)

 

5 Code availability 

The Python code is openly available on github at https://github.com/ciceroOslo/ciceroscm with a zenodo doi for the version 800 

used here https://doi.org/10.5281/zenodo.10548720.  

The FORTRAN version of the code is not open as such, but executable versions for various operating systems are available 

as part of the openscm-runner framework https://github.com/openscm/openscm-runner (last accessed 16.01.2024). 

6 Data availability 

RCMIP (Nicholls et al., 2020) input data used for running the models and most plots are available from here 805 

https://gitlab.com/rcmip/rcmip with a zenodo doi (Nicholls and Gieseke, 2019). 

Model output has also been compared with forcing and temperature output from IPCC AR6 chapter 7 (Smith et al., 2021a), 

with HadCrut temperature data (Morice et al., 2021), and GCOS ocean heat content data (von Schuckmann et al., 2023), all 

openly available datasets. 

7 Author contributions 810 

MS was the main developer for the porting of the code to python, and also the main author of the paper. BA contributed with 

comments to improve the manuscript and code from a user perspective. ANJ contributed to the codes additional features and 

proof-read the manuscript. MTL and RBS helped ensure a faithful rendition of the features of the Fortran original and 

various related tools and contributed heavily to the scientific choices made in the code improvements, plots, and text, and 

made initial drafts. GPP laid the groundwork for the text in the introduction, and several other sections, and contributed 815 

heavily to a clearer understanding of the natural emissions approach in Appendix A and of the upwelling diffusion model in 

Appendix B. BMS contributed to the coding process and in doing code reviews and wrote the sections on the carbon cycle. 

BHS, GPP, and RBS provided the momentum to get the process for the porting project started and obtained the funding 

necessary to do it from various sources. All authors have read the paper and contributed comments and improvements. 

8 Competing interests 820 

The authors declare that they have no conflict of interest. 

https://github.com/ciceroOslo/ciceroscm%20with
https://github.com/openscm/openscm-runner
https://gitlab.com/rcmip/rcmip


46 

 

9 Acknowledgements 

We acknowledge CICERO, for yearlong support and funding for this model and its maintenance and development in terms 

of both human and computational resources. The Norwegian research council project UTRICS (grant no. 314997) has 

contributed funding for the process of writing this article and adding calibration and parallelisation tools. European Union 825 

Horizon 2020 project PROVIDE (grant agreement No. 101003687) has also provided funding for testing and improvements 

and for the work of BMS.  

10 References 

Aamaas, B., Peters, G. P., and Fuglestvedt, J. S.: Simple emission metrics for climate impacts, Earth Syst. Dynam., 4, 145–

170, https://doi.org/10.5194/esd-4-145-2013, 2013. 830 

Aldrin, M., Holden, M., Guttorp, P., Skeie, R. B., Myhre, G., and Berntsen, T. K.: Bayesian estimation of climate sensitivity 

based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content, 

Environmetrics, 23, 253–271, https://doi.org/10.1002/env.2140, 2012. 

Alfsen, K. H. and Berntsen, T. K.: An efficient and accurate carbon cycle model for use in simple climate models, CICERO 

Center for International Climate and Environmental Research - Oslo, 1999. 835 

Atjay, G. L., Ketner, P., and Duvigneaud, P.: Terrestrial primary production and phytomass, in: The Global Carbon Cycle 

[Bolin, B., E.T. Degens, S. Kempe, and P. Ketner (eds.), Wiley & Sons, Chichester, 129–181, 1979. 

Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., 

Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.: CPMIP: measurements of real 

computational performance of Earth system models in CMIP6, Geoscientific Model Development, 10, 19–34, 840 

https://doi.org/10.5194/gmd-10-19-2017, 2017. 

