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Abstract. Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals.

This study investigated Finnish CH4 emissions from 2000–2021 using bottom-up and top-down approaches. We evaluated the

ability of a global atmospheric inverse model CarbonTracker Europe - CH4 to estimate CH4 emissions within a single country.

We focused on how different priors and their uncertainties affect the optimised emissions and showed that the optimised

anthropogenic and natural CH4 emissions were strongly dependent on the prior emissions. However, while the range of CH45

estimates was large, the optimised emissions were more constrained than the bottom-up estimates. Further analysis showed that

the optimisation aligned the trends of anthropogenic and natural CH4 emissions and improved the modelled seasonal cycles

of natural emissions. Comparison of atmospheric CH4 observations with model results showed no clear preference between

anthropogenic inventories (EDGAR v6 and CAMS-REG), but results using the highest natural prior (JSBACH-HIMMELI)

agreed best with observations, suggesting that process-based models may underestimate CH4 emissions from Finnish peatlands10

or unaccounted sources such as freshwater emissions. Additionally, using an uncertainty estimate based on a process-based

model ensemble for natural CH4 emissions seemed to be advantageous compared to the standard uncertainty definition. The

average total posterior emission of the ensemble from one inverse model with different priors was similar to the average of the

ensemble, including different inverse models but similar priors. Thus, a single inverse model using a range of priors can be

used to reliably estimate CH4 emissions when an ensemble of different models is unavailable.15

1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) after carbon dioxide (CO2). Its atmospheric

concentration has nearly tripled since pre-industrial times, primarily due to human activities (Canadell et al., 2023). Since
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atmospheric CH4 measurements began in the late 1970s (Rice et al., 2016), the growth rate of atmospheric CH4 has varied

considerably, with periods of rapid growth as well as a plateau (Nisbet et al., 2023): The growth rate of CH4 was close to20

zero from 2000 to 2006, after which the atmospheric CH4 levels began to rise again (Nisbet et al., 2014; Mikaloff-Fletcher

and Schaefer, 2019), reaching remarkably high increases of 15.15 ppb in 2020 and 17.97 ppb in 2021 (Lan et al., 2024). The

reasons for this renewed growth and the record-high CH4 growth rates in 2020 and 2021 are still under discussion (Nisbet et al.,

2023), which reflects the large uncertainties in CH4 emissions. Reducing CH4 emissions is an effective way to mitigate climate

change (Nisbet et al., 2020; Collins et al., 2018), given the short atmospheric lifetime of CH4 (9.1 years; Canadell et al., 2023)25

and its high global warming potential (82.5 times higher than CO2 on a 20-year time scale; Forster et al., 2023). However, in

order to assess the success of the CH4 emission reductions, we need to improve our ability to quantify CH4 emissions and their

changes.

In the Paris Agreement (UNFCCC, 2015), participating countries committed to reporting their GHG emissions and removals

coherently and transparently by compiling national greenhouse gas inventories (NGHGIs). The NGHGIs are evaluated jointly30

every five years in the global stocktake (UNFCCC, 2023) which was completed for the first time in 2023. They are based on a

bottom-up approach that starts at the sources and estimates how much GHG is emitted by each source. The main objective is

to capture trends caused by (direct) anthropogenic activities in order to track the effect of mitigation efforts put into practice,

and thus, the NGHGIs report emissions and sinks as annual country totals. In addition to the NGHGIs, which are compiled

independently by each country, there are other bottom-up anthropogenic GHG inventories that are compiled for larger regions35

or even on a global scale. Such inventories relevant to Finland are, for example, the Emissions Database for Global Atmospheric

Research (EDGAR; European Commission and Joint Research Centre et al., 2023), the Copernicus Atmosphere Monitoring

Service Regional inventory (CAMS-REG; Kuenen et al., 2022) and the Greenhouse gas and Air pollution Interactions and

Synergies (GAINS; Höglund-Isaksson et al., 2020). EDGAR is a widely used global inventory with regular updates, while

CAMS-REG and GAINS (the version used in this study) only cover Europe. However, both CAMS-REG and GAINS use40

more specific country-level data, while EDGAR uses globally consistent methods. The main uncertainties in the bottom-up

inventories result from the estimated magnitude of each source category and the emission factors used. Nevertheless, they

provide estimates for each source category separately.

Another way to estimate GHG emissions is to use a top-down approach, or atmospheric inverse modelling. Using a com-

bination of an atmospheric chemical transport model and measurements of atmospheric GHG mole fractions, they revise the45

assumed prior emissions. The atmospheric inverse models of GHGs are becoming increasingly important in the context of our

climate policies (Leip et al., 2018). Until now, the assessment of national GHG budgets has relied on bottom-up-based inven-

tories, especially on the NGHGIs. The 2019 refinement of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

(Maksyutov et al., 2019) highlighted inverse models as a potential way to support and verify the NGHGIs. Some countries,

such as the United Kingdom (Manning et al., 2021; Lunt et al., 2021), Switzerland (Henne et al., 2016), Germany (Integrated50

Greenhouse Gas Monitoring System for Germany ITMS, 2024), Australia (Luhar et al., 2020) and New Zealand (Geddes et al.,

2021), already use inverse modelling in their NGHGIs, either as an appendix or to correct the methods used in the NGHGI.

All of these countries have certain advantages, for example, being an island and having several atmospheric observation sites,
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which make it easier for inverse models to estimate GHGs within their national borders. However, without such advantages,

the partitioning of inverse model results at the country level is still uncertain and shows more differences between different55

models and model set-ups (Deng et al., 2022; McGrath et al., 2023; Petrescu et al., 2023, 2024).

Atmospheric inverse models are strongest when estimating total emissions, including both anthropogenic emissions reported

in the NGHGIs and natural sources. The further partitioning into source categories is, however, more complex, but there are

a number of ways in which this can be done. One way is to take advantage of prior distributions and optimise different

source categories individually but simultaneously (e.g. Tsuruta et al., 2017; Segers and Nanni, 2023; Janardanan et al., 2024).60

Since this method relies on the prior distribution to partition between different source categories, the optimisation is prone to

misclassifying CH4 emissions if there are multiple sources in the same area and if the relative magnitudes of the priors are not

correct. This uncertainty can be quantified to some extent by using different prior emissions and assessing how different prior

emission estimates affect the optimised emissions. In addition, analytical inversions can be used (Cusworth et al., 2021; Worden

et al., 2023). To reduce the dependence on prior distributions, the use of carbon isotope measurements has been intensively65

studied (e.g. Thompson et al., 2018; McNorton et al., 2018; Basu et al., 2022; Haghnegahdar et al., 2023; Chandra et al.,

2024; ?). The models rely on different CH4 sources having different isotopic signatures (δ13C), e.g. emissions from wetlands

have lower δ13C than fossil fuel emissions. However, the sparse number of isotope measurements limits the use of isotope

measurements in the inversions as an additional constraint. Furthermore, δ13C values have uncertainties (Thanwerdas et al.,

2024), although the largest uncertainty has been attributed to uncertainties in the atmospheric chemistry (Basu et al., 2022).70

Similar to using CH4 isotope measurements as an additional constraint, we can also use co-emitted species and the ratio of

them to CH4 emitted from specific sources, such as ethane (Rice et al., 2016; Ramsden et al., 2022; Thompson et al., 2018).

Although only anthropogenic emissions are reported in the NGHGIs, since our efforts to mitigate climate change can be

targeted at them, natural GHG emissions also have an impact on climate change. Thus, it is equally important to quantify natural

emissions. In Finland, large areas of peatlands are an important source of CH4, and the magnitude of natural CH4 emissions75

is high compared to anthropogenic CH4 emissions estimated by the Finnish NGHGI (Tenkanen et al., 2024). Peatlands are

concentrated in northern Finland, while the majority of the Finnish population lives in the south. Consequently, anthropogenic

CH4 emissions originate from the south. Different bottom-up estimates of CH4, including both anthropogenic inventories

(0.19–0.76 Tg yr−1; Section 3.1) and process-based models estimating the soil CH4 balance (0.08–0.39 Tg yr−1; Section

3.2), vary considerably in Finland. When interpreting the inverse model results, it’s essential to identify the reasons for these80

inconsistencies and to understand the extent to which the prior emissions used cause uncertainties in the optimised emission

estimates, especially in regions where both anthropogenic and natural CH4 emissions are abundant.

