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Abstract. The inter-annual variability of the global carbon sink is heavily influenced by semi-arid regions. Southern 

hemispheric Africa has large semi-arid and arid regions. However, there is only a sparse coverage of in situ CO₂ 

measurements on the southern hemisphere. This leads to uncertainties in measurement-based carbon flux estimates for these 

regions. Also, dynamic global vegetation models (DGVMs) show large inconsistencies in semi-arid regions. Satellite CO₂ 

measurements offer a spatially extensive and independent source of information about the southern African carbon cycle. 15 

We examine Greenhouse Gases Observing Satellite (GOSAT) CO₂ concentration measurements from 2009 to 2018 in 

southern Africa. We infer CO₂ land-atmosphere fluxes which are consistent with the GOSAT measurements using the 

atmospheric inversion system TM5-4DVar. We find systematic differences between atmospheric inversions performed on 

satellite observations versus inversions that assimilate only in situ measurements. This suggests limited measurement 

information content in the latter. We use the GOSAT based fluxes and additionally Solar Induced Fluorescence (SIF), a 20 

proxy for photosynthesis, as atmospheric constraints to select DGVMs of the TRENDYv9 ensemble which show compatible 

fluxes. The selected DGVMs allow for studying the vegetation processes driving the southern African carbon cycle. Doing 

so, our satellite-based process analyses pinpoint photosynthetic uptake in the southern grasslands to be the main driver of the 

inter-annual variability of the southern African carbon fluxes, agreeing with former studies based on vegetation models 

alone. We find that the seasonal cycle, however, is substantially influenced by enhanced soil respiration due to soil rewetting 25 

at the beginning of the rainy season. The latter result emphasizes the importance of correctly representing the response of 

semi-arid ecosystems to soil rewetting in DGVMs. 

1 Introduction 

The terrestrial carbon sink currently takes up nearly one third of human made greenhouse gases and thereby mitigates 

climate change (Friedlingstein et al., 2023). The amount of CO₂ taken up by global ecosystems varies substantially from year 30 

to year. This inter-annual variability (IAV) reflects the response of ecosystem carbon uptake to varying climate conditions 
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such as temperature or precipitation fluctuations (Zeng et al., 2005; Zhang et al., 2018; Piao et al., 2020). Current vegetation 

models struggle in accurately reproducing IAV of the terrestrial carbon sink and an imbalance exists between the modelled 

and measured total global sink estimates (Friedlingstein et al., 2023). The imbalance is even stronger when examining 

carbon fluxes on smaller spatial scales (Bastos et al., 2020) and implies that there is still an insufficient understanding of the 35 

terrestrial processes driving land carbon exchange. A better understanding is needed to improve climate models and climate 

change predictions (Steiner et al., 2020). 

Semi-arid regions contribute substantially to the IAV of the global terrestrial carbon sink. In these regions, precipitation and 

temperature fluctuations heavily impact the IAV of carbon fluxes (Poulter et al., 2014; Ahlström et al., 2015). Africa has 

large areas of semi-arid and arid ecosystems (Williams et al., 2007) and contributes substantially to the global IAV 40 

(Williams et al., 2007; Valentini et al., 2014; Pan et al., 2020). However, in situ CO₂ measurements in Africa are very sparse 

leading to large uncertainties in carbon flux estimates from atmospheric inversions and machine learning approaches 

(Valentini et al., 2014; Ernst et al., 2024). Dynamic Global Vegetation Models (DGVMs), also, show large inconsistencies 

amongst each other and tend to underestimate the inter-annual CO₂ flux variability in semi-arid regions (MacBean et al., 

2021).  45 

Satellite CO₂ concentration measurements, for example from the Greenhouse Gases Observing Satellite (GOSAT) measuring 

CO₂ concentrations since 2009 or the Orbiting Carbon Observatory-2 (OCO-2) launched in 2014, have much denser 

coverage compared to in situ measurements. Previous studies found systematic differences between satellite- and in situ 

measurement-based CO₂ concentrations and fluxes in southern Africa (Mengistu and Mengistu Tsidu, 2020; Byrne et al., 

2023). Byrne et al. (2023) attribute these differences mainly to the sparse coverage of in situ CO₂ measurements. The studies 50 

emphasize the potential of satellite-based atmospheric inversions to provide additional information and therefore more robust 

estimates of the carbon fluxes in southern hemispheric Africa, which then enable research about processes driving the CO₂ 

exchange. Metz et al. (2023) demonstrate the potential of combining satellite-based CO₂ flux estimates with DGVMs in 

Australia to decipher soil respiration processes driving the Australian terrestrial CO₂ exchange on continental scale. 

Here, we investigate the decadal dataset of GOSAT CO₂ concentrations over southern hemispheric Africa from 2009 to 55 

2018. We run a global inversion with GOSAT and in situ measurements to infer GOSAT satellite-based CO₂ exchange 

between land and atmosphere and compare the results to those based on in situ measurements alone, to FLUXCOM 

products, and to the TRENDYv9 ensemble of DGVMs. By selecting a subset of DGVMs which match the satellite-based 

carbon fluxes, we analyze the underlying processes driving the IAV and seasonal variability of the southern African carbon 

cycle. 60 

2 Data and Methods 

2.1 Study region 
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Our study region spans southern hemispheric Africa southwards of 10° S including Madagascar (see Fig. 1). This region 

agrees with the region selection in Mengistu and Mengistu Tsidu (2020) taking into account the different climatic conditions 

in the African continent. Northwards of the study region, Africa is influenced by the low pressure system of the inter tropical 65 

convergence zone leading to a tropical wet regime. In the southern Africa, high pressure cells lead to dry conditions and 

cause the existence of the Kalahari Desert (Mengistu and Mengistu Tsidu, 2020). Even though total annual precipitation is 

decreasing southwards, the whole region experiences distinct wet and dry seasons and is influenced strongly by IAV of 

precipitation (Fan et al., 2015; Valentini et al., 2015). The study region is mainly covered by (woody) savannas, grassland, 

and shrubland (see Fig. 1). 70 

Figure 1: Study region southern Africa. The land cover in the study region is given based on MODIS (MCD12C1) data (Friedl and 

Sulla-Menashe, 2022). Additionally, the main region used for the analyses is depicted as a red box. In the inlet map on the right 

side, the land cover is aggregated in larger land cover classes and on a 1°x1° spatial resolution, which is used for most of the 

analyzed data. The main region, thereby, comprises 547 grid cells. The dashed boxes show the subdivision into a northern and 

southern region. Madagascar is part of the main region, but it is excluded in the subdivision. The pie charts depict the share of the 75 
different land cover classes in the main study region (M), the northern subregion (N), and the southern subregion (S). The 

locations of the COCCON measurement site Gobabeb (Frey et al., 2021; Dubravica et al., 2021) and the flux tower in Kruger 

National Park (Archibald et al., 2009) are given as red circle and diamond. 

The vegetation is mostly water limited in its growth (Williams et al., 2008) and exposed to large seasonal fires. The fire 

season starts in May in the western part of southern hemispheric Africa and spreads eastwards to reach southern Africa in 80 

September (Edwards et al., 2006). Fires on the whole African continent are the largest contributor to and account for more 

than half of the global fire carbon emissions (van Marle et al., 2017; Shi et al., 2015; Valentini et al., 2014). They reduce the 

African carbon sink significantly (Lasslop et al., 2020). We subdivide the study region in a northern, savanna dominated 

region and a southern grass- and shrubland region separated at 17°S, excluding Madagascar.  

2.2 Total column CO₂ measurements 85 

For our analyses we use column-averaged dry-air mole fractions of CO₂ (XCO₂, in the following referred to as CO₂ 

concentrations) measured by the Greenhouse Gases Observing Satellite (GOSAT) over land in our study region. GOSAT 

was launched in 2009 and has a sub-satellite field of view of 10.5 km radius with a sparse sampling grid. We use GOSAT 
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CO₂ concentration data generated by applying the RemoTeC radiative transfer and retrieval algorithm version 2.4.0 (Butz, 

2022) as used in Metz et al. (2023). The retrieval version covers the period 04/2009–06/2019 and is based on the preceding 90 

RemoTeCv2.3.8 as used in Detmers et al. (2015). The major updates between versions 2.3.8 and 2.4.0 are stricter quality 

filtering in the latter and updated ancillary input data, especially for the prior gas concentrations used. Moreover, GOSAT 

CO₂ concentration data generated by the NASA Atmospheric CO₂ Observation from Space (ACOS) algorithm version 9 

(Lite), available for the period 04/2009-06/2020, is used (Taylor et al., 2022). In the following the datasets are called 

GOSAT/RemoTeC and GOSAT/ACOS (see Table A1 for more information about the datasets and nomenclature used in this 95 

study). GOSAT/ACOS single measurements have a precision of 1.5 ppm and a mean bias of 0.2 ppm in validation against 

TCCON (Taylor et al., 2022). GOSAT/RemoTeC was found to have a similar precision of 1.9 ppm (Buchwitz et al., 2017) 

and by construction a mean bias of 0 ppm in comparison to TCCON after bias correction. GOSAT/RemoTeC was found to 

have a regional and seasonal systematic error of 0.6 ppm and 0.5 ppm respectively (Buchwitz et al., 2017). 