Bertagni, M. B., Socolow, R. H., Martirez, J. M. P., Carter, E. A., Greig, C., Ju, Y., Lieuwen, T., Mueller, M. E., 

Sundaresan, S., Wang, R., Zondlo, M. A., and Porporato, A.: Minimizing the impacts of the ammonia economy on the 

nitrogen cycle and climate, Proceedings of the National Academy of Sciences, 120, e2311728120, 

https://doi.org/10.1073/pnas.2311728120, 2023. 845 

Boucher, O., Borella, A., Gasser, T., and Hauglustaine, D.: On the contribution of global aviation to the CO2 radiative 

forcing of climate, Atmospheric Environment, 267, 118762, https://doi.org/10.1016/j.atmosenv.2021.118762, 2021. 

Ehhalt, DieterH., Prather, M. J., Detener, F., Derwent, R. G., Dlugokencky, E., Holland, E., Isaksen, I. S. A., Katima, J., 

Kirchhoff, V., and Matson, P.: Atmospheric Chemistry and Greenhouse Gases, in: Climate Change 2001: The Scientific 

Basis, Houghton, J.T., Ding, Y., Griggs, D.J:, Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., 850 

Cambridge University Press, United Kingdom and New York, NY USA, 2001. 

den Elzen, M., Fuglestvedt, J., Höhne, N., Trudinger, C., Lowe, J., Matthews, B., Romstad, B., de Campos, C. P., and 

Andronova, N.: Analysing countries’ contribution to climate change: scientific and policy-related choices, Environmental 

Science & Policy, 8, 614–636, https://doi.org/10.1016/j.envsci.2005.06.007, 2005. 



47 

 

den Elzen, M. G. J., Olivier, J. G. J., Höhne, N., and Janssens-Maenhout, G.: Countries’ contributions to climate change: 855 

effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress, Climatic Change, 121, 

397–412, https://doi.org/10.1007/s10584-013-0865-6, 2013. 

Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide, methane, and nitrous oxide: 

A significant revision of the methane radiative forcing, Geophysical Research Letters, 43, 12,614-12,623, 

https://doi.org/10.1002/2016GL071930, 2016. 860 

Forster, P. M. de F., Ramaswarmy, V., Artaxo, P., Berntsen, T. K., Betts, R., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., 

Nganga, J., Prinn, R. G., Raga, G., Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative 

Forcing., in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment 

Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 

Averyt, M.Tignor and H.L. Miller (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, 865 

USA, 129–234, 2007. 

Forster, P. M. de F., Storelvmo, T., Armour, K., Collins, W. J., Dufresne, J.-L., Frame, D. J., Lunt, D. J., Mauritsen, T., 

Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate 

Sensitivity., in: In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. 870 

Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. 

Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]., Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA, 923–1054, 2021. 

Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., and Skeie, R. B.: Climate forcing from the transport sectors, 

Proceedings of the National Academy of Sciences, 105, 454–458, https://doi.org/10.1073/pnas.0702958104, 2008. 875 

Fuglestvedt, J. S. and Berntsen, T. K.: A simple model for scenario studies of changes in global climate: Version 1.0, 

CICERO Center for International Climate and Environmental Research - Oslo, 1999. 

Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P., and Obersteiner, M.: Historical CO2 emissions from land 

use and land cover change and their uncertainty, Biogeosciences, 17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020, 

2020. 880 

Grewe, V.: A generalized tagging method, Geoscientific Model Development, 6, 247–253, https://doi.org/10.5194/gmd-6-

247-2013, 2013. 

Guivarch, C., Kriegler, E., Portugal-Pereira, J., Bosetti, V., Edmonds, J., Fischedick, M., Havlík, P., Jaramilo, P., Krey, V., 

Lecocq, F., Lucena, A. F. P., Meinshausen, M., Mirasgedis, S., O’Neill, B., Peters, G. P., Rogelj, J., Rose, S., Saheb, Y., 

Strbac, G., Hammer Strømman, A., van Vuuren, D. P., and Zhou, N.: IPCC, 2022: Annex III: Scenarios and modelling 885 

methods, in: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the 

Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al 

Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. 

Luz, J. Malley, (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2022. 

Harvey, D., Gregory, J., Hoffert, M., Atul, J., Lal, M., Leemans, R., Raper, S. C. B., Wigley, T. M. L., and de Wolde, J.: An 890 

introduction to Simple Climate Models used in the IPCC Second Assessment Report, 1997. 