We studied CH4 emissions in Finland during the last two decades (2000–2021) using both bottom-up and top-down ap-

proaches, and discuss how estimates from the two approaches differ. We aim to separate anthropogenic emissions from natural

peatland emissions and estimate their relative magnitudes in Finland. Our focus is on CH4 emission estimates from the inverse85

model CarbonTracker Europe - CH4 (CTE-CH4) (Tsuruta et al., 2017), which previous studies have used to estimate Finnish

CH4 emissions (Tsuruta et al., 2019; Tenkanen et al., 2024), but here we extend the study period and investigate the results

in more detail. Our study can be divided into four parts: First, we compare different anthropogenic emission inventories (the
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Finnish NGHGI, GAINS, CAMS-REG and EDGAR v6, v7 and v8), both their total emission estimates and the magnitudes

of different source categories. Second, we study the estimates from our inverse model using different prior and uncertainty90

estimates and compare our ensemble with 13 inversion estimates collected in the VERIFY project (https://verify.lsce.ipsl.fr/).

Third, we study the seasonal cycles of CH4 emissions to see how using atmospheric CH4 observations affects this seasonal

cycle of CH4 estimates. Finally, we compare the modelled atmospheric mole fractions with observations and rank our inverse

model estimates based on this comparison, attempting to disentangle which inverse model setup agrees best with observations.

2 Materials and methods95

2.1 Anthropogenic methane emission inventories

Finnish NGHGI

Finnish anthropogenic CH4 emissions are reported on an annual basis by Statistics Finland (Statistics Finland, 2023). The re-

porting follows the IPCC 2006 reporting guidelines with refinements in 2019 (IPCC, 2019). The Finnish NGHGI (NGHGI Fi)

includes CH4 emissions from agriculture, waste, energy, industry and land use, land use change and forestry (LULUCF) and100

uses a mix of Tiers 1 (emission factors from IPCC reports), 2 (country-specific emission factors) and 3 (more advanced meth-

ods such as process-based modelling). Emissions from the fifth reporting category, LULUCF, are not analysed here because

NGHGI Fi was the only studied inventory that reported LULUCF emissions. However, CH4 emissions from the LULUCF

sector in Finland have been discussed in detail by Tenkanen et al. (2024) and were on average 0.03 Tg yr−1 during 2000–2021

according to NGHGI Fi.105

EDGAR

EDGAR (https://edgar.jrc.ec.europa.eu/) is a global emission inventory developed by the Joint Research Centre of the European

Commission, which provides estimates in a globally consistent way and often does not use country-specific details. CH4

estimates are provided by sector from agriculture, waste, energy and industry, with further partitioning into subcategories. The

latest version, EDGAR v8 (European Commission and Joint Research Centre et al., 2023), provides estimates up to 2022. The110

spatial resolution is 0.1° × 0.1° (latitude × longitude) and the temporal resolution is monthly.

CAMS-REG

CAMS-REG v5 is a European anthropogenic emission inventory covering the period from 2005 to 2018. It builds on the

emission data reported officially in 2020 by countries under the convention on long-range transboundary air pollution (UNECE,

2012) and the EU national emission ceilings directive (European Commission, 2016) for the air pollutants and, similarly,115

the reported GHG emissions by the countries to UNFCCC. The structure of the dataset, the harmonisation and gap-filling

approach and the proxies used for the spatial distribution of emissions are described in detail by Kuenen et al. (2022). The
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spatial resolution of CAMS-REG is 0.05° × 0.1°. The dataset provides total annual emissions by sector and is accompanied

by temporal profiles by country and sector to construct hourly and monthly emissions that can be used as model input.

GAINS120

The methodology used in GAINS (Höglund-Isaksson et al., 2020) to estimate anthropogenic CH4 emissions is based on the

recommendations in the IPCC (2006) guidelines. For most sectors, GAINS uses country-specific information in such a way

that the estimated emissions are consistent and comparable across geographical and temporal scales. More advanced methods

are used to estimate emissions from the solid waste sector (Gómez-Sanabria et al., 2018) and fossil and gas systems (Höglund-

Isaksson, 2017). In addition to past estimates, GAINS can be used to estimate future emissions based on mitigation scenarios.125

The version of GAINS used in this study includes estimates for the countries that are part of the European Union, Norway, the

United Kingdom and Switzerland. Emissions are estimated monthly from 1990 to 2021 and the spatial resolution is 0.1° × 0.1°.

The emissions from energy (upstream and downstream sources in fossil fuel extraction and use), agriculture (livestock, rice

cultivation and agricultural waste burning) and waste handling (solid waste and wastewater) are estimated.

2.2 Atmospheric inverse model CTE-CH4130

The atmospheric inverse model CTE-CH4 (Tsuruta et al., 2017) is based on the Bayesian inversion approach, where optimised

CH4 fluxes are obtained by minimising the cost function

J =
(
x−xb

)T
P−1

(
x−xb

)
+(y−H(x))

T
R−1 (y−H(x)) , (1)

where the first part of the right-hand side contains the state vector x [dimension N×1] of the scaling factors used to multiply by

the CH4 surface fluxes, the prior state vector xb and the prior error covariance matrix P [N×N ]. The second part contains the135

observation vector y [dimension M×1] and its error covariance matrix R [M×M ]. H is the observation operator that samples

atmospheric CH4 at the measured location and times based on the states x, which are then compared with the observations.

2.2.1 Data Assimilation

To optimise CH4 fluxes, we use the CarbonTracker Data Assimilation Shell (CTDAS) (van der Laan-Luijkx et al., 2017) which

is based on the fixed-lag ensemble Kalman filter (EnKF) (Evensen, 2003; Peters et al., 2005). Using EnKF, we represent the true140

state as an ensemble of sample states randomly drawn from a mean state (x) and based on covariance P. Each ensemble member

is then optimised independently similarly to the Kalman filter (Kalman, 1960) (Peters et al., 2005). In this study, the size of the

ensemble is 500 and we use a time lag of 5 weeks (Peters et al., 2005; Tsuruta et al., 2017). CTE-CH4 optimises anthropogenic

and natural CH4 fluxes simultaneously but separately at a spatial resolution of 1° × 1° (approximately 110 km × 40–60 km in

Finland) over Europe, Russia, Canada and the USA, and regionally elsewhere (Supplementary Fig. S1). The spatial correlation145

is defined using an exponential decay model (Peters et al., 2005), with correlation lengths of 100 km for 1° × 1° grid-based

optimisation domains, 500 km for other land domains and 900 km for oceanic domains. The anthropogenic and natural CH4
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fluxes are assumed uncorrelated, and domains between land and ocean are also assumed uncorrelated (see also Section 2.2.5).

The temporal optimisation resolution is one week.

2.2.2 Atmospheric chemistry transport model TM5150

We use the atmospheric chemistry transport model TM5 (Krol et al., 2005) as the observation operator. TM5 is an Eulerian

model with a two-way nested zoom capability, i.e. we can model atmospheric transport at a higher resolution in a region of

interest and have a coarser resolution globally. In this study, we simulate atmospheric transport in 4° × 6° resolution globally

with a 1° × 1° zoom grid over Europe (24° N–74° N, 21° W–45° E) including a 2° × 3 intermediate zone around the zoom

(14° N–82° N, 36° W–54° E). The vertical domain is divided into 25 hybrid sigma pressure levels from the surface to the upper155

atmosphere. We use ECMWF ERA5 meteorological data with a 3-hour resolution (Hersbach et al., 2020). The calculations

include atmospheric sinks from photochemical reactions with OH, Cl and O(1D). The reactions with OH are calculated based

on Houweling et al. (2014). For reactions with Cl and O(1D), we use two schemes: using prescribed reaction rates calculated

from the atmospheric chemistry general circulation model ECHAM5/MESSy1 (Jöckei et al., 2006; Kangasaho et al., 2022)

and reaction rates based on Brühl and Crutzen (1993). The atmospheric sink varies from month to month but does not include160

interannual variability.

