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Abstract. Accurate national CH4 emission estimates are essential for tracking progress towards climate goals. This study

investigated Finnish CH4 emissions from 2000–2021 using bottom-up and top-down approaches. We evaluated a global at-

mospheric inversion model’s ability to estimate CH4 emissions within a single country, focusing on how the choice of priors

and uncertainties affected optimised emissions. The optimised anthropogenic and natural CH4 emissions strongly depended

on the prior emissions. While the range of CH4 estimates was large, the optimised emissions were more constrained than the5

bottom-up estimates. Further analysis of CarbonTracker Europe - CH4 results showed that optimisation aligned the trends of

anthropogenic and natural CH4 emission and improved modelled seasonal cycles of natural emissions. Comparison of atmo-

spheric CH4 observations with model results showed no clear preference between anthropogenic inventories (EDGAR v6 and

CAMS-REG), but results using the largest natural prior (JSBACH-HIMMELI) best agreed with observations, suggesting that

process-based models may underestimate CH4 emissions from Finnish peatlands or unaccounted sources such as freshwater10

emissions. Additionally, using a process-model spread–based uncertainty estimate for natural CH4 emissions seemed advan-

tageous compared to the standard constant estimate. The average total posterior emission of the ensemble from one inversion

model with different priors was similar to the average of the ensemble including different inversion models but similar priors.

Thus, a range of priors can be used to reliably estimate CH4 emissions when an ensemble of different models is unavailable.

1 Introduction15

Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) after carbon dioxide. Its atmospheric

concentration has nearly tripled since pre-industrial times, largely due to human activities (Canadell et al., 2023). In recent

years, especially in 2020 and 2021, the growth rate of CH4 has been remarkably high (15.15 ppb in 2020 and 17.97 ppb

in 2021) (Lan et al., 2024), continuing the renewed growth that began in 2007 (Nisbet et al., 2014; Mikaloff-Fletcher and
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Schaefer, 2019). The reasons for this renewed growth and the record-high CH4 growth rates are still under discussion (Nisbet20

et al., 2023), which reflects the large uncertainties in CH4 emissions. Reducing CH4 emissions is an effective way to mitigate

climate change given CH4’s short atmospheric lifetime and strong global warming potential (Forster et al., 2023; Nisbet et al.,

2020; Collins et al., 2018), but to assess the success of the CH4 emission reductions, we need to be able to quantify CH4

emissions and their changes better than we currently do.

In the Paris Agreement, the participating countries pledged to report their GHG emissions and removals coherently and25

transparently by compiling national GHG inventories (NGHGI) (United Nations Framework Convention on Climate Change,

2016). The NGHGIs are evaluated jointly every five years in the global stocktake (UNFCCC) which was completed for the

first time in 2023. They are based on a bottom-up approach, starting from the sources and estimating how much each source

emits GHGs. The main aim is to capture trends caused by (direct) anthropogenic activities to track the effect of climate change

mitigation efforts put into practice, and thus, the NGHGIs report the emissions and sinks as annual country-totals. In addition to30

the NGHGIs, which each country compiles independently, there are other bottom-up anthropogenic GHG inventories composed

for larger regions or even globally. Such inventories relevant for Finland are, for example, the Emissions Database for Global

Atmospheric Research (EDGAR, European Commission and Joint Research Centre et al. (2023)), Copernicus Atmosphere

Monitoring Service Regional inventory (CAMS-REG, (Kuenen et al., 2022)) and Greenhouse gas and Air pollution Interactions

and Synergies (GAINS, Höglund-Isaksson et al. (2020)). EDGAR is a widely used global inventory with regular updates while35

CAMS-REG and GAINS (the version used in this study) cover only Europe. However, both CAMS-REG and GAINS use

more specific country-level data while EDGAR uses globally consistent methods. The main uncertainties in the bottom-up

inventories result from the estimated magnitudes of each source category and their used emission factors. Nevertheless, they

provide estimates for each source category separately.

Another way to estimate GHG emissions is to use a top-down approach, or atmospheric inversion. With a combination40

of atmospheric chemical transport models and atmospheric GHG mole fraction measurements, they revise the assumed prior

emissions. The atmospheric inversion models of GHGs are becoming ever more important in relation to our climate politics

(Leip et al., 2018). Until now, the assessment of national GHG budgets has relied on bottom-up-based inventories, especially

on the NGHGIs. In the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, the inversion

models were highlighted as a potential way to support and verify the NGHGIs (Maksyutov et al., 2019). A couple of countries45

(e.g. the UK (Manning et al., 2021; Lunt et al., 2021), Switzerland (Henne et al., 2016), Germany (Integrated Greenhouse Gas

Monitoring System for Germany (ITMS), 2024), Australia (Luhar et al., 2020) and New Zealand (Geddes et al., 2021)) already

utilise inversion modelling in their NGHGIs, either as an appendix or correcting the methods used in the NGHGI. All countries

have certain advantages, for example being an island and having several atmospheric observation sites, which makes it easier

for inversion models to estimate GHGs within their national borders. However, without such advantages, partitioning inversion50

model results on country-level is still uncertain and shows more differences between different models and model setups (Deng

et al., 2022; McGrath et al., 2023; Petrescu et al., 2023, 2024).

Atmospheric inversion models are at their strongest when estimating the total emissions, including both the anthropogenic

emissions reported in NGHGIs and natural sources. The further partition to source categories is more complex, however,
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but there are several methods for how this can be achieved. One way is to take advantage of prior distributions and optimise55

different source categories individually but simultaneously (e.g. Tsuruta et al., 2017; Segers and Nanni, 2023; Janardanan et al.,

2024). With this method, since the partition between different source categories relies on the prior distribution, the optimisation

is prone to miscategorise the CH4 emissions if there are several sources in the same area and if the relative magnitudes of the

priors are not correct. This uncertainty can be quantified to some extent by using different prior emissions and assessing how

different prior emission estimates affect the optimised emissions. Additionally, analytical inversions can be used (Cusworth60

et al., 2021; Worden et al., 2023). To reduce the dependence on prior distributions, usage of carbon isotopes measurements

has been intensively studied (e.g. Thompson et al., 2018; McNorton et al., 2018; Basu et al., 2022; Haghnegahdar et al., 2023;

Chandra et al., 2024; Mannisenaho et al., 2023). The models rely on different CH4 sources having different isotope signatures,

for example, emissions from wetlands have lower δ13C than fossil fuel emissions. However, the sparse number of isotope

measurements limits the usage of isotope measurements in the inversions as an additional constraint. Furthermore, the isotope65

signatures have uncertainties (Thanwerdas et al., 2024), although, the largest uncertainty has been attributed to uncertainties in

atmospheric chemistry (Basu et al., 2022).

Although only anthropogenic emissions are reported in the NGHGIs, as our climate change mitigation efforts can be targeted

to them, natural GHG emissions also have an impact on climate change. Thus, it is equally important to quantify natural

emissions. In Finland, large peatland areas are a significant source of CH4, and the magnitude of natural CH4 emissions is70

high compared to anthropogenic CH4 emissions, as estimated by the Finnish NGHGI (Tenkanen et al., 2023). Peatlands are

concentrated in northern Finland, while the majority of the Finnish population lives in the south. Consequently, anthropogenic

CH4 emissions originate from the south. Different bottom-up CH4 estimates, including both anthropogenic inventories and

process models estimating the soil CH4 balance, vary considerably in Finland. It is important to identify the reasons for these

inconsistencies. Furthermore, when interpreting the inversion model results, it is important to understand the extent to which the75

used prior emissions cause uncertainties in the optimised emission estimates, especially in regions where both anthropogenic

and natural CH4 emissions are abundant.