Hauglustaine, D., Paulot, F., Collins, W., Derwent, R., Sand, M., and Boucher, O.: Climate benefit of a future hydrogen 

economy, Commun Earth Environ, 3, 1–14, https://doi.org/10.1038/s43247-022-00626-z, 2022. 



48 

 

Höhne, N., Blum, H., Fuglestvedt, J., Skeie, R. B., Kurosawa, A., Hu, G., Lowe, J., Gohar, L., Matthews, B., Nioac de 

Salles, A. C., and Ellermann, C.: Contributions of individual countries’ emissions to climate change and their uncertainty, 895 

Climatic Change, 106, 359–391, https://doi.org/10.1007/s10584-010-9930-6, 2011. 

Jenkins, S., Cain, M., Friedlingstein, P., Gillett, N., Walsh, T., and Allen, M. R.: Quantifying non-CO2 contributions to 

remaining carbon budgets, npj Clim Atmos Sci, 4, 1–10, https://doi.org/10.1038/s41612-021-00203-9, 2021. 

Jia, H. and Quaas, J.: Nonlinearity of the cloud response postpones climate penalty of mitigating air pollution in polluted 

regions, Nat. Clim. Chang., 13, 943–950, https://doi.org/10.1038/s41558-023-01775-5, 2023. 900 

Joos, F. and Bruno, M.: Pulse response functions are cost-efficient tools to model the link between carbon emissions, 

atmospheric CO2 and global warming, Physics and Chemistry of the Earth, 21, 471–476, https://doi.org/10.1016/S0079-

1946(97)81144-5, 1996. 

Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., Quéré, C. L., and Sarmiento, J. L.: An efficient and accurate 

representation of complex oceanic and biospheric models of anthropogenic carbon uptake, 48, 397, 905 

https://doi.org/10.3402/tellusb.v48i3.15921, 1996. 

Kikstra, J. S., Nicholls, Z. R. J., Smith, C. J., Lewis, J., Lamboll, R. D., Byers, E., Sandstad, M., Meinshausen, M., Gidden, 

M. J., Rogelj, J., Kriegler, E., Peters, G. P., Fuglestvedt, J. S., Skeie, R. B., Samset, B. H., Wienpahl, L., van Vuuren, D. P., 

van der Wijst, K.-I., Al Khourdajie, A., Forster, P. M., Reisinger, A., Schaeffer, R., and Riahi, K.: The IPCC Sixth 

Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures, Geoscientific 910 

Model Development, 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, 2022. 

Kretzschmar, J., Salzmann, M., Mülmenstädt, J., Boucher, O., and Quaas, J.: Comment on “Rethinking the Lower Bound on 

Aerosol Radiative Forcing,” Journal of Climate, 30, 6579–6584, https://doi.org/10.1175/JCLI-D-16-0668.1, 2017. 

Lamboll, R. D., Nicholls, Z. R. J., Smith, C. J., Kikstra, J. S., Byers, E., and Rogelj, J.: Assessing the size and uncertainty of 

remaining carbon budgets, Nature Climate Change, 13, 1360–1367, https://doi.org/10.1038/s41558-023-01848-5, 2023. 915 

Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled atmosphere-ocean and carbon cycle models 

with a simpler model, MAGICC6 – Part 1: Model description and calibration, Atmospheric Chemistry and Physics, 11, 

1417–1456, https://doi.org/10.5194/acp-11-1417-2011, 2011. 

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., 

Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., 920 

Lunder, C. R., O’Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and 

Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geoscientific Model Development, 10, 

2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017. 

Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., 

Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. 925 

J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-

economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geoscientific Model Development, 

13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020. 

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. 

D., and Simpson, I. R.: An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data 930 

Set, Journal of Geophysical Research: Atmospheres, 126, e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021. 



49 

 

Myhre, G., Fuglestvedt, J. S., Berntsen, T. K., and Lund, M. T.: Mitigation of short-lived heating components may lead to 

unwanted long-term consequences, Atmospheric Environment, 45, 6103–6106, 

https://doi.org/10.1016/j.atmosenv.2011.08.009, 2011. 