For evaluation purposes, Land-Glint and Land-Nadir (LGLN) XCO₂ data (version 11.1r) measured by the Orbiting Carbon 100 

Observatory-2 (OCO-2) satellite is used (OCO-2/OCO-3 Science Team, 2022; Jacobs et al., 2024). OCO-2 was launched in 

2014 and has a sub-satellite field of view of 1.3 km x 2.3 km. Furthermore, Collaborative Carbon Column Observing 

Network (COCCON) XCO₂ data of the Gobabeb station (Namibia, Frey et al., 2021; Dubravica et al., 2021) is taken for 

comparison. COCCON stations measure XCO₂ using a sun-viewing ground-based Fourier transform infrared spectrometer 

(Frey et al., 2019). We use the full dataset of COCCON measurements i.e. we do not apply further filtering or co-sampling to 105 

GOSAT, as there are too few coinciding GOSAT measurements. 

For examining the seasonal variability of CO₂ concentrations in the study region, the global background trend is subtracted 

from the total CO₂ measurements to obtain detrended CO₂ concentrations. For this, we assume a yearly linear increase of 

global atmospheric CO₂ and use the annual mean CO₂ growth rate (GR) published by the National Oceanic and Atmospheric 

Administration (NOAA). The growth rates are based on globally averaged CO₂ concentration measurements of marine 110 

surface sites (NOAA, 2024) and their calculation is further described in Taylor et al. (2023, Figure A3) and Pandey et al. 

(2024). The following equation describes the used background trend: 

𝐵𝐺𝑦,𝑚 = BG0 +  ∑ (𝐺𝑅𝑖)
𝑦−1
𝑖=2009 + 

m

12
𝐺𝑅𝑦 .         (1) 

Thereby, the increase of the CO₂ concentrations in the previous years from 2009 onwards is described by the second part in 

the equation. The increase within the previous months in the respective year is given by the third part. Both are added to an 115 

overall offset BG₀ in 2009. This offset is estimated so that the mean of the detrended CO₂ concentrations over the whole time 

period is zero. 
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2.3 Fluxes 

2.3.1 Top-down 120 

Carbon fluxes can be obtained by assimilating measured CO₂ atmospheric concentrations in an atmospheric inversion. 

Atmospheric inversions typically build on Bayesian optimization i.e. they optimize forward transported CO₂ emissions such 

that these agree best with the observations within measurement and model uncertainties, while at the same time not deviating 

from the prior within given prior uncertainties. For our study, we use three in situ CO₂ measurement based atmospheric 

inversions: the TM5 four-dimensional variational inversion system (TM5-4DVar, Basu et al., 2013), NOAA’s modelling and 125 

assimilation system CarbonTracker (CT2022, Peters et al., 2007; Jacobson et al., 2023), and Copernicus Atmosphere 

Monitoring Service (CAMS, Chevallier et al., 2005; Chevallier et al., 2010; Chevallier et al., 2019). The models estimate 

global CO₂ fluxes based on a set of in situ CO₂ measurements from global monitoring networks (Masarie et al., 2014). The 

models use different prior datasets. For example, for the biogenic CO₂ fluxes, TM5-4DVar and CarbonTracker build on 

different implementations of the Carnegie-Ames-Stanford Approach (Randerson et al., 1996) as further described in Metz et 130 

al. (2023), Weir et al. (2021), and Jacobson et al. (2023), while CAMS uses biogenic fluxes of the ORCHIDEE model 

(Chevallier et al., 2019). Furthermore, the inversion systems use different transport models and inversion techniques. While 

TM5-4DVar and CarbonTracker use the transport model TM5, CAMS uses the LMDZ global atmospheric transport model. 

TM5-4DVar and CAMS make use of a four-dimensional variational data assimilation, while CarbonTracker uses an 

ensemble Kalman filter. All three models use ECMWF ERA5 data as meteorological drivers. The output resolution is 135 

monthly 3°x2° for TM5-4DVar and CarbonTracker2022 and monthly 3.7°×1.81° for CAMS (see Table A1 for more details). 

The ensemble of the three models is referred to as in-situ-only inversions in the following, TM5-4DVar based on in situ 

measurements is called TM5-4DVar/IS. 

In addition to in situ measurements, satellite CO₂ concentration measurements can be assimilated by atmospheric inversions. 

To this end, we use the model TM5-4DVar and assimilate GOSAT CO₂ concentration measurements over land and ocean 140 

together with the in situ measurements. We use the individual total CO2 concentration measurements, i.e. we do not apply 

any detrending or spatiotemporal averaging. Detrending and spatiotemporal averaging is only applied for visualization 

purposes to show the variability in the monthly CO2 concentrations (Section 3.1). Depending on the specific GOSAT dataset 

used, we refer to these fluxes in the following as TM5-4DVar/RemoTeC+IS, TM5-4DVar/ACOS+IS, or when using the 

mean of both TM5-4DVar/GOSAT+IS. More details about the TM5-4DVar settings can be found in Metz et al. (2023). For 145 

comparison we also draw on data of the OCO-2 Model Intercomparison Project (MIP) (Byrne et al., 2023) for the years 2015 

to 2018. Within the MIP, atmospheric inversions estimate carbon fluxes by assimilating OCO-2 satellite XCO₂ observations 

together with in situ data. All MIP inversion models use the same fossil fuel emission dataset but differ in the chosen 

datasets for all other prior fluxes (Byrne et al., 2023). We specifically make use of the LNLGIS (assimilation of OCO-2 

LNLG observations together with in situ measurements) and the IS (assimilation of in situ measurements only) experiment 150 

in the following referred to as MIP/OCO-2+IS and MIP/IS, respectively. Like Byrne et al. (2023), we exclude the MIP 
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model LoFI as it uses a non-traditional inversion scheme differing from the MIP protocol. MIP/OCO+IS and MIP/IS provide 

fluxes with monthly 1°x1° resolution.  

All inversions optimize for biogenic and oceanic fluxes but impose anthropogenic fossil fuel emissions and fire emissions. 

The sum of (imposed) fire and biogenic fluxes yields our net biome productivity (NBP) estimates. In this study, positive 155 

fluxes denote a release of CO₂ from land into the atmosphere. All fluxes are regridded to monthly 1°x1° fluxes before 

performing the region selection.  

By transporting the posterior fluxes after the optimization, atmospheric inversions can model posterior concentration fields, 

which can be interpolated to the time and location of the satellite measurements for comparison. This so-called cosampling is 

used to eliminate sampling errors when comparing modelled concentrations to satellite measurements. We use the modelled 160 

and co-sampled posterior concentrations of the in-situ-only inversions introduced at the beginning of this section.  

2.3.2 Bottom-up 

We compare the top-down CO₂ fluxes to bottom-up flux datasets from DGVMs as collected by version 9 of the 

intercomparison project “trends and drivers of the regional-scale sources and sinks of carbon dioxide (TRENDY, Le Quéré 

et al., 2013). The project was established to support the annual global carbon budget estimation conducted by the Global 165 

Carbon Project (e.g. Friedlingstein et al., 2020). These TRENDY models give vegetation CO₂ fluxes simulated using a 

harmonized set of meteorological input data and CO2 concentrations (Le Quéré et al., 2013; Friedlingstein et al., 2020). We 

use the NBP, gross primary productivity (GPP), autotrophic respiration (RA), and heterotrophic respiration (RH) of 18 

DGVMs (see Table A1). We thereby use the following definition: 

𝑁𝐵𝑃 =  𝑁𝐸𝐸 +  𝑓𝑖𝑟𝑒 +  𝑓𝑙𝑢𝑐 =  𝑇𝐸𝑅 –  𝐺𝑃𝑃 +  𝑓𝑖𝑟𝑒 +  𝑓𝑙𝑢𝑐 =  𝑅𝐻 –  𝑁𝑃𝑃 +  𝑓𝑖𝑟𝑒 +  𝑓𝑙𝑢𝑐 ,  (2) 170 

with the total ecosystem respiration (TER) calculated as sum of RA and RH, the fire emissions (fire), the land-use change 

fluxes (fluc), and the net primary productivity (NPP) calculated as GPP – RA. Most of the TRENDY models provide NBP 

fluxes directly. In the case of the models CABLE-POP and DLEM, NBP is calculated as RH-NPP, as both models do not 

provide fire and land-use change fluxes. The spatial resolutions of the model output differ (see Table A1). Therefore, we 

aggregate fluxes on a monthly 1°x1° grid before applying the region selection.  175 

Additionally, we use the FLUXCOM net ecosystem exchange (NEE) product version 1 (setup RS_V006) as described in 

Jung et al. (2020). FLUXCOM uses machine learning models and meteorological data to upscale eddy covariance tower CO₂ 

flux measurements to global scale (Tramontana et al., 2016; Jung et al., 2020). To obtain an NBP estimate, we combine the 

NEE fluxes with fire CO₂ emissions provided by the Global Fire Emission Database (GFED, van der Werf et al., 2017). 