We studied CH4 emissions in Finland during the past two decades (2000–2021) using both bottom-up and top-down ap-

proaches and discuss how the estimates from the two approaches differ. We aim to separate anthropogenic emissions from

natural peatland emissions and estimate their relative magnitudes in Finland. Our focus is on the CH4 emission estimates from80

the inversion model CarbonTracker Europe - CH4 (CTE-CH4) (Tsuruta et al., 2017), used by previous studies to estimate

Finnish CH4 emissions (Tsuruta et al., 2019; Tenkanen et al., 2023), but here we extend the study period and investigate the

results in more detail. Our study can be divided into four parts: First, we compare different anthropogenic emissions inventories

(the Finnish NGHGI, GAINS, CAMS-REG and EDGAR v6, v7 and v8), both their total emission estimates and magnitudes

of different source categories. Second, we study estimates from our inversion model using different prior and uncertainty es-85

timates and compare our ensemble with 13 inversion estimates collected in the VERIFY project (https://verify.lsce.ipsl.fr/).

Third, we study the seasonal cycles of CH4 emissions to see how the use of atmospheric CH4 observations affects the seasonal

cycle of the CH4 estimates. Finally, we compare the modelled atmospheric mole fractions with observations and rank our
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inversion model estimates based on this comparison, attempting to disentangle which inversion model setup agrees the best

with observations.90

2 Materials and methods

2.1 Anthropogenic methane emission inventories

2.1.1 Finnish NGHGI

Finnish anthropogenic CH4 emissions are reported on an annual basis by Statistics Finland (Statistics Finland, 2023) following

the IPCC 2006 reporting guidelines with refinements in 2019 (Intergovernmental Panel on Climate Change, 2019). The NGHGI95

Fi includes CH4 emissions from agriculture, waste, energy, industry, and land use, land use change and forestry (LULUCF),

and uses a mix of Tiers 1, 2 and 3. The emissions from the fifth reporting category, (LULUCF), are not studied here because

the NGHGI Fi was the only studied inventory which reported the LULUCF emissions. However, CH4 emissions from the

LULUCF sector in Finland have been discussed in detail by Tenkanen et al. (2023), and were on average 0.03 Tg yr−1 during

2000–2021 according to the NGHGI Fi.100

2.1.2 EDGAR

EDGAR (https://edgar.jrc.ec.europa.eu/) is a global emission inventory developed by the Joint Research Centre of the Eu-

ropean Commission which provides estimates in a globally consistent way and does not often use country-specific details.

CH4 estimates are provided by sector from agriculture, waste, energy and industry with a detailed subdivision further into

subcategories. Emissions are estimated fully based on statistical data from 1970. The latest version, EDGAR v8 (European105

Commission and Joint Research Centre et al., 2023), has estimates until 2022. The spatial resolution is 0.1° × 0.1° and the

temporal resolution is monthly.

2.1.3 CAMS-REG

CAMS-REG-v5 is a regional European anthropogenic emission inventory for the years 2005-2018 which builds on the officially

reported emission data by the countries in the year 2020 under the LRTAP Convention and the NEC Directive for the air110

pollutants and, similarly, the reported greenhouse gas emissions to UNFCCC. The structure of the dataset, harmonisation and

gap-filling approach, and proxies used to distribute the emissions spatially are described in detail by Kuenen et al. (2022). The

spatial resolution of CAMS-REG is 0.05° × 0.1°. The dataset provides annual total emissions by sector and is accompanied

by temporal profiles by country by sector to construct hourly emissions that can be used as model input.

2.1.4 GAINS115

The methodology in GAINS (Höglund-Isaksson et al., 2020) to estimate anthropogenic CH4 emissions is based on the rec-

ommendation in the IPCC (2006) guidelines. For most sectors, GAINS uses country-specific information in a way that the
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estimated emissions are consistent and comparable across geographic and temporal scales. More advanced methods are use

to estimate emissions from solid waste sector (Gómez-Sanabria et al., 2018) and fossil and gas systems (Höglund-Isaksson,

2017). In addition to past estimates, GAINS can be used to estimate future emissions based on abatement measure scenarios.120

The version of GAINS used in this study includes estimates for the countries part of the European Union, Norway, the UK

and Switzerland. The emissions are estimated monthly for 1990–2021 and the spatial resolution is 0.1° × 0.1°. The emissions

from energy (upstream and downstream sources in fossil fuel extraction and use), agriculture (livestock, rice cultivation and

agricultural waste burning) and waste handling (solid waste and wastewater) are estimated.

2.2 Atmospheric inversion model CTE-CH4125

The atmospheric inversion model CTE-CH4 (Tsuruta et al., 2017) is based on the Bayesian inversion approach, where opti-

mised CH4 fluxes are obtained by minimising the mismatch between modelled and observed atmospheric observations, depend-

ing also on prior knowledge and uncertainties. In this study, CTE-CH4 provides CH4 emission estimates at a spatial resolution

of 1° × 1° (approximately 110 km × 40–60 km in Finland) over the northern high latitudes and at a temporal resolution of one

week. CTE-CH4 consists of prior flux maps representing different emission sources, the TM5 atmospheric chemistry transport130

model (Krol et al., 2005), and an ensemble Kalman filter data assimilation scheme (Peters et al., 2005; van der Laan-Luijkx

et al., 2017). The size of the ensemble is 500 with a time lag of 5 weeks. The global horizontal resolution of TM5 is 4° × 6°

(latitude × longitude) but it includes a 1° × 1° zoom grid over Europe with a 2° × 3° zone around it. The vertical domain is

divided into 25 hybrid sigma pressure levels from the surface to the upper atmosphere. ECMWF ERA5 meteorological data

are used at a 3-hour resolution (Hersbach et al., 2020). Calculations include atmospheric sinks from photochemical reactions135

involving OH, Cl and O(1D). The reactions with OH is calculated based on Houweling et al. (2014). For reactions with Cl

and O(1D), we use two schemes: using prescribed reaction rates calculated from the atmospheric chemistry general circulation

model ECHAM5/MESSy1 (Jöckei et al., 2006; Kangasaho et al., 2022), and reaction rates based on Brühl and Crutzen (1993).

The atmospheric sink varies from month to month but does not include interannual variability.

We use observations from a global in situ measurement network that includes the NOAA GLOBALVIEWplus ObsPack140

v4.0 dataset (Schuldt et al., 2021) and data from the National Institute for Environmental Studies (JR-STATION: Japan-Russia

Siberian Tall Tower Inland Observation Network, Ver1.2 (Sasakawa et al., 2010)) and the Finnish Meteorological Institute

(Tsuruta et al., 2019). Within Finland, measurements were collected at six sites located from southern to northern Finland,

including urban, natural and marine areas (Fig. 1). Globally, our dataset included 175 stations from 2000 to 2021. Both weekly

discrete air samples and hourly continuous measurements are filtered based on quality flags established by the respective145

institutions. To standardise the dataset, hourly continuous observations representing well-mixed atmospheric conditions were

converted to daily averages, calculated from 12 to 4 pm local time, with exceptions for high mountain sites, where averages

were calculated from 0 to 4 am local time, following Tsuruta et al. (2017). Observational uncertainties were quantified for

each site, taking into account site-specific characteristics and measurement accuracy, and also the model’s ability to predict

atmospheric CH4 mole fractions (Bruhwiler et al., 2014; Tsuruta et al., 2017, 2019). The uncertainties range from 4.5 to 75150

ppb between global sites and from 15 to 30 ppb at the Finnish sites.
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CTE-CH4 optimises anthropogenic and natural fluxes simultaneously but separately at 1° × 1° resolution in Canada, the

USA, Europe and Russia, and regionally elsewhere. The spatial correlation is defined using an exponential decay model (Peters

et al., 2005), with correlation lengths of 100 km for 1° × 1° grid-based optimisation domains, 500 km for other land domains,

and 900 km for oceanic domains.155

2.2.1 Prior emissions

As an anthropogenic prior, EDGAR v6 (European Commission and Joint Research Centre et al., 2021) was used. Additionally,

a modified version of EDGAR v6, where emissions in Europe were replaced with CAMS-REG, was used. In Finland, the

CAMS-REG emissions were redistributed based on Statistics Finland’s national GHG inventories of livestock and landfill

distributions (see details in Tenkanen et al. (2023)). For natural prior emissions, we used estimates from two ecosystem models:160

JSBACH-HIMMELI (Raivonen et al., 2017; Kleinen et al., 2020) and LPX-Bern DYPTOP version 1.4 (Lienert and Joos, 2018;

Stocker et al., 2014; Spahni et al., 2011, 2013), which include CH4 emissions from peatlands and mineral lands. LPX-Bern

DYPTOP also simulates emissions from inundated lands. In addition, natural prior from Saunois et al. (2024) was used. For

other a priori sources, we used estimates from GFED v4.1s (van der Werf et al., 2017) for fire, VISIT (Ito and Inatomi, 2012)

or Saunois et al. (2020) for termites, those calculated based on ECMWF data for ocean sources (Tsuruta et al., 2017) or from165

Weber et al. (2019), and Etiope et al. (2019) for geological emissions.

