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 Abstract.  The  geochemistry  of  biogenic  carbonates  has  long  been  used  as  proxies  to  record  changing  seawater  parameters. 

 However,  the  effect  of  ocean  acidification  on  seawater  chemistry  and  organism  physiology  could  impact  isotopic  signatures 

 and  how  elements  are  incorporated  into  the  shell.  In  this  study,  we  investigated  the  geochemistry  of  three  reservoirs 

 important  for  biomineralization  -  seawater,  the  extrapallial  fluid  (EPF),  and  the  shell  -  in  two  bivalve  species,  Crassostrea 

 virginica  and  Arctica  islandica  .  Additionally,  we  examined  the  effects  of  three  ocean  acidification  conditions  (ambient:  500 

 ppm  CO  2  ,  moderate:  900  ppm  CO  2  ,  and  high:  2800  ppm  CO  2  )  on  the  geochemistry  of  the  same  three  reservoirs  for  C. 

 virginica  .  We  present  data  on  calcification  rates,  EPF  pH,  measured  elemental  ratios  (Mg/Ca,  B/Ca),  and  isotopic  signatures 

 (δ  26  Mg,  δ  11  B).  In  both  species,  comparisons  of  seawater  and  EPF  Mg/Ca  and  B/Ca,  [Ca  2+  ],  and  δ  26  Mg  indicate  that  the  EPF 

 has  a  distinct  composition  that  differs  from  seawater.  Shell  δ  11  B  did  not  faithfully  record  seawater  pH  and  δ  11  B-calculated  pH 

 values  were  consistently  higher  than  pH  measurements  of  the  EPF  with  microelectrodes,  indicating  that  the  shell  δ  11  B  may 

 reflect  a  localized  environment  within  the  entire  EPF  reservoir.  In  C.  virginica  ,  EPF  Mg/Ca  and  B/Ca,  as  well  as  absolute 

 concentrations  of  Mg,  B,  and  [Ca  2+  ],  were  all  significantly  affected  by  ocean  acidification,  indicating  that  OA  affects  the 

 physiological  pathways  regulating  or  storing  these  ions,  an  observation  that  complicates  their  use  as  proxies.  Reduction  in 

 EPF  [Ca  2+  ]  may  represent  an  additional  mechanism  underlying  reduction  in  calcification  in  C.  virginica  in  response  to 

 seawater  acidification.  The  complexity  of  dynamics  of  EPF  chemistry  suggest  boron  proxies  in  these  two  mollusc  species  are 
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 not  straightforwardly  related  to  seawater  pH,  but  ocean  acidification  does  lead  to  both  a  decrease  in  microelectrode  pH  and 

 boron-isotope-based  pH,  potentially  showing  applicability  of  boron  isotopes  in  recording  physiological  changes. 

 Collectively,  our  findings  show  that  bivalves  have  high  physiological  control  over  the  internal  calcifying  fluid,  which 

 presents a challenge to using boron isotopes for reconstructing seawater pH. 

 1 Introduction 

 The  elemental  geochemistry  of  marine  biogenic  carbonate  shells  is  widely  used  to  track  and  reconstruct  environmental 

 change  (Broeker  and  Peng,  1982;  Elderfield,  2006).  The  incorporation  of  elements  within  the  skeleton  of  marine  calcifiers 

 has  been  shown  to  be  correlated  with  different  environmental  parameters,  such  as  temperature  (Dunbar  et  al.,  1994,  Alibert 

 and  McCulloch  1997)  and  pH  (e.g.  Hemming  and  Hanson,  1992;  Hönisch  et  al.,  2004;  McCulloch  et  al.,  2018).  However,  it 

 has  long  been  recognised  that  elemental  and  isotopic  signatures  of  biogenic  carbonate  deviate  from  inorganic  carbonate 

 grown  under  the  same  conditions,  complicating  the  use  and  interpretation  of  these  theoretical  models  for 

 paleo-reconstructions  (e.g..  Urey,  1951;  Craig,  1953;  reviewed  by  Weiner  and  Dove,  2003).  The  physiological  processes  alter 

 the  geochemistry  of  biominerals  and  consequently  offset  the  environmental  signal  incorporated  in  biogenic  carbonates, 

 termed  “vital  effects”  (Urey,  1951)  which  includes  the  different  biomineralization  strategies  that  can  modify  the  chemistry  of 

 the  calcification  fluid  (Weiner  and  Dove,  2003).  For  organisms  to  calcify,  a  semi-isolated  calcification  space  will  be,  to 

 varying  degrees,  separated  from  seawater  for  supersaturation  to  be  achieved  in  support  of  calcification  (Weiner  and  Dove, 

 2003).  In  intracellular  calcification,  biominerals  can  be  formed  within  cells  using  specialized  vesicles  or  vacuoles,  whereas  in 

 extracellular  cases,  calcification  may  occur  on  an  organic  matrix  template,  with  ions  transported  as  necessary  for  crystal 

 nucleation  to  occur  (Weiner  and  Dove,  2003;  Addadi  et  al.,  2006;  reviewed  by  Gilbert  et  al.,  2022).  Additionally,  the 

 geochemistry  of  the  calcification  fluid  can  be  altered  due  to  differing  degrees  of  isolation  from  the  parent  fluid,  seawater,  as 

 well  as  the  modulation  of  the  calcification  fluid  chemistry  via  different  methods  of  passive  or  active  ion  transport  to  the  site 

 of  calcification  (Weiner  and  Dove  2003;  McCulloch  et  al.,  2017;  Sutton  et  al.,  2018;  Liu  et  al.,  2020).  A  mechanistic 

 understanding  of  such  vital  effects  is  desirable  for  the  accurate  interpretation  of  geochemical  proxies  preserved  in  the  shells 

 of these organisms. 

 Molluscs  have  long  been  recognized  as  valuable  archives  for  climate  reconstructions,  given  the  annual  resolution  growth 

 bands,  long  lifespans,  and  wide  geographic  distributions  (Gibson  et  al.,  2001;  Peharda  et  al.,  2021).  However,  it  is  also  well 

 established  that  mollusc  shell  carbonates  can  express  significant  vital  effects  in  many  geochemical  parameters  (Schöne, 

 2008).  For  example,  the  δ  11  B  proxy  for  seawater  pH  in  foraminifera  and  corals  seems  relatively  insensitive  in  many  molluscs 

 examined,  including  Mytilus  edulis,  Mercenaria  mercenaria  ,  and  Crassostrea  virginica  (Heinemann  et  al.,  2012;  Foster  and 

 Rae,  2016;  McCulloch  et  al.,  2017;  Liu  et  al.,  2020;  Eagle  et  al.,  2022).  Shell  B/Ca  has  been  shown  to  be  correlated  to 

 internal  fluid  pH  in  Mytilus  edulis  (Heinemann,  2012)  and  Mercenaria  mercenaria  (Ulrich  et  al.,  2021),  but  relationships  to 

 seawater  pH  were  less  clear.  Reported  Mg/Ca  are  widely  used  as  temperature  proxies  in  many  marine  calcifiers 
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 (Wannamaker  2008),  however  it  is  also  long  established  that  molluscs  can  regulate  and  actively  exclude  [Mg  2+  ]  from  their 

 shells  (Lorens  and  Bender,  1977;  Planchon  et  al.,  2013),  showing  that  biological  regulation  of  biocalcification  and  the  parent 

 fluids  for  shell  formation  can  have  a  strong  influence  on  Mg-based  geochemical  proxies.  Mg  isotope  analyses  can  potentially 

 inform  the  [Mg  2+  ]  transport  process  in  molluscs.  Although  few  Mg  isotope  studies  of  molluscs  have  been  done,  a  study  by 

 Planchon  et  al.  (2013)  investigated  δ  26  Mg  across  Ruditapes  philippinarum  tissues,  shell,  and  fluid  reservoirs  and  found  that 

 seawater  and  extrapallial  fluid  magnesium  signatures  similar,  suggesting  that  seawater  is  the  source  of  [Mg  2+  ]  ions  within  the 

 extrapallial  fluid.  Additionally,  Planchon  et  al.  (2013)  found  that  Mg  signatures  within  the  shell  varied  between  specimens 

 and  were  either  in  line  with  or  deviated  from  inorganically  precipitated  aragonite,  suggesting  an  ability  for  some  clams  to 

 physiologically alter or regulate [Mg  2+  ] within the extrapallial fluid. 

 Figure  1.  Schematic  of  a  bivalve  cross  section  showing  the  flow  of  between  biomineralization  ion  reservoirs.  The  box  on  the 

 right  shows  a  zoomed  in  schematic  across  the  inner  mantle  epithelium  cells  that  show  transcellular  and  paracellular  ion 

 transport pathways in and between epithelial cells. Figure adapted from Planchon et al. (2013) and Zhao et al. (2016). 
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 Understanding  the  structure  of  mollusc  tissues,  internal  fluid  reservoirs,  mechanisms  of  calcification  and  ion  transport  to  the 

 site  of  calcification  is  critical  to  understanding  these  vital  effects  (Fig  1).  It  may  also  give  insight  into  the  sensitivity  of 

 bivalves  to  CO  2  -induced  ocean  acidification,  a  major  environmental  challenge  to  ocean  ecosystems  and  commercial  shellfish 

 fisheries  (Gazeau  et  al.,  2013;  Stewart-Sinclair  et  al.,  2020).  Typically,  bivalves  are  amongst  the  more  sensitive  group  of 

 marine calcifier species to acidification (Ries et al., 2009; Kroecker et al., 2011). 

 Control 
 A. islandica 

 Control 
 C. virginica 

 Moderate OA 
 C. virginica 

 High OA 
 C. virginica 

 Measured seawater parameters 

 pH (total scale)  7.93 ± 0.09  8.01 ± 0.08  7.75 ± 0.07  7.29 ± 0.11 

 DIC  (µmol/kg)  n/d  1966 ± 44  1998 ± 212  2177 ± 160 

 TA  (µmol/kg)  n/d  2120 ± 46  2120 ± 42  1511 ± 40 

 Mg/Ca (mol/mol)  5.13 ± 0.07  5.15 ± 0.07  5.23 ± 0.06  5.12 ± 0.03 

 δ  26  Mg  (‰)  -0.82  0.06 ‰  -0.77 ± 0.01  -0.82 ±0.03  -0.76 ± 0.09 

 B/Ca (mol/mol)  41.75 ± 1.52  41.66 ± 1.07  43.08 ± 2.9  42.11 ± 1.8 

 δ  11  B (‰)  39.88 ± 0.13  40.29 ± 0.33  39.39 ± 0.33  39.82 ± 0.33 

 Calculated seawater parameters 

 p  CO  2  (ppm)  n/d  570 ± 90  990 ± 173  2912 ± 373 

 [CO  3 
 2-  ]  (µM)  n/d  120 ± 12  79 ± 13  31 ± 4 

 Ω  Calcite  n/d  2.95 ± 0.30  1.93 ± 0.32  0.75 ± 0.09 

 Ω  Aragonite  n/d  1.89 ± 0.19  1.24 ± 0.21  0.48 ± 0.06 

δ  11  B-calculated EPF pH 
 (total scale) 

 7.76 ± 0.07  8.12 ± 0.09  8.06 ± 0.10  8.01 ± 0.08 
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 △pH  SW-δ11B.pH  0.17  0.64  0.77  0.8 

 EPF geochemistry 

microelectrode EPF pH 
 (total scale) 