FLUXCOM and GFED are provided as 0.08°x0.08° 8-day fluxes and 0.25°x0.25° daily fluxes, respectively, and are 180 

aggregated on a monthly 1°x1° grid before applying the region selection. 
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2.4 Other datasets 

To investigate the climatic conditions influencing the carbon fluxes, we use temperature, upper layer soil moisture, and 

precipitation datasets of the European Centre for Medium Range Weather Forecasts (ECMWF) ERA5-land data product 

(Muñoz Sabater et al., 2019; Muñoz Sabater et al., 2021) with monthly resolution on a 0.25°x0.25° spatial grid. ERA5 185 

datasets are aggregated on a 1°x1° grid before performing the region selection. Furthermore, we use Solar Induced 

fluorescence (SIF) measurements by the GOME-2 satellite from 2009 to 01/2018 (Joiner et al., 2023). SIF is considered 

proportional to GPP on monthly time scale and biome resolution (Sun et al., 2018; Joiner et al., 2018; Pierrat et al., 2022; 

Zhang et al., 2016a; Zhang et al., 2016b). It can therefore be used as a proxy for CO₂ uptake by photosynthesis (Li et al., 

2018). 190 

 

3 Results 

3.1 Monthly CO₂ concentrations by atmospheric inversions 

To access the seasonal and inter-annual dynamics in southern Africa, we detrend the monthly mean CO₂ concentrations 

following Eq. (1) (see Data and Methods Sec. 2.2). The remaining CO₂ enhancements for the study region are shown in Fig. 195 

2. The GOSAT measured CO₂ enhancements reveal a clear seasonal cycle with minimum concentration in the first and 

maximum concentrations in the second half of the year. This general seasonal timing is confirmed by the posterior 

concentrations of the in-situ-only inversions. However, yearly reoccurring differences between GOSAT and the in-situ-only 

based CO₂ enhancements from September to November are clearly visible. Thereby, the spread between GOSAT/ACOS and 

GOSAT/RemoTeC (see also Fig. A1) is much smaller than their difference to and the spread among the in-situ-only 200 

inversions. The difference pattern between GOSAT and in-situ-only based CO2 concentrations has already been described by 

Mengistu and Mengistu Tsidu (2020) and has been shown by Taylor et al. (2022). Furthermore, especially in the second half 

of the year, different in-situ-only inversions are not consistent as indicated by the large shading in Fig. 2 Panel (a) (see also 

the individual models in Fig. A2). Reasons for these discrepancies will be further analyzed in Sect. 3.3. 
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205 
Figure 2: Monthly southern African detrended CO₂ concentrations. GOSAT measured and detrended CO₂ concentrations are 

depicted in red. Modelled posterior CO₂ concentrations of three in-situ-only inversions are co-sampled (cs) on GOSAT and 

depicted as mean in blue. Panel (a) shows the monthly mean CO₂ concentrations. The shading indicates the range among the 

individual ensemble members (GOSAT/ACOS+IS and GOSAT/RemoTeC+IS in red, CT2022, CAMS, and TM5-4DVar/IS in 

blue). Panel (b) shows the mean seasonal cycle 2009–2018 with the standard deviation over the years as shading. 210 

 

For comparison, we additionally use the OCO-2 satellite, which was launched in 2014, and one year of COCCON CO₂ 

column measurements in Namibia. Both datasets show a similar seasonal cycle as seen by GOSAT, i.e. they show 

concentration maxima later in the year than the in-situ-only inversions (see Fig. A3 and Fig. A4). No other total column 

measurement sites (e.g. of the COCCON network or Total Carbon Column Observing Network (TCCON, Wunch et al. 215 

(2011)) with coinciding consecutive measurements for more than one year exist in southern hemisphere continental Africa, 

limiting the validation possibilities of satellite total column measurements in this region. 
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3.2 Southern African top-down and bottom-up CO₂ fluxes 

220 
Figure 3: Top-down and bottom-up southern African net CO₂ fluxes. Panel (a) shows the mean monthly net CO₂ fluxes for the 

southern African region, Panel (b) shows the mean seasonal cycle of the fluxes over the 2009 to 2018 period. The TM5-

4DVar/GOSAT+IS fluxes are given in red, in-situ-only inversion fluxes are shown in blue. The mean over all TRENDY models is 

given in grey. GFED fire emissions are shown in orange and in combination with FLUXCOM NEE in yellow. The shading 

indicates the range over the GOSAT based fluxes (TM5-4DVar/ACOS+IS and TM5-4DVar/RemoTeC+IS) and the in-situ-only 225 
inversion fluxes (CT2022, CAMS, and TM5-4DVar/IS) and the standard deviation over the TRENDY ensemble in Panel (a). In 

Panel (b) shading indicates the standard deviation over the years. Positive fluxes indicate emissions into the atmosphere. Negative 

fluxes correspond to an uptake of CO₂ into the land surface. 

Assimilating the GOSAT CO₂ concentration measurements in TM5-4DVar, we obtain GOSAT based top-down fluxes in 

monthly resolution for the study region (see Sec. 2.3.1). As for the concentrations, a clear seasonal cycle is visible (Fig. 3). 230 

From January to May CO₂ is taken up by the land surface with a maximum uptake around March. From June to December, 

CO₂ is released into the atmosphere and reaches a maximum flux in September to November. The number of GOSAT 

measurements (see Fig. A5 and Fig. A6) is variable throughout the year with the smallest numbers occurring during the rainy 

season around December and January. This leads to larger uncertainties in the monthly mean satellite CO2 concentrations 

and satellite-based fluxes during the transition from maximum to minimum concentrations and fluxes. 235 

 

A similar timing of the seasonal cycle is also captured by the in-situ-only inversion fluxes (CAMS, CT2022, and TM5-

4DVar/IS). However, the in-situ-only inversions’ seasonal amplitude is smaller than for TM5-4DVar/GOSAT+IS. To 

analyze the found differences between TM5-4DVar/GOSAT+IS and the in-situ-only atmospheric inversions, we evaluate the 

information content provided by the measurements about the southern African carbon fluxes. To this end, we compare the 240 

TM5-4DVar fluxes (TM5-4DVar/IS and TM5-4DVar/GOSAT+IS) to the prior fluxes of the inversion model. From Fig. 4 it 

becomes clear that the in-situ-only fluxes (TM5-4DVar/IS) mainly follow the dynamics of the prior fluxes, whereas the 

GOSAT based fluxes deviate significantly from the prior. This is expected as the sparse coverage of in situ measurements in 

Africa and the southern hemisphere in general provides only little information about the African carbon fluxes. In contrast, 
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satellites provide nearly global coverage of CO₂ measurements. Using these measurements in TM5-4DVar, new information 245 

about the southern African carbon fluxes can be obtained and lead to a deviation of TM5-4DVar/GOSAT+IS from the prior. 

This finding also explains the differences among the three in-situ-only inversions (see shaded range of the in-situ-only 

inversions in Fig. 3). The inversions assume different prior fluxes, which they follow closely, as the information of the in situ 

data does not substantially inform the inversion. 

250 
Figure 4: Top-down southern African net CO₂ fluxes from TM5-4DVar. In Panel (a), mean monthly net CO₂ fluxes for the 

southern African region from the TM5-4DVar prior (grey dotted), the in-situ-only inversion TM5-4DVar/IS (grey solid) and the 

TM5-4DVar/GOSAT+IS inversion (red) are given. Red shading indicates the range of the TM5-4DVar/ACOS+IS and TM5-

4DVar/RemoTeC+IS inversions. Panel (b) shows the mean seasonal cycle 2009–2018 with the standard deviation over the years as 

shading. 255 

When assimilating OCO-2 satellite measurements instead of GOSAT measurements, the MIP/OCO-2+IS ensemble mean 

also shows a larger amplitude of the southern African carbon fluxes compared to in-situ-only inversions and MIP/IS (Fig. 5). 