2.2.2 Prior uncertainty estimates

As default prior uncertainties, we used 80 % for terrestrial fluxes and 20 % for oceanic fluxes, assuming uncorrelated un-

certainties, following the practice established in previous studies (e.g. Tsuruta et al., 2017; Bruhwiler et al., 2014). Since the

uncertainty depends on the prior flux, this means that when the prior flux is small, the uncertainty is also small, i.e. we trust the170

emission more. If we not only optimise the total emissions but also try to separate different categories such as anthropogenic

and natural emissions, this could lead to a misallocation, especially in regions where both anthropogenic and natural sources

are prominent. The optimisation may not be able to change the correct category because the uncertainties are relatively too

small, or because the uncertainties in the other category are too large (and therefore the optimisation is more likely to change

those emissions). The process-model-based studies have shown that estimates of CH4 emissions from wetlands vary substan-175

tially and thus have large uncertainties (Melton et al., 2013; Saunois et al., 2020; Ito et al., 2023; Chang et al., 2023). Therefore,

we took advantage of this large range of different estimates of wetland methane emissions and defined the uncertainty of the

natural prior emissions based on a process-model ensemble.

To calculate the uncertainties, we used an ensemble of six process-based models (Global Carbon Project, Saunois et al.

(2020)). This ensemble used prognostic runs in which the models used their own internal approach to estimate the area and180

dynamics of wetlands. This enabled us to account for the differences in the location of wetlands, which is one of the largest

uncertainties in modelling regional wetland emissions. The following models were included: LPX-Bern, JULES, ORCHIDEE,

ELM, VISIT and LPJ-WSL. There was also a prognostic version of CLASS-CTEM, but we excluded it because of its coarse
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Table 1. List of inversion setups.

Inversion Anthropogenic prior Natural prior Natural unc Years

InvJSBACH_CAMSREG CAMS-REG JSBACH-HIMMELI 80 % 2004–2020

InvLPX_CAMSREG CAMS-REG LPX-Bern DYPTOP 80 % 2004–2020

InvLPX_EDGAR EDGAR v.6 LPX-Bern DYPTOP 80 % 2000–2021

InvLPX_EDGAR_UNC EDGAR v.6 LPX-Bern DYPTOP varying 2010–2021

InvGCP_EDGAR EDGAR v.6 Saunois et al. (2024) 80 % 2000–2021

resolution and anomalously high values in the tropics. The average monthly values of the used process-based models in northern

and southern Finland are shown in Supplementary Fig. S1.185

We made the test for the post-2010 period, so we calculated monthly averages for the 2010–2017 period. The uncertainty

was then defined monthly and also independently for each optimisation region, i.e. at the resolution of 1° × 1° in the high

northern latitudes and regionally in the other regions. For the calculation of the uncertainties, we took the second and third

quartiles from the monthly estimates of the process-based model, e.g. the range of the lowest and highest 25 %. This value

was then divided by the natural prior used (LPX-Bern DYPTOP) to obtain the proportional values needed to calculate the prior190

covariance matrix. The maximum uncertainty was set at 500 % and the minimum at 10 %.

2.2.3 Ensemble of CTE-CH4 inversions

In this study, we formed an ensemble of five CTE-CH4 inversion runs which had different anthropogenic and natural priors,

as well as different uncertainty estimates for the natural prior emissions. The inversion model setups are listed in Table 1.

The name of an inversion setup includes the used prior (Invnatural_anthropogenic). The experiment with varying natural uncertainty195

estimates was done using the same priors as InvLPX_EDGAR and is noted with adding a subscript "UNC" at the end setups name

(InvLPX_EDGAR_UNC). Other differences between the setups (used priors and atmospheric sinks) are listed in Supplementary

Table S1.

2.3 Ensemble of VERIFY inversions

VERIFY project (https://verify.lsce.ipsl.fr/) was a Research and Innovation project funded by the European Commission under200

the H2020 programme in 2018–2022. Within the project, a system to estimate GHG to support NGHGI reporting was devel-

oped. The project focused on the three major anthropogenic GHGs: carbon dioxide, methane and nitrous oxide. Here, we used

CH4 inversion model results from the VERIFY project, of which some were conducted within the project and the rest of the

estimates were gathered from other projects, such as Global Carbon Project (Saunois et al., 2020).

The VERIFY ensemble consisted of 14 CH4 inversion model estimates but since one of them was InvGCP_EDGAR, we excluded205

that from the VERIFY ensemble as it was already included in our CTE-CH4 ensemble. We only investigated the total CH4

emission because only 3 of the 13 VERIFY ensemble members gave the partition to natural and anthropogenic emissions. There
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Figure 1. Locations of six Finnish atmospheric observation sites (black and old) and flux measurement sites (blue). The squares show the

division between northern and southern Finland.

were three inversion model estimates which did not include prior emission estimates: two inversion runs with FLEXINVERT

provided by the Norwegian research institute NILU, and one inversion run with FLExKF provided by the Swiss institute

EMPA.210

2.4 Auxiliary CH4 data

2.4.1 Eddy covariance CH4 flux measurements

To verify the inversion model CH4 emissions, we used eddy covariance measurements from two Finnish pristine open peatland

sites, Lompolojänkkä and Siikaneva. Lompolojänkkä (68.0° N, 24.2° E) is located in northern and Siikaneva (61.8° N, 24.2° E)

in southern Finland (Fig. 1). A more detailed description of Lompolojänkkä has been given by Aurela et al. (2015) and215

Siikaneva by Rinne et al. (2018). Eddy covariance is an atmospheric measurement technique in which vertical turbulent fluxes

are measured frequently within the atmospheric surface layer. The footprint of the measurement, i.e., where the CH4 fluxes

measured originate, varies depending on the prevailing meteorological conditions but is aimed to cover the whole peatland
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ecosystem. The measurement were taken from the FLUXNET-CH4 dataset (Delwiche et al., 2021), and the gapfilled daily

values were used here to calculate monthly averages. Lompolojänkkä had data from 2006–2010 and Siikaneva 2013–2018.220

2.4.2 Freshwater CH4 emissions

Freshwaters were defined here similar to Saunois et al. (2020), including lakes, ponds, reservoirs, streams and rivers. The

freshwater CH4 emission estimates studied here were from Stavert et al. (2022), which estimated the global annual freshwater

CH4 to be of 53 Tg yr−1.

2.4.3 Biomass-burning CH4 emissions225

Two biomass-burning CH4 emission estimates were used: GFED v4.1s (van der Werf et al., 2017), which was also used as

a prior in the inversions, and Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS)

(Kaiser et al., 2012). GFED is provided in 0.25° × 0.25° and GFAS in 0.1° × 0.1° resolutions. GFED has monthly and GFAS

daily temporal resolution. We aggregated both dataset to 1° × 1° and monthly resolutions.