 7.41 ± 0.14  7.48 ± 0.15  7.29 ± 0.10  7.21 ± 0.10 

 △pH  SW-EPF  0.52  0.53  0.46  0.08 

 Mg/Ca  (mol/mol)  4.25 ± 0.67  4.55 ± 0.50  5.73 ± 0.34  5.58 ± 0.46 

 δ  26  Mg (‰)  -0.69  0.01 ‰  -0.88 ± 0.06  -0.87 ± 0.07  -0.9 ± 0.1 

 B/Ca (mol/mol)  31.17 ± 4.87  33.66 ± 2.81  42.22 ± 3.33  43.26 ± 2.82 

 δ  11  B  EPF  (‰)  39.5 ± 0.4  39.3 ± 1.0  38.9 ± 0.47  n/d 

 Shell geochemistry 

 Mg/Ca (mmol/mol)  0.8 ± 0.2  13.8 ± 1.7  13.4 ± 2.3  12.3 ± 1.5 

 δ  26  Mg (‰)  n/d  -3.2 ± 0.1  -3.1 ± 0.1  -3.0 ± 0.2 

 B/Ca (µmol/mol)  57 ± 17  114 ± 22  125 ± 11  124 ± 9 

 δ  11  B  Shell  (‰)  15.26 ± 0.41  18.34 ± 0.59  16.91 ± 0.56  16.84 ± 0.35 

 Table  1.  Seawater  and  extrapallial  fluid  carbonate  chemistry  parameters  (pH,  DIC,  TA,  Ω,  δ11B-calculated  EPF  pH,  and 

 △pH)  for  both  C.  virginica  and  A.  islandica  under  control  conditions  and  C.  virginica  for  OA  conditions..  Seawater, 

 extrapallial  fluid,  and  shell  geochemical  parameters  (Mg/Ca,  δ26Mg,  B/Ca,  δ11B)  for  both  C.  virginica  and  A.  islandica 

 under  control  conditions  and  C.  virginica  for  OA  conditions.  Parameters  that  were  not  measured  or  calculated  are  marked 

 with ‘n/d.’ 

 The  bivalve  mollusc  extrapallial  fluid  (EPF)  is  an  internal  fluid  reservoir  physically  semi-separated  from  seawater  that 

 circulates  in  the  pallial  cavity,  between  the  outer  mantle  epithelium  (OME)  and  shell.  Seawater  enters  the  pallial  cavity  when 
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 valves  are  open,  then  the  internal  hemolymph  fluid  circulates  within  the  organs  of  the  mollusc  and  finally  can  also  be 

 transported  across  the  mantle  to  the  EPF  (Table  1;  Zhao  et  al.,  2018).  Bivalve  mollusc  shell  calcification  is  thought  to  occur 

 at  the  interface  of  the  EPF  and  growing  shell  where  the  ions  for  calcification  interact  with  organic  matrices,  such  as 

 polypeptide  molecules  (Crenshaw,  1972;  Wheeler  and  Sikes,  1984;  Wilbur  and  Bernhardt,  1984;  Addadi,  2006)  and  proteins 

 within  the  EPF  that  act  as  a  scaffolding  template  for  nucleation  and  are  important  in  the  calcification  process  (Crenshaw, 

 1972;  Wilber  and  Bernhardt,  1984).  Additionally,  molluscs  can  calcify  though  a  transient  amorphous  calcium  carbonate 

 precursor  phase  in  which  disordered  calcium  carbonate  crystals  can  be  stored  and  then  transported  to  the  calcification  front 

 (Addadi,  2003;  Immenhauser  et  al.,  2016),  which  can  act  as  another  source  of  potential  geochemical  vital  effects.  Therefore, 

 it  is  expected  that  EPF  chemistry  will  differ  from  seawater  and  that  knowledge  of  EPF  geochemistry  may  inform  our 

 knowledge of vital effects in bivalve molluscs. 

 Unlike  the  calcifying  fluid  reservoirs  in  most  organisms,  bivalve  EPF  has  a  large  enough  volume  that  it  can  be  directly 

 sampled,  allowing  for  direct  measurements  of  the  reservoir  to  compare  with  seawater  geochemistry  and  elucidate  in  situ 

 changes  in  EPF  chemistry.  A  foundational  study  by  Crenshaw  (1972)  found  that,  in  three  mollusc  species,  the  EPF 

 calcification  fluid  had  a  different  chemical  composition  and  pH  from  seawater  and  from  the  mollusc  hemolymph  fluid 

 (Crenshaw  et  al.,  1972).  Crenshaw,  (1972)  reported  that  EPF  pH  was  significantly  lower  than  seawater  pH,  that  cationic 

 compositions  of  the  EPF  could  also  differ  from  seawater,  and  that  the  total  C  (including  all  species  of  dissolved  inorganic 

 carbon)  of  the  EPF  was  higher  than  that  of  seawater.  Additionally,  Crenshaw  also  showed  that  EPF  calcium  concentration 

 and  pH  co-varied  significantly  over  time  during  the  opening  and  closing  of  valves,  or  the  ventilation  cycle.  When  valves  are 

 closed  pH  is  lower  and  calcium  concentration  higher,  resulting  from  dissolution  of  shell  material  and  return  of  calcium  to  the 

 EPF  (Crenshaw,  1972).  A  previous  study  on  the  king  scallop,  Pecten  maximus  ,  by  Cameron  et  al.  (2019)  showed  that  EPF 

 pH  was  lower  than  seawater  and  also  depended  on  pCO  2  and  temperature.  Ramesh  et  al.,  (2017)  reported,  using  a 

 microelectrode  approach,  that  pH  and  [CO  3 
 2-  ]  were  elevated  proximal  to  the  growing  shell  in  larval  Mytilus  edulis  shells.  In 

 the  quahog  Arctica  islandica  ,  Stemmer  et  al.  (2019)  reported  synchronous  short-term  fluctuations  in  [Ca  2+  ]  and  pH  at  the 

 outer  mantle  epithelium  surface.  They  attributed  this  to  active  ion  pumping  across  mantle  epithelial  cells,  which  created 

 significant  differences  between  carbonate  saturation  and  pH  of  the  bulk  EPF  and  the  EPF  close  to  the  outer  mantle 

 epithelium. 

 Boron  proxies  utilise  boron  speciation  and  isotope  fractionation  in  seawater  to  reconstruct  pH  and  [CO  3 
 2-  ]  of  seawater  from 

 the  chemistry  of  calcium  carbonate  shells  (Hemming  and  Hanson,  1992;  Hönisch  et  al.,  2004).  In  seawater,  the  speciation  of 

 boric  acid  [B(OH)  3  ]  and  borate  ion  [B(OH)  4 
 -  ]  varies  as  a  function  of  pH  (Hemming  and  Hanson  1992).  In  addition  to  the  pH 

 dependence  of  their  relative  abundances,  the  boron  proxy  also  makes  use  of  a  large  isotopic  fractionation  between  the  two 

 boron  species  (Klochko  et  al.,  2006,  Nir  et  al.,  2015).  A  key  assumption  of  the  proxy  is  that  boron,  in  the  form  of  borate  ion, 

 is  the  predominant  form  incorporated  into  the  crystal  lattice  of  calcite  via  carbonate  ion  substitution  during  the  precipitation 

 of  calcium  carbonate  (Hemming  and  Hanson  1992).  The  δ  11  B  of  the  carbonate  (δ  11  B  CaCO3  )  should  then,  in  theory,  reflect  the 

 boron  isotopic  composition  of  the  borate  ion  in  seawater  (δ  11  B  CaCO3  ).  Accurate  reconstruction  of  seawater  pH  can  then  be 
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 achieved  using  specific  empirical  relationships  between  the  δ  11  B  CaCO3  and  δ  11  B  CaCO3  ,  which  can  in  turn  be  used  to  determine 

 pH.  The  marine  boron  system  is  also  utilized  in  the  development  of  B/Ca  proxies,  which  utilize  the  substitution  of  boron  for 

 [CO  3 
 2-  ]  in  the  crystal  lattice  and  the  relationship  between  the  partition  coefficient  (K  D  ),  B/Ca,  and  [CO  3 

 2-  ]  to  create  a  proxy 

 for  [CO  3 
 2-  ]  of  seawater  or  calcifying  fluid  (reviewed  by  DeCarlo  et  al.,  2018).  Using  the  exchange  reactions  for  the 

 substitution  of  boron  during  aragonite  or  calcite  precipitation,  the  founding  assumption  of  the  proxy  is  that  B/Ca  of  the  shell 

 can  be  used  to  calculate  the  [CO  3 
 2-  ]  of  the  solution  from  which  the  aragonite  or  calcite  precipitated.  Inorganic  aragonite 

 precipitation  experiments  have  validated  the  B/Ca  proxy  by  allowing  for  the  calculation  of  the  partition  coefficient  (K  D  ) 

 between  aragonite  and  seawater  and  fitting  of  experimental  B/Ca  data  (Mavromatis  et  al.,  2015;  Holcomb  et  al.,  2016; 

 Allison  2017;  reviewed  by  DeCarlo  et  al.,  2018).  However  the  B/Ca  proxy  also  has  limitations,  as  it  has  only  been  developed 

 for  aragonite  samples  and  because  of  remaining  unresolved  differences  in  the  formulation  of  the  K  D  ,  exchange  reactions,  and 

 fitting  of  B/Ca  experimental  data  between  studies  (Allison  et  al.,  2017;  McCulloch  et  al.,  2017;  DeCarlo  et  al.,  2018; 

 Holcomb  et  al.,  2016).  Together,  both  δ  11  B  (pH  CF  )  and  B/Ca  ([CO  3 
 2-  ])  proxies  can  be  used  to  constrain  the  full  carbonate 

 system of the calcifying medium (DeCarlo et al., 2018). 

 Vital  effects  of  the  δ  11  B  can  be  species-specific.  In  the  case  of  foraminifera,  vital  effects  are  relatively  minor  (Hönisch  et  al., 

 2004;  Foster  and  Rae,  2016).  However,  other  calcifying  organisms,  such  as  corals,  coralline  red  algae,  and  molluscs,  show 

 significant  δ  11  B  deviations  from  relationships  predicted  from  theoretical  calculations  (e.g..  Donald  et  al.,  2017;  Schoepf  et  al., 

 2017;  McCulloch  et  al.,  2018;  Sutton  et  al.  2018,  Anagnostou  et  al.,  2019;  Liu  et  al.,  2020).  There  are  different  theories  to 

 explain  the  divergence  of  δ  11  B  from  the  seawater  theoretical  model.  It  is  hypothesized  for  some  taxa  that  δ  11  B  may  not 

 faithfully  record  seawater  pH,  but  rather  the  pH  of  the  discrete  fluid  from  which  ions  are  sourced  for  calcification  that  may 

 be  isolated  or  semi-isolated  from  seawater  (Gilbert  et  al.,  2022).  Previous  work  on  corals  has  used  the  boron  proxy  analyses, 

 along  with  other  approaches,  to  probe  internal  carbonate  chemistry  of  the  calcification  fluid  (Ries,  2011;  Holcomb  et  al., 

 2014;  Guillermic  et  al.,  2021;  Cameron  et  al.,  2022;  Eagle  et  al.,  2022;  Allison  et  al.,  2023).  All  approaches,  both 

 geochemical  and  physiological,  indicate  that  corals  elevate  the  pH  and  [CO  3 
 2-  ]  of  their  calcifying  fluid  to  induce 

 calcification,  but  this  mechanism  is  sensitive  to  ocean  acidification  and  has  yet  to  be  fully  understood  (Liu  et  al.,  2020; 

 Guillermic et al., 2021; Cameron et al., 2022; Eagle et al., 2022). 