However, the spread among the MIP/OCO-2+IS models is large, especially during the maximum emissions from September 

to November. Some models show lower emissions similar to the in-situ-only inversions, whereas others agree with TM5-

4DVar/GOSAT+IS. By analyzing the performance of the individual models in these three months, we find that three 260 

MIP/OCO-2+IS models reproduce the OCO-2 measurements the best (see Fig. A7) indicating that the OCO-2 measurements 

were given a considerable weight in the inversion and thus, that the optimized fluxes were informed by measurements (see 

Text A1). At the same time, these three inversion models (Baker, CAMS, and TM5-4DVar/OCO-2+IS) show the largest CO₂ 

emissions and agree best with TM5-4DVar/GOSAT+IS (see Fig.5 and Fig. A7-A9). Still, their estimated emissions are 

slightly lower than those of TM5-4DVar/GOSAT+IS. When directly comparing the two TM5-4DVar inversions TM5-265 

4DVar/GOSAT+IS and TM5-4DVar/OCO-2+IS (Fig. 5), the latter has smaller emissions. This is most likely a result of the 

slightly smaller seasonal amplitude of the CO2 concentrations measured by OCO-2 compared to GOSAT (see Fig. A3).  

Concluding, we find that satellite-based inversions, which are actually compatible to the satellite measurements, show larger 

carbon fluxes in southern Africa than in-situ-only inversions, which suffer from the limited information provided by the 
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sparse in situ measurements for southern Africa. Our results support current studies (e.g. Basu et al., 2013; Sellers et al., 270 

2018; He et al., 2023) reporting that satellite observations do well inform atmospheric inversions for flux estimates on sub-

continental scales. Satellite CO2 concentration measurements, therefore, provide a unique information source and are 

especially valuable in regions with sparse in situ measurement coverage. The already long record provided by GOSAT will 

be more and more complemented over time by the growing record of OCO-2 and future CO2 sensors providing even more 

extensive measurements. 275 

 

Figure 5: Top-down southern African net CO₂ fluxes from MIP. In Panel (a) mean monthly net CO₂ fluxes for the study region are 

given by TM5-4DVar/GOSAT+IS in red, the MIP/OCO-2+IS ensemble mean in grey, the mean over three selected MIP models 

(CAMS, TM5-4DVar, and Baker) in black, and TM5-4DVar/OCO-2+IS as part of the MIP ensemble in red dashed. In-situ-only 

inversion fluxes are given in blue as mean of CAMS, CT2022 and TM5-4Dvar/IS and in black dotted from the MIP/IS ensemble. 280 
The shading indicates the range over the GOSAT fluxes (TM5-4DVar/ACOS+IS and TM5-4DVar/RemoTeC+IS), the MIP 

ensemble, and the three selected MIP models. Panel (b) gives the mean seasonal cycle from 2015 to 2018 with shading indicating 

the range over the MIP ensembles’ models and the standard deviation of the TM5-4DVar/GOSAT+IS over the years. 

Next to the in-situ-only inversion fluxes, we compare the TM5-4DVar/GOSAT+IS fluxes to FLUXCOM CO₂ fluxes. As 

FLUXCOM only provides NEE fluxes, we add GFED fire CO₂ emissions to obtain an NBP estimate. In Fig. 3, 285 

FLUXCOM+GFED only reaches positive monthly fluxes from June to September due to fire emissions occurring during that 

time. From October to May it shows a net CO₂ uptake. While the timing of the maximum sink agrees well between 

FLUXCOM+GFED and the inversion fluxes, FLUXCOM+GFED shows a smaller amplitude and an earlier drop in 

emissions compared to TM5-4DVar/GOSAT+IS and in-situ-only inversion fluxes. The tendency of FLUXCOM to report a 

stronger carbon sink on the southern hemisphere compared to other datasets is described in Jung et al. (2020). It is expected 290 

that the sparsity of eddy-covariance towers in Africa or in similar ecosystems hampers the machine-learning based approach 
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of FLUXCOM for estimating CO₂ fluxes in the study area. Jung et al. (2020) describe larger uncertainties due to 

representation errors in semi-arid regions.  

Finally, we compare the inversion results to the ensemble of process-based vegetation models of the TRENDYv9 project. 

The mean of the DGVM ensemble in Panel (a) of Fig. 3 shows a smaller amplitude than the GOSAT fluxes and compares 295 

with the in-situ-only inversion fluxes. However, as indicated by the large standard deviation, the models deviate substantially 

from each other. Foster et al. (2024) and Metz et al. (2023) observed a similar large spread among DGVMs for the North 

American Temperate region and Australia, respectively. Both studies highlight the importance of performing a sub-selection 

of DGVMs agreeing well with atmospheric CO₂ measurements. 

3.3 GOSAT and SIF atmospheric constraints on TRENDY models 300 

Given the large spread of the TRENDY models, we select DGVMs according to their agreement with the GOSAT based 

CO₂ fluxes and SIF. Thereby, in a first step, we compare the monthly mean DGVM and TM5-4DVar/GOSAT+IS NBP and 

NEE fluxes based on the RMSE of the monthly fluxes and the agreement in the seasonality. In a second step, only for the 

well matching DGVMs, we additionally compare the GPP normalized mean seasonal cycle to the GOME SIF normalized 

mean seasonal cycle. Only models with a timing of the minimum and maximum GPP agreeing within +-1 month with the 305 

normalized SIF seasonal cycle are selected (see Fig. 6). This ensures the correct seasonal timing of the modelled GPP fluxes.  

Based on these criteria, we select the models ORCHIDEE (RMSE NBP: 60.2 TgC/month, RMSE NEE: 68,2 TgC/month), 

ORCHIDEEv3 (RMSE NBP 70.2 TgC/month, RMSE NEE: 56.2 TgC/month) and CABLE-POP (RMSE NBP: 78.2 

TgC/month, RMSE NEE: 63.6 TgC/month). All other models, except for the model OCN, already were excluded in the first 

step of NBP/NEE comparison. OCN performs well in the NBP/NEE comparison but shows larger deviations in the SIF/GPP 310 

comparison (see Fig. 6). Therefore, it was excluded in the second selection step and is not included in the TRENDY 

selection. The exclusion of OCN underlines the importance of the SIF/GPP selection and demonstrates that a correct timing 

of the net CO2 exchange fluxes does not necessarily imply the correctness of the modelled gross fluxes. In general, it is 

noteworthy that only three out of 18 TRENDY models pass our selection process. This again reveals the large uncertainties 

associated with the TRENDY ensemble estimate for semi-arid southern hemispheric Africa.  315 
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Figure 6: Seasonal cycle of SIF and selected TRENDY models. The normalized mean seasonal cycle of GOME-2 SIF (2009–

01/2018), the three selected DGVMs (ORCHIDEE, ORCHIDEEv3, CABLE-POP) GPP, and OCN GPP (2009–2018) are shown in 

solid black, colored dotted, and red dashdotted, respectively. The spatial standard deviation over monthly GOME-2 SIF 320 
aggregated on a 1°x1° is given as shading. 

The NBP mean over these three models is given in Panels (a) and (b) of Fig. 7. The models reproduce the timing and 

strength of the TM5-4DVar/GOSAT+IS NBP fluxes. Only at the beginning of the emission period around July to September, 

the TRENDY selection fluxes are lower. Furthermore, the selection shows a significantly smaller sink in 2012 and smaller 

source in 2016. Note that ORCHIDEE is part of the TRENDY selection and is also used by the in-situ-only inversion CAMS 325 

as prior flux assumption. This explains why CAMS best matches TM5-4DVar/GOSAT+IS CO₂ fluxes and GOSAT CO₂ 

concentrations (see Fig. A2 and Fig. A7, respectively).  

Fire emissions contribute substantially to the seasonality of the southern African carbon fluxes. They largely explain the 

beginning of the emission period from July to September (see Fig. 3). Different fire emission data products differ 

significantly and suggest large uncertainties on the magnitude of the actual fire emissions in our study region (see Fig. A10). 330 

GFED, which we use for our analyses, shows the largest fire emissions but could even underestimate the actual emissions as 

suggested by current literature for southern hemispheric Africa (Ramo et al., 2021, van der Velde et al., 2024).  

To exclude the influence of fire emission in the comparison, we analyze the monthly NEE fluxes of the TRENDY selection 

compared to the TM5-4DVar/GOSAT+IS NBP fluxes with GFED fire emissions subtracted. The subtraction of the fire 

emissions leads to a better agreement between both datasets, especially at the beginning of the emission period suggesting 335 

that fire fluxes in the DGVMs do not agree to the GFED fire fluxes (see Fig. 7 Panels (c) and (d)). This goes along with large 

uncertainties in DGVM fire fluxes being reported previously (Bastos et al., 2020). 
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Figure 7: Annual and mean monthly NBP and NEE fluxes in southern Africa. The NBP fluxes by TM5-4DVar/GOSAT+IS (red) 

and selected TRENDY models (black) are given as mean monthly fluxes in Panel (a) and as the mean seasonal cycle in Panel (b). 340 
Similar to that, Panel (c) and (d) show the monthly NEE fluxes (GFED is subtracted from TM5-4DVar/GOSAT+IS). Additionally, 

the annual (July to June) NEE fluxes of the selected TRENDY models and TM5-4DVar/GOSAT+IS – GFED fluxes are given. The 

shading indicates the standard deviation over the TRENDY models and range of TM5-4DVar/ACOS+IS and TM5-

4DVar/RemoTeC+IS (Panel (a) and (c)) and over the years (Panel (b) and (d)). 