3 Results230

3.1 Anthropogenic methane emission inventory estimates in Finland

The annual emission estimates for the four main source categories defined in the 2006 IPCC Guidelines for National Green-

house Gas Inventories (Eggleston et al., 2006) (energy, industrial processes and product use, agriculture and waste) are shown

for each inventory in Fig. 2. The spatial distribution of CAMS-REG, GAINS and EDGAR v6 can be found from Supplementary

Fig S3. Of the six inventories examined, NGHGI Fi, CAMS-REG and GAINS were in good agreement (Fig. 2a). CAMS-REG235

used reported Finnish national data, and, overall, the emissions in the two inventories had similar magnitudes and trends. The

small differences between the values examined here could be because CAMS-REG has gridded estimates and the values in

Finland were obtained using an area mask, whereas NGHGI Fi is not spatially distributed. GAINS emissions were at the same

level as the other two, but there were some differences: waste emissions had a larger decreasing trend and agricultural emis-

sions were larger from 2000 to 2015. The driving cause for the trend in GAINS was declining number of cows and cattle, as240

was the case also in NGHGI Fi. According to NGHGI Fi, the number of cattle decreased by more than one third between 1995

and 2021, but the decline slowed down after 2010. The decline number of cattle has also been counterbalanced by increased

animal weight, growth and milk production which has lead to larger emission factors, and thus, the magnitude agriculture CH4

emissions remained the same during the latest years.

The three EDGAR versions differed from the other inventories but were similar with each other. The magnitudes of CH4245

emissions of different emission categories in EDGAR v6 and v7 were the same (Fig. 2b). The difference between the two

versions was that v7 had a longer time series until 2021, while v6 ended in 2018. Agricultural and industrial emissions in all

EDGAR versions were similar to those in the other inventories. Energy emissions in EDGAR v8 were smaller and showed
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a) b)

c)

Figure 2. Annual anthropogenic CH4 emissions per source category in Finland reported by a) NGHGI Fi, CAMS-REG and GAINS, and b)

EDGAR v6, v7 and v8. Note the different y-axis ranges. c) Annual total CH4 emissions in all the six inventories.
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no trend, similar to NGHGI Fi, CAMS-REG and GAINS. However, the absolute magnitude was still three times higher in

EDGAR v8 (0.03 Tg yr−1) than in the other inventories (0.01 Tg yr−1). In EDGAR v6 and v7, energy emissions increased250

significantly from 2004 onwards. This increase was due to increased estimates of fugitive methane emissions from oil refining

and methane emissions from natural gas processing, transmission and distribution (Supplementary Fig 2). Waste emissions,

although decreasing over the period 2000–2021, were about 4–5 times higher in the EDGAR inventories than in the other

inventories, although they were lower in v8 than in v6 and v7.

Waste emissions were the largest source in all inventories at the beginning of the study period. Due to the decreasing trend255

of waste emissions, agriculture was the largest source after 2008 according GAINS and after 2009 according to NGHGI Fi. In

CAMS-REG, the emissions from waste were higher than the emissions from agriculture in 2006, otherwise the emissions from

agriculture were the highest.

The EDGAR estimates stood out when examining the total annual emissions (Fig. 2c). While the average from 2000–2020

was about 0.19 Tg yr−1 in NGHGI Fi and GAINS, it was 0.76 Tg yr−1 in EDGAR v7 and 0.58 Tg yr−1 in EDGAR v8.260

The EDGAR inventories also showed a larger interannual variability, especially in the waste sector, than the other inventory

estimates.

3.2 Atmospheric inversion model emission estimates in Finland

3.2.1 Annual estimates from CTE-CH4

In this section, we study the annual total, anthropogenic and natural CH4 emissions in Finland and how the posterior emissions265

differed from the prior emissions depending on the inversion model setup. The spatial distribution of the prior and posterior

emissions can be found from Supplementary Fig. S3–S6.

Finland’s annual total emission estimates are shown in Fig. 3. The prior emissions had evidently a strong influence on the

posterior emissions. The range of the total prior emissions was large, but the range of optimised emissions was smaller after

2009 and until 2020 (the average range was 0.57 Tg yr−1 in 2009–2020) than the range of prior emissions (0.69 Tg yr−1). The270

inversions using LPX-Bern DYPTOP as the natural prior estimates had the highest (InvLPX_EDGAR, 1.1 Tg yr−1 on average) and

lowest (InvLPX_CAMSREG, 0.51 Tg yr−1 on average) total emission estimates, while the three estimates between them agreed

well, especially after 2016. To better explain the differences between the total emission estimates, the anthropogenic and natural

CH4 emissions are studied separately below.

Magnitudes of the two anthropogenic posterior emission estimates using CAMS-REG were similar and slightly higher275

than CAMS-REG (Fig. 4). The optimised results using EDGAR v6 varied more but all posterior emissions were higher than

EDGAR v6 until 2009 and lower thereafter until 2020 or 2021, bringing the posterior estimates of the five inversions closer

together compared to their prior estimates. The two anthropogenic posterior emissions using EDGAR v6 combined with the

default uncertainty estimate for the natural prior (InvLPX_EDGAR and InvGCP_EDGAR) had similar anthropogenic emission es-

timates, but the inversion with varying uncertainty estimates for the natural prior (InvLPX_EDGAR_UNC) had lower optimised280

anthropogenic emission estimates than the other two, especially after 2016.
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Figure 3. Annual total CH4 emission estimates from the five CTE-CH4 inversion model runs. Prior estimates are shown with dashed and

posterior estimates with solid lines. Shaded areas around the posterior emissions show one standard deviation of the ensemble distributions.

The right panel shows the mean prior and posterior estimates from the whole study period.

Natural posterior emissions were always higher than the prior used, regardless of the natural prior, except in 2005 and 2006

when JSBACH-HIMMELI was higher (Fig. 5). The order of emission estimates was also preserved after the optimisation:

posterior emissions of InvJSBACH_CAMSREG were the highest, InvGCP_EDGAR the smallest and posterior emissions using LPX-

Bern DYPTOP as the prior, were in between the two estimates with the varying uncertainty estimates (InvLPX_EDGAR_UNC))285

being the smallest estimates. Since the estimates using GCP prior did not change a lot but the optimised emissions with

JSBACH-HIMMELI were increased, the range of natural posterior emissions was larger than the range of prior emissions.

Even though the absolute magnitudes of total CH4 emissions and the partition between anthropogenic and natural emis-

sions differed between inversion runs, the trends of the emission estimates were more aligned after the optimisation. All

the anthropogenic posterior emissions had decreasing trends, even though, there was no significant trend in EDGAR v6 in290

2000–2021. Likewise, there were no significant trends in the natural prior emissions, but in the optimised natural emissions,

there were small positive trends with InvJSBACH_CAMSREG (0.01 Tg yr−1, p-value 0.0003) and InvLPX_EDGAR (0.005 Tg yr−1,

p-value 0.004). Decreasing anthropogenic emissions and increasing natural emissions cancelled each other out, so that the

only statistically significant trends in the total emissions were noted in InvGCP_EDGAR (-0.007 Tg yr−1, p-value 0.03) and

InvJSBACH_CAMSREG (0.009 Tg yr−1, p-value 0.001). The signs of the trends were the opposite, reflecting the partition between295
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Figure 4. Annual anthropogenic CH4 emission estimates from the five CTE-CH4 inversion model runs. Prior estimates are shown with

dashed and posterior estimates with solid lines. Shaded areas around the posterior emissions show one standard deviation of the ensemble

distributions. The right panel shows the mean prior and posterior estimates from the whole study period.

Table 2. Linear trends [Gg yr−1] and their p-values (in brackets) for anthropogenic, natural and total CH4 emission estimates in Finland.

Values for prior and optimised estimates from the five CTE-CH4 inversion runs are shown. Statistically significant trends (p-value smaller

than 0.05) are bolded.

Anthropogenic Natural Total

Prior Optimised Prior Optimised Prior Optimised

InvJSBACH_CAMSREG -2.9 (0.00) -2.2 (0.00) 0.8 (0.45) 11.3 (0.00) -2.0 (0.07) 9.1 (0.00)

InvLPX_CAMSREG -2.9 (0.00) -1.7 (0.01) -1.9 (0.16) 1.1 (0.64) -4.7 (0.00) -0.6 (0.78)

InvLPX_EDGAR 1.8 (0.36) -5.6 (0.03) 0.1 (0.87) 4.9 (0.00) 2.0 (0.36) -0.7 (0.84)

InvLPX_EDGAR_UNC -9.6 (0.03) -14.5 (0.07) 0.2 (0.92) 1.2 (0.64) -9.3 (0.06) -13.2 (0.13)

InvGCP_EDGAR 1.2 (0.56) -7.4 (0.03) -0.2 (0.12) 0.3 (0.15) 1.0 (0.63) -7.2 (0.03)
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Figure 5. Annual natural CH4 emission estimates from the five CTE-CH4 inversion model runs. Prior estimates are shown with dashed and

optimised estimates with solid lines. Shaded areas around the posterior emissions show one standard deviation of the ensemble distributions.