 Beyond  corals,  few  taxa  have  been  studied  using  combined  geochemical  tracer  work  to  determine  the  chemistry  of 

 calcification  fluid  pools  and  sources  of  ions  to  the  calcification  front.  Work  by  Sutton  et  al.  (2018)  noted  that  δ  11  B  values  in 

 urchin  spines  were  lower  than  seawater  borate  δ  11  B.  Stumpp  et  al.  (2013)  showed  that  the  internal  pH  of  sea  urchin  larvae 

 was  typically  lower  than  seawater  pH.  Short  et  al.  (2015),  Donald  et  al.  (2017),  Anagnostou  et  al.  (2019),  and  Liu  et  al 

 (2020)  found  high  δ  11  B  in  calcite  produced  by  coralline  algae,  which  is  potentially  consistent  with  elevation  of  calcifying 

 fluid  pH  in  support  of  calcification  either  through  enzymatic  proton  removal  and/or  photosynthetically  driven  removal  of 

 dissolved  inorganic  carbon  from  the  calcifying  fluid.  To  date,  one  study  has  investigated  the  B/Ca  and  δ  11  B  of  shell  and  EPF 

 of the bivalve  Mytilus edulis  (Heinemann et al., 2012). 
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 The  mollusc  extrapallial  fluid  is  an  attractive  target  to  investigate  geochemical  vital  effects  because  not  only  can  it  be  probed 

 with  electrodes,  like  for  corals,  but  it  can  also  be  extracted  and  analyzed.  In  this  study,  we  investigate  the  δ  11  B,  B/Ca,  δ  26  Mg, 

 and  Mg/Ca  in  extracted  extrapallial  fluid  and  aragonite  shell  of  the  quahog,  Arctica  islandica  ,  and  the  calcite  shell  of  the 

 eastern  oyster,  Crassostrea  virginica  .  This  allows  for  the  investigation  of  the  tripartite  fractionation  between  seawater, 

 extrapallial  fluid,  and  shell.  Individuals  were  grown  in  controlled  laboratory  experiments,  with  extrapallial  fluid  pH 

 determined  with  microelectrodes,  and  other  physiological  parameters,  such  as  calcification  rate  and  tissue  production, 

 determined  by  conventional  methods  (Downey-Wall  et  al.,  2020).  Specimens  of  C.  virginica  were  also  cultured  in  three 

 different  treatments  of  pCO  2  :  ambient,  moderate  and  high  ocean  acidification  conditions.  Geochemical  analysis  of  the 

 seawater,  shell,  and  extrapallial  fluid  thereby  allow  novel  insights  into  the  transport  of  ions  from  seawater  to  the  extrapallial 

 fluid,  and  the  fractionation  of  isotopes  and  elements  between  the  extrapallial  fluid  and  shell  under  both  control  and  acidified 

 conditions. 

 2 Materials and Methods 

 2.1 Experimental Conditions 

 A  detailed  explanation  of  the  collection  and  culturing  of  C.  virginica  and  A.  islandica  is  outlined  in  Downey-Wall  et 

 al.  (2020).  Seawater  salinity,  temperature,  and  pH  (total  scale)  were  monitored  and  maintained  throughout  the  experiment. 

 Seawater  was  maintained  at  a  pH  of  8.01  ±  0.08,  temperature  of  18.2  ±  1  о  C,  and  salinity  of  31  psu  for  the  calcitic  oyster  C. 

 virginica.  Seawater  was  maintained  at  a  pH  of  7.93  ±  0.09,  temperature  of  18.2  ±  1  о  C,  and  salinity  of  35  psu  for  the 

 aragonitic clam  A. islandica  in the control conditions  (Downey-Wall et al., 2020). 

 Adult  C.  virginica  specimens  were  collected  from  three  intertidal  sites  on  Plum  Island  Sound,  Massachusetts,  USA 

 (Site  1,  42.75  N,  -70.84  E;  Site  2,:  42.73  N,  -70.86  E;  Site  3,  42.68,  -70.81)  and  transferred  to  Northeastern  University's 

 Marine  Science  Center.  Following  a  33-day  period  of  acclimation  to  laboratory  conditions,  oysters  from  each  collection  site 

 were  exposed  to  control  (mean  pCO  2  ±  SE  =  570  ±  14  ppm;  Ω  calcite  =  2.95  ±  0.30  ),  moderate  OA  (990  ±  29  ppm,  Ω  calcite  =  1.93 

 ±  0.32),  or  high  OA  (2912  ±  59  ppm,  Ω  calcite  =  0.75  ±  0.09)  treatments.  Target  pCO  2  treatment  was  achieved  by  mixing 

 compressed  CO  2  and  compressed  ambient  air  using  solenoid-valve-controlled  mass  flow  controllers  at  flow  rates  that  target 

 pCO  2  conditions.  The  treated  seawater  was  introduced  to  the  flow-through  aquaria  at  a  rate  of  150  mL  min  −1  .  Tank  salinity, 

 temperature,  and  DIC  and  TA  were  measured  for  the  duration  of  the  experiment  and  used  to  calculate  pH  (total  scale), 

 Ω  calcite  ,  [CO  3 
 2-  ],  [HCO  3 

 -  ],  [CO  2  ],  and  pCO  2  of  each  tank  using  CO2SYS  version  2.1  (Pierrot  et  al.  2011;  see  Downey-Wall  et 

 al.  2020).  Measured  and  calculated  seawater  parameters  are  reported  in  Table  1.  Oysters  were  fed  1%  Shellfish  Diet  1800® 

 twice daily following best practices outlined in Helm and Bourne (2004). 
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 2.2 Calcification rate measurements 

 Net  calcification  rate  was  calculated  using  the  dry  weight  at  the  start  and  end  of  the  experiment.  Initial  dry  weight 

 was  measured  at  the  start  of  exposure,  on  day  33  or  34,  after  the  acclimation  period  (Downy-Wall  et  al.,  2020).  The  buoyant 

 weight  was  measured  on  either  day  50  or  80  and  the  final  dry  weight  was  derived  using  a  linear  relationship  between  oyster 

 dry weight and oyster buoyant weight (Ries et al., 2009). 

 2.3 Extrapallial fluid sampling 

 Sampling  of  the  extrapallial  fluid  (EPF)  was  previously  described  in  Downey-Wall  et  al.  (2020).  Briefly,  a  hole  was 

 drilled  onto  the  shell  to  expose  the  EPF  cavity,  a  port  was  inserted  and  sealed  with  epoxy  to  directly  sample  the  EPF  with  a 

 syringe  and  prevent  seawater  intrusion.  Oysters  recovered  for  4  days  before  being  transferred  to  experimental  tanks  for 

 acclimation  before  the  experiment.  To  sample  the  EPF,  oysters  were  removed  from  the  tanks  and  EPF  was  extracted  by 

 inserting  a  sterile  5  mL  syringe  with  a  flexible  18-gauge  polypropylene  tip  through  the  port.  EPF  samples  were  stored  in  2 

 mL  microcentrifuge  tubes  and  refrigera  ted  at  6˚C  for  further  analysis.  pH  (Total  scale)  of  the  EPF  was  measured  directly 

 after  extraction  using  a  micro-pH  probe.  EPF  measurements  were  collected  at  the  end  of  the  experiment,  on  day  71,  for  C. 

 virginica  and  day  14  for  A.  islandica  .  EPF  pH  diel  variability  was  also  explored  by  measuring  EPF  pH  at  6  timepoints  to 

 produce time series for both species in a 24-hour period. 

 2.4 Shell sampling 

 Following  EPF  extraction,  oysters  were  shucked  and  cleaned  in  90%  ethanol.  The  cleaned  shells  were  dried  at  room 

 temperature  for  48  hours  and  sealed  in  plastic  bags  for  analysis.  For  skeletal  geochemical  and  elemental  ratio  analysis,  the 

 inner  (lamellar)  layer  of  the  oyster  shell  was  gently  shaved  with  a  diamond-tipped  Dremel  tool  and  about  5  mg  of  ground 

 powder was stored in sealed microcentrifuge tubes. 

 2.4 Elemental ratio analysis 

 For  the  shells,  about  2.5  mg  of  powder  was  sub-sampled  from  each  specimen  shell  and  cleaned  with  a  0.3  % 

 hydrogen  peroxide  in  0.1  N  sodium  hydroxide  solution  to  remove  organic  matter  as  described  in  Barker  et  al.  (2003). 

 Carbonate  samples  were  dissolved  in  1  N  double-distilled  HCl  (see  Guillermic  et  al.,  2021,  for  details).  Elemental  ratios 

 were  measured  on  a  Thermo  Fisher  Scientific  Element  XR  HR-ICP-MS  at  the  PSO  (Plouzané,  France)  after  Ca  analyses  on 

 an  Agilent  ICP-AES  Varian  710  at  the  University  of  California,  Los  Angeles  (UCLA,  Los  Angeles,  USA).  Data  quality  and 

 external  reproducibility  were  maintained  and  quantified  via  repeated  measurements  of  international  standard  JC  P  -1  during  a 
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 particular  session  (Gutjahr  et  al.,  2021).  Typical  measured  concentrations  of  procedural  blanks  for  the  trace  element  analyses 

 for  sessions  in  which  samples  are  diluted  to  30  ppm  Ca  are  7  Li  <  3%,  11  B  <  4%,  25  Mg  <  0.1%,  87  Sr  <  0.1%,  and  43  Ca  <  0.1%. 

 Typical  analytical  uncertainties  on  the  X/Ca  elemental  ratios  are  0.3  µmol/mol  for  Li/Ca,  21  µmol/mol  for  B/Ca,  0.09 

 mmol/mol for Mg/Ca, and 0.01 mmol/mol for Sr/Ca (2 SD, n = 28). 

 For  EPF  and  seawater  samples,  10  µL  of  sample  was  added  to  490  µL  of  a  solution  of  0.1  N  HNO  3  /0.3  M  HF. 

 Mono-elemental  solution  of  indium  was  added  to  reach  a  concentration  of  1  ppb  to  monitor  any  matrix  effect  or  drift  of  the 

 instrument  during  a  particular  session.  Standards  were  prepared  by  diluting  an  in-house  seawater  standard  spiked  with 

 indium. International standards NRC-NASS-6 was used to ensure quality of the data. 

 2.5 Boron isotope analyses 

 Boron  purification  for  the  different  samples  was  achieved  via  microdistillation  following  the  method  described  in 

 Guillermic  et  al.  (2021)  and  originally  developed  by  Gaillardet  et  al.  (2001)  and  modified  for  Ca-rich  matrix  by  Wang  et  al. 

 (2010).  2.5-3.0  mg  of  oxidatively  cleaned  shell  powders  were  dissolved  in  1N  HCl.  For  the  EPF,  25  µL  of  EPF  was  added  to 

 40  µL  of  1N  HCl.  For  the  seawater,  50  µL  of  concentrated  HCl  was  added  to  450  µL  of  seawater.  60µL  of  each  of  the 

 solutions  was  loaded  for  microdistillation.  Boron  isotopes  were  analyzed  at  the  Pôle  Spectrométrie  Océan  (PSO),  Plouzané, 

 on a Thermo Neptune inductively coupled plasma mass spectrometry (MC-ICP-MS) equipped with 10  11  Ohm Faraday  cup. 