Panel (c) in Fig. 7 additionally shows the annual NEE fluxes (July-June) as bars. The absolute difference between TM5-345 

4DVar/GOSAT+IS and TRENDY annual fluxes is large in some years. These differences are caused by a stronger sink at the 

beginning of 2012 and enhanced emissions at the end of 2013 and 2016 in TM5-4DVar/GOSAT+IS compared to TRENDY. 

However, while both datasets do not agree on the absolute value of annual fluxes in most of the years, they show a similar 

IAV. Both datasets show a slightly stronger CO₂ uptake from 2010 to 2012. These years were strong and moderate La Niña 

years with enhanced rainfall in 2010 and 2011 in the study region compared to the longtime mean (see Fig. A11). 350 

Additionally, lower than average temperatures led to enhanced soil moisture near the surface in 2010/11. The soil moisture 

declined in 2012 to reach the long-term average. In 2015 and 2016, the sink given by the GOSAT and TRENDY selection 

NEE fluxes is small. These two years have been a weak and a strong El Niño year respectively with dry conditions and in 

case of 2016 exceptionally high temperatures (see Fig. A11). These findings agree well with results from Pan et al. (2020) 
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pointing out that temperature and precipitation extremes impact the African ecosystems heavily and therefore play a key role 355 

in the African carbon fluxes.  

To conclude, especially the monthly NEE and NBP fluxes, but also the IAV of the selected TRENDY models agree well 

with TM5-4DVar/GOSAT+IS NEE and NBP – although the latter was not a criterion in the selection process of the 

TRENDY models. This suggests that the selected models indeed capture the carbon cycle dynamics even on a decadal time 

scale. For this reason, we use the model selection for further investigations of vegetation processes driving the southern 360 

African carbon cycle. 
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3.4 Seasonal and IAV of TRENDY gross fluxes 

Figure 8: Annual and mean monthly CO₂ net and gross fluxes. The mean monthly fluxes (Panel (a), (c), (e)) and annual (July to 

June) anomalies (Panel (b), (d), (f)) of NBP, NEE, GPP-RA, and RH of the selected TRENDY models are given in black, grey 365 
(dotted), green, and blue, respectively. The fluxes are given for the whole study region (Panel (a) and (b)), the Savanna dominated 

northern region (north of 17°S, Panel (c) and (d)), and the southern region with grass- and shrubland (Panel (e) and (f)). The 

annual anomalies are calculated by subtracting the individual long-term mean of the annual fluxes. Thereby, a positive GPP 

anomaly denotes a reduced GPP and vice versa. The shading in Panel (a), (c), and (e) indicates the standard deviation over the 

three selected models (ORCHIDEE, ORCHIDEEv3, and CABLE-POP). 370 
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To investigate the vegetation dynamics shaping the seasonal cycle of the southern African CO₂ exchange, we use the 

selected TRENDY models to further split up the net ecosystem exchange fluxes into the gross fluxes NPP (GPP – RA) and 

RH. The gross and net fluxes are given as mean seasonal cycle and annual anomalies in Fig. 8. In the mean seasonal cycle 

for the whole study region (Panel (a)), we can see a clear difference in timing between RH and GPP-RA. Heterotrophic 

respiration increases early in September and October, while RA increases one to two months later simultaneously with GPP 375 

(see Fig. A12). The dephasing between RH and GPP-RA leads to a prolonged emission phase in the net CO₂ exchange. It 

takes place in the whole region and occurs in the savanna dominated north (Fig. 8 Panel (c)) and in the grass- and shrublands 

in the south (Panel (e)). The dephasing takes place in every year (see Fig. A13) and is present in all selected TRENDY 

models. It causes a mean CO2 release of 494 TgC during the emission phase, which is about 17% and 18% of the annual total 

RH and GPP-RA, respectively. When looking at the monthly precipitation over the study region (see Fig. A14) one can 380 

identify a distinct drought phase occurring in the whole study region. The subsequent start of the rainy season in September 

and October temporally coincides with the early increase in RH. This finding resembles the results of Metz et al. (2023) in 

Australia, describing an increase of soil respiration with the beginning of the rainy season prior to the start of the growing 

season. The study finds soil respiration pulses resulting from rewetting of soils to cause the continental scale increase of soil 

respiration. Such soil respiration pulses at local arid sites are discussed in the context of the Birch effect (Birch et al., 1964; 385 

Jarvis et al., 2007). Thereby the rewetting of the soil enables microbial populations to grow and to transform the carbon 

stored in the soils into CO₂ emissions. CO₂ is then released in substantial amounts within a short period of time. Like in Metz 

et al. (2023), we find short duration emission pulses in the daily flux record of a FLUXNET station in the study region. 

Exemplary annual records of the FLUXNET station in the Kruger National Park (Archibald et al., 2009) show CO₂ emission 

caused by precipitation pulses (see Fig. A15). This is also reported in Fan et al. (2015) studying a two-year measurement 390 

record of carbon fluxes in Kruger National Park in more detail. The study finds recurring respiration emission pulses due to 

precipitation events and attributes them to the Birch effect. The TM5-4DVar/GOSAT+IS fluxes indicate an even larger time 

lag between the increase of soil respiration and NPP in some years compared to TRENDY. A prolonged emission phase of 

an additional 1 to 2 months (see Figure 7, Panel (c)) takes place in years with especially low soil moisture (2013, 2015, 2016, 

see Fig. A11). This later drop in emissions could either be caused by a delayed start of the GPP rise in the growing season or 395 

enhanced soil respiration due to the drier conditions causing an enhanced accumulation of soil carbon during the years. It is 

not possible to investigate this further, as none of the TRENDY DGVMs captured the IAV in the timing of the emission 

phase. 

It is noteworthy that large parts of the not selected ‘other’ TRENDY models miss the dephasing between RH and GPP-RA. 

Their NBP estimates, therefore, do not agree with the emissions around October found by the satellite inversion. 400 

Implementing soil respiration due to rewetting more accurately in those models could improve their agreement with the 

satellite-based fluxes. Metz et al. (2023) found that the dephasing in the TRENDY models is most likely caused by a 

different response time of soil respiration and vegetation growth on precipitation e.g. water needs to percolate into the deeper 

soil layers with plant roots to initiate plant growth, whereas heterotrophic respiration is driven by upper soil layer soil 
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moisture or precipitation. The implementation of such a time lag between heterotrophic respiration and GPP seems to be a 405 

necessary but not sufficient prerequisite to accurately capture the seasonal carbon flux variability in semi-arid southern 

Africa. Our results call for studies on how to implement the response of ecosystems on soil rewetting more accurately to 

improve the consistency and accuracy of the TRENDY ensemble in semi-arid regions.  

Looking at the annual gross flux anomalies given by the TRENDY selection (Fig. 8, Panel (b)), we see that the IAV of NBP 

and NEE is driven by GPP mainly. Enhanced GPP from 2010 to 2012 leads to a constant stronger uptake of CO₂. In 2017 a 410 

strongly enhanced GPP causes a large CO₂ sink. Reduced GPP in 2013, 2015, and 2016 results in positive NEE anomalies 

associated with a reduced sink in NEE. RH only plays a minor role and mostly slightly counteracts the GPP anomalies. 

These findings agree with the studies of Ciais et al. (2009), Weber et al. (2009), and Williams et al. (2008) which identify 

GPP variability as a major source of African fluxes’ IAV. It is, however, in contrast to semi-arid Australia, where Metz et al. 

(2023) found large IAV of RH driven by precipitation anomalies during the dry season. The African study region, however, 415 

has a distinct and regular dry season every year (see Fig. A14), leading to a smaller influence of RH on IAV. Note that in 

2017, GOSAT suggests a much smaller annual CO₂ sink. However, the discrepancy is mainly caused by a significant 

difference in the emissions in the second half of the year and while both datasets agree well in the phase of carbon uptake 

(see Fig. 7, Panel (c)). Therefore, the TM5-4DVar/GOSAT+IS fluxes support the large GPP anomaly given by the TRENDY 

models but suggest stronger respiration or fire fluxes at the end of 2016.  420 

Looking at the subregions (Panels (d) and (f)), one can see that the sinks in 2010, 2011 and 2017 are mainly driven by the 

southern grassland region, where enhanced precipitation occurred during these years (see Fig. A11). The comparably large 

release in 2016 seems to be driven by the whole African region experiencing the highest annual temperatures and driest 

conditions within the 10-year study period. Therefore, GPP IAV seems to be heavily impacted by precipitation variability. 