The right panel shows the mean prior and optimised estimates from the whole study period.

natural and anthropogenic emissions: InvGCP_EDGAR had the highest anthropogenic emissions and the smallest natural emissions

while InvJSBACH_CAMSREG had the highest natural emissions and the smallest anthropogenic emissions.

3.2.2 Years 2020 and 2021

During the last two years of the study period, 2020–2021, the growth rate of the global atmospheric CH4 was remarkably high

(Lan et al., 2024; Nisbet et al., 2023). Although our inversion results did not show exceptionally high CH4 emissions during300

this period, there were still some consistent signals from the inversion estimates. In 2020, all total posterior emissions were

higher than in 2019. This increase was due to an increase in both anthropogenic and natural emissions, except for InvGCP_EDGAR,

where the increase was due to anthropogenic emissions alone. However, its natural prior and posterior emissions were small

compared to the other estimates. In contrast to InvGCP_EDGAR, the natural posterior emissions using JSBACH-HIMMELI as the

natural prior (InvJSBACH_CAMSREG) were the largest in 2020.305

In 2021 there were three posterior emission estimates, InvLPX_EDGAR, InvLPX_EDGAR_UNC and InvGCP_EDGAR. All optimised

total emissions were still higher than in 2019, but the differences between 2020 and 2021 diverged and the differences in

natural or anthropogenic partitioning were also inconsistent. However, all estimates were higher than the prior total emissions,
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Figure 6. Estimated total annual CH4 emissions in Finland in 2000-2021, estimated using inversion models. Two ensembles are included:

CTE-CH4 and VERIFY. The circle (prior) and diamond (optimised) symbols indicate the ensemble means. The lowest and highest emission

estimates are indicated by the lower and upper ends of the bars. Values for the priors are shown in yellow (VERIFY) and red (CTE-CH4) and

values for the optimised estimates are shown in light blue (VERIFY) and dark blue (CTE-CH4). The mean values of the priors are connected

to the mean values of the posteriors by a line. The colour of the line indicates whether the emissions have increased (red) or decreased (blue)

compared to the prior. The number below the year shows the number of members of CTE-CH4 (dark blue) and VERIFY (light blue) for that

year. The right panel shows the mean mean values from the whole study period.

and in particular the anthropogenic posterior estimates were close to the anthropogenic prior estimates. Part of the reason for

this may be due to the high biomass-burning emission estimates in GFEDv4.1s, which seemed to affect at least the emissions310

in InvLPX_EDGAR_UNC. The natural posterior emission estimates of InvLPX_EDGAR_UNC in high northern latitudes (north of 50° N)

were substantially higher than the emissions from LPX-Bern DYPTOP in 2016–2020, but in 2021 the emissions decreased

by 15 Tg from 2020 (Supplementary Fig. S7). In the GFED, CH4 emissions in the high northern latitudes were 8.6 Tg in

2021 compared to 3.3 Tg yr−1 in 2016–2020 (Supplementary Fig. S8). The high biomass-burning emissions in high northern

latitudes most likely also affected the methane budget estimates in Finland, although there were no major forest fires in Finland.315

The emission estimates from another biomass-burning dataset, GFAS, were also high in 2021, but only about half of the GFED

estimates (4.9 Tg, Supplementary Fig. S8).

3.2.3 Comparison of CTE-CH4 and VERIFY ensembles

We also compared the CTE-CH4 emission estimates to the inversion results from the VERIFY project (Fig. 6). In the CTE-CH4

ensemble, the average of the total CH4 emissions from 2000–2021 was 0.83 Tg yr−1 (average minimum and maximum range320

was 0.51–1.10 Tg yr−1) in the prior and 0.85 Tg yr−1 (0.59–1.08 Tg yr−1) in the posterior estimates. In the VERIFY ensemble,

the prior emissions were 1.50 Tg yr−1 (0.78–2.28 Tg yr−1), almost twice that of the CTE-CH4 ensemble, but the posterior
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a) b)

Figure 7. Average monthly natural CH4 emission estimates from the five CTE-CH4 inversion model runs in a) northern and b) southern

Finland in 2010-2020. Prior estimates are shown with dashed and optimised estimates with solid lines. The shaded areas show the smallest

and the largest monthly posterior emission estimates. Freshwater emissions from Stavert et al. (2022) are shown with the dash-dot lines.

emissions were reduced to 0.98 Tg yr−1 (0.61–1.43 Tg yr−1) bringing the total CH4 emission estimates close to the CTE-CH4

ensemble. The ranges of the posterior emission were large, but the range was notably smaller than the range of prior estimates,

especially with the VERIFY ensemble. The average of the posteriors in the VERIFY ensemble was close to the average of the325

posteriors in the CTE-CH4 ensemble and within the range of the posterior CTE-CH4 ensemble estimates. The lowest emission

estimates from both ensembles were approximately 0.6 Tg yr−1 but the upper limit differed by 0.3 Tg yr−1.

3.3 Seasonal cycle of methane emissions

Methane emissions, and especially emissions from natural sources, have a strong seasonal cycle, and in addition to estimating

the magnitude of the emissions, it is essential to have a correct estimate of the timing of the CH4 emissions. We calculated the330

monthly CH4 emissions to see how the optimisation affected the seasonal cycle and compared the seasonal cycles of the natural

emission estimates with the flux measurements from two Finnish pristine peatlands. Since the climate in southern and northern

Finland is different, and thus the timing of the natural CH4 emissions in southern and northern Finland is also different, we

divided the emissions from 64°N according to the division used, for example, in the Finnish NGHGI (Fig. 1). We focused on

studying the emissions during the common time period between all inversion runs, 2010–2020.335

16

https://doi.org/10.5194/egusphere-2024-1953
Preprint. Discussion started: 29 July 2024
c© Author(s) 2024. CC BY 4.0 License.



The average, maximum and minimum monthly optimised natural emissions and the average of the prior emissions in 2010-

2020 are shown in Fig. 7. There was a clear difference between the natural emissions in northern and southern Finland, as the

maximum monthly emission estimate was almost 0.12 Tg month−1 in the north and only half of that in the south, although

both occurred in July. In addition, the timing of the maxima of the posterior emissions differed between south and north,

whereas the maxima in the priors differed only in LPX. In LPX, the maximum was either in August or September in the north340

and in September or October in the south, while in JSBACH-HIMMELI and the natural prior GCP the maximum was always

in July. In northern Finland, the maximum of the InvGCP_EDGAR emissions did not change from July, but the maximum of the

InvJSBACH_CAMSREG emissions was in August rather than in July. In southern Finland, the timing of the emissions did not change

much from the priors, except in InvJSBACH_CAMSREG, where the posterior emissions were shifted slightly towards late summer.

In northern Finland, posterior emissions using LPX-Bern DYPTOP (InvLPX_CAMSREG, InvLPX_EDGAR, InvLPX_EDGAR_UNC) had345

the largest increase from the prior in July–September so that the maximum was also shifted earlier towards late summer, al-

though September was still the maximum in half of the years (Fig. 7a). This shift was less pronounced in InvLPX_EDGAR_UNC.