2.2.3 Observations

We use observations from a global in situ measurement network that includes the National Oceanic and Atmospheric Adminis-

tration GLOBALVIEWplus ObsPack v4.0 dataset (Schuldt et al., 2021) and data from the National Institute for Environmental

Studies (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network, Ver1.2; Sasakawa et al., 2010) and the165

Finnish Meteorological Institute (Tsuruta et al., 2019). Within Finland, measurements were collected at six sites from south-

ern to northern Finland, including urban, natural and marine areas: KMP, PAL (Hatakka, 2024), PUI (Lehtinen and Leskinen,

2024), SMR (Levula and Mammarella, 2024), SOD and UTO (Hatakka and Laurila, 2024) (Table 1 and Fig. 1). Globally, our

dataset included 175 stations from 2000 to 2021 (Supplementary Fig. S1 and Table S1). Both weekly discrete air samples and

hourly continuous measurements are filtered based on quality flags established by the respective institutions. To standardise170

the dataset, hourly continuous observations representing well-mixed atmospheric conditions are converted to daily averages

calculated from 12 to 4 pm local time, except for high mountain sites where averages are calculated from 0 to 4 am local time,

following Tsuruta et al. (2017).

Observational uncertainties, also referred to as "model–data mismatches", are quantified for each site by considering site-

specific characteristics and measurement accuracy, and the ability of TM5 to simulate atmospheric CH4 mole fractions (Bruh-175

wiler et al., 2014; Tsuruta et al., 2017, 2019). Discrepancies between modelled and observed mole fractions are expected due

to the resolution of TM5 and transport errors. For example, TM5 performs better in simulating mole fractions from remote

marine background sites compared to sites influenced by strong local emissions. We classify the sites into different categories

such as marine boundary layer (4.5 ppb), terrestrial (25 ppb), mixed marine and terrestrial (15 ppb) and strong local influence
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Table 1. List of the Finnish surface observation sites used in inversions. Observation uncertainty (Obs. unc.) is used to define diagonal values

in the observation covariance matrix. The data type is categorised into two measurements (discrete (D) and continuous (C)). All stations had

data until the end of 2021. The contribution abbreviations are: the Finnish Meteorological Institute (FMI), National Oceanic and Atmospheric

Administration Earth System Research Laboratories (NOAA ESRL), Integrated Carbon Observation System - Atmosphere Thematic Centre

(ICOS-ATC), University of Eastern Finland (UEF) and University of Helsinki (UHELS).

Sitecode Site Name Contributor Longitude Latitude Sampling height Obs. unc. Data type Date min.

[°E] [°N] [m a.s.l.] [ppb] D/C [year/month]

KMP Kumpula FMI 24.96 60.20 53.00 30.0 C 2010/01

PAL Pallas-Sammaltunturi, GAW Station NOAA ESRL 24.12 67.97 570.00 15.0 D 2001/12

PAL Pallas-Sammaltunturi, GAW Station ICOS-ATC, FMI 24.12 67.97 577.00 15.0 C 2004/02

PUI Puijo ICOS-ATC, UEF 27.66 62.91 84.00 30.0 C 2011/11

SMR Hyytiälä ICOS-ATC, UHELS 24.29 61.85 306.00 25.0 C 2012/12

SOD Sodanykylä FMI 26.64 67.36 227.00 25.0 C 2012/01

UTO Utö ICOS-ATC, FMI 21.37 59.78 65.00 25.0 C 2012/03

(30 ppb). The uncertainties range from 4.5 to 75 ppb for global sites (Supplementary Table S1) and from 15 to 30 ppb for the180

Finnish sites (Table 1).

2.2.4 Prior emissions

As an anthropogenic prior, EDGAR v6 (European Commission and Joint Research Centre et al., 2021) is used. In addition,

a modified version of EDGAR v6 is used, where emissions in Europe are replaced by emissions from CAMS-REG. In Fin-

land, CAMS-REG emissions are redistributed based on Statistics Finland’s national GHG inventories of livestock and landfill185

distribution (see details in Tenkanen et al., 2024). For natural prior emissions, we use estimates from two ecosystem models:

Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg with the HelsinkI Model of MEthane buiLd-up and emIssion

for peatlands module (JSBACH-HIMMELI) (Raivonen et al., 2017; Kleinen et al., 2020) and the Land surface Processes and

eXchanges with the Dynamical Peatland Model Based on TOPMODEL (LPX-Bern DYPTOP) v1.4 (Lienert and Joos, 2018;

Stocker et al., 2014; Spahni et al., 2011, 2013), which include CH4 emissions from peatlands and mineral soils as well as190

the soil sink. LPX-Bern DYPTOP also simulates emissions from inundated soils. In addition to the emissions from JSBACH-

HIMMELI and LPX-Bern DYPTOP, the wetland prior (monthly averages from the 11 models used by Poulter et al., 2017)

combined with the soil sink from Saunois et al. (2024) is used and referred here as the Global Carbon Project (GCP) prior. For

other a priori sources we use estimates from GFED v4.1s (van der Werf et al., 2017) for fire, VISIT (Ito and Inatomi, 2012) or

Saunois et al. (2020) for termites, those calculated from ECMWF data for ocean sources (Tsuruta et al., 2017) or from Weber195

et al. (2019) and Etiope et al. (2019) for geological emissions. We recognise that the emission categories referred to here as

"other" are also from natural sources. However, as the optimised emissions using wetland emissions as the prior emissions are

likely to include emissions from other sources (e.g. freshwater) as well as the soil sink, we refer to these emissions as "natural"

in this study.
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2.2.5 Prior uncertainty estimates200

As default prior uncertainties for both anthropogenic and natural emissions, we use 80 % for terrestrial fluxes and 20 % for

oceanic fluxes, assuming uncorrelated uncertainties, following the practice established in previous studies (e.g. Tsuruta et al.,

2017; Bruhwiler et al., 2014). Since the uncertainty depends on the prior flux, this means that when the prior flux is small, the

uncertainty is also small, i.e. we trust the prior fluxes more. If we not only optimise the total emissions but also try to separate

different categories such as anthropogenic and natural emissions, this could lead to a misallocation, especially in regions205

where both anthropogenic and natural sources are prominent. The optimisation may not be able to change the correct category

because the uncertainties are relatively too small, or because the uncertainties in the other category are too large (and therefore

the optimisation is more likely to change those emissions). Studies based on process-based models have shown that estimates

of CH4 emissions from wetlands vary substantially and inhomogeneously (e.g., a global annual average was 119–203 Tg yr−1

from 2010 to 2019; Saunois et al., 2024) and thus have large uncertainties (Melton et al., 2013; Ito et al., 2023; Chang et al.,210

2023). We therefore let this guide our uncertainty estimates, assigning larger uncertainties to areas and time periods where the

process-based models disagreed most, and smaller uncertainties where they agreed most.

To calculate the uncertainties, we use an ensemble of six process-based models from the GCP (Saunois et al., 2020). This

ensemble consists of prognostic runs, i.e. the models used their own internal approach to estimate the area of wetlands. This

enables us to account for differences in the location of wetlands, which is one of the largest uncertainties in modelling regional215

wetland emissions. The following models are included LPX-Bern, JULES, ORCHIDEE, ELM, VISIT and LPJ-WSL. There

is also a prognostic version of CLASS-CTEM, but we exclude it because of its coarse resolution and anomalously high values

in the tropics. The average monthly values of the used process-based models in northern and southern Finland are shown in

Supplementary Fig. S2.