According to GFED (see Fig. A10), fire emissions play a minor role in impacting GPP and driving NBP anomalies. The 425 

variability of fire emissions is much lower than for NBP and GPP-RA. In the whole study region, IAV (calculated as 

standard deviation over the years) of GPP-RA and NBP fluxes are 97.7 TgC/year and 94.1 TgC/year, respectively. IAV of 

GFED fire emissions is 27.3 TgC/year, similarly low as IAV of RH (27.1 TgC/year). Furthermore, the annual fire emissions 

do not amplify the trend of the NBP anomalies. They have been on a normal level during the large positive NBP anomaly in 

2016. Higher than average fire emissions counteract the sink anomalies in 2011 – 2012 and only the slightly reduced fires in 430 

2017 amplify the sink anomaly.   

4 Conclusions 

The sparsity of in situ CO₂ concentration and flux measurements cause large uncertainties in carbon flux estimates in the 

southern African region. We show that satellite measurements provide additional information leading to an improvement of 

our knowledge about the southern African carbon cycle. Our study demonstrates that satellite measurement based 435 
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atmospheric inversions and SIF can be used as atmospheric constraints for sub-selecting TRENDY DGVMs. This is 

necessary as TRENDY flux estimates show a large spread in our study region.  

Using the satellite based selection of TRENDY DGVMs, we find that IAV of NBP and NEE in southern Africa is driven by 

GPP variability. This supports findings by Ciais et al. (2009), Weber et al. (2009), and Williams et al. (2008) using 

individual vegetation models. The enhancements in annual GPP mainly originate in the grass- and shrublands in the southern 440 

part of the study region and occur in years with enhanced amount of precipitation. The seasonal variability of the southern 

African carbon fluxes is impacted by soil respiration dynamics, which are driven by the onset of the rainy season. 

Respiration pulses have been reported under the term of the Birch effect for arid Africa (Fan et al., 2015) and have been 

shown to be relevant on continental scale in semi-arid Australia (Metz et al., 2023). This enforces the relevance of rain-

induced CO₂ emissions for the southern African region and semi-arid regions in general. Our results emphasize the 445 

importance of correctly representing the response of semi-arid ecosystems to soil rewetting in DGVMs (e.g. different 

response times of RH and GPP), as this was found to be a prerequisite to accurately capture the seasonal carbon cycle 

dynamics. 

 

 450 
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Appendix A 455 

Text A1: The performance of the individual MIP models. 

In Fig. 5, the ensemble mean of MIP/OCO-2+IS shows lower emissions than TM5-4DVar/GOSAT+IS in the second half of 

the year. A selection of three models (Baker, TM5-4DVar, and CAMS), however, shows larger fluxes and agrees better with 

the GOSAT based fluxes (see Section 3.2 and Fig. 5). Next to the OCO-2 informed posterior fluxes used for the analysis in 

the main text, the MIP/OCO-2+IS dataset provides the prior fluxes used by the individual MIP models. Furthermore, 5% of 460 

the OCO-2 measurements are withheld for validation purposes and modelled XCO₂ co-sampled on the left-out measurements 

are provided for each model but CSU. The OCO-2 co-samples and the prior fluxes of the MIP models can be used to further 

evaluate the differences between the three selected models and the other MIP models. 

In Fig. A7, the mismatch between XCO2 modelled by MIP and XCO2 measured by OCO-2 is given for the months of the 

strongest emissions (September to November). The XCO2 mismatch is the smallest for the three selected models, Baker, 465 

TM5-4DVar, and CAMS, which have at the same time the smallest mismatch to TM5-4DVar/GOSAT+IS. Hence, the 

models which reproduce the OCO-2 measurements best, also agree best with the GOSAT based CO2 fluxes.  

The difference between posterior and prior fluxes for the MIP models are given in Fig. A8. TM5-4DVar and Baker have the 

largest differences between the posterior and prior fluxes. Therefore, it is likely that even though the prior fluxes of TM5-

4DVar and Baker deviate strongly from the GOSAT based fluxes (see Fig, A9), considerable weight was given to the OCO-470 

2 measurements in the inversion. As a result, the posterior fluxes are closer to the GOSAT based fluxes than to their prior 

fluxes (Fig. A8). As the CAMS prior already agrees reasonably well with TM5-4DVar/GOSAT+IS fluxes, no conclusion on 

the weights can be drawn here.  

The other MIP models, which have lower emission fluxes, show larger mismatches to the OCO-2 XCO2 measurements for 

September to November (Fig. A7). Although, for most of these models, assimilating OCO-2 increases the emission fluxes 475 

and reduces the difference to the GOSAT based fluxes (see Fig. A8 and Fig. A9), the changes (i.e. the difference between 

posterior and prior fluxes) are small compared to TM5-4DVar and Baker (see Fig. A8). The larger mismatch to OCO-2 

XCO2 and the smaller posterior – prior flux differences seem to indicate that a smaller weight was given to the OCO-2 

measurements compared to the selected MIP models. 

In general, the GOSAT flux mismatch and the OCO-2 XCO2 mismatch is larger in October and November than in 480 

September. This is most likely caused by the prior fluxes in September already being closer to the GOSAT based fluxes than 

in the other two months (see panel b in Figure A9).  



 

21 

 

 

Figure A1: Monthly southern African detrended CO₂ concentrations measured by GOSAT. GOSAT/ACOS is given in black, 

GOSAT/RemoTeC is given in red. Dashed lines show the mean CO2 concentrations over the whole dataset. The mean CO2 485 
concentrations of the soundings included in both datasets, ACOS and RemoTeC, are given as solid line. CS stands for co-sampled 

and indicates that only soundings, also included in the other dataset are considered. The deviations due to different sampling are 

in sub-ppm scale and do not explain the differences between ACOS and RemoTeC. Modelled posterior CO₂ concentrations of the 

in-situ-only inversions are co-sampled (cs) on GOSAT and depicted as mean in blue for comparison. The shading indicates the 

range among the individual in-situ-only inversions. Panel (b) shows the mean seasonal cycle 2009–2018 with the standard deviation 490 
over the years as shading. 
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Figure A2: Monthly southern African detrended CO₂ concentrations given by inversions and satellites. Like Fig. 1, but with 

detrended XCO₂ of individual in-situ-only inversions co-sampled (cs) on the GOSAT measurements in dark blue (CT2022 dashed, 495 
CAMS dash-dotted, and TM5-4DVar/IS dotted). Panel (a) gives the monthly mean CO₂ concentrations, while Panel (b) shows the 

mean seasonal cycle 2009-2018. The shading indicates the range among GOSAT/ACOS and GOSAT/RemoTeC and the range 

among the three in-situ-only inversions in Panel (a). In Panel (b) the shading indicates the standard deviation over the year. 
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 500 

Figure A3: Monthly southern African detrended CO₂ concentrations given by inversions and satellites. Like Fig. 1, but with 

detrended XCO₂ measurements of OCO-2 in black for the time period from 2015 to 2018. Panel (a) gives the monthly mean CO₂ 

concentrations, while Panel (b) shows the mean seasonal cycle 2015-2018. The shading indicates the range among GOSAT/ACOS 

and GOSAT/RemoTeC and the range among the three in-situ-only inversions in Panel (a). In Panel (b) the shading indicates the 

standard deviation over the years. 505 
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Figure A4: Monthly southern African detrended CO₂ concentrations given by inversions, satellites and COCCON measurements. 

Like Fig. 1, but only for 01/2017-02/2018 and with detrended XCO₂ measurements of the COCCON stations Gobabeb in black. 510 
The full dataset of COCCON measurements is used, without performing a co-sampling on GOSAT measurements nor further 

filtering. 
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 515 
Figure A5: Number and distribution of satellite CO2 concentration measurements above southern Africa. (a), (d), and (g) Total 

number of GOSAT/ACOS, (b), (e), and (h) GOSAT/RemoTeC, and (c), (f), and (i) OCO-2 data per 3°x2° grid cell for (a) - (c) the 

months of carbon uptake (January – June), (d) - (f) the emission season (July – December), and (g) – (i) the month with the 

strongest emissions. GOSAT/ACOS and GOSAT/RemoTeC measurements from 2009 to 2018 and OCO-2 measurements from 

09/2014 to 2018 are included. The maximum of the color scale is the same for all time periods, but different for OCO-2 than for 520 
GOSAT/ACOS and GOSAT/RemoTeC. Compared to GOSAT/ACOS, GOSAT/RemoTeC has a reduced number of 

measurements, as RemoTeC algorithm applies stricter filtering of the GOSAT soundings. 
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 525 
 

Figure A6: Number of satellite measurements per month. The amount of satellite measurements of the GOSAT/ACOS (red 

dashed), GOSAT/RemoTeC (dark red solid), and OCO-2 (grey dotted) dataset are given. Note that the number of OCO-2 

measurements is shown divided by 100 to enable a comparison to the much less abundant GOSAT measurements. 