The relative uncertainty estimates of the natural prior emissions in InvLPX_EDGAR_UNC varied monthly and were defined inde-

pendently for each 1°×1° grid cell in Finland. This meant that whether the assigned uncertainty was larger or smaller than the

constant 80 % used in the other inversions also depended on the month and location. During the winter months (November to350

January), the uncertainty was smaller almost everywhere in InvLPX_EDGAR_UNC. In February and March, both the natural CH4

emissions and the uncertainties were small regardless of the uncertainty estimates used. From April to June, the uncertainty

in InvLPX_EDGAR_UNC was larger in northern Finland and smaller in southern Finland, but this did not have a strong effect on

the posterior emissions which stayed close to the prior (Fig. 7a). From July to October, the uncertainty in the north was much

smaller in InvLPX_EDGAR_UNC than in the other inversions, especially in grid cells where the natural prior emissions were high.355

Thus, the optimisation was more constrained by the prior than when the constant uncertainty was used. However, southern

Finland had a larger uncertainty in summer and autumn. As the optimisation had more freedom to adjust the CH4 emissions in

southern Finland in InvLPX_EDGAR_UNC, it could also give more weight to the observation in the south. The natural posterior CH4

emissions in the south did not differ between InvLPX_EDGAR_UNC and InvLPX_EDGAR, but the anthropogenic posterior emissions

were smaller in InvLPX_EDGAR_UNC than in InvLPX_EDGAR, especially in July–October (Supplementary Fig. S9). The smaller360

natural emissions in the north and anthropogenic emissions in the south led to smaller total emissions in InvLPX_EDGAR_UNC

compared to InvLPX_EDGAR, and brought the seasonal cycle of total CH4 emissions of InvLPX_EDGAR_UNC close to the seasonal

cycle of InvJSBACH_CAMSREG (Fig. 8a).

A comparison of the seasonal cycles of the total CH4 emissions between the CTE-CH4 and VERIFY ensembles (Fig. 8b)

shows similar results to the comparison of the annual totals: the VERIFY prior emissions were larger on average and had365

a wider range than the pior emissions in the CTE-CH4 ensemble, but the amplitudes of the seasonal cycles of the average

posterior emissions agreed well. However, the phases of the average posterior emissions differed: the VERIFY ensemble was

consistently one month ahead of the CTE-CH4 ensemble.

In Fig. 7, there are also shown the freshwater CH4 emissions from Stavert et al. (2022). These emissions were not included

in the prior emissions of InvGCP_EDGAR or in the other inversions. In northern Finland, the estimated freshwater emissions were370
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a) b)

Figure 8. a) Average monthly total CH4 emission estimates from the five CTE-CH4 inversion model runs in Finland from 2010-2020. Prior

estimates are shown with dashed and optimised estimates with solid lines. The shaded areas show the smallest and the largest monthly

posterior emission estimates. b) Average over the monthly total CH4 emission estimates from CTE-CH4 and VERIFY ensembles in Finland

from 2010-2020. The shaded areas show the smallest and the largest monthly estimates.

considerably smaller than the posterior natural emission estimates (except InvGCP_EDGAR) but in southern Finland, where there

are many shallow lakes, they were larger than the posterior natural emissions: the freshwater emissions were 0.18 Tg yr−1 while

the JSBACH-HIMMELI emissions were 0.13 Tg yr−1 and the optimised natural emissions in InvJSBACH_CAMSREG 0.16 Tg yr−1

on average in 2010–2020.

Figure 9 shows the measured CH4 fluxes from two Finnish pristine peatlands: Lompolojänkkä (northern Finland) and Si-375

ikaneva (southern Finland). In Lompolojänkkä, the different years had very similar seasonal cycles and the maximum was in

August, except in 2008 when the maximum was in July. In Siikaneva, the CH4 fluxes had more annual variation. Nevertheless,

the maximum of the fluxes was relatively consistent in being in July, except in 2015 and 2016 when it was in August. In both

peatlands, July and August were the months with the highest CH4 fluxes. Due to the alterations made by the inversion model,

the seasonal cycles of the optimised emission estimates were more consistent with the flux measurements than the seasonal380

cycles of the prior estimates. It should be noted, however, that the inversion model estimates aggregate much larger areas and

a variety of sources rather than a single peatland, so a direct comparison between the flux measurements and inversion model

results is not possible.
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Figure 9. Average monthly CH4 flux measurements at a) Lompolojänkkä (northern Finland) and b) Siikaneva (southern Finland). The shaded

areas show a 95 % confidence interval.

3.4 Comparison of modelled methane mole fractions to observations in Finnish sites

The CH4 emission estimates in Finland varied depending on the priors and prior uncertainty estimates used. To have an385

insight into which inversion best estimated CH4 emissions in Finland, we compared modelled mole fractions with observed

mole fractions at the six Finnish in-situ sites that were also used in the optimisation. We examined only the years 2010-

2020, as these were common to all inversion runs. Observations from Utö were included from March 2018 and Hyytiälä from

December 2016, since all inversions included observations from these two sites. The effect of including all available years

was also examined, but there was no significant difference. In addition to the optimised mole fractions, we also studied the390

mole fractions modelled with the prior emissions using a so-called forward run mode, i.e. using only the TM5 transport model

without the data assimilation. The term "prior" refers to these modelled mole fractions in this section. Similarly, the term

"posterior" is used to refer to the mole fractions obtained using the optimised emissions.

In Fig. 10, correlation coefficients, detrended root mean square errors (RMSE) and standard deviations are shown for all

Finnish sites as Taylor’s diagrams (Taylor, 2001), comparing both the prior and posterior mole fractions. The correlation coef-395

ficient describes the linear relationship between the modelled and observed mole fractions with values close to one indicating

good agreement between the two. The detrended RMSE quantifies and summarises the differences between the modelled and

observed mole fractions. From the RMSE alone, it is not possible to determine whether the differences are due to different
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phases in the datasets or due to differences in the amplitudes of the variations. The standard deviation provides additional

information, and it tells how much variation is in each dataset.400

The statistics of the priors varied more than the statistics of the posterior mole fractions (Fig. 10, see also Supplementary

Fig. S10). The prior values of InvGCP_EDGAR were in better agreement with the observations than the other priors in almost

all observation sites, especially in Puijo, Hyytiälä and Pallas. However, in contrast to the other inversion model setups, the

posterior statistics of InvGCP_EDGAR improved only slightly from the priors at Pallas and Sodankylä, two northern stations

surrounded by natural CH4 sources. Overall, the posterior mole fraction from different inversion model runs showed similar405

statistics, especially at the Utö and Hyytiälä stations.

To summarise the statistics of the optimised mole fractions, we ranked selected statistics as follows: For each site and

inversion run, the bias, the detrended RMSE and the detrended linear correlation coefficient R were calculated. The bias was

used instead of the standard deviations used in Taylor’s diagrams to emphasise any systematic errors in the modelled mole

fractions. Detrending the data removes long-term variations and allows us to examine short-term variations. The detrending410

was done using the method introduced by Thoning and Tans (1989), which takes into account a seasonal cycle. The absolute

value of each variable was then ranked between the inversion runs from one to five, with the smallest being the best value for

the bias and the detrended RMSE and the largest being the best value for the detrended R. The average of the three rankings

for each inversion run, as well as the average of all six stations, is shown in Fig. 11. The same figure but with prior statistics is

shown in Supplementary Fig. S10.415

Based on the average rankings, there was no single inversion setup that stood out as the best across all sites. Most inversion

runs had both better and worse rankings, depending on the site. However, InvLPX_EDGAR_UNC had the best rankings in general

(average 2.11) and especially in the southern sites (Utö, Kumpula and Hyytiälä). In the northern sites (Pallas and Sodankylä),

where natural CH4 sources dominate, InvJSBACH_CAMSREG had the best rankings. InvJSBACH_CAMSREG also had the second best

overall ranking (2.61). The seasonal cycles of the optimised total CH4 emissions of InvLPX_EDGAR_UNC and InvJSBACH_CAMSREG420

were also quite similar (Fig. 8a). InvGCP_EDGAR had the best rankings in Puijo and in Hyytiälä, where the prior statistics already

showed a good agreement with the observations, but the worst rankings in the northern peatland sites. InvLPX_CAMSREG, which

had the smallest total posterior emissions, had the worst rankings in general, and InvLPX_EDGAR, which had the largest total

posterior emissions, had average rankings across all sites.
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Figure 10. Taylor’s diagram of the results of the five CTE-CH4 inversion model runs against the measured mole fractions from the Finnish

stations: a) Utö, b) Kumpula, c) Puijo, d) Hyytiälä, e) Pallas-Sammaltunturi and f) Sodankylä. Smaller circles respond to values from

forward modelling results using the transport model TM5 and the prior emissions. Prior InvLPX_EDGAR_(UNC) is the same for InvLPX_EDGAR and

InvLPX_EDGAR_UNC as they had the same prior emissions.

