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Abstract. Climate change poses significant threats to global biodiversity, particularly impacting arthropods due to their 10 

sensitivity to shifts in temperature and precipitation, as well as other environmental conditions. These changes impact the 

suitability of their habitats, alter ecological interactions, and consequently affect the distribution and survival of species. 

Understanding how climate variability influences the ecological niches of arthropods is crucial for predicting future 

biodiversity patterns and implementing effective conservation strategies. This study introduces a simple index designed to 

assess the climate suitability of ecological habitats, with a specific focus on terrestrial Mediterranean arthropods. This 15 

approach leverages Regional Climate Model data to construct a climatology of a species' preferred habitat, based on 

historically observed locations. This index offers a straightforward and rapid means to assess the resilience and vulnerability 

of arthropod populations, aiming to shed light on how climate change could affect their fundamental niches. The analysis 

revealed that the method is most reliable for species with observations exceeding 1000 points, and climate datasets of high 

resolutions (although the latter had a smaller influence on the results). This study offers a proof-of-concept for the proposed 20 

index, demonstrating its potential utility in guiding conservation strategies and mitigating the adverse effects of climate 

change on arthropod habitats. 

1 Introduction 

Arthropods are the largest and most diverse group of animals on Earth. They occupy nearly every ecological niche and are 

found in almost all terrestrial and aquatic habitats. Arthropods play essential roles in maintaining ecosystem health and 25 

stability, serving as pollinators, predators, decomposers and other important roles within their diverse habitats. Hence, they 

are present at various levels of the food web, and many are extremely sensitive to changes in their environment, whose 

effects can quickly propagate up the food web. As a consequence of all these factors, many arthropods can act as indicators 

of ecosystem integrity (Maleque et al., 2006). The state of these ecosystems is often sensitive to variations in climate 

conditions, especially in the Mediterranean basin. In recent decades, the diversity of insect pollinators has faced numerous 30 
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threats due to changes in the environment (Arce et al., 2023; Forister et al., 2021; Raven & Wagner, 2021; Wagner et al., 

2021; Zattara & Aizen, 2021), among which climate change emerges as one of several important stressors (Botsch et al., 

2024; Outhwaite et al., 2022; Potts et al., 2016; Uhl et al., 2022). 

 

The ecological impacts of the climate crisis vary across the globe (Chen et al., 2021; Cui et al., 2021; Eyring et al., 2016), 35 

especially in vulnerable regions such as the Mediterranean basin (Giorgi, 2006; Lionello & Scarascia, 2018; Ranasinghe et 

al., 2021), and its numerous small islands. According to the Sixth Assessment Report (AR6) by the Intergovernmental Panel 

for Climate Change (IPCC) (Doblas-Reyes et al., 2021; Gutiérrez et al., 2021; Ranasinghe et al., 2021) droughts in the 

Mediterranean are already increasing, and the basin is projected to become increasingly arid together with a rise in extreme 

temperature. The impact of these changes on the ecosystem varies according to numerous factors, and the extent to which 40 

insects and other arthropods are affected remains uncertain (Arce et al., 2023). This is especially so when changes to a 

particular group of organisms (such as pollinators) can impact other members of the ecosystem (Mullin et al., 2023). 

 

One approach to study the climate impacts on arthropods and their habitats is to map species distribution with the use of 

Ecological Niche Modelling (ENM; Fletcher Jr. et al., 2019; Haase et al., 2021; Hiller et al., 2019; Mammola et al., 2021; 45 

Mugumaarhahama et al., 2023; Phillips et al., 2004; Sillero et al., 2023; Tesfamariam et al., 2022). This approach offers the 

possibility of predicting potential shifts in species distributions under future climate scenarios, thereby providing valuable 

insights into the resilience and vulnerability of arthropod populations and their ecosystems. However, ENM can be 

especially challenging, when considering accurate presence-absence data, and additional non-climate factors that determine 

the distribution of a particular species (e.g. presence of predators, specific plants, competitors, and land-use). While access to 50 

climate data has become increasingly available (Mammola et al., 2021), this also has its limitations, as very high-resolution 

data (e.g. CHELSA with ≈1 km spatial resolution; Karger et al., 2017) is preferred. These datasets are not abundant, their 

temporal coverage is limited, as is their range of variables. 