  530 
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Figure A7: Mismatch between GOSAT-informed and OCO-2 informed fluxes versus mismatch between OCO-2 informed   

simulated XCO2 and OCO-2 measured XCO2. For the MIP/OCO-2+IS inversions 5% of the OCO-2 measurements are withheld 

for validation purposes and modelled XCO₂ co-sampled on the measurements are provided for each model but CSU. Panel (a) 535 
gives the RMSE of the OCO-2 measurements and the modelled co-sampled XCO2 from September to November for each model. 

In panel (b), the mean differences of the OCO-2 measurements and modelled co-samples for each month and model are given. In 

both panels, the OCO-2 XCO2 mismatch is plotted against the difference of the monthly TM5-4DVar/GOSAT+IS and individual 

MIP/OCO-2+IS CO₂ fluxes for the strongest emission period from September to November. The MIP models Baker, CAMS and 

TM5-4DVar are highlighted in yellow, blue and red. The other individual MIP models are given in grey. The three highlighted 540 
models show the smallest OCO-2 XCO2 mismatch and the smallest difference to the monthly fluxes of TM5-4DVar/GOSAT+IS 

(exception Baker in September, panel b).  
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Figure A8: Mismatch between GOSAT-informed and OCO-2 informed fluxes versus difference between OCO-2 informed fluxes 545 
and model prior fluxes. The individual MIP models differ in their assumed prior fluxes. In this figure, the differences of the 

monthly posterior to the prior fluxes (x-axis) and to the GOSAT based fluxes (TM5-4DVar/GOSAT+IS, y-axis) are compared. 

Differences are calculated using the monthly flux over the whole study region and the time period 2015-2018. Panel (a) shows the 

mean over September to November, the time of the strongest CO2 emissions. In panel (b), the differences are given for each of the 

three individual months. The MIP models Baker, CAMS, and TM5-4DVar are highlighted in yellow, blue, and red. The other 550 
individual MIP models are given in grey.  

For most of the models the assimilation of OCO-2 measurements increases the mean monthly fluxes from September to November 

(difference to prior larger than zero). Only for CAMS and UT, and for some models in September, the mean posterior fluxes are 

smaller than the prior fluxes.  
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 555 

Figure A9: Mismatch between GOSAT-informed and OCO-2 informed fluxes versus difference between GOSAT informed fluxes 

and OCO-2 MIP prior fluxes. The differences of the monthly GOSAT inversion fluxes (TM5-4DVar/GOSAT+IS) to the MIP 

posterior (y-axis) and MIP prior fluxes (x-axis) for the individual MIP models is given. Panel (a) gives the mean differences for the 

months September to November. Panel (b) shows the differences for the individual months. The MIP models Baker, CAMS and 

TM5-4DVar are highlighted in yellow, blue and red. The other individual MIP models are given in grey. The 1:1 line is given in 560 
grey dotted. For most of the MIP models, assimilating OCO-2 reduces the flux difference to the GOSAT based fluxes (i.e. markers 

are below the 1:1 line).  
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Figure A10: CO₂ fire emissions in southern Africa. The monthly CO₂ fire emissions collected by three fire emission databases 565 
(GFED in orange, Global Fire Assimilation System (GFAS, Kaiser et al., 2012) in red and the Fire INventory from NCAR (FINN, 

Wiedinmyer et al., 2011) in purple). Furthermore, the annual (July - June) GFED fire emissions are given with the right y-axis. 

Please note, that the right y-axis starts at 280 TgC per year for better visualization of the fire emissions.  

 

  570 
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Figure A11: Climate Anomalies. The annual anomalies of ERA5 precipitation, temperature and upper layer soil moisture are 

given in blue, red, and grey hashed. The annual anomalies are calculated by subtracting the individual long-term mean of the 

annual values and are given for the whole study region in panel (a), for the northern subregion in panel (b), and southern 

subregion in panel (c). 575 
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Figure A12: Mean monthly CO₂ net and gross fluxes. Like Fig. 8 (a) but additionally with GPP and RA of the TRENDY selection. 

  580 
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Figure A13: Monthly CO₂ fluxes in northern (Panel (a)) and southern (Panel (b)) subregion. The monthly NEE, NPP (GPP-RA), 

and RH fluxes from the selected TRENDY models are given in black, green, and violet respectively for the northern southern 

African region in Panel (a). The TM5-4DVar/GOSAT+IS - GFED NEE fluxes are additionally shown in red dotted. The same is 

given in Panel (b) for the southern subregion. 585 
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Figure A14: Monthly precipitation and temperature as mean over southern Africa. The monthly precipitation is given as blue bars 

and the mean temperature as solid red line. 590 
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Figure A15: Local data from FLUXNET eddy covariance flux tower in Kruger National Park. Daily mean net carbon fluxes 

(green), precipitation (blue) and soil moisture (red) measured by the FLUXNET station ZA-Kru (Archibald et al., 2009). Panel (a) 

shows the year 2005, Panel (b) shows 2010. 595 
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Table A1: Summary of datasets 

1) all TRENDY model data is provided in monthly temporal resolution 

The main characteristics and references of the observation and model data are listed. Links to the datasets are provided in the 

Data availability section.  600 

Description Dataset Resolution References 

GOSAT XCO2 GOSAT/RemoTeC v2.4.0 10.5 km footprint Butz et al., 2011, 2022 

  GOSAT/ACOS v9r(Lite) 10.5 km footprint Taylor et al., 2022, OCO-2 Science Team, 

2019 

Validation XCO2 OCO-2 v11r 1.3×2.3 km footprint Jacobs et al., 2024; OCO-2/OCO-3 Science 

Team, 2020 

  COCCON Gobabeb local Frey et al., 2021, Dubravica et al., 2021 

Model XCO2 TM5 − 4DVAR/IS 3°×2°, monthly Basu et al., 2013 

based on in situ data CarbonTracker CT2022 3°×2°, monthly Peters et al., 2007; Jacobson et al., 2023 

  CAMS v21r1 3.7°×1.81°, monthly Chevallier et al., 2005, 2010, 2019 

In-situ-only inversions TM5 − 4DVAR/IS 3°×2°, monthly Basu et al., 2013 

  CarbonTracker CT2022 1°×1°, monthly Peters et al., 2007; Jacobson et al., 2023 

  CAMS v20r1 3.7°×1.81°, monthly Chevallier et al., 2005, 2010, 2019 

TM5-

4DVar/GOSAT+IS 

TM5-4DVar/RemoTeC+IS and 

TM5-4DVar/ACOS+IS 

3°x2°, monthly Basu et al., 2013 

TM5-4DVar/OCO-

2+IS 

TM5-4DVar of MIP/LNLGIS 1°x1°, monthly Basu et al., 2013; Byrne et al., 2023 

MIP/OCO-2+IS 

MIP/IS 

MIP/LNLGIS experiment 

MIP/IS experiment 

1°x1°, monthly Byrne et al., 2023 

SIF GOME-2 Daily_Averaged_SIF 40 km x 40 km/80 km Joiner et al., 2023 

FLUXCOM FLUXCOMv1 NEE, RS_V006 0.08°×0.08°, 8-days Tramontana et al., 2016; Jung et al., 2020 

+ GFED GFED v4.1s 0.25°×0.25°, monthly Van der Werf et al., 2017 

TRENDYselection ORCHIDEE S3 0.5°x0.5° 1) Krinner et al., 2005 

  ORCHIDEEv3 S3 2°x2° 1) Vuichard et al., 2019 

  CABLE-POP S3 1°x1° 1) Haverd et al., 2018 

TRENDYothers YIBs S3 1°x1° 1) Yue and Unger, 2015 

  OCN S3 1°x1° 1) Zaehle et al., 2010 

 ORCHIDEE-CNP S3 2°x2° 1) Goll et al., 2018 

  JSBACH S3 1.86°x1.88° 1) Reick et al., 2021 

  CLASSIC S3 2.80°x2.81° 1) Melton et al., 2020 

  LPJ S3 0.5°x0.5° 1) Poulter et al., 2011 

  CLM5.0 S3 0.94°x1.25° 1) Lawrence et al., 2019 

  DLEM S3 0.5°x0.5° 1) Tian et al., 2015 

  IBIS S3 1°x1° 1) Yuan et al., 2014 

  ISAM S3 0.5°x0.5° 1) Meiyppan et al., 2015 

  ISBA-CTRIP S3 1°x1° 1) Delire et al., 2020 

  JULES-ES-1.0 S3 1.25°x1.88° 1) Sellar et al., 2019 

  LPX-Bern S3 0.5°x0.5° 1) Lienert and Joos, 2018 

  SDGVM S3 1°x1° 1) Walker et al., 2017 

  VISIT S3 0.5°x0.5° 1) Kato et al., 2013 

ERA5 meteorological 

data 

ERA5-land data  

total precipitation, upper layer 

soil moisture, temperature 

1°×1°, monthly Muñoz Sabater 2019, 2021 

 MODIS MODIS (MCD12C1) data 0.05°x0.05°, 2015 Friedl and Sulla-Menashe, 2022 
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Table A2: Monthly fluxes of TM5-4DVar/GOSAT+IS in southern Africa 