Nicholls, Z. and Gieseke, R.: RCMIP Phase 1 Data (v2.0.0), https://doi.org/10.5281/zenodo.4016613, 2019. 935 

Nicholls, Z., Meinshausen, M., Lewis, J., Corradi, M. R., Dorheim, K., Gasser, T., Gieseke, R., Hope, A. P., Leach, N. J., 

McBride, L. A., Quilcaille, Y., Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklomanov, A., Skeie, R. B., 

Smith, C. J., Smith, S. J., Su, X., Tsutsui, J., Vega-Westhoff, B., and Woodard, D. L.: Reduced Complexity Model 

Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections, Earth’s 

Future, 9, e2020EF001900, https://doi.org/10.1029/2020EF001900, 2021. 940 

Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dommenget, D., Dorheim, K., Fan, C.-S., Fuglestvedt, J. S., 

Gasser, T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler, E., Leach, N. J., Marchegiani, D., McBride, L. A., 

Quilcaille, Y., Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklomanov, A. N., Skeie, R. B., Smith, C. J., 

Smith, S., Tanaka, K., Tsutsui, J., and Xie, Z.: Reduced Complexity Model Intercomparison Project Phase 1: introduction 

and evaluation of global-mean temperature response, Geoscientific Model Development, 13, 5175–5190, 945 

https://doi.org/10.5194/gmd-13-5175-2020, 2020. 

Olivié, D. and Stuber, N.: Emulating AOGCM results using simple climate models, Clim Dyn, 35, 1257–1287, 

https://doi.org/10.1007/s00382-009-0725-2, 2010. 

Osborn, T. J. and Wigley, T. M. L.: A simple model for estimating methane concentration and lifetime variations, Climate 

Dynamics, 4/5, 181–193, 1994. 950 

Paulot, F., Paynter, D., Naik, V., Malyshev, S., Menzel, R., and Horowitz, L. W.: Global modeling of hydrogen using 

GFDL-AM4.1: Sensitivity of soil removal and radiative forcing, International Journal of Hydrogen Energy, 46, 13446–

13460, https://doi.org/10.1016/j.ijhydene.2021.01.088, 2021. 

Peters, G. P., Aamaas, B., Berntsen, T., and Fuglestvedt, J. S.: The integrated global temperature change potential (iGTP) 

and relationships between emission metrics, Environ. Res. Lett., 6, 044021, https://doi.org/10.1088/1748-9326/6/4/044021, 955 

2011. 

Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: Use of an upwelling-diffusion energy balance climate model to simulate 

and diagnose A/OGCM results, Climate Dynamics, 17, 601–613, https://doi.org/10.1007/PL00007931, 2001. 

Sand, M., Skeie, R. B., Sandstad, M., Krishnan, S., Myhre, G., Bryant, H., Derwent, R., Hauglustaine, D., Paulot, F., Prather, 

M., and Stevenson, D.: A multi-model assessment of the Global Warming Potential of hydrogen, Commun Earth Environ, 4, 960 

1–12, https://doi.org/10.1038/s43247-023-00857-8, 2023. 

Sanderson, B.: The role of prior assumptions in carbon budget calculations, Earth System Dynamics, 11, 563–577, 

https://doi.org/10.5194/esd-11-563-2020, 2020. 

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., 

Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, 965 

L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., 

Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, 

G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., 

Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, 

V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., 970 



50 

 

Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B.  F., 

Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, 

G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, 

Q., and Zhuang, Q.: The Global Methane Budget 2000–2017, Earth System Science Data, 12, 1561–1623, 

https://doi.org/10.5194/essd-12-1561-2020, 2020. 975 

Schlesinger, M. E. and Jiang, X.: Simple Model Representation of Atmosphere-Ocean GCMs and Estimation of the Time 

Scale of C02-Induced Climate Change, Journal of Climate, 3, 1297–1315, https://doi.org/10.1175/1520-

0442(1990)003<1297:SMROAO>2.0.CO;2, 1990. 