 

Some ecological studies (Adão et al., 2023; Fink & Scheidegger, 2018; Khan et al., 2020; Mauri et al., 2022), like those 55 

assessed in the AR6, have leveraged the extensive collection of Regional Climate Models (RCMs) from the Coordinated 

Regional Climate Downscaling Experiment (CORDEX; Coppola et al., 2021; Giorgi, 2014; Giorgi et al., 2009, 2022; 

Gutowski Jr. et al., 2016; Teichmann et al., 2021), driven by the Coupled Model Intercomparison Project (CMIP; Eyring et 

al., 2016; Meehl et al., 1997, 2000, 2007; Taylor et al., 2012). Models from these datasets (accessible on the Earth System 

Grid Federation), such as the EURO-CORDEX (Coppola, Nogherotto, et al., 2021; Jacob et al., 2014, 2020) at ≈12.5 km 60 

spatial resolution, have undergone thorough validation and offer a wide range of climate variables. RCMs offer a higher 

resolution compared to global datasets, and excel in representing the climate of small and complex regions, such as the 

Mediterranean. Moreover, with recent advances in Convection Permitting (CP) simulations, which offer resolutions of 

approximately 3 km, the development of kilometre-scale RCM ensembles with diverse variables is within reach (Ban et al., 
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2021; Coppola et al., 2020; Pichelli et al., 2021). Although most arthropods are relatively small-in-size and tend to occupy 65 

regions of specific microclimates, RCMs' ability to accurately depict climate variations of complex landscapes provides a 

good understanding of how such organisms may respond to climate change. 

 

This study utilises RCM data to evaluate the effects of climate change on terrestrial arthropod habitats, introducing a novel, 

simplified index for this purpose. The methodology hinges on analysing the climatology of sites where specific species have 70 

been documented, and, by integrating RCM data from various time periods (or experiments), it could offer insights into 

potential shifts in the fundamental niches of these species, or stress exerted by a changing climate. The findings detailed 

herein provide a proof-of-concept for this index and demonstrate its applicability in assessing climate change impacts on 

arthropod habitats. 

2 Data & Methods 75 

This study introduces a new simple metric designed to quantify the climate’s influence on certain terrestrial arthropod 

habitats, a critical analysis given the anticipated direct impacts of climate change on countless species. This metric is based 

on the assumption that a living organism observed at a specific location will have favourable climatic conditions for its 

existence. Hence, a collection of locations where the organism was observed can describe the range of climate parameters 

necessary for its survival. 80 

 

For a potential species of interest (PSI; e.g., Spilostethus pandurus) s, with ns sampling/observation locations, and a selection 

of climate indices (see Section 2.2), the value of an index at a sample location can be expressed as xsij where i represents a 

specific climate index (examples of such indices include, annual mean of near-surface air temperature [tasmean], or annual 

sum of precipitation [prsum]) such that i=1,...p; p denotes the number of indices considered, and j represents a specific 85 

location such that j=1,...ns. The corresponding mean for the ith index of the population of s can be expressed as 𝜇𝑠𝑖 =

1

𝑛𝑠
∑ 𝑥𝑠𝑖𝑗

𝑛𝑠
𝑗=1 . The ideal conditions for s would occur when xsij approaches the value of 𝜇𝑠𝑖 (difference at, or close to, 0), hence 

we can define the preferred climate conditions, Csi, to be maximal (i.e. 1). As xsij deviates from 𝜇𝑠𝑖 , the climate index 

becomes less ideal, until it exceeds the limit, Lsi. Thus, Csij can be expressed as Equation (1) below. 