The uncertainty estimate based on a process-based model ensemble is calculated as follows: For each month t from January220

to December, we first calculate the monthly average fluxes F̄ (m,t,r) from the process-based model estimates F (m,tj , r),

where m is a model, tj is a month in a year j and r is a region. The inverse model run with these new uncertainty estimates

extends from 2010 to 2021, but the process-based models only have estimates up to 2017. Thus, we calculate monthly averages

from the process-based model estimates for the period 2010–2017:

F̄ (m,t,r) =
1

J

J∑
j=1

F (m,tj , r), J = 8. (2)225

The quantile range Uq from the six model ensemble m is then calculated for each month and optimisation region (see

Section 2.2.1). The quantile range for each month and region Uq(t,r) is defined as the range from the second (Q0.25) to the

third (Q0.75) quartile of the monthly estimates, e.g., the range of the lowest and highest 25 %:

Uq(t,r) =Q0.75

(
F̄ (m, t,r)

)
−Q0.25

(
F̄ (m, t,r)

)
. (3)

Lastly, Uq(t,r) is divided by the monthly averages of the natural prior used (LPX-Bern DYPTOP) in the inversion to230

obtain the final uncertainty values U , which are used to calculate the prior covariance matrix. However, we set the maximum
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Table 2. List of inversion setups. The anthropogenic and natural priors used, the natural prior uncertainty calculation scheme used, and the

simulation periods are specified.

Inversion Anthropogenic prior Natural prior Natural unc Years

InvJSBACH_CAMSREG CAMS-REG JSBACH-HIMMELI 80 % 2004–2020

InvLPX_CAMSREG CAMS-REG LPX-Bern DYPTOP 80 % 2004–2020

InvLPX_EDGAR EDGAR v.6 LPX-Bern DYPTOP 80 % 2000–2021

InvLPX_EDGAR_UNC EDGAR v.6 LPX-Bern DYPTOP varying 2010–2021

InvGCP_EDGAR EDGAR v.6 Saunois et al. (2024) 80 % 2000–2021

uncertainty to 500 % and the minimum to 10 % of the prior fluxes:

U(t,r) =
Uq(t,r)

F̄ (LPX-Bern DYPTOP, t,r)
, U(t,r) ∈ [0.1,5]. (4)

2.2.6 Ensemble of CTE-CH4 inversions

In this study, we formed an ensemble of five CTE-CH4 inversion runs with different anthropogenic and natural priors, as well as235

different uncertainty estimates for the natural prior emissions. The time periods covered by each inverse model run also differed

depending on the priors used and the time periods they covered. The inverse model setups are listed in Table 2. The name of

an inversion setup includes the prior used (Invnatural_anthropogenic). The experiment with varying natural uncertainty estimates

was done with the same priors as InvLPX_EDGAR and is noted by adding a subscript "UNC" to the end of the setup name

(InvLPX_EDGAR_UNC). Other differences between the setups (priors used and atmospheric sinks) are listed in Supplementary240

Table S2.

2.3 Auxiliary CH4 data

To help us interpret the CH4 emissions estimated by the inverse model, we use auxiliary CH4 datasets introduced below.

Ensemble of VERIFY inversions

The VERIFY project (https://verify.lsce.ipsl.fr/) was a Research and Innovation project funded by the European Commission245

under the H2020 programme in 2018-2022. The project developed a GHG estimation system to support NGHGI reporting,

focusing on the three major anthropogenic GHGs: carbon dioxide, methane and nitrous oxide. Here we use the results of the

CH4 inverse model from the VERIFY project, some of which were performed within the project and the rest of the estimates

were collected from other projects, such as the GCP (Saunois et al., 2020).

The VERIFY ensemble consists of 14 CH4 inverse model estimates, but since one of them is InvGCP_EDGAR, we exclude250

it from the VERIFY ensemble as it is already included in our CTE-CH4 ensemble. We only examine total CH4 emissions

because only 3 of the 13 VERIFY ensemble members provide the partitioning between natural and anthropogenic emissions.
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Figure 1. The land mask for Finland. Locations of six Finnish atmospheric observation sites (white dots and bold text) and flux measurement

sites (blue dots). The orange line shows the boundary between southern and northern Finland.

Three inverse model estimates do not include prior emissions estimates: two inversion runs with FLEXINVERT provided by

the Norwegian research institute NILU and one inversion run with FLExKF provided by the Swiss institute EMPA.

Eddy covariance CH4 flux measurements255

To verify the CH4 emissions of the inverse model, we use eddy covariance measurements from two Finnish pristine open

peatland sites, Lompolojänkkä and Siikaneva. Lompolojänkkä (68.0° N, 24.2° E) is located in northern Finland and Siikaneva

(61.8° N, 24.2° E) in southern Finland (Fig. 1). A more detailed description of Lompolojänkkä is given by Aurela et al. (2015)

and of Siikaneva by Rinne et al. (2018). Eddy covariance is an atmospheric measurement technique that frequently measures

vertical turbulent fluxes within the atmospheric surface layer. The footprint of the measurement, i.e. where the measured CH4260

fluxes originate, varies depending on the prevailing meteorological conditions but aims to cover the entire peatland ecosystem.

The measurements are taken from the FLUXNET-CH4 dataset (Delwiche et al., 2021), and the gap-filled daily values are used

here to calculate monthly averages. Lompolojänkkä has data from 2006–2010 and Siikaneva from 2013–2018.
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Freshwater CH4 emissions

Freshwater is defined here similarly to Saunois et al. (2020) and includes lakes, ponds, reservoirs, streams and rivers. The265

freshwater CH4 emission estimates examined here are from Stavert et al. (2022), which estimated the global annual freshwater

CH4 to be 53 Tg yr−1.

Biomass-burning CH4 emissions

Two estimates of biomass-burning CH4 emissions are used: GFED v4.1s (van der Werf et al., 2017), which is also used as a

prior in the inversions, and the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS)270

(Kaiser et al., 2012). GFED is provided in resolutions of 0.25° × 0.25° and GFAS in resolutions of 0.1° × 0.1°. GFED has a

monthly temporal resolution and GFAS has a daily temporal resolution. We aggregate both datasets to 1° × 1° and monthly

resolutions.

3 Results

3.1 Anthropogenic methane emission inventory estimates in Finland275

In this section, we study the annual CH4 emission estimates in Finland from six anthropogenic inventories. The spatial distri-

butions of CAMS-REG, GAINS and EDGAR v7 are shown in Supplementary Fig. S4.

The annual emission estimates for the four main source categories defined in the 2006 IPCC Guidelines for National Green-

house Gas Inventories (Eggleston et al., 2006) (energy, industrial processes and product use, agriculture and waste) are shown

for each inventory in Fig. 2. Of the six inventories examined, NGHGI Fi, CAMS-REG and GAINS were in good agreement280

(Fig. 2a). CAMS-REG used reported Finnish national data and overall the emissions in the two inventories had similar mag-

nitudes and trends. The small differences between the values examined here could be explained by the fact that CAMS-REG

has gridded estimates and the values in Finland were obtained using an area mask, while NGHGI Fi is not spatially distributed.

GAINS emissions were at the same level as the other two, but there were some differences: waste emissions had a larger de-

creasing trend and agricultural emissions were higher from 2000 to 2015. The trend in GAINS was driven by the decreasing285

number of cows and cattle. This was also the case for NGHGI Fi. According to NGHGI Fi, the number of cattle decreased by

more than a third between 1995 and 2021, but the decline slowed down after 2010. The decrease in the number of cattle has

been offset by an increase in animal weight, growth and milk production, which has led to higher emission factors so that the

magnitude of agricultural CH4 emissions has remained the same in recent years.

The three EDGAR versions differed from the other inventories but were similar to each other. The magnitudes of CH4290

emissions of different emission categories were the same in EDGAR v6 and v7 (Fig. 2b). The difference between the two

versions was that v7 had a longer time series until 2021, while v6 ended in 2018. Agricultural and industrial emissions in all

EDGAR versions were similar to those in the other inventories. Energy emissions in EDGAR v8 were lower than in v6 or

v7 and showed no trend. However, the absolute magnitude was still three times higher in EDGAR v8 (0.03 Tg yr−1) than in
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Figure 2. Annual anthropogenic CH4 emissions per source category in Finland reported by a) NGHGI Fi, CAMS-REG and GAINS, and b)

EDGAR v6, v7 and v8. Note the different y-axis ranges. c) Annual total CH4 emissions in all six inventories.
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NGHGI Fi, CAMS-REG and GAINS (0.01 Tg yr−1). In EDGAR v6 and v7, energy emissions increased significantly from295

2004 onwards. This increase was due to higher estimates of fugitive methane emissions from oil refining and methane emissions

from natural gas processing, transmission and distribution (Supplementary Fig. S3). Waste emissions in EDGAR inventories,

although decreasing over the period 2000-2021, were about 4–5 times higher than in the other inventories, although they were

lower in v8 than in v6 and v7.