Schlesinger, M. E., Jiang, X., and Charlson, R. J.: Implication of Anthropogenic Atmospheric Sulphate for the Sensitivity of 

the Climate System, 1992. 980 

Schneider, S. H. and Thompson, S. L.: Atmospheric CO2 and climate: Importance of the transient response, Journal of 

Geophysical Research: Oceans, 86, 3135–3147, https://doi.org/10.1029/JC086iC04p03135, 1981. 

von Schuckmann, K., Minière, A., Gues, F., Cuesta-Valero, F. J., Kirchengast, G., Adusumilli, S., Straneo, F., Ablain, M., 

Allan, R. P., Barker, P. M., Beltrami, H., Blazquez, A., Boyer, T., Cheng, L., Church, J., Desbruyeres, D., Dolman, H., 

Domingues, C. M., García-García, A., Giglio, D., Gilson, J. E., Gorfer, M., Haimberger, L., Hakuba, M. Z., Hendricks, S., 985 

Hosoda, S., Johnson, G. C., Killick, R., King, B., Kolodziejczyk, N., Korosov, A., Krinner, G., Kuusela, M., Landerer, F. 

W., Langer, M., Lavergne, T., Lawrence, I., Li, Y., Lyman, J., Marti, F., Marzeion, B., Mayer, M., MacDougall, A. H., 

McDougall, T., Monselesan, D. P., Nitzbon, J., Otosaka, I., Peng, J., Purkey, S., Roemmich, D., Sato, K., Sato, K., Savita, 

A., Schweiger, A., Shepherd, A., Seneviratne, S. I., Simons, L., Slater, D. A., Slater, T., Steiner, A. K., Suga, T., Szekely, T., 

Thiery, W., Timmermans, M.-L., Vanderkelen, I., Wjiffels, S. E., Wu, T., and Zemp, M.: Heat stored in the Earth system 990 

1960–2020: where does the energy go?, Earth System Science Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-

2023, 2023. 

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., 

Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., 

von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J. R., Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. 995 

B., and Zelinka, M. D.: An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence, Reviews of 

Geophysics, 58, e2019RG000678, https://doi.org/10.1029/2019RG000678, 2020. 

Siegenthaler, U. and Joos, F.: Use of a simple model for studying oceanic tracer distributions and the global carbon cycle, 

Tellus B, 44, 186–207, https://doi.org/10.1034/j.1600-0889.1992.t01-2-00003.x, 1992. 

Skeie, R. B., Fuglestvedt, J., Berntsen, T., Lund, M. T., Myhre, G., and Rypdal, K.: Global temperature change from the 1000 

transport sectors: Historical development and future scenarios, Atmospheric Environment, 43, 6260–6270, 

https://doi.org/10.1016/j.atmosenv.2009.05.025, 2009. 

Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., and Myhre, G.: A lower and more constrained estimate of climate 

sensitivity using updated observations and detailed radiative forcing time series, Earth System Dynamics, 5, 139–175, 

https://doi.org/10.5194/esd-5-139-2014, 2014. 1005 

Skeie, R. B., Fuglestvedt, J., Berntsen, T., Peters, G. P., Andrew, R., Allen, M., and Kallbekken, S.: Perspective has a strong 

effect on the calculation of historical contributions to global warming, Environ. Res. Lett., 12, 024022, 

https://doi.org/10.1088/1748-9326/aa5b0a, 2017. 



51 

 

Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., and Myhre, G.: Climate sensitivity estimates – sensitivity to radiative 

forcing time series and observational data, Earth System Dynamics, 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, 1010 

2018. 

Skeie, R. B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P. J., Deushi, M., Hegglin, M. I., Horowitz, L. W., Kramer, R. J., 

Michou, M., Mills, M. J., Olivié, D. J. L., Connor, F. M. O., Paynter, D., Samset, B. H., Sellar, A., Shindell, D., Takemura, 

T., Tilmes, S., and Wu, T.: Historical total ozone radiative forcing derived from CMIP6 simulations, npj Clim Atmos Sci, 3, 

1–10, https://doi.org/10.1038/s41612-020-00131-0, 2020. 1015 

Skeie, R. B., Peters, G. P., Fuglestvedt, J., and Andrew, R.: A future perspective of historical contributions to climate 

change, Climatic Change, 164, 24, https://doi.org/10.1007/s10584-021-02982-9, 2021. 