 The  certified  boron  isotope  liquid  standard  ERM©  AE120  (δ  11  B  =  -20.2  ±  0.6  ‰,  Vogl  and  Rosner,  2011)  was  used 

 to  monitor  reproducibility  and  drift  during  each  session.  Samples  measured  for  boron  isotopes  in  carbonates  were  typically 

 run  at  80  ppb  B  (~30  ng  B  per  <0.5  mL),  whereas  samples  of  EPF  and  seawater  were  typically  run  at  150-200  ppb  B  (~150 

 ng  B  per  mL).  Sensitivity  on  11  B  was  10  mV/ppb  B  (e.g.,  10  mV  for  1  ppb  B)  in  wet  plasma  at  50  µL/min  sample  aspiration 

 rate.  Procedural  boron  blanks  ranged  from  0.3  to  0.4  ng  B  and  the  acid  blank  during  analyses  was  measured  at  3  mV  on  the 
 11  B,  indicating  a  total  blank  contribution  of  <2%  of  the  sample  signal  with  no  memory  effect  within  and  across  sessions. 

 External  reproducibility  was  ensured  by  the  measurements  of  carbonate  standard  microdistilled  at  the  same  time  as  the 

 samples.  Results  for  the  isotopic  composition  of  the  JC  P  -1  is  δ  11  B  =24.67  ±  0.28  ‰  (2  SE,  n=41),  within  error  of  published 

 values (24.36 ± 0.45 ‰, 2SD, Gutjahr et al., 2021). 

 2.6 Magnesium isotope analyses 

 Carbonate  samples  were  dissolved  in  0.1  N  buffered  acetic  acid  ammonium  hydroxide  solution  over  four  hours  in  a 

 sonicator.  Samples  were  then  centrifuged  and  aliquots  of  the  supernatant  were  transferred  into  cleaned  15  mL  centrifuge 

 tubes.  Aliquots  of  the  bulk  supernatants  were  then  diluted  ~30-fold  and  calcium  and  magnesium  were  separated  and  purified 

 in  different  runs  via  a  Thermo-Dionex  ICS-5000+  ion  chromatograph  equipped  with  a  fraction  collector  according  to 

 established  methods  outlined  by  Husson  et  al.  (2015).  EPF  samples  contained  organics  that  obscured  elution  profiles,  thus 

 limiting  the  elemental  yield  and  purification.  Therefore,  samples  were  digested  on  a  hot  plate  in  hydrogen  peroxide  and  nitric 
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 acid  to  remove  organics  prior  purification.  Seawater  and  EPF  samples  were  purified  through  the  Thermo-Dionex  ICS-5000+ 

 ion  chromatograph  using  another  elution  method  than  for  carbonate  samples.  Seawater  and  carbonate  standards  were  also 

 purified at the same time to ensure quality of the method. 

 Samples  were  then  dried  and  then  rehydrated  in  a  solution  of  2%  nitric  acid.  Magnesium  isotopic  ratios  were 

 measured  at  Princeton  University  using  a  Thermo  Neptune+  (MC-ICP-MS)  spectrometer  according  to  methods  outlined  in 

 Higgins  et  al.  (2018)  and  Ahm  et  al.  (2021).  Samples  were  introduced  via  an  ESI  Apex-IR  sample  introduction  system. 

 Magnesium  isotope  ratios  (  26  Mg/  24  Mg)  were  measured  in  low  resolution  mode,  with  every  sample  bracketed  by  the  analysis 

 of  standards.  Results  are  reported  relative  to  the  Dead  Sea  Magnesium-3  standard  (DSM-3).  Long  term  external  precision  on 

 magnesium  isotope  results  at  the  Higgins  Lab  (Princeton)  was  determined  through  repeated  measurements  of  the 

 Cambridge-1  standard  (-2.59  0.07‰,  2  SD,  n  =  19)  and  modern  seawater  (-0.82  0.14  ‰,  2  SD,  n  =  21)  and  is  reported ± ±

 in  Ahm  et  al.  (2021).  Measured  standards  during  the  analytical  session  are  given  for  the  Cambridge-1  standard  (-2.60  0.20 ±

 ‰, 2 SD, n = 2) and for modern seawater (-0.82  0.06 ‰, 2 SD, n=2). ±

 2.7 Calculation of boron proxies and EPF carbonate chemistry 

 The  use  of  boron  proxies  to  reconstruct  pH  and  [CO  3 
 2-  ]  of  the  precipitating  solution  (i.e.,  the  organism’s  calcifying 

 fluid)  is  based  upon  boron  speciation  and  fractionation  in  seawater  (Hemming  and  Hanson,  1992;  Hönisch  et  al.,  2004).  In 

 seawater-type  solutions,  the  speciation  of  boric  acid  [B(OH)  3  ]  and  borate  ion  [B(OH)  4 
 -  ]  varies  as  a  function  of  pH  (Hemming 

 and  Hanson  1992).  In  addition  to  the  pH  dependence  of  their  relative  abundances,  the  boron  proxy  also  relies  upon  the  large 

 isotopic  fractionation  between  the  two  boron  species  (Klochko  et  al.,  2006,  Nir  et  al.,  2015).  A  key  assumption  of  the  proxy 

 is  that  boron,  in  the  form  of  borate  ion,  is  the  predominant  form  incorporated  into  the  crystal  lattice  of  calcite  via  carbonate 

 ion  substitution  during  the  precipitation  of  calcium  carbonate  (Hemming  and  Hanson  1992).  The  δ  11  B  of  the  carbonate 

 (δ  11  B  CaCO3  )  should  then,  in  theory,  reflect  the  boron  isotopic  composition  of  the  borate  ion  (δ  11  B  B(OH)4-  )  in  the  bivalve 

 calcifying fluid (extrapallial fluid), which in turn reflects pH of the calcifying (extrapallial) fluid. 

 The  boron  isotopic  signature  of  the  shell  (δ  11  B  carb  )  was  used  to  calculate  pH  of  the  calcifying  fluid  (pH  CF  )  using  the 

 following equation (Hemming and Hanson, 1992; Zeebe and Wolf-Gladrow, 2001): 

 pH  cf  = pK  B  log  eq. 1 −
δ  11     𝐵 

 𝑆𝑊 
      −          δ  11     𝐵 

 𝑐𝑎𝑟𝑏 

δ  11     𝐵 
 𝑆𝑊 

   −    α    *       δ  11     𝐵 
 𝑐𝑎𝑟𝑏 

−    ε ( )
 In  equation  1,  pK  B  is  the  dissociation  constant,  δ  11  B  sw  represents  the  measured  boron  isotopic  composition  of  seawater, 

 δ  11  B  carb  represents  the  boron  isotopic  composition  of  the  shell,  and  represents  the  boron  isotopic  fractionation  factor/  α/ε 

 fractionation between boric acid and borate ion (Klochko et al. 2006). 
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 The  saturation  state  of  calcite  (Ω  cacite  )  and  aragonite  (Ω  aragonite  )  of  the  EPF  for  each  species  were  calculated  using  temperature, 

 salinity,  pressure,  measured  EPF  Ca,  measured  EPF  Mg,  pH  either  from  microelectrode  pH  or  δ  11  B-calculated  pH,  and 

 literature  values  of  DIC  (3000  for  A.  islandica  from  Stemmer  et  al.  2013,  and  4200  for  C.  virginica  from  McNally  et  al., 

 2022).  The  saturation  states  were  calculated  using  Seacarbx  with  maximum  input  of  [Mg  2+  ]  allowed  by  the  code  for  samples 

 presenting  higher  EPF  [Mg  2+  ]  than  the  limit  allowed  by  the  code  (Raitzsch  et  al.,  2021).  Those  saturation  state  values  are 

 limited  by  the  fact  that  no  direct  measurements  of  EPF  DIC  was  performed  during  this  study,  and  a  range  of  [Ca  2+  ]  and 

 [Mg  2+  ] values were measured in the EPF, resulting  in a range of calculated saturation states as presented in Table 3. 

 3 Results 

 3.1 Previous Culturing experiment, calcification rates, seawater chemistry, and EPF chemistry 
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 Figure  2.  (a)  Box  plots  showing  percent  calcification  change  over  the  experiment  for  C.  virginica  for  each  treatment.  Stars 

 denote  statistically  different  means  and  ‘ns’  signify  non  significant  mean  differences  in  a  pairwise  t-test  (at  significance  p  < 

 0.05). (b) Averaged microelectrode EPF pH for A. islandica under control conditions and C. virginica for OA conditions. 

 Crassostrea  virginica  specimens  were  previously  cultured  in  experimental  tanks  with  seawater  that  was  continuously 

 bubbled  with  gas  mixtures  comprising  three  pCO  2  levels  (400  ppm,  900  ppm,  2800  ppm;  see  Downey-Wall  et  al  .,  2020).  The 

 highest  pCO  2  treatment  produced  seawater  values  with  a  Ω  calcite  <  1,  which  does  not  favor  calcification  (Table  1).  In  this 

 study,  we  present  unpublished  EPF  pH  microelectrode  data  for  A,  islandica  cultured  at  a  single  control  condition  (400  ppm 

 pCO  2  )  and  we  present  published  EPF  microelectrode  data  for  the  C.  virginica  acidification  experiment  of  Downey-Wall  et  al. 

 (2020).  Measured  and  calculated  seawater  parameters  from  the  culture  experiments  are  presented  in  Table  1.  Percent  change 

 in  calcification  per  day  (Fig  2a),  as  well  as  EPF  pH  as  measured  by  microelectrode  (Fig  2B),  decreased  in  C.  virginica  with 

 increasing  pCO  2  Both  species  had  similar  EPF  pH  (Fig  2b).  Downey-Wall  et  al  2020  reported  that  C.  virginica  calcification 

 decreased  as  pCO  2  increased  and  that,  for  each  acidification  treatment,  the  mean  EPF  pH  during  the  experiment  was  lower 

 than  the  corresponding  seawater  pH.  Additionally,  they  report  that  using  a  linear  model,  pCO  2  treatment  had  a  significant 

 effect  on  EPF  pH  (linear  model,  p<0.05)  and  that  at  the  highest  pCO  2  treatment,  EPF  pH  was  significantly  lower  than 

 seawater  pH  (Table  1;  Fig  2;  post  hoc  p-value<0.05  see  Downey-Wall  et  al  .,  2020).  We  note  that  the  C.  virginica  average 

 ΔpH  (seawater  pH  -  EPF  pH)  decreased  with  decreasing  seawater  pH.  The  ΔpH  for  the  control  treatment  was  0.53,  the 

 moderate  OA  treatment  was  0.46,  and  the  high  OA  treatment  was  0.08.  Here  we  report  that  at  the  control  pCO  2  level,  the 

 EPF pH of  A. islandica  was 7.41, compared to 7.48 for  C. virginica  and the ΔpH for  A. islandica  was 0.52 (Table 1). 
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 Figure  3.  Box  plots  of  Mg/Ca  comparing  seawater  and  extrapallial  fluid  for  (a)  C.  virginica  and  (b)  A.  islandica,  (c) 

 comparing  EPF  Mg/Ca  between  species,  and  (d)  shell  Mg/Ca  between  species.  Box  plots  of  [Mg]  comparing  seawater  and 

 extrapallial  fluid  for  (e)  C.  virginica  and  (f)  A.  islandica,  (g)  comparing  EPF  [Mg]  between  species.  Box  plots  of  [Ca] 

 comparing  seawater  and  extrapallial  fluid  for  (h)  C.  virginica  and  (i)  A.  islandica,  (j)  comparing  EPF  [Ca]  between  species. 