(1) 𝑪𝒔𝒊𝒋 = {

𝟏,

𝟏 − |
𝒅𝒔𝒊𝒋

𝑳𝒔𝒊
| ,

𝟎,

𝐢𝐟|𝒙𝒔𝒊𝒋 − 𝝁𝒔𝒊| = 𝟎

𝐢𝐟|𝒙𝒔𝒊𝒋 − 𝝁𝒔𝒊| = 𝒅𝒔𝒊𝒋𝝈𝒔𝒊

𝐢𝐟|𝒙𝒔𝒊𝒋 − 𝝁𝒔𝒊| = 𝑳𝒔𝒊𝝈𝒔𝒊

 90 

Using Equation (1), where 𝜎𝑠𝑖 is the standard deviation of the ith index for the population s, and dsij is the standardised 

distance to the mean, (𝑥𝑠𝑖𝑗 − 𝜇𝑠𝑖) 𝜎𝑠𝑖⁄ , Csij can be reduced to Equation (2). 

(2) 𝑪𝒔𝒊𝒋 = 𝟏 − |
𝒙𝒔𝒊𝒋−𝝁𝒔𝒊

𝝈𝒔𝒊
|

𝟏

𝑳𝒔𝒊
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The limit, Lsi, is expressed as Equations (3) and (4), which describe the largest deviation from the maximum or minimum of 

dsij. 95 

(3) 𝑳𝒔𝒊 = 𝒎𝒂𝒙(𝒅𝒔𝒊,𝒎𝒂𝒙, 𝒅𝒔𝒊,𝒎𝒊𝒏) 

(4) 𝒅𝒔𝒊,𝒎𝒂𝒙 = |
𝒙𝒔𝒊,𝒎𝒂𝒙−𝝁𝒔𝒊

𝝈𝒔𝒊
| ,   𝒅𝒔𝒊,𝒎𝒊𝒏 = |

𝒙𝒔𝒊,𝒎𝒊𝒏−𝝁𝒔𝒊

𝝈𝒔𝒊
| 

The different quantities of Csij are combined into the Eco-Climate Index for species s at location j, EIsj, which describes the 

climatological component of a species’ ecological niche, as shown in Equation (5). The value of EIsj is expressed relative to 

the maximum of all combined Csi at each location j (only for existing observation) to normalise the index. This produces a 100 

quantity that ranges between 0 and 1, where 0 describes climate conditions beyond the accepted limit for s, and 1 describes 

the apparent ideal climate conditions for s according to its sampling locations. It is important to note that a value of 1 does 

not imply the presence of s as non-climatological factors (e.g., human influence, presence of competitors, availability of 

food) are not included in this metric. Since EIsj refers to the Eco-Climate Index of species s at location j, when referring to 

spatial maps this becomes EIs 105 

(5) 𝑬𝑰𝒔𝒋 =
𝑪𝒔𝟏𝒋×…×𝑪𝒔𝒑𝒋

𝒎𝒂𝒙(𝑪𝒔𝟏𝒋×…×𝑪𝒔𝒑𝒋)
 

 

2.1 Biodiversity Data 

In order to test the Eco-Climate index introduced in Equation (5), an analysis was focused on the broader European region. 

This permitted the use of RCM data from the EURO-CORDEX ensemble, as well as a new ≈3 km CP simulation of the 110 

western and central Mediterranean (both described in Section 2.2). The analysis focused on terrestrial species occurring in 

the European and Mediterranean regions, and the data consisted of research-grade observations from the iNaturalist 

(iNaturalist community, 2023) database.  

 

For the purposes of this study, eight arthropods (listed in Table 1) were selected as PSIs, where each play important roles in 115 

the ecosystem, such as pollinators, predators, herbivores, and decomposers. One species, Brachytrupes megacephalus, was 

also chosen due to its status as a vulnerable species (according to the International Union for Conservation of Nature). The 

results of this analysis would depend greatly on ns (some, such as Brachytrupes megacephalus, have a very small number of 

observations). Having small values for ns can produce less reliable results when determining preferred habitats for PSIs. For 

this reason, this study also provides a comparative assessment of how variation in ns influences the product of this metric. 120 