4 Discussion425

4.1 Total methane emission estimates

We estimated methane emissions in Finland using the atmospheric inversion model CTE-CH4. As a global model, it was able

to constrain the global total emissions well (on average 525 Tg yr−1 with a minimum and maximum range of 3.2 %). However,

the ratio of the range to the average total emissions in Finland was much larger at 58 % (71 % in the priors), which shows

the difficulty of constraining emissions at the country level and also how the underlying prior emissions and their distribution430

affect emission estimates at a smaller scale. Nonetheless, by using a global model, optimising emissions in a region of interest

is not separated from emissions occurring outside the region.
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Figure 11. The average rank calculated for each site for each inversion run is shown. The bias, the detrended RMSE and the detrended R

were calculated with each inversion run in each site and values were then ranked between the model estimates (the smallest being the best

with bias and RMSE and the highest being the best with R). Additionally, the right-most column is the average over all sites averages.

The range of posterior CH4 emissions in Finland was also large in the VERIFY ensemble, which included estimates from

different inversion models and model runs, some of which used the same priors and observations, and some of which had

their own setups. The range of prior estimates was even wider, and since the optimisation always reduced the estimates, the435

largest prior estimates were most likely too high. Furthermore, the largest CTE-CH4 estimate (InvLPX_EDGAR), which was lower

than the largest estimate in the VERIFY ensemble, and showed only moderate agreement with atmospheric CH4 observations,

indicating probably too high CH4 emissions. Thus, the CTE-CH4 ensemble range seemed to be more reliable, especially if

its largest estimate were excluded. Although the ranges of posterior emissions were large, the averages of the VERIFY and

CTE-CH4 ensembles agreed well. This is consistent with previous model intercomparisons which have shown that inversions440

can constrain emissions on a larger scale and that ensembles of inversion model estimates are more reliable and robust than

estimates from a single inversion run (Petrescu et al., 2024; Saunois et al., 2020; Stavert et al., 2022). Further partitioning into

independent countries still relies on the distributions of the priors.

4.2 Partition to anthropogenic and natural emissions

When comparing CH4 estimates from the inversion model with national GHG inventories, it is important to understand not445

only the total CH4 budget, but also the partitioning of emissions reported in the inventories. As these inventories only account

for anthropogenic activities, the share of anthropogenic emissions in the total CH4 estimates is particularly important. In CTE-
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CH4, emissions from anthropogenic and natural emissions were optimised separately but simultaneously. The emissions from

both categories were analysed as they were refined by CTE-CH4.

The anthropogenic emission inventories gave two drastically different estimates of Finnish CH4 emissions, with EDGAR450

giving much higher estimates than the other inventories. Olhoff et al. (2022) compared the NGHGIs estimates with EDGAR v6

in the Nordic countries and showed that the CH4 estimates from EDGAR v6 were much higher than the NGHGI estimates from

Finland, Norway and Sweden. They showed that the discrepancies were due to fugitive emissions (in Norway and Finland) and

waste emissions (in Sweden and Finland). Additionally, using Bayesian inversion modelling, Worden et al. (2022) estimated

Finland’s waste emissions to be 0.11±0.29 Tg in 2019 instead of the prior value of 0.60±0.36 Tg (EDGAR v4.3.2 in 2012)455

which is much more consistent with the NGHGI Fi (0.06 Tg). Saboya et al. (2022) compared modelled mole fractions using an

older version of EDGAR (v4.3.2) with observations in London and found that emissions from the waste sector were large and

inconsistent with their estimates. As a global product, EDGAR uses globally consistent methodologies. As a result, there may

have been a lack of consideration of country-specific mitigation strategies. For example, fugitive emissions from the oil and gas

sector in EDGAR v6 follow the trend of activity data in the Nordic countries, indicating that efforts to reduce emissions have460

not been taken into account (Janssens-Maenhout et al., 2019; Olhoff et al., 2022). However, in the latest update of EDGAR v8,

there seems to be an improvement in the estimates for the energy sector, as they show the same trend as the other inventories

in Finland (European Commission and Joint Research Centre et al., 2023).

Based on the comparison between atmospheric mole fractions modelled with CTE-CH4 and observations from Finnish sites,

neither the EDGAR v6 nor the CAMS-REG seemed to be better than the other. Since the comparison with the atmospheric mole465

fraction does not tell directly whether the split between anthropogenic and natural emissions is correct, this could indicate that

the inversion model had difficulties in separating anthropogenic and natural emissions. This is particularly likely in southern

Finland, which has both anthropogenic and natural CH4 sources. In addition, it can also reflect the complexity of modelling

urban fluxes. To improve the estimates of anthropogenic emissions, it would be interesting to combine city-scale estimates with

our larger-scale inversions.470

The three natural CH4 priors used in this study differed in absolute magnitude and in spatial and temporal distribution. The

comparison with the atmospheric observations from northern Finland gave a clear ranking of the three priors: InvJSBACH_CAMSREG,

with the highest emission estimates, seemed to have the most accurate natural estimates in Finland, inversion runs with LPX-

Bern DYPTOP had the second best rankings and InvGCP_EDGAR, with the lowest emission estimates, had the worst rankings.

The natural posterior emissions were always larger than their priors, even from JSBACH-HIMMELI, and the largest increases475

were in 2016, when the summer was warm and rainy (Finnish Meteorological Institute), and in 2019–2020. Our results indi-

cate that Finnish natural CH4 emissions from peatlands are underestimated by the process-based models, although the large

natural posterior emissions could also be due to sources other than peatlands. In particular, freshwater emissions are relevant.

We compared the freshwater emission estimates from Stavert et al. (2022) with the natural CH4 prior and posterior emissions

in Fig. 7 and showed that in southern Finland these estimates were larger than even the highest optimised natural emissions480

(InvJSBACH_CAMSREG). The spatial distribution of the freshwater emission estimates and the JSBACH-HIMMELI estimates coin-

cided, so the inversion would most likely have included freshwater emissions in the posterior natural emission estimates. How-
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ever, as there were still methane-emitting peatlands in southern Finland, it is not expected that optimised InvJSBACH_CAMSREG

emission estimates would have included only freshwater emissions. Therefore, the freshwater emission estimates in Finland

seemed to have been too high.485

4.3 Years 2020 and 2021

The reasons for the high atmospheric CH4 growth rates in recent years, especially in 2020–2021, have been discussed. In 2020,

part of the high growth rate has been attributed to a weaker OH sink caused by a decrease in NOx emissions due to Covid-19

lockdowns (Stevenson et al., 2022; Qu et al., 2022; Peng et al., 2022; Feng et al., 2023). The weaker OH sink could not explain

all the increase in atmospheric CH4, and wetlands, especially at high latitudes and in the tropics, were also suggested to be490

responsible for the increase (Qu et al., 2022; Peng et al., 2022; Zhang et al., 2023; Feng et al., 2023). In Finland, total CH4

emissions were higher in 2020 than in 2019 in all CTE-CH4 inversions, and the increase was attributed to both anthropogenic

and natural emissions, but the posterior natural emissions in InvJSBACH_CAMSREG, which probably gave the most realistic natural

emission estimates, were highest in 2020.