 Box  plots  of  26Mg  comparing  seawater  and  extrapallial  fluid  for  (k)  C.  virginica  and  (l)  A.  islandica.  Stars  denote 

 statistically  different  means  and  ‘ns’  signify  non  significant  mean  differences  in  a  pairwise  t-test  (at  significance  p  <  0.05). 

 No comparison was tested on (l) due to limited sample size. 

 3.2 Mg/Ca of seawater, EPF, and bivalve shell 
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 There  was  a  significant  decrease  in  EPF  Mg/Ca  compared  to  seawater  Mg/Ca  for  both  A.  islandica  and  C.  virginica  (t-test, 

 n=2,  p-value<0.05;  Fig  3a-b).  The  Mg/Ca  of  C.  virginica  EPF  was  4.55  0.50  mol/mol  and  significantly  higher  than  A. ±

 islandica  EPF  which  was  4.25  0.67  mol/mol  (Fig  3d;  Table  1).  For  both  species,  the  low  EPF  Mg/Ca  versus  seawater ±

 Mg/Ca  was  driven  by  higher  [Ca  2+  ]  concentrations  in  the  EPF  relative  to  seawater  (Fig  3h-i).  Considering  the  elemental 

 concentrations  alone,  instead  of  as  a  ratio,  there  was  no  significant  difference  in  EPF  [Mg  2+  ]  or  [Ca  2+  ]  concentrations  between 

 species  (Fig  3g  and  3j).  Shell  Mg/Ca  for  the  calcitic  C.  virginica  was  13.8  1.7  mmol/mol  and  significantly  higher  than  the ±

 aragonitic  A.  islandica  shell  which  was  0.8  0.02  mmol/mol,  in  line  with  shell  polymorph  mineralogy.  The  apparent  partition ±

 coefficient  (K  Mg  )  between  the  seawater  and  the  shell  was  0.003  in  C.  virginica  and  0.002  in  A.  islandica  (Table  2).  K  Mg 

 between  EPF  and  shell  was  0.003  in  C.  virginica  and  0.002  in  A.  islandica  .  K  Mg  between  seawater  and  the  EPF  is  0.9  for  C. 

 virginica  and 0.8 for  A. islandica  (Table 2). 

 EPF/SW  Shell/SW  Shell/EPF 

 A. islandica  C. virginica  A. islandica  C. virginica  A. islandica  C. virginica 

 K  Mg/Ca  400  0.8  0.9  0.0002  0.003  0.0002  0.003 

 900  1.1  0.002  0.002 

 2000  1.2  0.002  0.002 

 K  B/Ca  400  0.7  0.8  0.001  0.003  0.002  0.003 

 900  0.9  0.003  0.003 

 2000  1.1  0.003  0.003 

 Table  2.  Partition  coefficients  between  EPF  and  seawater,  seawater  and  the  mineral,  and  EPF  and  the  mineral  for  Mg/Ca  and 

 B/Ca. 

 C.  virginica  seawater  and  EPF  δ  26  Mg  were  -0.77  0.01  ‰  and  -0.88  0.06  ‰,  respectively  and  displayed  a  significant ± ±

 decrease  in  EPF  δ  26  Mg  compared  to  seawater  for  C.  virginica  (t-test,  n1=3  n2=5,  p-value<  0.05;  Table  1,  Fig  3k-l).  For  A. 

 islandica  ,  seawater  and  EPF  δ  26  Mg  were  -0.82  0.06  ‰  and  -0.69  0.01  ‰,  respectively,  but  no  statistical  analysis  could ± ±

 be  done  between  the  two  reservoirs  owing  to  the  small  sample  size  (Table  1).  The  average  shell  δ  26  Mg  for  C.  virginica  was 
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 -3.2  0.1‰,  but  A.  islandica  shell  δ  26  Mg  could  not  be  analyzed  because  of  low  shell  [Mg  2+  ]  content  and  limited  sample ±

 material. 
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 Figure  4.  Box  plots  showing  C.  virginica  (a)  EPF  Mg/Ca  and  (b)  shell  Mg/Ca  across  seawater  pH  treatments.  Additionally, 

 box  plots  show  (c)  EPF  [Mg],  (d)  EPF  [Ca],  (e)  EPF  26Mg,  and  (f)  shell  26Mg.  Stars  denote  statistically  different  means  and 

 ‘ns’ signify non significant mean differences in a pairwise t-test (at significance p < 0.05). 

 In  the  C.  virginica  acidification  experiment,  EPF  but  not  shell  Mg/Ca  was  found  to  increase  as  EPF  pH  decreased 

 (regression,  n=10,  p-value<0.05  ;  Fig  5a-b).  OA  treatment  had  a  significant  effect  on  shell  Mg/Ca  (ANOVA,  n=10, 

 p-value<0.05,  Fig  4a-b).  The  concentration  of  both  [Ca  2+  ]  and  [Mg  2+  ]  in  the  EPF  decreased  with  decreasing  EPF  pH 

 (regression,  n=10,  p-value<  0.05;  Fig  5c-d).  However,  when  binning  by  seawater  pH  treatments,  only  the  [Ca  2+  ]  and  [Mg  2+  ] 

 of  the  ambient  condition  was  significantly  elevated  compared  to  the  moderate  and  high  ocean  acidification  treatments  (Tukey 

 HSD,  n1=4  n2=3,  p<0.05,  Fig  4c-d).  The  EPF  and  shell  δ  26  Mg  did  not  change  as  a  function  of  EPF  or  seawater  pH  (Fig  4e-f 

 and 5e-f). 
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 Figure  5.  Scatter  plots  showing  C.  virginica  individual  specimen  (a)  EPF  Mg/Ca  and  (b)  shell  Mg/Ca  across  corresponding 

 microelectrode  pH.  Additionally,  scatter  plots  (c)  EPF  [Mg],  (d)  EPF  [Ca],  (e)  EPF  26Mg,  and  (f)  shell  26Mg  across 

 microelectrode  EPF  pH.  Stars  denote  statistically  significantly  nonzero  regression  slopes  and  ‘ns’  signify  non  significant 

 regressions  (at  significance  p  <  0.05).  Dotted  gray  lines  on  (c)  and  (d)  show  the  average  [Mg]  and  [Ca]  seawater 

 concentration, respectively. 

 3.3 Boron geochemistry of seawater, EPF, and shell 

 A.  islandica  EPF  B/Ca  was  27.91  ±  4.87  mmol/mol  and  was  significantly  lower  than  seawater  B/Ca  which  was  41.75  ±  1.52 

 mmol/mol  (t-test,  n1=7  n2=5,  p-value<0.05,  Fig  6a).  C.  virginica  EPF  B/Ca  was  41.66  ±  1.07  mmol/mol  and  was 

 significantly  lower  than  seawater  B/Ca  which  was  33.66  ±  2.81  mmol/mol  (t-test,  n1=6  n2=5,  p-value<0.05  Fig  6b)  The 

 boron  concentration  was  not  significantly  different  between  seawater  and  EPF  for  both  C.  virginica  and  A.  islandica  (Fig 

 6e-f).  There  was  no  significant  difference  in  shell  or  EPF  B/Ca  between  C.  virginica  and  A.  islandica  (Fig  6c-d).  The 

 apparent  partition  coefficient  (K  B  )  between  the  seawater  and  the  shell  was  0.003  in  C.  virginica  and  0.001  in  A.  islandica  .  K  B 

 between  EPF  and  shell  was  0.003  in  C.  virginica  and  0.002  in  A.  islandica  .  K  B  between  seawater  and  the  EPF  is  0.8  in  C. 

 virginica  and 0.7 for  A. islandica  (Table 3). 

 Control 
 A. islandica 

 (Ω  aragonite  ) 

 Control 
 C. virginica 

 (Ω  calcite  ) 

 Moderate OA 
 C. virginica 

 (Ω  calcite  ) 

 High OA 
 C. virginica 

 (Ω  calcite  ) 

 Ω using EPF pH 
 (range) 

 1.7 (1.0-3.8)  3.7 (1.3-11.4)  1.1 (0.5-2)  0.9 (0.5-1.2) 

 Ω using 
 δ  11  B-calculated pH 

 (range) 

 3.8 (2.9-6.7)  15.4 (6.7-37)  6.1 (3-11.7)  6.5 (3.4-9.7) 

 Table 3. Table of calculated saturation state (Ω) with respect to calcite (C. virginica) or aragonite (A. islandica) for the 
 average EPF pH value based on microelectrode measurements or δ11B-calculated EPF pH. 
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 Figure  6.  Box  plots  of  B/Ca  comparing  seawater  and  extrapallial  fluid  for  (a)  C.  virginica  and  (b)  A.  islandica,  (c) 

 comparing  EPF  B/Ca  between  species,  and  (d)  shell  B/Ca  between  species.  Box  plots  of  [B]  comparing  seawater  and 

 extrapallial  fluid  for  (e)  C.  virginica  and  (f)  A.  islandica,  (g)  comparing  EPF  [B]  between  species.  Box  plots  of  11B 

 comparing  seawater  and  extrapallial  fluid  for  (h)  C.  virginica  and  (i)  A.  islandica,  comparing  EPF  11B  between  species,  and 

 (d)  shell  11B  between  species.  Stars  denote  statistically  different  means  and  ‘ns’  signify  non  significant  mean  differences  in  a 

 pairwise t-test (at significance p < 0.05). 

 There  was  no  significant  difference  in  δ  11  B  between  seawater  and  EPF  for  both  species  in  the  control  condition  (Fig  6h-l). 

 There  was  also  no  significant  difference  in  EPF  δ  11  B  between  species(Fig  6j);  however,  there  was  a  significant  difference  in 

 shell  δ  11  B  between  C.  virginica  and  A.  islandica  (t-test,  n1=10  n2=3,  p-value<0.05,  Fig  6k).  Under  control  conditions,  shell 

 δ  11  B was measured to be 15.26 ± 0.41‰ (2 SD, n=3)  for  C. virginica  and 18.34 ± 0.59 ‰ (2 SD, n = 3)  for  A. islandica  . 
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 3.4  Crassostrea virginica  ocean acidification experiment geochemistry 
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 Figure  7.  Box  plots  showing  C.  virginica  (a)  EPF  B/Ca  and  (b)  shell  B/Ca  across  seawater  pH  treatments.  Additionally,  box 

 plots  show  (c)  EPF  [B],  (d)  EPF  [Ca],  (e)  EPF  11B,  and  (f)  shell  11B.  Stars  denote  statistically  different  means  and  ‘ns’ 

 signify  non  significant  mean  differences  in  a  pairwise  t-test  (at  significance  p  <  0.05).  The  sample  set  for  (e)  was  limited  and 

 we were unable to analyze the lowest pH treatment. 