Techniques that artificially inflate the sample size, such as bootstrapping, were found to have minimal effect on results and 

hence were not included to avoid adding unnecessary complexities to the metric. 
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Table 1: Scientific names and order of the selected PSIs, together with the corresponding number of research-grade observations 

accessed from the iNaturalist (iNaturalist community, 2023) database (starting sample size, ns). 125 

s Scientific name (authority) Order ns 

1 Ameles decolor (Charpentier, 1825) Mantodea 778 

2 Argiope lobata (Pallas, 1772) Araneae 3062 

3 Brachytrupes megacephalus (Lefèvre, 1827) Orthoptera 26 

4 Polyommatus celina (Austaut, 1879) Lepidoptera 631 

5 Scarabaeus variolosus (Fabricius, 1787) Coleoptera 143 

6 Selysiothemis nigra (Vander Linden, 1825) Odonata 529 

7 Spilostethus pandurus (Scopoli, 1763) Hemiptera 5037 

8 Xylocopa violacea (Linnaeus, 1758) Hymenoptera 5420 

 

2.2 Climate Data 

The purpose of EIs is to evaluate the climate impacts on the fundamental niche of a particular organism, and hence the choice 

of climate parameters is essential. Several climate indices (Coppola, Nogherotto, et al., 2021; Giorgi et al., 2011, 2018; 

Schwingshackl et al., 2021; Sylla et al., 2018) of varying complexity were considered (see Supplementary Information), but 130 

ultimately eight were selected (described in Table 2). These include three temperature-related and three precipitation-related 

indices, which describe the average and extreme (upper and lower) conditions, as well as the average wind conditions, and 

elevation. It is important to note that this study adheres to these eight indices for the purposes of a homogeneous analysis; 

however, this metric may be used with any number of climate indices. 

 135 

Table 2: The eight climate indices used in this study to describe the climatological component of an ecological niche. 

i Short Name Long Name Units 

1 tasmean Annual mean of near-surface air temperature °C 

2 cwfi Cold-wave Frequency Index: Annual mean of 6+ consecutive days below 

5-day 10th percentile temperature  

days 

3 hwfi Heat-wave Frequency Index: Annual mean of 6+ consecutive days above 

5-day 90th percentile temperature  

days 

4 prsum Sum of Annual precipitation mm 

5 cdd Annual mean of maximum consecutive dry days days 

6 rx1day Maximum 1-day precipitation in time period mm/day 

7 windmean Annual mean of near-surface wind speed m/s 
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8 orog Surface Altitude m 

 

The selection of climate indices was also based in-part on the parameters available from the climate observation dataset used 

for the analysis. The observations are the 30-year (1980-2010) daily variables of E-OBS v25e at 10° horizontal resolution 

(Cornes et al., 2018; Haylock et al., 2008), hereafter referred to as E-OBS. 140 

 

The analysis was extended beyond the observation dataset to the 12 km EURO-CORDEX simulations (available on the 

Earth System Grid Federation), to showcase the application of this metric to climate models. An ensemble was constructed 

from simulations driven by the ECMWF-ERAINT reanalysis (Dee et al., 2011) and evaluated in past studies (Casanueva et 

al., 2016; Fantini et al., 2018; Kotlarski et al., 2014; Prein et al., 2016; Vautard et al., 2013). This ensemble was constructed 145 

only from simulations which provided the parameters necessary to construct the indices described in Table 2, for the 1980-

2010 time period. The 6 RCMs that satisfied these criteria were selected for this ensemble, which is hereafter referred to as 

Ens6 (detailed in Table 3). 

 

Table 3: A description (including the model, reference, and institute that ran the simulation) of the RCM simulations driven by 150 
ECMWF-ERAINT making up Ens6. 