Year Month RT+IS ACOS+IS Mean Year Month RT+IS ACOS+IS Mean 

2009 4 -157.56 -195.50 -176.53 2014 3 -218.74 -194.84 -206.79 

2009 5 -83.13 -102.61 -92.87 2014 4 -160.54 -153.89 -157.21 

2009 6 6.71 6.29 6.50 2014 5 -84.72 -81.25 -82.99 

2009 7 93.92 109.99 101.96 2014 6 30.42 42.46 36.44 

2009 8 163.05 163.17 163.11 2014 7 82.04 99.66 90.85 

2009 9 219.63 198.25 208.94 2014 8 95.93 122.13 109.03 

2009 10 232.99 144.91 188.95 2014 9 215.17 154.74 184.96 

2009 11 140.76 88.81 114.79 2014 10 229.27 176.57 202.92 

2009 12 -32.79 -44.05 -38.42 2014 11 199.23 168.02 183.62 

2010 1 -144.40 -113.34 -128.87 2014 12 36.93 -35.25 0.84 

2010 2 -153.14 -157.85 -155.50 2015 1 -73.64 -86.37 -80.01 

2010 3 -144.99 -172.86 -158.93 2015 2 -139.19 -135.31 -137.25 

2010 4 -74.81 -121.29 -98.05 2015 3 -153.79 -149.43 -151.61 

2010 5 -57.83 -84.45 -71.14 2015 4 -144.28 -131.81 -138.04 

2010 6 24.59 16.57 20.58 2015 5 -62.78 -63.61 -63.19 

2010 7 69.44 86.01 77.73 2015 6 2.16 22.31 12.24 

2010 8 129.28 152.92 141.10 2015 7 49.88 85.39 67.64 

2010 9 208.69 202.44 205.57 2015 8 117.11 107.91 112.51 

2010 10 239.32 194.63 216.98 2015 9 189.95 139.90 164.93 

2010 11 262.58 166.15 214.37 2015 10 225.03 150.79 187.91 

2010 12 57.84 -24.29 16.78 2015 11 259.19 212.22 235.70 

2011 1 -189.14 -146.26 -167.70 2015 12 112.16 78.85 95.50 

2011 2 -229.46 -193.03 -211.24 2016 1 -72.92 -69.47 -71.20 

2011 3 -156.96 -183.26 -170.11 2016 2 -148.67 -155.69 -152.18 

2011 4 -111.27 -115.31 -113.29 2016 3 -176.60 -134.03 -155.32 

2011 5 -70.44 -72.17 -71.31 2016 4 -159.32 -128.91 -144.11 

2011 6 22.49 39.77 31.13 2016 5 -77.83 -56.86 -67.35 

2011 7 88.88 101.56 95.22 2016 6 28.77 72.38 50.58 

2011 8 170.18 183.09 176.63 2016 7 61.68 117.42 89.55 

2011 9 214.57 202.08 208.32 2016 8 111.76 166.74 139.25 

2011 10 215.25 137.67 176.46 2016 9 178.65 176.21 177.43 

2011 11 108.61 83.75 96.18 2016 10 278.49 178.25 228.37 

2011 12 -69.23 -42.93 -56.08 2016 11 344.93 213.55 279.24 

2012 1 -198.76 -174.22 -186.49 2016 12 126.39 48.90 87.64 

2012 2 -204.51 -185.68 -195.09 2017 1 -141.60 -144.98 -143.29 

2012 3 -201.66 -209.21 -205.43 2017 2 -218.16 -157.23 -187.70 

2012 4 -157.34 -149.79 -153.56 2017 3 -266.37 -195.15 -230.76 

2012 5 -85.64 -61.66 -73.65 2017 4 -171.98 -145.48 -158.73 

2012 6 26.99 55.95 41.47 2017 5 -87.55 -94.62 -91.09 

2012 7 81.80 111.87 96.84 2017 6 -4.45 17.30 6.43 

2012 8 105.47 131.05 118.26 2017 7 36.00 108.33 72.17 

2012 9 182.86 156.69 169.77 2017 8 125.62 175.62 150.62 

2012 10 216.78 172.23 194.51 2017 9 191.89 212.30 202.10 

2012 11 130.49 155.95 143.22 2017 10 285.32 197.40 241.36 

2012 12 -29.84 -24.57 -27.20 2017 11 233.14 175.95 204.54 

2013 1 -195.13 -142.42 -168.78 2017 12 3.21 3.05 3.13 

2013 2 -181.41 -141.65 -161.53 2018 1 -131.45 -111.65 -121.55 

2013 3 -150.87 -134.34 -142.60 2018 2 -119.89 -127.09 -123.49 

2013 4 -133.19 -113.00 -123.10 2018 3 -167.60 -135.00 -151.30 

2013 5 -72.44 -40.57 -56.51 2018 4 -208.14 -153.04 -180.59 

2013 6 34.37 52.38 43.38 2018 5 -137.36 -102.90 -120.13 

2013 7 64.78 85.80 75.29 2018 6 -21.20 23.47 1.14 

2013 8 96.91 130.53 113.72 2018 7 29.86 98.30 64.08 

2013 9 176.64 185.33 180.99 2018 8 110.99 163.25 137.12 

2013 10 219.32 178.29 198.80 2018 9 202.02 201.28 201.65 

2013 11 249.06 191.11 220.08 2018 10 182.51 179.17 180.84 

2013 12 202.08 64.14 133.11 2018 11 223.74 184.91 204.33 

2014 1 -79.09 -119.87 -99.48 2018 12 226.30 148.33 187.31 

2014 2 -187.16 -169.20 -178.18      

The monthly fluxes of TM5-4DVar/RemoTeC+IS (‘RT+IS’), TM5-4DVar/ACOS+IS (ACOS+IS), and the mean of both is 

given in TgC/month for the whole study region.  
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Data availability. GOSAT/RemoTeC2.4.0 XCO2 data can be obtained from Zenodo https://doi.org/10.5281/zenodo.7648699 

(Butz, 2022) (last access: 2024-05-15). GOSAT/ACOS data are available at 605 

https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.9r/ (last access: 2020-07-28). OCO-

2 data are available at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Standard_11r/summary (last access: 2023-06-28). 

CarbonTracker CT2022 CO2 fluxes and concentrations can be downloaded from 

https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2022/fluxes/monthly/ (last access: 2023-04-17) and 

https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2022/molefractions/co2_total_monthly/ (last access: 2024-09-17), 610 

respectively. CAMS concentrations and fluxes can be found at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-

global-greenhouse-gas-inversion (last access: 2021-10-07). GFAS emissions records are available at https://apps.ecmwf.int/ 

datasets/data/cams-gfas/ (last access: 2020-11-13). CAMS and GFAS data were generated using Copernicus Atmosphere 

Service Information [2021], and neither the European Commission nor the European Centre for Medium-Range Weather 

Forecasts (ECMWF) is responsible for any use that may be made of the information it contains. The MIP data can be 615 

downloaded from https://www.gml.noaa.gov/ccgg/OCO2_v10mip/ (last access: 2022-05-06). GFED fire emissions are 

available at https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (last access: 2020-07-10). FINN data were retrieved from the 

American National Center for Atmospheric Research https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar (last 

access: 2020-11-18). ERA5-land data records contain modified Copernicus Atmosphere Service Information [2021] 

available at the Climate Data Store https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means 620 

(last access: 2023-10-13). TRENDYv9 model output and FLUXCOM products are available at 

https://sites.exeter.ac.uk/trendy and http://fluxcom.org/CF-Download/, respectively. Data of the FLUXNET station ZA-Kru 

can be downloaded from the FLUXNET webpage: https://fluxnet.org/data/fluxnet2015-dataset/ (last access 21.11.2023). 

COCCON Gobabeb station data is available at https://secondary-data-archive.nilu.no/evdc/ftir/coccon/gobabeb/version2/ 

(last access: 2023-03-27). MODIS MCD12C1 data is available on https://search.earthdata.nasa.gov/search with the DOI 625 

10.5067/MODIS/MCD12C1.061 (last access: 2024-03-24). L2 Daily Solar-Induced Fluorescence (SIF) from MetOp-A 

GOME-2 V2 data is available at from https://search.earthdata.nasa.gov/ (last access 2024-05-29). Monthly TM5-4DVAR 

data are available in Table A2.  

 

Code availability: The code used in this study is available at https://zenodo.org/doi/10.5281/zenodo.12528504 or GitHub 630 

(https://github.com/ ATMO-IUP-UHEI/MetzEtAl2024) 
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