 In  the  C.  virginica  acidification  experiment,  EPF  B/Ca  but  not  shell  B/Ca  was  found  to  increase  as  seawater  pH  decreased 

 (ANOVA  p-value<0.05  ,  compare  Fig  7a-b).  The  EPF  but  not  shell  B/Ca  was  found  to  increase  as  EPF  pH  decreased 

 (regression  p-value<  0.05  ,  Fig  8a-b  ).  The  boron  concentration  of  the  EPF,  but  not  the  shell,  significantly  decreased  with 

 decreasing  EPF  pH  (regression  p-value<  0.05,  Fig  8c).  The  EPF  B  concentration  increased  with  increasing  seawater  pH 

 (ANOVA  p-value<  0.05,  Fig  8c);  however,  shell  boron  concentrations  did  not  significantly  change  with  seawater  pH.  Due  to 

 small  EPF  sample  volume,  EPF  for  the  oysters  in  the  lowest  seawater  pH  treatment  was  not  measured  for  δ  11  B.  There  was  a 

 significant  difference  in  mean  EPF  δ  11  B  between  the  control  pH  treatment  which  was  39.39  ‰  and  moderate  pH  treatment 

 which  was  38.92  ‰  (t-test,  n1=11  n2=7,  p-value<0.05,  Fig  7e-f).  The  difference  between  seawater  δ  11  B  and  EPF  δ  11  B  was 

 0.91  ‰  for  the  control  treatment  and  decreased  to  0.47  ‰  for  the  moderate  pH  treatment.  Shell  δ  11  B,  but  not  EPF  δ  11  B, 

 significantly decreased with decreasing EPF pH (regression p-value<0.05, Fig 8e-f). 
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 Figure  8.  Scatter  plots  showing  C.  virginica  individual  specimen  (a)  EPF  B/Ca  and  (b)  shell  B/Ca  across  corresponding 

 microelectrode  EPF  pH.  Additionally,  scatter  plots  of  (c)  EPF  [B],  (d)  EPF  [Ca],  (e)  EPF  11B,  and  (f)  shell  11B  across 

 microelectrode  EPF  pH.  Stars  denote  statistically  significantly  nonzero  regression  slopes  and  ‘ns’  signify  non  significant 

 regressions  (at  significance  p  <  0.05).  Dotted  gray  lines  on  (c)  and  (d)  show  the  average  [B]  and  [Ca]  seawater 

 concentration, respectively. 

 Figure  9.  (a)  Box  plot  of  11B-calculated  pH  for  C.  virginica  and  A.  islandica.  (b)  Box  plot  of  measured  microelectrode  pH 

 for  C.  virginica  and  A.  islandica.  The  grey  line  shows  seawater  pH  for  C.  virginica  and  A.  islandica.  Stars  denote  statistically 

 different means and ‘ns’ signify non significant mean differences in a pairwise t-test (at significance p < 0.05). 

 The  control  condition  δ  11  B-calculated  EPF  pH  for  C.  virginica  was  8.12  ±  0.08  ‰  (2  SD,  n=3)  and  for  A.  islandica  was  7.93 

 ±  0.09  ‰  (2  SD,  n=3),  which  yielded  a  statistically  significant  difference  between  the  two  species  (t-test,  n1=3  n2=3, 

 p-value<0.05,  Fig  9a).  For  C.  virginica  ,  the  δ  11  B-calculated  EPF  was  0.1  pH  units  higher  than  the  seawater  pH  and  0.6  lower 

 than  measured  EPF  pH.  Conversely,  the  A.  islandica  δ  11  B-calculated  EPF  was  0.1  pH  units  lower  than  the  seawater  pH  and 

 0.3  higher  than  the  measured  EPF  pH  (Fig  9).  Fig  10a  shows  the  measured  EPF  pH,  the  δ  11  B-calculated  EPF,  and  seawater  to 

 EPF  1:1  pH  line  graphed  across  the  C.  virginica  acidification  experiment.  The  slope  of  the  measured  microelectrode  EPF  pH 

 versus  seawater  pH  linear  regression  was  0.3,  and  lies  below  the  seawater  to  EPF  1:1  pH  line,  but  intersects  the  seawater  to 

 EPF  1:1  pH  line  at  lowest  pH/highest  p  CO  2  culture  conditions  (Fig  10).  Conversely,  the  slope  of  the  δ  11  B-calculated  EPF  pH 
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 versus  seawater  pH  linear  regression  was  0.1,  lies  above  the  seawater  to  EPF  1:1  pH  line,  but  intersected  the  seawater  to  EPF 

 1:1 pH line at higher culture pH conditions (Fig 10). 

 Figure  10.  (a)  Scatter  plot  of  11B-calculated  pH  and  microelectrode  EPF  pH  across  seawater  pH  treatments.  The  gray  line 

 shows  the  1:1  seawater  to  EPF  pH  line.  In  the  seawater  pH:  EPF  pH  space,  the  11B-calculated  pH  regression  line  is 

 statistically  nonzero  (at  significance  p  <  0.05),  with  a  slope  of  0.368.  The  microelectrode  EPF  pH  line  was  not  significantly 

 nonzero  and  had  a  slope  of  0.143.  (b)  shows  the  averaged  11B-calculated  pH  versus  microelectrode  EPF  pH.  Stars  denote 

 statistically significantly nonzero regression slopes and ‘ns’ signify non significant regressions (at significance p < 0.05). 
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 For  the  C.  virginica  acidification  experiment,  Downey-Wall  et  al.,  (2020)  measured  the  EPF  pH  of  individual  specimens  in 

 each  acidification  treatment  over  a  24-hour  period  (n  total  =108  and  n=6  per  time  point  per  treatment).  Fig  11  shows  how  the 

 EPF  pH  for  each  individual  fluctuated  over  24  hours.  The  control  treatment  EPF  pH  of  individuals  did  intersect  the  averaged 

 seawater  pH  for  the  treatment  tanks,  however,  the  EPF  pH  in  the  moderate  and  high  pH  treatments  fell  below  the 

 corresponding  average  treatment  seawater  pH  lines.  For  all  treatments,  the  time  series  EPF  pH  lines  fell  below  the 

 corresponding treatment averaged δ  11  B-calculated EPF pH line. 

 29 

 430 

 431 

 432 

 433 

 434 

 435 

https://doi.org/10.5194/egusphere-2024-1957
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 Figure  11.  Time  series  (in  hours)  of  microelectrode  EPF  pH  over  a  24  hour  period  for  (a)  control  (b)  moderate  and  (c)  high 

 pCO2  treatments.  Each  line  represents  the  microelectrode  EPF  pH  for  each  individual  specimen  measured  in  that  treatment. 
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 The  small  dotted  line  shows  the  corresponding  average  11B-calculated  pH  for  the  treatment  and  the  larger  dotted  line  shows 

 the average seawater pH for the treatment. 

 In  Table  3,  the  EPF  aragonite  saturation  state  (Ω  aragonite  )  for  A.  islandica  and  EPF  calcite  saturation  state  (Ω  calcite  )  for  C. 

 virginica  were  calculated  using  the  averaged  measured  EPF  pH  and  averaged  δ  11  B-calculated  EPF  pH,  averaged  measured 

 [Mg  2+  ]  and  [Ca  2+  ],  and  literature  values  of  DIC  (3000  µmol/L  for  A.  islandica  taken  from  Stemmer  et  al.  (2013)  and  4200 

 µmol/L  for  C.  virginica  from  McNally  et  al.  (2022).  Under  control  conditions,  the  A.  islandica  Ω  aragonite  and  C.  virginica  Ω  calcite 

 that  was  calculated  using  δ  11  B-calculated  EPF  pH  and  measured  EPF  pH  (Table  3).  Under  the  ocean  acidification 

 experiment,  EPF  Ω  calcite  decreased  with  decreasing  seawater  pH  when  using  either  EPF  pH  or  δ  11  B-calculated  EPF  pH  to 

 calculate  EPF  Ω  calcite  .  There  were  large  differences  in  A.  islandica  Ω  aragonite  and  C.  virginica  Ω  calcite  when  using  either  EPF  pH 

 (Ω  aragonite  =1.7 and Ω  calcite  =3.7) or the δ  11  B-calculated  pH (Ω  aragonite  =3.8 and Ω  calcite  =15.4). 

 4. Discussion 

 4.1  [Mg  2+  ]  and [Ca  2+  ] concentrations in the EPF and  shell 

 This  study  examined  tripartite  element  and  isotope  fractionation  between  different  reservoirs  involved  in  the 

 biomineralization  of  two  bivalves  species,  aragonitic  A.  islandica  and  calcitic  C.  virginica  .  Marine  bivalves  source  ions  for 

 internal  fluids  from  seawater  and  previous  studies  by  Crenshaw  (1972)  have  highlighted  that  the  extrapallial  fluid,  the 

 internal  ion  reservoir  pool  for  calcification,  is  chemically  different  from  seawater.  Seawater  enters  the  hemolymph  fluid 

 within  the  bivalve  tissues  through  the  gills,  filter  feeding,  and  passive  diffusion.  Thereafter,  the  ions  sourced  from  seawater 

 are  modulated  either  passively  or  actively  across  the  outer  mantle  epithelium  (OME)  cells  into  the  extrapallial  cavity,  a 

 semi-isolated  space  that  separates  the  outer  mantle  epithelium  tissue  from  the  shell.  Here,  ions  are  sourced  to  the  site  of 

 calcification  where  biomineralization  occurs.  The  exact  mechanisms  behind  bivalve  biomineralization  is  still  a  topic  of 

 active  research  and  evidence  has  been  put  forth  for  several  distinct  pathways,  primarily  regulation  of  calcification 

 constituents  across  the  OME  and  transport  of  a  precursor  phase  of  CaCO  3  to  promote  calcification  (Addadi  2003;  Checa 

 2020). 

 In  the  complementary  study  by  Downey-Wall  et  al.  (2020),  it  was  found  that  the  C.  virginica  calcification  rates 

 decreased  with  seawater  pH  (Downey-Wall  et  al.,  2020;  Fig  2).  The  reduction  of  calcification  under  ocean  acidification 

 conditions  is  well  documented  in  other  seawater  pH  experiments  on  different  bivalve  species  (e.g.,  Ries  et  al.,  2009;  Beniash 

 et  al.,  2010;  Waldbusser  et  al.,  2011;  Downey-Wall  et  al.,  2020).  This  result  is  consequential  as  the  shell  is  important  in 

 protecting  the  animal  from  predation,  desiccation,  and  the  effects  of  transient  changes  in  seawater  chemistry  (Gosling  2008). 

 Under  ambient  control  conditions,  C.  virginica  and  A.  islandica  microelectrode  EPF  pH  was  lower  than  seawater  pH. 

 Additionally,  under  both  the  moderate  and  high  experimental  ocean  acidification  treatments,  the  average  microelectrode  EPF 

 pH  of  C.  virginica  was  lower  than  seawater  pH.  These  findings  are  in  line  with  previous  work  on  bivalves,  which  show  that 
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 the  EPF  pH  is  regularly  lower  than  seawater  pH  (  Crenshaw  1972,  Heinemann  et  al.,  2012,  Stemmer  et  al.,  2013,  Sutton  et  al., 

 2018;  Cameron  et  al.  2019,  Liu  et  al.,  2020)  a  nd  that  simulated  ocean  acidification  results  in  a  decreased  EPF  pH 

 (Michaelidis  et  al.,  2005;  Thomsen  et  al.,  2013,  Zittier  et  al.,  2015,  Cameron  et  al.,  2019;  Downey-Wall  et  al.,  2020). 

 However,  the  change  in  pH  between  EPF  and  seawater  pH  (△pH)  decreased  with  decreasing  pH  ,  resulting  in  an  EPF  pH  that 

 was closer to seawater pH under acidified conditions (Table 1). 