The increase in the CH4 growth rate in 2021 has also been attributed to wetlands (Feng et al., 2023; Zhang et al., 2023).495

The natural CH4 emission estimates from the CTE-CH4 in Finland in 2021 were higher than in 2019, but at the same level

or lower than in 2020, but to understand the model results, it is beneficial to study the emissions in the whole northern high

latitudes. The biomass-burning product used in the CTE-CH4 runs, GFEDv4.1s, estimated the CH4 emissions in the boreal

forests (north of 50° N) to be 8.6 Tg while they were 4.2 Tg in 2019. According to Feng et al. (2023), CH4 emissions should

have been 20.8 Tg higher in 2021 than in 2019 to reproduce the observed atmospheric methane, meaning the emissions from500

biomass-burning in boreal forests would account for 21 % of the increase in global CH4 emissions. Zheng et al. (2023) showed

that CO2 emissions from boreal forests have been increasing in recent decades, and that emissions were at a record high

in 2021. They also used GFEDv4.1s in their analysis, but unlike our inversions, they specifically optimised emissions from

biomass-burning. The record-high biomass-burning CH4 emissions in the boreal forests were probably the cause for the large

decrease in the optimised wetland emissions of InvLPX_EDGAR_UNC in the high northern latitudes from 2020 to 2021. They most505

likely also constrained the optimisation in Finland, keeping the posterior emissions close to the prior emissions. However, this

would require further investigation and, for example, an inversion model setup where the biomass-burning CH4 emissions are

also optimised. There are also uncertainties in the biomass-burning emission estimates, for example GFAS had much lower

emission estimates in boreal forests in 2021 (4.9 Tg, Supplementary Fig. S8). The increase in 2021 compared to 2019 was still

relatively large in GFAS (2.2 Tg), i.e. it would have explained 11 % of the global increase in CH4 emissions in 2021.510

4.4 Uncertainty estimations

In addition to different prior emissions, we also investigated how different prior uncertainties affected the emission estimates in

Finland. InvLPX_EDGAR_UNC, where the natural prior uncertainty was defined based on a process model ensemble, showed better

agreement with the observations at the southern sites than InvLPX_EDGAR, which had the default prior uncertainties but had oth-

erwise the same setup. In northern Finland, InvLPX_EDGAR had larger uncertainties and performed better than InvLPX_EDGAR_UNC.515
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Additionally, InvJSBACH_CAMSREG which had the largest natural prior emissions and thus the largest uncertainties in the north,

performed the best in the northern sites. One might therefore assume that large uncertainties would give the optimisation the

freedom to fit the posterior emissions to the observations and with enough observations would lead to better emission estimates.

However, this only seemed to be the case for natural emissions. The anthropogenic prior, EDGAR v6, had large emissions and

therefore large uncertainties, so in theory the optimisation could have reduced the anthropogenic emissions more than it did.520

The largest reduction from EDGAR v6 was seen with InvLPX_EDGAR_UNC, even though its anthropogenic prior uncertainty was

the same as in the other runs. Thus, simply having large uncertainties and a relatively large number of sites does not guar-

antee a better estimate, but it is important to know where the uncertainties lie. It can be complicated to determine realistic

uncertainty ranges, and even using an ensemble of multiple individual estimates might not capture the true magnitude of CH4

emissions. It is good to keep in mind, though, that we used the process-based models from the lastest published GCP-CH4525

(Saunois et al., 2020). The ongoing effort to update the global CH4 budget (Saunois et al., 2024) used updated wetland extent

product (WAD2M v2.0 (Zhang et al., 2021)), and also 12 models had prognostic versions almost doubling the number of model

estimates. It would be interesting to see how the uncertainty estimates would change if the process-based models from Saunois

et al. (2024) were used.

The optimisation in our inversion model is based on the Ensemble Kalman Filter, which creates an ensemble of 500 members530

based on the priors and their uncertainties. By default, this method gives us a range of estimates that represent the uncertainties

in the emission estimates. With these uncertainties we can, for example, calculate the uncertainty reduction from prior to

posterior, which indicates how well the optimisation is able to constrain emissions. Another fairly robust way to estimate the

uncertainties is to use different model ensembles and obtain a range of estimates (Petrescu et al., 2024; Saunois et al., 2020;

Stavert et al., 2022). As demonstrated here, using a single inversion model with different setups can constrain and produce a535

comparable range of CH4 emission estimates at the country-level as an ensemble consisting of different inversion models. As

it is easier for an individual researcher or a research group to maintain one inversion model at a time, it would be recommended

to use different priors to produce more constrained and reliable CH4 emission estimates.

5 Conclusions

This study investigated a wide range of CH4 emission estimates in Finland using bottom-up (inventories and process-based540

models) and top-down (inversion models) approaches. We studied how the optimised emissions were affected by the setup

of the inversion model runs and showed that the choice of priors strongly influences the posterior CH4 emission estimates.

Furthermore, our results indicate that the choice of priors affected the emission estimates as much as the choice of inversion

model, and that the ensembles of inversion runs using the same inversion model but different priors resulted in similar average

total posterior emissions as when using different inversion models but similar priors.545

Even though the CH4 emission estimates in Finland had a large range, the range of the total posterior emissions was smaller

than the range of the prior emissions. The optimisation was also able to align the trends of the anthropogenic and natural CH4

emissions, and the seasonal cycles of the natural CH4 emissions were altered by the optimisation so that they matched better
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with the flux measurements from peatland sites. However, the spatial distributions were not radically changed from the prior

emissions.550

The comparison of atmospheric CH4 observations with model results showed no clear preference between the anthro-

pogenic inventories (EDGAR v6 and CAMS-REG), but the comparison seemed to favour the largest natural prior (JSBACH-

HIMMELI). The optimised natural emissions were larger than their prior emissions, which could be due to missing emissions

in the prior estimates, such as freshwater. Estimates of freshwater emissions are still highly uncertain, and the estimates ex-

amined in this study (Stavert et al., 2022) seemed to be too large for Finland. We also found evidence that emissions from555

biomass-burning CH4, which were not optimised in CTE-CH4, were likely to have a large impact on the optimised anthro-

pogenic and natural emissions in Finland and the high northern latitudes, especially in 2021. The biomass-burning estimates

used in our inversions (GFEDv4.1s) had much higher emissions than estimates from GFAS, which highlights the uncertainties

in the biomass-burning CH4 emission estimates.

The optimised CH4 emissions were shown to depend on the choice of prior emissions. This choice was particularly important560

for the optimisation of the different emission components, since the optimisation of the different emission components was

based on the spatial and temporal distribution of the priors. Currently there are six stations in Finland where atmospheric CH4

is measured. Adding more stations would most likely help to better constrain the different emission components. In addition to

more stations, we also need more reliable prior estimates and realistic uncertainty estimates. In this study, we tried a process-

model spread-based uncertainty estimate for natural CH4 emissions, which appeared to be an advantageous method compared565

to the standard uncertainty estimates (80 % of the prior emissions). This type of uncertainty estimation could also be used for

anthropogenic emissions, although, many of the anthropogenic inventories use the same statistics and activity data. However,

as shown here, the choices made in compiling the inventories affect the emissions estimated, and the differences between them

can help us to identify where the largest uncertainties lie.

The absolute magnitude of CH4 emissions from Finland, particularly anthropogenic emissions, is relatively small compared570

to global totals. Consequently, these magnitudes are primarily relevant in the context of methodological comparisons or for

verifying the NGHGI. The broader relevance of this study emerges from our assessment of a global model’s ability to estimate

CH4 emissions within a single country. Such objectives are becoming increasingly relevant, as highlighted by initiatives such

as the World Meteorological Organization’s Global Greenhouse Gas Watch (G3W). This initiative aims to have global inver-

sion models operationally running that could be used to assess country-specific GHG emissions. Under the G3W, the inversion575

model results will be available in common standard formats, making them more accessible and easier to use. This will likely

also encourage their use in future studies by individuals unfamiliar with inversion models. As discussed in this study, inter-

preting inversion model results requires careful consideration of the model setup and, in particular, posterior estimates should

be considered alongside prior emissions rather than as standalone, definitive results. Ideally, those conducting the model runs

would also provide uncertainty estimates (e.g., spatial and temporal uncertainty reductions from prior to posterior, or an en-580

semble of inversions using different priors) and offer guidance on how to interpret the results and what factors to consider.

Although preparing a comprehensive interpretation guide is challenging due to the possible diverse applications of the model

results, establishing some common guidelines would be advantageous (Peters et al., 2023).
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