Waste emissions were the largest source in all inventories at the beginning of the study period. Due to the decreasing trend300

of waste emissions, agriculture became the largest source after 2008 in GAINS and after 2009 in NGHGI Fi. In CAMS-REG,

emissions from waste were higher than those from agriculture in 2006, otherwise agriculture had the highest emissions.

The EDGAR estimates stand out when looking at total annual emissions (Fig. 2c). While the average from 2000 to 2020

was about 0.19 Tg yr−1 in NGHGI Fi and GAINS, it was 0.76 Tg yr−1 in EDGAR v7 and 0.58 Tg yr−1 in EDGAR v8.

The EDGAR inventories also showed a higher inter-annual variability, especially in the waste sector, than the other inventory305

estimates.

3.2 Atmospheric inverse model emission estimates in Finland

3.2.1 Annual estimates from CTE-CH4

In this section, we study the annual total, anthropogenic and natural CH4 emissions in Finland and how the posterior emissions

differed from the prior emissions depending on the inverse model setup. The spatial distribution of the prior and posterior310

emissions is shown in Supplementary Figs. S4–S7.

The annual total emissions of Finland from the five CTE-CH4 inverse model runs are shown in Fig. 3. The prior emissions

had evidently a strong influence on the posterior emissions. The range of the total prior emissions was large, but the range of

the optimised emissions was smaller after 2009 and until 2020, with an average range of 0.57 Tg yr−1 in 2009–2020, while the

range of the prior emissions was 0.69 Tg yr−1 in the same period. The inversions using LPX-Bern DYPTOP as the natural prior315

estimates had the highest (InvLPX_EDGAR, 1.1 Tg yr−1 on average) and lowest (InvLPX_CAMSREG, 0.51 Tg yr−1 on average) total

emission estimates, while the three estimates between them agreed well, especially after 2016. To better explain the differences

between the total emission estimates, the anthropogenic and natural CH4 emissions are studied separately below.

Magnitudes of the two anthropogenic posterior emission estimates using CAMS-REG were similar and slightly higher

than CAMS-REG (Fig. 4). The optimised results using EDGAR v6 varied more but all posterior emissions were higher than320

EDGAR v6 until 2009 and lower thereafter until 2020 or 2021, bringing the posterior estimates of the five inversions closer

together compared to their prior estimates. The two anthropogenic posterior emissions using EDGAR v6 combined with the

default uncertainty estimate for the natural prior (InvLPX_EDGAR and InvGCP_EDGAR) had similar anthropogenic emission es-

timates, but the inversion with varying uncertainty estimates for the natural prior (InvLPX_EDGAR_UNC) had lower optimised

anthropogenic emission estimates than the other two, especially after 2016.325

The natural posterior emissions were always higher than the prior used, regardless of the natural prior, except in 2005 and

2006 when JSBACH-HIMMELI was higher (Fig. 5). The order of the emission estimates was also maintained after optimi-
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Figure 3. Annual total CH4 emission estimates from the five CTE-CH4 runs. Prior emissions are shown as dashed lines and posterior emis-

sions are shown as solid lines. The shaded areas around the posterior emissions show one standard deviation of the ensemble distributions.

The right panel shows the mean prior and posterior emissions over the study period.

sation: the posterior emissions of InvJSBACH_CAMSREG were the highest and InvGCP_EDGAR were the lowest. The three posterior

emissions using LPX-Bern DYPTOP as a prior lay between these two estimates, with the inversion using the prior uncertainty

estimates based on the ensemble of process-based models (InvLPX_EDGAR_UNC) giving the lowest estimates of the three. Since330

the estimates using the GCP prior did not change much, but the optimised emissions with JSBACH-HIMMELI were increased,

the range of natural posterior emissions (0.08–0.44 Tg yr−1) was larger than the range of prior emissions (0.08–0.39 Tg yr−1).

Even though the absolute magnitudes of total CH4 emissions and the partition between anthropogenic and natural emis-

sions differed between inversion runs, the trends of the emission estimates were more similar after the optimisation (Table

3). All anthropogenic posterior emissions had decreasing trends, although there was no significant trend in EDGAR v6 for335

2000–2021. Similarly, there were no significant trends in the natural prior emissions, but there were small positive trends in the

optimised natural emissions with InvJSBACH_CAMSREG (0.01 Tg yr−1, p-value 0.0003) and InvLPX_EDGAR (0.005 Tg yr−1, p-value

0.004). Decreasing anthropogenic emissions and increasing natural emissions cancelled each other out, so that the only statis-

tically significant trends in total emissions were found in InvGCP_EDGAR (-0.007 Tg yr−1, p-value 0.03) and InvJSBACH_CAMSREG

(0.009 Tg yr−1, p-value 0.001). The signs of the trends were opposite, reflecting the partitioning between natural and anthro-340
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Figure 4. Annual anthropogenic CH4 emission estimates from the five CTE-CH4 inverse model runs. Prior emissions are shown as dashed

lines and posterior emissions as solid lines. The shaded areas around the posterior emissions show one standard deviation of the ensemble

distributions. The right panel shows the mean prior and posterior emissions over the study period.

Table 3. Linear trends [Gg yr−1] and their p-values (in brackets) for anthropogenic, natural and total CH4 emission estimates in Finland.

Values for prior and optimised estimates from the five CTE-CH4 inversion runs are shown. Statistically significant trends (p-value smaller

than 0.05) are bolded.

Anthropogenic Natural Total

Prior Optimised Prior Optimised Prior Optimised

InvJSBACH_CAMSREG -2.9 (0.00) -2.2 (0.00) 0.8 (0.45) 11.3 (0.00) -2.0 (0.07) 9.1 (0.00)

InvLPX_CAMSREG -2.9 (0.00) -1.7 (0.01) -1.9 (0.16) 1.1 (0.64) -4.7 (0.00) -0.6 (0.78)

InvLPX_EDGAR 1.8 (0.36) -5.6 (0.03) 0.1 (0.87) 4.9 (0.00) 2.0 (0.36) -0.7 (0.84)

InvLPX_EDGAR_UNC -9.6 (0.03) -14.5 (0.07) 0.2 (0.92) 1.2 (0.64) -9.3 (0.06) -13.2 (0.13)

InvGCP_EDGAR 1.2 (0.56) -7.4 (0.03) -0.2 (0.12) 0.3 (0.15) 1.0 (0.63) -7.2 (0.03)
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Figure 5. Annual natural CH4 emission estimates from the five CTE-CH4 inverse model runs. Prior emissions are shown as dashed lines and

posterior emissions as solid lines. The shaded areas around the posterior emissions show one standard deviation of the ensemble distributions.

The right panel shows the mean prior and posterior emissions over the study period.

pogenic emissions: InvGCP_EDGAR had the highest anthropogenic emissions and the lowest natural emissions, while InvJSBACH_CAMSREG

had the highest natural emissions and the lowest anthropogenic emissions.