Institute RCM Reference 

CLMcom-ETH COSMO-crCLIM-v1-1 Sørland et al., 2021 

CNRM ALADIN63 Nabat et al., 2020 

GERICS REMO2015 Jacob, 2001; Jacob et al., 2012 

ICTP RegCM4-6 Giorgi et al., 2014 

KNMI RACMO22E van Meijgaard et al., 2012 

SMHI RCA4 Kupiainen et al., 2011 

 

The metric was also applied to a new ≈3 km resolution CP simulation of the western and central Mediterranean (hereafter 

referred to as WMD03). This new simulation was run using the RegCM5 (Coppola et al., 2024; Giorgi et al., 2023), and 

driven by the ECMWF-ERA5 reanalysis (Hersbach et al., 2020, 2023) and a parent ≈12 km EURO-CORDEX domain. Both 155 

the parent and CP simulations have been run with the non-hydrostatic Moloch core (Davolio et al., 2020; Malguzzi et al., 

2006), and physics configuration as presented in Coppola et al., (2024)with the following differences: NoTo microphysics 

(Nogherotto et al., 2016), Xu & Randall (1996) cloud fraction, and Biosphere-Atmosphere Transfer Scheme land surface 

module (Dickinson et al., 1993). The final CP simulation covers a 10-year period (1995-2004), which was included in the 

analysis to test the performance of the metric for a very-high resolution climate dataset. 160 
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3 Data Analysis 

3.1 Climate Indices 

The EcoClimate Index needs to be constructed using climate indices that represent the environmental conditions of an 

arthropod’s habitat. Therefore, the climate indices listed in Table 2 should represent the climatological component of an 165 

ecological niche in order to be used in the evaluation of this metric. In order to avoid cases of double sampling, correlations 

between prospective indices (described in Table 2 and S1) were analysed and only those with a correlation lower than 0.5 

were selected for this analysis (the matrix of scatter plots and a summary of the correlation coefficients is presented in Figure 

S1 and Table S2). This study, serving as a proof-of-concept for this metric, was designed for a homogeneous inter-species 

assessment, and hence this correlation limit was considered an acceptable constraint. However, for targeted in-depth analysis 170 

of individual species using the metric, it is advisable to construct the index from environmental parameters that are as 

independent as possible from those of other species. Ideally, these indices should exhibit even lower correlations than the set 

threshold to ensure greater precision. 

 

The metric of EIs (described in Section 2) is also computed based on two RCM datasets, a 12 km Europe ensemble of 6 175 

simulations (Ens6), and a 3 km CP simulation of the western and central Mediterranean (WMD03). The same eight climate 

indices obtained from the E-OBS dataset were computed for these simulations and compared to the E-OBS-derived indices. 

The percentage biases of each index (shown in Figure 1 and Figure 2) reveal small differences to the reference data. The 

most prominent bias for Ens6 is a wet bias of up to 3% for rx1day mostly in the East of the domain, which goes up to 4% or 

5% in some parts of the WMD03. Similarly, the indices prsum, cwfi, hwfi, and windmean also show bias for WMD03. This 180 

implies that model datasets well validate compared to the reference, and no significant biases are present. 
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Figure 1: Percentage bias for climate indices from the 30-year Ens6 (see Table 3) compared to E-OBS dataset (1980-2010). 

 185 

 

Figure 2: Percentage bias for climate indices from the 10-year WMD03 (driven by ERA5) compared to E-OBS dataset (1995-

2004). 

 

https://doi.org/10.5194/egusphere-2024-1954
Preprint. Discussion started: 18 July 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

3.2 Eco-Climate Index analysis 190 

To demonstrate the application of the Eco-Climate Index, described in Section 2, the E-OBS climate dataset was utilised 

first. Spilostethus pandurus was selected as the first case study, with over 5000 iNaturalist observations. This approach 

provides a detailed illustration of the index's capabilities, with results summarised in Figure 3, reflecting the index's 

performance using extensive empirical data.  The spatial maps shown in Figure 3a-h illustrate the eight climate indices 

(expressed in terms of the preferred climate conditions, Csi) as separate components of the fundamental niche, each ranging 195 

from 0 to 1, which represent the worst and best state of the index respectively. The observation locations of Spilostethus 

pandurus ns (Figure 3i) is different from that given in Table 1. This is because some of the original 5037 points correspond 

to grid-cells not included in the E-OBS dataset (represented as ‘miss.’ in Figure 3j) and thus, in this case, ns is reduced to 

3644.  When the spatial maps of Figure 3a-h are combined, the Eco-Climate indices of the species, EIs (Figure 3k) is 

obtained. This spatial map thus describes the fundamental niche for Spilostethus pandurus according to the observed 200 

locations of iNaturalist and the climate conditions of E-OBS.  