 Here  we  show  that,  under  ambient  conditions,  both  the  EPF  Mg/Ca  and  B/Ca  of  both  C.  virginica  and  A.  islandica 

 were  lower  than  that  of  seawater,  indicating  that  the  EPF  has  a  distinct  geochemical  make  up  different  from  seawater  (Fig  3; 

 Downey-Wall  et.  al.,  2022).  This  is  consistent  with  the  anatomical  understanding  in  bivalves  that  EPF  is  semi-isolated  from 

 seawater  and  its  geochemistry  can  be  influenced  by  ion  fluxes  across  the  OME  as  well  as  other  ion  pathways  (Crenshaw 

 1972;  Stemmer  et  al.,  2013;  Sillanpaa  et  al.,  2018).  However,  we  also  find  that  for  both  Mg/Ca  and  B/Ca,  this  result  is  driven 

 by  an  increase  in  absolute  [Ca  2+  ]  in  EPF,  so  we  do  not  find  evidence  for  dilution  or  concentration  of  the  absolute  [Mg  2+  ]  or 

 Bin  the  EPF  (Fig  3).  Previous  work  on  bivalves  has  shown  that  magnesium  can  inhibit  calcite  crystal  nucleation  and  there  is 

 evidence  for  exclusion  of  [Mg  2+  ]  from  the  EPF  (Lorens  and  Bender,  1977).  In  line  with  other  studies,  we  show  that  C. 

 virginica  and  A.  islandica  have  lower  Mg/Ca  in  EPF  than  seawater  (Lorens  and  Bender,  1977;  Planchon  et  al.,  2013); 

 however,  we  note  that  the  EPF  Mg/Ca  trend  is  driven  by  changes  in  EPF  Ca.  C.  virginica  and  A.  islandica  EPF  Mg/Ca  were 

 significantly  different,  with  lower  EPF  Mg/Ca  for  A.  islandica  ,  possibly  due  to  different  controls  over  EPF  [Ca  2+  ]  between 

 both  species.  The  partition  coefficient  between  EPF  and  the  shell  was  calculated  to  be  0.003  for  C.  virginica  0.0002  for  A. 

 islandica  ,  which  is  consistent  with  previous  studies  on  bivalves  and  with  the  Mg/Ca  mineralogical  difference  between  the 

 calcite produced by  C. virginica  and the aragonite  produced by  A. islandica  (Ulrich et al. 2021). 

 We  found  that  the  EPF  δ  26  Mg  of  C.  virginica  was  depleted  compared  to  seawater  δ  26  Mg  (Fig  3).  Our  δ  26  Mg  values 

 for  the  EPF  and  shell  were  in  line  with  previous  work  on  bivalves  (Planchon  et  al.,  2013).  Planchon  et  al.  (2013)  found  a 

 -0.23  ±  0.25  ‰  (2  SD,  n=5)  difference  between  EPF  and  seawater  in  the  aragonitic  manila  clam,  Ruditapes  philippinarum  . 

 Similarly,  in  the  present  study,  a  difference  of  -0.11  ±  0.06  ‰  was  observed  for  the  calcitic  C.  virginica  ,  but  no  δ  26  Mg  data 

 were  collected  for  A.  islandica  due  to  sample  limitation.  Both  Planchon  et  al.  (2013)  and  the  present  study  show  depleted 

 EPF  δ  26  Mg  relative  to  seawater  δ  26  Mg,  indicating  a  potential  biological  modulation  of  EPF  [Mg  2+  ]  which  has  been  previously 

 attributed  to  heavier  isotopes  being  incorporated  into  soft  tissues  or  magnesium  fixation  within  organic  molecules  (Planchon 

 et  al.,  2013).  However,  it  is  important  to  note  that  the  difference  between  EPF  and  seawater  δ  26  Mg  is  low  and  the  δ  26  Mg 

 fractionation  between  the  shell  and  seawater  (2.43‰)  was  slightly  larger  than  but  still  in  line  with  inorganic  calcite 

 precipitation studies (Mavromatis et al., 2013; Saulnier et al., 2012). 

 Only  C.  virginica  was  cultured  under  ocean  acidification  (OA)  treatments  representing  control,  moderate,  and  high 

 OA  treatments.  As  mentioned  above,  the  control  experiment  showed  elevation  of  EPF  [Ca  2+  ]  and  EPF  [Mg  2+  ]  relative  to 

 seawater.  However,  as  EPF  pH  decreased,  the  EPF  [Ca  2+  ]  and  [Mg  2+  ]  significantly  decreased  as  well  (Fig  3  &  5).  Ion 

 transporters  such  as  voltage  gated  Ca-channels  tend  to  also  affect  chemically  similar  ions  like  [Mg  2+  ]  and  a  reduction  of  such 

 a  transporter  could  possibly  explain  the  similar  trends  in  [Ca  2+  ]  and  [Mg  2+  ]  concentrations  under  OA  (Hess  et  al.,  1986). 
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 Under  OA  conditions,  EPF  [Ca  2+  ]  decreased  to  concentrations  that  were  similar  to  or  below  seawater  Ca,  indicating  a 

 reduced  ability  of  the  organism  to  upregulate  these  ions  under  OA  conditions.  Previous  studies  have  found  a  similar  tight 

 coupling  between  pH  and  Ca.  For  example,  Stemmer  et  al.  (2013)  found  synchronous  patterns  between  pH  and  [Ca  2+  ] 

 dynamics  in  A.  islandica  that  they  explained  to  be  the  result  of  calcium-transporting  ATPase,  which  exchanges  protons  and 

 calcium  ions  across  the  OME  and  has  proven  to  be  important  for  acid-base  regulation  and  calcium  transport  in  bivalves 

 (Stemmer  et  al.,  2013;  Sillanpaa  et  al.,  2018,  2020).  Although  calcium  transporting  ATPase  could  explain  this  increase  in 

 [Ca  2+  ]  under  ambient  conditions,  this  transport  mechanism  may  be  reduced  under  acidified  conditions,  thereby  impairing  the 

 bivalve’s  ability  to  regulate  protons  and  calcium  ions  in  the  extrapallial  fluid,  rendering  EPF  [Ca  2+  ]  and  pH  more  similar  to 

 that of seawater. 

 Alternatively,  the  simultaneous  reduction  in  [Ca  2+  ]  and  [Mg  2+  ]  under  OA  conditions  could  point  to  an  ion  storage 

 mechanism.  The  reduction  of  both  calcium  and  magnesium  within  the  EPF  under  moderate  and  high  OA  treatments  could 

 possibly  be  linked  to  changes  of  storage  and  budgets  of  ions  under  stressful  conditions  (Mount  2004;  Johnstone  et  al.,  2015; 

 Wang  et  al.  2017).  Further,  several  studies  have  highlighted  significant  changes  in  bivalve  [Ca  2+  ]  ion  transport  and  storage  in 

 different  extracellular  and  subcellular  compartments  associated  with  shell  damage  and  repair  under  acidified  conditions 

 (Sillanpaa  et  al.,  2016;  Mount  et  al.,  2004;  Fitzer  et  al.,  2016).  Lastly,  the  EPF  [Ca  2+  ]  could  simply  reflect  the  balance 

 between  calcification  and  dissolution  of  the  shell,  despite  the  decrease  in  calcification  rate  over  the  experimental  period,  as 

 exemplified  by  a  study  on  C.  virginica  conducted  by  Ries  et  al.  (2016)  that  found  that  under  similarly  low  saturation  states, 

 localized  shell  calcification  was  maintained  despite  net  dissolution  of  the  shell.  Regardless  of  the  exact  mechanism,  the 

 reduction  in  extrapallial  fluid  [Ca  2+  ]  under  ocean  acidification  is  a  significant  result  that  could  impact  the  ability  of  bivalves 

 to calcify by decreasing the CaCO  3  saturation state  of  the EPF. 

 4.2 Boron geochemistry 

 The  boron  isotopes  and  B/Ca  proxies  have  been  used  as  paleo-pH  and  CO  3 
 2-  proxies,  respectively,  recording 

 changes  in  seawater  carbonate  chemistry  in  the  shells  of  foraminifera  (Hemming  and  Hanson  1992;  Sanyal  et  al.,  2001; 

 Foster  and  Rae  2016).  In  corals,  however,  there  is  evidence  that  these  proxies  monitor  changes  in  the  carbonate  chemistry  of 

 the  internal  calcifying  fluid,  which  may  be  different  from  seawater  geochemistry  (Allison  and  Finch  2010;  Sutton  et  al., 

 2018;  Guillermic  et  al.,  2021).  The  boron  isotopes  proxy  has  also  been  applied  to  other  marine  species  (Sutton  et  al.,  2018, 

 Liu  et  al.,  2020,  Cornwall  et  al.,  2017),  but  independent  measurements  are  needed  to  fully  understand  the  systematics  of  this 

 proxy  in  other  organisms.  In  the  present  study,  we  constrained  the  B/Ca  and  δ  11  B  of  the  main  reservoirs  involved  in  the 

 biomineralization  (seawater,  extrapallial  fluid,  and  shell)  of  two  species  of  bivalves,  the  oyster  C.  virginica  and  the  clam  A. 

 islandica. 

 For  both  A.  islandica  and  C.  virginica  ,  there  were  no  significant  changes  nor  correlation  observed  between  δ  11  B  of 

 the  EPF  and  seawater  (Fig  6).  Shell  δ  11  B  was  significantly  different  between  species,  with  A.  islandica  recording  lower  shell 

 δ  11  B  (15.26  ±  0.41  ‰)  than  C.  virginica  (18.34  ±  0.59  ‰).  Using  boron  isotope  systematics,  the  δ  11  B-based  EPF  pH  was 

 33 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

https://doi.org/10.5194/egusphere-2024-1957
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 determined  to  be  7.76  ±  0.07  for  A.  islandica  and  8.12  ±  0.09  for  C.  virginica  .  The  δ  11  B-based  pH  was  significantly  different 

 between  the  two  species  (t-test  p  value  <0.05)  and  also  significantly  different  from  the  direct  EPF  microelectrode  pH 

 measurements  of  7.41  ±  0.14  and  7.48  ±  0.15  for  A.  islandica  and  C.  virginica  ,  respectively  (t-test  p  value  <  0.05).  In  other 

 words,  the  use  of  canonical  δ  11  B  proxy  systematics  to  calculate  δ  11  B  based  pH  does  not  match  direct  measurements  of  EPF 

 pH.  Microelectrode  EPF  pH  was  consistently  lower  than  seawater  for  both  species.  δ  11  B-based  pH  also  revealed  EPF  pH 

 lower  than  seawater  pH  for  A.  islandica  (but  to  a  lesser  extent  than  direct  microelectrode  measurement),  but  an  EPF  pH 

 greater  than  seawater  for  C.  virginica  .  This  observation  in  the  control  experiments  holds  true  under  ocean  acidification, 

 where  the  δ  11  B-based  pH  is  systematically  higher  than  microelectrode  EPF  pH  (Fig  10).  Both  δ  11  B-based  pH  and  measured 

 EPF  pH  record  a  decrease  in  pH  under  acidified  conditions  (regression  p<0.05  for  microelectrode  pH).  However,  the  offset 

 between  microelectrode  EPF  pH  and  the  δ  11  B-calculated  pH  was  0.3  pH  units  and  increased  to  0.6  and  0.8  pH  units  for  the 

 moderate  and  high  OA  treatments,  respectively  (Table  1).  This  demonstrates  that,  under  OA  conditions,  the  incongruence 

 between  δ  11  B  based  pH  and  measured  EPF  pH  increases  and  potentially  renders  the  seawater  pH  proxy  impractical,  even 

 after  species-specific  empirical  calibration.  Shell  δ  11  B  was  not  correlated  with  seawater  pH,  but  was  significantly  correlated 

 to  microelectrode  pH.  These  data  indicate  that  microelectrode  EPF  pH  does  not  fully  resolve  δ  11  B  vital  effects.  However  it  is 

 important  to  note  the  differences  in  timescales  associated  with  δ  11  B-calculated  EPF  pH  and  microelectrode  pH.  Our 

 microelectrode  pH  measurements,  although  averaged  across  several  time  points,  show  snapshots  in  time  and  is  variable  due 

 different  behavioral  scenarios  such  asn  open  (feeding,  high  pH)  and  closed  (respiring  into  a  closed  system,  low  pH)  cycles. 