3.2.2 Years 2020 and 2021

During the last two years of the study period, 2020–2021, the growth rate of the global atmospheric CH4 was remarkably high

(Lan et al., 2024; Nisbet et al., 2023). Although our inversion results did not show exceptionally high CH4 emissions during345

this period, there were still some consistent signals from the inversion estimates. In 2020, all total posterior emissions were

higher than in 2019. This increase was due to increases in both anthropogenic and natural emissions, except for InvGCP_EDGAR,

where the increase was due to anthropogenic emissions alone. However, its natural prior and posterior emissions were low

compared to the other estimates. In contrast to InvGCP_EDGAR, the natural posterior emissions using JSBACH-HIMMELI as the

natural prior (InvJSBACH_CAMSREG) were highest in 2020.350

In 2021, there were only three posterior emission estimates: InvLPX_EDGAR, InvLPX_EDGAR_UNC and InvGCP_EDGAR. The three

optimised total emissions were still higher than in 2019, but emissions from InvGCP_EDGAR were lower in 2021 than in 2020,

while inversions with LPX-Bern DYPTOP were higher in 2021. The partitioning to natural or anthropogenic was also incon-
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Figure 6. Estimated total annual CH4 emissions in Finland in 2000–2021, estimated using inverse models. Two ensembles are included:

CTE-CH4 and VERIFY. The circle (prior) and diamond (optimised) symbols indicate the ensemble means. The lowest and highest emission

estimates are indicated by the lower and upper ends of the bars. Values for the priors are shown in yellow (VERIFY) and red (CTE-CH4) and

values for the optimised estimates are shown in light blue (VERIFY) and dark blue (CTE-CH4). The mean values of the priors are connected

to the mean values of the posteriors by a line. The colour of the line indicates whether emissions have increased (red) or decreased (blue)

compared to the prior. The number below the year gives the number of ensemble members in the CTE-CH4 (dark blue) and VERIFY (light

blue) ensembles for that year. The right panel shows the mean values over the whole study period.

sistent across the three inversion estimates: InvGCP_EDGAR had both lower anthropogenic and natural emissions in 2021 than in

2020, while in InvLPX_EDGAR_UNC it was the other way round. At the same time, the anthropogenic emissions of InvLPX_EDGAR355

were higher and the natural emissions were lower in 2021 than in 2020. However, the differences between 2021 and 2020 were

similar in magnitude to previous years.

In 2021, all estimates were higher than the prior total emissions, and in particular, the anthropogenic posterior estimates

were close to the anthropogenic prior estimates. Part of the reason for this may be due to the high biomass-burning emissions

in GFEDv4.1s, which seemed to affect at least the emissions in InvLPX_EDGAR_UNC. The natural posterior emission estimates360

of InvLPX_EDGAR_UNC in high northern latitudes (north of 50° N) were substantially higher than the emissions from LPX-Bern

DYPTOP in 2016–2020, but in 2021 the emissions decreased by 15 Tg compared to 2020 (Supplementary Fig. S8). CH4

emissions of GFED in the high northern latitudes were 8.6 Tg in 2021 compared to 3.3 Tg yr−1 in 2016–2020 (Supplementary

Fig. S9). The high emissions from biomass-burning in the high northern latitudes most likely also affected the methane budget

estimates in Finland, although there were no major forest fires in Finland. Emission estimates from another biomass-burning365

dataset, GFAS, were also high in 2021, but only about half of the GFED estimates (4.9 Tg, Supplementary Fig. S9).
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3.2.3 Comparison of CTE-CH4 and VERIFY ensembles

We also compared the CTE-CH4 emission estimates with the inversion results from the VERIFY project (Fig. 6). In the CTE-

CH4 ensemble, the average of the total CH4 emissions from 2000-2021 was 0.83 Tg yr−1 (average minimum and maximum

range was 0.51–1.10 Tg yr−1) in the prior and 0.85 Tg yr−1 (0.59–1.08 Tg yr−1) in the posterior estimates. In the VERIFY370

ensemble, the prior emissions were 1.50 Tg yr−1 (0.78–2.28 Tg yr−1), almost twice that of the CTE-CH4 ensemble, but the

posterior emissions were reduced to 0.98 Tg yr−1 (0.61–1.43 Tg yr−1), bringing the total CH4 emission estimates close to the

CTE-CH4 ensemble and within the range of the posterior CTE-CH4 ensemble estimates. The ranges of the posterior emission

were large, but the range was considerably smaller than the range of the prior estimates. The lowest posterior emissions from

both ensembles were approximately 0.6 Tg yr−1, but the highest emissions differed by 0.3 Tg yr−1.375

3.3 Seasonal cycle of methane emissions

Methane emissions, especially those from natural sources, have a strong seasonal cycle, and in addition to estimating the

magnitude of emissions, it is important to have a correct estimate of the timing of CH4 emissions. We calculated the monthly

CH4 emissions to see how the optimisation affected the seasonal cycle. Since the climate in southern and northern Finland is

different, and thus the timing of natural CH4 emissions in southern and northern Finland also differs, we divided the emissions380

from 64°N according to the division used, for example, in the Finnish NGHGI (Fig. 1). We focused on studying the emissions

during the common time period between all inversion runs, 2010–2020.

The average, maximum and minimum monthly optimised natural emissions and the average of the prior emissions in 2010-

2020 are shown in Fig. 7. There was a clear difference between the natural emissions in northern and southern Finland, as the

maximum monthly emission estimate was almost 0.12 Tg month−1 in the north and only half of that in the south. In addition,385

the timing of the maxima of the posterior emissions differed between the south and the north, whereas the maxima in the priors

were different only in the LPX-Bern DYPTOP: In LPX-Bern DYPTOP, the maximum was either in August or September in

the north and in September or October in the south, while in JSBACH-HIMMELI and the natural prior GCP, the maximum

was always in July. In northern Finland the maximum of InvGCP_EDGAR emissions did not change from July, but the maximum

of InvJSBACH_CAMSREG emissions was in August rather than in July. In southern Finland, the timing of the emissions did not390

change much from the priors, except for InvJSBACH_CAMSREG, where the posterior emissions were slightly shifted towards late

summer.

In northern Finland, the posterior emissions using LPX-Bern DYPTOP (InvLPX_CAMSREG, InvLPX_EDGAR, InvLPX_EDGAR_UNC)

had the largest increase from the priors in July to September so that the maximum was also shifted earlier towards late summer,

although September was still the maximum in half of the years (Fig. 7a). This shift was less pronounced in InvLPX_EDGAR_UNC.395

The relative uncertainty estimates of the natural prior emissions in InvLPX_EDGAR_UNC varied monthly and were defined in-

dependently for each 1°×1° grid cell in Finland. This meant that whether the assigned uncertainty was larger or smaller

than the constant 80 % used in the other inversions also depended on the month and location. From November to January,

the uncertainty was smaller almost everywhere in InvLPX_EDGAR_UNC than in InvLPX_EDGAR. In February and March, both
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a) b)

Figure 7. Average monthly natural CH4 emission estimates from the five CTE-CH4 inverse model runs in a) northern and b) southern

Finland in 2010-2020. Prior estimates are shown as dashed lines and optimised estimates are shown as solid lines. The shaded areas show

the minimum and maximum monthly posterior emission estimates. Freshwater emissions from Stavert et al. (2022) are shown with red dash-

dotted lines.

InvLPX_EDGAR_UNC and InvLPX_EDGAR had low natural prior CH4 emissions and small uncertainties. From April to June, the400

uncertainty in InvLPX_EDGAR_UNC was larger in northern Finland and smaller in southern Finland, but this did not have a strong

effect on the posterior emissions, which remained close to the prior (Fig. 7a). From July to October, the uncertainty in the north

was much smaller in InvLPX_EDGAR_UNC than in the other inversions, especially in grid cells where the natural prior emissions

were high. Thus, the optimisation was more constrained by the prior than when the default uncertainty was used. However,

southern Finland had a larger uncertainty in summer and autumn. As the optimisation had more freedom to adjust the CH4405

emissions in southern Finland in InvLPX_EDGAR_UNC, it could also give more weight to the observation in the south. The nat-

ural posterior CH4 emissions in the south did not differ between InvLPX_EDGAR_UNC and InvLPX_EDGAR, but the anthropogenic

posterior emissions were lower in InvLPX_EDGAR_UNC than in InvLPX_EDGAR, especially in July–October (Supplementary Fig.