Skeie, R. B., Hodnebrog, Ø., and Myhre, G.: Trends in atmospheric methane concentrations since 1990 were driven and 

modified by anthropogenic emissions, Commun Earth Environ, 4, 1–14, https://doi.org/10.1038/s43247-023-00969-1, 2023. 

Smith, C., Forster, P., Palmer, M., Collins, B., Leach, N., Watanabe, M., Berger, S., Hall, B., Zelinka, M., Lunt, D., Cain, 1020 

M., Harris, G., and Ringer, M.: IPCC WGI AR6 Chapter 7, , https://doi.org/10.5281/zenodo.5211358, 2021a. 

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., 

Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O’Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T., 

Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pincus, 

R., and Forster, P. M.: Effective radiative forcing and adjustments in CMIP6 models, Atmospheric Chemistry and Physics, 1025 

20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, 2020. 

Smith, C. J., Nicholls, Z. R. J., Armour, K., Forster, P. M. de F., Meinshausen, M., Palmer, M. D., and Watanabe, M.: 

The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In [Masson-Delmotte, V., 

P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. 

Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Available from 1030 

https://www.ipcc.ch/., in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. 

Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. 

Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Available from https://www.ipcc.ch/., 

2021b. 1035 

Stevenson, D. S., Zhao, A., Naik, V., O’Connor, F. M., Tilmes, S., Zeng, G., Murray, L. T., Collins, W. J., Griffiths, P. T.,  

Shim, S., Horowitz, L. W., Sentman, L. T., and Emmons, L.: Trends in global tropospheric hydroxyl radical and methane 

lifetime since 1850 from AerChemMIP, Atmospheric Chemistry and Physics, 20, 12905–12920, https://doi.org/10.5194/acp-

20-12905-2020, 2020. 

Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, 1040 

R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., 

Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., 

Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi,  A., 

Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. 

G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, 1045 

J., and Yao, Y.: A comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248–256, 

https://doi.org/10.1038/s41586-020-2780-0, 2020. 



52 

 

Torvanger, A., Grimstad, A.-A., Lindeberg, E., Rive, N., Rypdal, K., Skeie, R. B., Fuglestvedt, J., and Tollefsen, P.: Quality 

of geological CO2 storage to avoid jeopardizing climate targets, Climatic Change, 114, 245–260, 

https://doi.org/10.1007/s10584-012-0447-z, 2012. 1050 

Torvanger, A., Lund, M. T., and Rive, N.: Carbon capture and storage deployment rates: needs and feasibility, Mitig Adapt 

Strateg Glob Change, 18, 187–205, https://doi.org/10.1007/s11027-012-9357-7, 2013. 

Tronstad Lund, M., Eyring, V., Fuglestvedt, J., Hendricks, J., Lauer, A., Lee, D., and Righi, M.: Global-Mean Temperature 

Change from Shipping toward 2050: Improved Representation of the Indirect Aerosol Effect in Simple Climate Models, 

Environ. Sci. Technol., 46, 8868–8877, https://doi.org/10.1021/es301166e, 2012. 1055 

Warwick, N. J., Archibald, A. T., Griffiths, P. T., Keeble, J., O’Connor, F. M., Pyle, J. A., and Shine, K. P.: Atmospheric 

composition and climate impacts of a future hydrogen economy, Atmospheric Chemistry and Physics, 23, 13451–13467, 

https://doi.org/10.5194/acp-23-13451-2023, 2023. 

Wigley, T. M. L. and Raper, S. C. B.: Implications for climate and sea level of revised IPCC emissions scenarios, Nature, 

357, 293–300, https://doi.org/10.1038/357293a0, 1992. 1060 

Winterstein, F., Tanalski, F., Jöckel, P., Dameris, M., and Ponater, M.: Implication of strongly increased atmospheric 

methane concentrations for chemistry–climate connections, Atmospheric Chemistry and Physics, 19, 7151–7163, 

https://doi.org/10.5194/acp-19-7151-2019, 2019. 

11  