 Conversely,  the  δ  11  B  approach  represents  EPF  pH  integrated  average  EPF  pH  over  the  interval  that  the  sampled  shell  was 

 formed,  which  could  range  from  days  to  weeks.  Furthermore,  the  δ  11  B  method  will  only  record  EPF  pH  when  the  shell  is 

 forming,  which  can  skew  the  archiving  of  the  δ  11  B  (pH)  signal  in  the  shell  to  higher  values  because  the  crystal  only  forms 

 when  saturation  states  and  calcification  rates  are  higher.  This  potential  bias  is  also  consistent  with  our  δ  11  B-calculated  EPF 

 pH data being higher than the microelectrode pH data, and similar to trends seen in the corals (Cameron et al, 2022). 

 A  possible  explanation  for  the  incongruence  between  δ  11  B-based  pH  and  measured  EPF  pH  arises  from  boron 

 isotope  systematics.  The  boron  isotope  proxy  assumes  that  only  the  charged  borate  ion  is  incorporated  as  BO  4  into  the 

 mineral  but  has  been  shown  that  boric  acid  can  also  be  incorporated  as  BO  3,  and  NMR  studies  have  shown  the  presence  of 

 BO  3  in  the  shells  of  different  marine  organisms  (Rollion  Bard  et  al.,  2011;  Cusack  et  al.,  2015).  However,  the  presence  of 

 BO  3  does  not  obviously  translate  to  a  strong  bias  in  the  δ  11  B  signature  of  the  mineral  due  to  the  potential  re-coordination  of 

 BO  4  to  BO  3  within  the  crystal  lattice  (Klochko  et  al.,  2009).  A  simple  calculation  shows  that  14-17%  boric  acid  incorporation 

 could  explain  the  observed  difference  between  EPF  pH  and  δ  11  B-calculated  pH  for  C.  virginica  ,  with  only  6%  boric  acid 

 incorporation  needed  for  A.  islandica  ,  which  could  very  well  explain  the  discrepancy.  Alternatively,  shell  δ  11  B  could  also  be 

 affected  by  seawater  or  extrapallial  fluid  DIC,  which  bivalves  are  known  to  modulate  under  ambient  and  OA  conditions 

 (Crenshaw  1972,  Stemmer  et  al.,  2012).  Gagnon  et  al.  (2021)  found  that  the  shell  δ  11  B  of  deep-water  coral  is  independently 

 sensitive  to  changes  in  seawater  DIC  as  a  result  of  diffusion  of  boric  acid  (Gagnon  et  al.,  2021),  though  no  similar  studies 

 have  looked  at  the  same  effect  in  bivalves  this  mechanism  is  still  possible.  Taken  together,  these  findings  could  explain  the 
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 offset  between  δ  11  B-based  pH  and  seawater  or  EPF  pH.  Nevertheless,  this  remains  speculative  as  there  is  no  further  evidence 

 of boric acid incorporation in these species. 

 Furthermore,  boron  isotope  derived  pH  can  be  influenced  by  diffusion  of  boric  acid  across  cell  membranes  (Stoll  et 

 al.,  2012;  Liu  et  al.,  2018;  Liu  et  al.,  2021;  Gagnon  et  al.,  2021).  At  two  extremes,  diffusion  between  seawater  and  the 

 calcifying  fluid  pool  can  be  fast,  resulting  in  chemically  and  isotopic  equilibrium  between  both  pools,  or  diffusion  can  be 

 slow,  resulting  in  calcifying  fluid  being  isolated  from  seawater  such  that  the  boron  isotopes  would  record  the  chemistry  of 

 the  calcifying  fluid  under  physiological  control.  If  diffusion  is  fast  compared  to  other  processes,  then  seawater  and  the 

 calcifying  fluid  would  be  in  equilibrium  and  the  δ  11  B  would  not  differ  between  the  two  pools.  Our  data  show  no  difference 

 between  seawater  and  EPF  δ  11  B.  However,  differences  in  Ca,  Mg,  and  δ  26  Mg  between  seawater  and  EPF  does  provide 

 evidence for physiological modulation of the EPF, despite similar δ  11  B signatures. 

 In  the  case  where  there  is  not  a  strong  diffusion  of  boric  acid,  then  the  pH  calculated  from  boron  isotopes  should 

 reflect  the  pH  at  the  site  of  calcification  and  physiological  control  over  the  calcifying  fluid.  The  difference  between 

 microelectrode  EPF  pH  and  δ  11  B-based  EPF  pH  implies  that  pH  measured  with  boron  isotopes  probes  a  localized  site  of 

 calcification  rather  than  the  entire  EPF  pool  measured  with  microelectrode.  A  spatial  and  temporal  study  conducted  by 

 Stemmer  et  al.  (2019)  measured  the  EPF  of  Arctica  islandica  and  showed  highly  dynamic  changes  in  pH,  [Ca  2+  ]  and  DIC 

 from  the  surface  of  the  shell  to  the  outer  mantle  epithelium  (OME),  with  localized  environment  at  the  OME  reaching  pH 

 values  up  to  9.5.  Due  to  this  high  variability,  it  is  possible  that  the  EPF  microelectrode  measurements  in  this  study  did  not 

 capture  the  full  variability  of  the  EPF.  Stemmer  et  al.  (2019)  presented  EPF  pH  values  measured  at  the  shell  surface  ranging 

 [7.1-7.6]  for  A.  islandica  ,  comparable  to  the  values  measured  from  microelectrode  in  this  study.  Additionally,  Stemmer  et  al. 

 (2019)  found  large  influxes  of  DIC  which  could  not  have  been  explained  just  from  metabolic  activity,  but  instead  indicated 

 intense  DIC  pumping  and  bursts  of  calcification.  These  findings  are  in  line  with  the  holistic  view  of  biomineralization 

 outlined  in  Checa  (2018)  and  Johnstone  (2015)  that  argue  that  crystal  deposition  is  a  series  of  periodic  events  under 

 biological  regulation.  In  our  study,  a  time-series  of  microelectrode  EPF  pH  shows  that  at  no  point,  during  ventilation  and 

 closed  cycles,  does  the  EPF  pH  reach  the  δ  11  B-calculated  pH  (Fig  11).  The  fact  that  microelectrode  EPF  pH  is  systematically 

 lower  than  seawater  pH  for  both  of  our  bivalve  species  may  reflect  localized  differences  in  pH  associated  with  zones  of 

 calcification.  The  two  environments  (site  of  calcification  and  bulk  EPF)  can  act  distinctly,  with  low  pH  and  high  DIC  EPF 

 being  a  source  of  carbon  for  the  site  of  calcification,  and  with  the  elevated  pH  of  the  site  of  calcification  supporting  the 

 conversion  of  the  DIC  species  to  [CO  3 
 2-  ]  in  support  of  mineral  precipitation.  Further  work  would  be  needed  to  assess  this 

 highly  dynamic  and  localized  environment,  however  our  study  shows  that  boron  isotopes  may  reflect  the  pH  of  the 

 microenvironment  where  calcification  occurs  within  the  EPF,  which  has  previously  been  inferred  by  prior  studies  using 

 non-geochemical approaches (Ramesh et al., 2017; Stemmer et al., 2019). 
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 Conclusion 

 In  this  study,  we  used  numerous  approaches  constraining  the  geochemical  composition  of  and  partitioning  between 

 the  tripartite  reservoirs  of  bivalve  mineralization  system--seawater,  the  EPF  and  the  shell.  Our  study  presents  Mg/Ca  and 

 B/Ca,  and  absolute  [Ca  2+  ]  data  of  the  seawater,  EPF  and  shell.  Comparisons  of  seawater  and  extrapallial  fluid  Mg/Ca  and 

 B/Ca,  Ca,  and  δ  26  Mg  indicate  that  the  EPF  has  a  distinct  composition  that  differs  from  seawater.  Additionally,  our  OA 

 experiments  show  that  the  EPF  Mg/Ca  and  B/Ca,  as  well  as  absolute  Mg,  B,  and  Ca,  all  were  significantly  affected  by 

 CO  2  -induced  ocean  acidification,  demonstrating  that  the  biological  pathways  regulating  or  storing  these  ions  involved  in 

 calcification  are  impacted  by  ocean  acidification.  Decreased  calcium  ion  concentration  within  the  extrapallial  fluid  due  to 

 OA  could  impair  calcification  by  lowering  the  saturation  state  of  the  EPF  with  respect  to  CaCO  3  .  Additionally,  our  results 

 show  that  shell  δ  11  B  does  not  faithfully  record  seawater  pH.  However,  shell  δ  11  B  is  correlated  with  EPF  pH,  despite  an  offset 

 from  in  situ  microelectrode  pH  measurements.  Both  microelectrode  pH  and  δ  11  B-calculated  pH  decreased  with  decreasing 

 pH.  However,  the  δ  11  B-calculated  pH  values  were  consistently  higher  than  microelectrode  pH  measurements,  indicating  that 

 the  shell  δ  11  B  may  reflect  pH  at  a  more  localized  site  of  calcification,  rather  than  pH  of  the  bulk  EPF.  Furthermore,  the  offset 

 between  the  δ  11  B-calculated  pH  and  microelectrode  pH  increased  with  decreasing  pH  under  ocean  acidification,  indicating 

 OA  has  a  larger  effect  on  bulk  pH  of  the  EPF  measured  via  microelectrode  than  on  site  of  calcification  pH—the  latter  of 

 which  the  bivalve  may  have  more  physiological  control  over  to  ensure  continued  calcification,  even  under  chemically 

 unfavorable  conditions.  These  complex  dynamics  of  EPF  chemistry  suggest  that  boron  proxies  in  these  two  bivalve  species 

 are  not  straightforwardly  related  to  seawater  pH,  precluding  utilization  of  those  species  for  reconstructing  the  carbonate 

 chemistry  of  seawater.  Moreover,  the  δ  11  B  proxy  may  not  be  suitable  for  reconstructing  seawater  pH  for  bivalves  with  high 

 physiological  control  over  their  internal  calcifying  fluid  and  is  further  complicated  under  conditions  of  moderate  and  extreme 

 ocean  acidification,  where  δ  11  B  EPF  pH  deviates  further  from  bulk  microelectrode  pH,  possibly  due  to  the  effect  of  DIC  on 

 shell  δ  11  B  or  the  tendancy  for  shell  δ  11  B  to  reflect  EPF  pH  at  the  more  localized  site  of  calcification,  rather  than  pH  of  the 

 bulk EPF. 
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