S10). The lower natural emissions in the north and anthropogenic emissions in the south resulted in lower total emissions

in InvLPX_EDGAR_UNC compared to InvLPX_EDGAR, and brought the seasonal cycle of total CH4 emissions of InvLPX_EDGAR_UNC410

close to the seasonal cycle of InvJSBACH_CAMSREG (Fig. 8a).
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a) b)

Figure 8. a) Average monthly total CH4 emission estimates from the five CTE-CH4 inverse model runs in Finland from 2010–2020. Prior

estimates are shown as dashed lines and optimised estimates are shown as solid lines. The shaded areas show the lowest and highest monthly

posterior emission estimates. b) Average of the monthly total CH4 emission estimates from the CTE-CH4 and VERIFY ensembles in Finland

from 2010-2020. The shaded areas show the minimum and maximum monthly estimates.

A comparison of the seasonal cycles of the total CH4 emissions between the CTE-CH4 and VERIFY ensembles (Fig. 8b)

shows similar results to the comparison of the annual totals: the VERIFY prior emissions were higher on average and had

a wider range than the prior emissions in the CTE-CH4 ensemble, but the amplitudes of the seasonal cycles of the average

posterior emissions agreed well. However, the phases of the average posterior emissions differed: the VERIFY ensemble was415

consistently one month ahead of the CTE-CH4 ensemble.

Fig. 7 also shows the freshwater CH4 emissions from Stavert et al. (2022). These emissions were not included in the prior

emissions of InvGCP_EDGAR or in the other inversions. In northern Finland, the estimated freshwater emissions were considerably

lower than the posterior natural emission estimates (except for InvGCP_EDGAR), but in southern Finland, where there are many

shallow lakes, they were almost as high as the posterior natural emissions: the freshwater emissions were 0.15 Tg yr−1,420

while the JSBACH-HIMMELI emissions were 0.13 Tg yr−1 and the optimised natural emissions in InvJSBACH_CAMSREG were

0.16 Tg yr−1 on average in 2010-2020.

We also compared the seasonal cycles of the natural emission estimates with flux measurements from two Finnish pristine

peatlands. Figure 9 shows the measured CH4 fluxes from Lompolojänkkä (northern Finland) and Siikaneva (southern Finland).
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a) b)

Figure 9. Average monthly CH4 flux measurements at a) Lompolojänkkä (northern Finland) and b) Siikaneva (southern Finland). The shaded

areas show a 95 % confidence interval.

At Lompolojänkkä, the different years had very similar seasonal cycles and the maximum was in August, except in 2008 when425

the maximum was in July. At Siikaneva, CH4 fluxes varied more from year to year. Nevertheless, the maximum of the fluxes

was relatively consistent in being in July or in August. In both peatlands, July and August were the months with the highest

CH4 fluxes. Due to the alterations made by the inverse model, the seasonal cycles of the optimised emission estimates were

more consistent with the flux measurements than the seasonal cycles of the prior estimates. However, it should be noted that

the inverse model estimates aggregate much larger areas and a variety of sources rather than a single peatland, so a direct430

comparison between the flux measurements and the inverse model results is not possible.

3.4 Comparison of modelled methane mole fractions to observations in Finnish sites

The CH4 emission estimates in Finland varied depending on the priors and prior uncertainty estimates used. To understand

which inversion best estimated CH4 emissions in Finland, we compared modelled and observed mole fractions at the six

Finnish in situ sites also used in the optimisation. We examined only the years 2010-2020, as these were common to all435

inversion runs. Observations from Utö were included from March 2018 and Hyytiälä from December 2016, as all inversions

included observations from these two sites. The effect of including all available years was also examined, but it did not change

the result significantly. In addition to the optimised mole fractions, we also studied the mole fractions modelled with the prior

emissions using a so-called forward run mode, i.e. using only the TM5 transport model without the data assimilation. The
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term "prior" refers to these modelled mole fractions in this section. Similarly, the term "posterior" is used to refer to the mole440

fractions obtained using the optimised emissions.

In Fig. 10, correlation coefficients, detrended root mean square errors (RMSE) and standard deviations are shown as Taylor’s

diagrams (Taylor, 2001) for all Finnish sites, comparing both the prior and posterior mole fractions. The correlation coefficient

describes the linear relationship between the modelled and observed mole fractions, with values close to one indicating good

agreement between the two. The detrended RMSE quantifies and summarises the differences between the modelled and ob-445

served mole fractions. From the RMSE alone it is not possible to determine whether the differences are due to different phases

in the data sets or to differences in the amplitudes of the variations. The standard deviation provides additional information and

shows how much variation there is in each dataset.

The statistics of the priors varied more than the statistics of the posterior mole fractions (Fig. 10, see also Supplementary

Fig. S11). The prior values of InvGCP_EDGAR were in better agreement with the observations than the other priors at almost450

all observation sites, especially at PUI, SMR and PAL. However, in contrast to the other inverse model setups, the posterior

statistics of InvGCP_EDGAR improved only slightly from the priors at PAL and SOD, two northern stations surrounded by natural

CH4 sources. Overall, the posterior mole fraction from different inverse model runs showed similar statistics, especially at the

UTO and SMR stations.

To summarise the statistics of the optimised mole fractions, we ranked selected statistics as follows: For each site and455

inversion run, the bias, the detrended RMSE and the detrended linear correlation coefficient R were calculated. The bias was

used instead of the standard deviations used in Taylor’s diagrams to emphasise any systematic errors in the modelled mole

fractions. Detrending the data removes long-term variations and allows us to examine short-term variations. We detrended the

data using the method introduced by Thoning and Tans (1989), which takes into account a seasonal cycle. The absolute value

of each variable was then ranked between the inversion runs from one to five, with the smallest being the best value for the bias460

and the detrended RMSE and the largest being the best value for the detrended R. The average of the three rankings for each

inversion run, as well as the average of all six stations, is shown in Fig. 11. The same figure, but with prior statistics, is shown

in Supplementary Fig. S11.

Based on the average rankings, there was no single inversion setup that stood out as the best across all sites. Most inversion

runs had both better and worse rankings depending on the site. However, InvLPX_EDGAR_UNC had the best rankings in general465

(average 2.11) and especially in the southern sites (UTO, KMP and SMR). In the northern sites (PAL and SOD), where

natural CH4 sources dominate, InvJSBACH_CAMSREG had the best rankings. InvJSBACH_CAMSREG also had the second-best overall

ranking (2.61). The seasonal cycles of the optimised total CH4 emissions of InvLPX_EDGAR_UNC and InvJSBACH_CAMSREG were

also quite similar (Fig. 8a). InvGCP_EDGAR had the best rankings in PUI and SMR, where the prior statistics already showed

good agreement with the observations, but the worst rankings in the northern peatland sites. InvLPX_CAMSREG, which had the470

lowest total posterior emissions, had the worst rankings in general, and InvLPX_EDGAR, which had the highest total posterior

emissions, had average rankings across all sites.
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a) b) c)

d) e) f)

Figure 10. Taylor’s diagram of the results of the five CTE-CH4 inverse model runs against the measured mole fractions from the Finnish

stations: a) UTO, b) KMP, c) PUI, d) SMR, e) PAL and f) SOD. Smaller circles correspond to values from forward modelling results using

the TM5 transport model and prior emissions. The prior values of InvLPX_EDGAR_(UNC) is the same for InvLPX_EDGAR and InvLPX_EDGAR_UNC as

they had the same prior emissions.

4 Discussion

4.1 Total methane emission estimates

We estimated methane emissions in Finland using the atmospheric inverse model CTE-CH4. As a global model, it was able to475

constrain the global total emissions well (on average 525 Tg yr−1 with a minimum and maximum range of 3.2 %). However,

the ratio of the range to the average total emissions in Finland was much larger at 58 % (71 % in the priors), which shows

the difficulty of constraining emissions at the country level and also how the underlying prior emissions and their distribution

affect emission estimates at a smaller scale. Nonetheless, by using a global model, the optimisation of emissions in a region of

interest is not separated from the emissions that occur outside of the region.480
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Figure 11. The average rank calculated for each inverse model run for each site is shown. The bias, detrended RMSE and detrended R of the

modelled and measured mole fractions were calculated with each inversion model run in each site, and the values were then ranked between

the model estimates (the lowest being the best in bias and RMSE and the highest being the best in R). In addition, the rightmost column is

the average of all site averages.