 

It should be noted that the value of EIs extends to areas where no observations can be found. This does not imply that these 

are previously unknown habitats of Spilostethus pandurus, but rather that this describes the fundamental niche for the 

species, and hence favourable climate conditions for the organism. The interaction with other species (host plants, predator-205 

prey relationships, human presence) is not included in this metric and therefore it cannot describe the realised niche.  

 

While the spatial distribution for EIs (Figure 3k) is appreciably similar to the spatial distribution of the points of observation 

(Figure 3j), not all points result in a high EIs. Figure 3k also includes points of observed locations where the corresponding 

EIs value is less than 0.1, i.e. regions with the least likely chance of observation. This is quantified with the term p0.1, which 210 

describes the percentage of valid points within this threshold, and is thus used as a measure of the metric’s “effectiveness” in 

this study.  
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Figure 3: The EIs product and components for Spilostethus pandurus according to the 1980-2010 E-OBS dataset. (a-h) The climate 215 
indices expressed in terms of affinity to Spilostethus pandurus. (i) The observation points (iNaturalist) and quantity, n, applied. (j) 

The distribution of EIs values, including the number of points from the original dataset that could not be applied (“miss.”). (k) The 

spatial distribution of EIs, including the points less than 0.1 (quantified with percentage p0.1). 

 

The number of points, ns, used in the initial assessment of the habitat could also influence p0.1. The different PSIs listed in 220 

Table 1, provide the opportunity to test the metric for datasets with different ns. A summary of the spatial distributions of EIs 

for all eight PSIs is shown in Figure 4 and the corresponding images analogous to Figure 3 are shown in Figures S2-S8. 

When investigating the lowest value for ns, too few points from the Brachytrupes megacephalus dataset could be used with 

the E-OBS dataset, resulting in a constant EIs field of 0 (these results were maintained for consistency throughout this paper). 
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PSIs with ns greater than 100 have p0.1 values of ≈20%, while those with ns greater than 1000 have p0.1 values between 4-6%. 225 

This suggests that with higher ns, the method becomes more effective at reproducing the fundamental niche.  

 

 

Figure 4. The spatial distribution of EIs for all eight PSIs applied to the 1980-2010 E-OBS dataset. Individual products of each PSI 

are shown in Figure 3 and  Figures S2-S8. 230 

 

Considering that several observations correspond to coastal areas or small islands, they cannot be properly represented 

within the E-OBS dataset as it is limited to the land. This is explored with the use of the Ens6 data (Figure 5) which makes 

use of all iNaturalist coordinates within the EURO-CORDEX region. The results, while similar, do not reduce the value of 

p0.1, and the small differences obtained may be due to model biases (Figure 1). 235 
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Figure 5: The spatial distribution of EIs for all eight PSIs applied to the 1980-2010 Ens6 dataset. Individual products of each PSI 

are shown in Figures S9-S16. 

 240 

The conditions leading to EIs values lower than 0.1 may be a consequence of the spatial resolution of the climate data, where 

more complex geographic features such as streams, smaller valleys, gulleys, etc. (which can serve as micro-habitats) would 

not be properly represented in the dataset. The WMD03 data (Figure 6), which serves as a test for this hypothesis, also gives 

similar results to the previous two datasets, but is almost consistently better than the Ens6. This is expressed more clearly in 

Figure 7, which shows the relationship of ns and p0.1, and also highlights the differences between the three climate datasets. 245 

This reveals that the climate data, whilst resulting in some variation to the successful interpretation of the fundamental niche, 
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is not a major factor in decreasing the value of p0.1. Figure 7 clearly reveals that instead, the most reliable results are obtained 

for species with a very high number of observations (ns>1000). 

 

 250 

 

Figure 6: The spatial distribution of EIs for all eight PSIs applied to the 1995-2004 WMD03 dataset. Individual products of each 

PSI are shown in Figures S17-S24. 
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 255 

Figure 7: The relationship between the total points ns used in each analysis and the corresponding p0.1. Each species is presented 

with a unique marker, while results obtained from different climate datasets are presented with different colours. 

4 Conclusions  

This study has introduced and applied an efficient index for assessing the climate suitability of ecological habitats, with a 

focus on terrestrial arthropods occurring in the Mediterranean region. Through the integration of RCM data, this research 260 

paper outlines a methodological framework that reflects the climatological preferences of terrestrial arthropod species based 

on their historically observed locations. The findings underscore the index's efficacy in providing a swift and straightforward 

tool for evaluating the resilience and vulnerability of arthropod populations to climate change.  

 

The application of a diverse range of climate data in this study has underscored the effectiveness of the proposed index in 265 

representing the fundamental niches of arthropod species across the Mediterranean region. Specifically, for species with 

observations exceeding 1000 points, the method captures the climatic preferences corresponding to approximately 95% of 

these observed points. While the index yields appreciable results with any climate dataset employed, the analysis indicates 

that CP data often provides some superior outcomes compared to RCM data with a lower resolution. This distinction 

highlights the index's versatility and its potential for adaptation to different data sources, ensuring its applicability and 270 

usefulness in a wide range of ecological and conservation planning scenarios. The positive aspects of this research pave the 

way for future investigations into the impacts of climate change on biodiversity, offering a promising tool for the assessment 

and preservation of arthropod populations in changing environmental conditions. 
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Despite the promising outcomes of this study, it is important to acknowledge its limitations, particularly in the context of 275 

data availability for various arthropod species. The methodology's reliance on a significant volume of observations (ns>1000) 

to accurately model the fundamental niches predominantly benefits well-documented, charismatic species, such as 

butterflies. This criterion, unfortunately, leaves out a vast number of arthropod species that may be less well-known or 

visually appealing but are equally or more critical from a conservation perspective. Notably, Brachytrupes megacephalus, 

falls short of the observation threshold necessary for reliable niche modelling through this index. However, this limitation 280 

also opens avenues for future research and methodological refinement. By exploring and integrating alternative data sources, 

there is potential to enhance the model's applicability and extend its benefits to a broader spectrum of arthropod species, 

ensuring that conservation efforts can be more inclusively and effectively directed. 

 

The successful application of the proposed metric critically hinges on the selection of appropriate climate indices tailored to 285 

the specific ecological requirements of each arthropod species. Recognizing the unique set of conditions that define the 

habitat preferences of each species necessitates an individualised approach to determining the most relevant climate indices 

for accurate niche modelling. During this study, to explore the metric's boundaries and potential, a uniform set of climate 

indices was applied across all species examples. It is crucial to understand that the results derived from this methodology, 

while insightful, should not be interpreted as precise depictions of any given species' habitat. Instead, they should be viewed 290 

as illustrative examples demonstrating the metric's application. This approach underscores the necessity for nuanced, 

species-specific research to fully leverage the metric's capabilities in accurately representing the ecological niches of 

arthropods, thereby reinforcing the importance of customization in the pursuit of ecological understanding and conservation 

efforts. 

 295 

In conclusion, the metric introduced in this study holds the potential for application across a variety of climate scenarios, 

including future projections from the CORDEX ensembles. Such applications promise to yield valuable insights into the 

direct impacts of climate change on the ecological niches of species at risk. Envisioned as the basis for follow-up studies, 

this metric could significantly enhance our comprehension of how climate variability affects biodiversity and ecosystem 

dynamics. By delineating potential shifts in the fundamental niches of key ecological actors, this research not only advances 300 

our understanding of the intricate relationships within ecosystems under the pressure of climate change but also provides 

practical guidance for conservation strategies. These strategies aim to address and mitigate the negative consequences of 

environmental changes, thereby supporting the resilience of biodiversity in the face of impending climatic challenges. 
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