The range of posterior CH4 emissions in Finland was large in the VERIFY ensemble (Figure 6), which included estimates

from different inverse models and model runs, some of which used the same priors and observations, and some of which had

their own setups. The range of prior estimates was even wider, and as the optimisation always reduced the estimates, the highest

prior estimates were most likely too high. Furthermore, the highest CTE-CH4 estimate (InvLPX_EDGAR), which was lower

than the highest estimate in the VERIFY ensemble, showed only moderate agreement with atmospheric CH4 observations,485

indicating that CH4 emissions were probably too high. Thus, the CTE-CH4 ensemble range seemed more reliable, especially

when excluding its highest estimate. Although the ranges of posterior emissions were large, the averages of the VERIFY and

CTE-CH4 ensembles were in good agreement. This is consistent with previous model intercomparisons which have shown that

inversions can constrain emissions on a larger scale and that ensembles of inverse model estimates are more reliable and robust

than estimates from a single inversion run (Petrescu et al., 2024; Saunois et al., 2020; Stavert et al., 2022). Further partitioning490

into independent countries still relies on the distributions of the priors.

4.2 Partition to anthropogenic and natural emissions

When comparing CH4 estimates from the inverse model with national GHG inventories, it is important to understand not

only the total CH4 budget but also the partitioning of emissions reported in the inventories. As these inventories only cover

anthropogenic activities, the share of anthropogenic emissions in the total CH4 estimates is particularly important. In CTE-495
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CH4, emissions from anthropogenic and natural sources were optimised separately but simultaneously. The emissions from

both categories were analysed as they were refined by CTE-CH4.

The anthropogenic emission inventories gave two drastically different estimates of Finnish CH4 emissions, with EDGAR

v6, v7 and v8 giving much higher estimates than the other three, NGHGI Fi, CAMS-REG and GAINS (Figure 2c). Olhoff

et al. (2022) compared the NGHGI estimates with EDGAR v6 in the Nordic countries and showed that the CH4 estimates500

from EDGAR v6 were much higher than the NGHGI estimates from Finland, Norway and Sweden. They showed that the

discrepancies were due to fugitive emissions (in Norway and Finland) and waste emissions (in Sweden and Finland). In

addition, using Bayesian inverse modelling, Worden et al. (2022) estimated Finland’s waste emissions to be 0.11±0.29 Tg in

2019 instead of the prior value of 0.60±0.36 Tg (EDGAR v4.3.2 in 2012), which is much more consistent with the NGHGI Fi

(0.06 Tg). Saboya et al. (2022) compared modelled mole fractions using an older version of EDGAR (v4.3.2) with observations505

in London and found that emissions from the waste sector were high and inconsistent with their estimates. As a global product,

EDGAR uses globally consistent methodologies, meaning country-specific mitigation strategies may not have been considered.

For example, fugitive emissions from the oil and gas sector in EDGAR v6 followed the trend of activity data in the Nordic

countries, indicating that efforts to reduce emissions were not taken into account (Janssens-Maenhout et al., 2019; Olhoff et al.,

2022). However, in the latest update of EDGAR v8 (European Commission and Joint Research Centre et al., 2023), there seems510

to be an improvement in the estimates for the energy sector, as they show the same trend as the other inventories in Finland

(Figure 2c).

Based on the comparison between atmospheric mole fractions modelled with CTE-CH4 and observations from Finnish sites,

neither EDGAR v6 nor CAMS-REG seemed to be better than the other (Figure 11). As the comparison with the atmospheric

mole fraction does not directly provide information on whether the split between anthropogenic and natural emissions is515

correct, this may indicate that the inverse model had difficulties in separating anthropogenic and natural emissions. This is

particularly likely in southern Finland, where there are both anthropogenic and natural CH4 sources. It may also reflect the

complexity of modelling urban fluxes. To improve estimates of anthropogenic emissions, it would be interesting to combine

city-scale estimates with our larger-scale inversions.

The three natural CH4 priors used in this study differed in absolute magnitude and in spatial and temporal distribution. The520

comparison with the atmospheric observations from northern Finland gave a clear ranking of the three priors: InvJSBACH_CAMSREG,

with the highest emission estimates, seemed to have the most accurate natural estimates in Finland, inversion runs with LPX-

Bern DYPTOP had the second best ranking and InvGCP_EDGAR, with the lowest emission estimates, had the worst ranking (Fig-

ure 11). The natural posterior emissions were always higher than their priors, even from JSBACH-HIMMELI, and the largest

increases were in 2016 when the summer was warm and rainy (Finnish Meteorological Institute, 2016), and in 2019–2020525

(Figure 5). Our results indicate that Finnish natural CH4 emissions from peatlands might be underestimated by the process-

based models, although the high natural posterior emissions could also be due to sources other than peatlands. In particular,

emissions from freshwater sources are relevant. We compared the freshwater emission estimates from Stavert et al. (2022)

with the natural CH4 prior and posterior emissions in Fig. 7 and showed that in southern Finland these estimates were higher

than even the highest optimised natural emissions (InvJSBACH_CAMSREG). The spatial distribution of the freshwater emission530
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estimates coincided with the JSBACH-HIMMELI estimates (Supplementary Figure S12), so the inversion would most likely

have included freshwater emissions in the posterior natural emission estimates. However, as there were still methane-emitting

peatlands in southern Finland, it is not expected that optimised InvJSBACH_CAMSREG emission estimates would have included

only freshwater emissions. Therefore, the freshwater emission estimates in Finland seemed to be too high.

4.3 Years 2020 and 2021535

The reasons for the high atmospheric CH4 growth rates in recent years, especially in 2020–2021, have been under discussion.

Part of the high growth rate in 2020 has been attributed to a weaker OH sink caused by a decrease in NOx emissions due to

Covid-19 lockdowns (Stevenson et al., 2022; Qu et al., 2022; Peng et al., 2022; Feng et al., 2023). However, the weaker OH

sink could not explain all of the increase in atmospheric CH4, and wetlands, especially at high latitudes and in the tropics, were

also suggested to be responsible for the increase (Qu et al., 2022; Peng et al., 2022; Zhang et al., 2023; Feng et al., 2023; Qu540

et al., 2024). In Finland, total CH4 emissions were higher in 2020 than in 2019 in all CTE-CH4 inversions, and the increase

was attributed to both anthropogenic and natural emissions, but the posterior natural emissions in InvJSBACH_CAMSREG, which

probably gave the most realistic estimates of natural emissions, were highest in 2020.

The increase in the CH4 growth rate in 2021 has also been attributed to wetlands (Feng et al., 2023; Zhang et al., 2023;

Qu et al., 2024). The natural CH4 emission estimates of CTE-CH4 in Finland were higher in 2021 than in 2019, but at the545

same level or lower than in 2020 (Figure 5). To understand the Finnish emissions estimates in 2021, it is beneficial to study the

emissions in the whole northern high latitudes. The biomass-burning product used in the CTE-CH4 runs, GFEDv4.1s, estimated

the CH4 emissions in the boreal forests (north of 50° N) to be 8.6 Tg while they were 4.2 Tg in 2019 (Supplementary Fig. S9).

According to Feng et al. (2023), the global CH4 emissions should have been 20.8 Tg higher in 2021 than in 2019 to reproduce

the observed atmospheric methane, meaning that emissions from biomass-burning in boreal forests would account for 21 % of550

the increase in global CH4 emissions. Zheng et al. (2023) showed that CO2 emissions from boreal forests have been increasing

in recent decades and that CO2 emissions were at a record high in 2021. They also used GFEDv4.1s in their analysis, but unlike

our inversions, they specifically optimised biomass-burning emissions. The record-high biomass-burning CH4 emissions in the

boreal forests were probably the cause of the large decrease in the optimised wetland emissions of InvLPX_EDGAR_UNC in the high

northern latitudes from 2020 to 2021 (Supplementary Fig. S8). They most likely also constrained the optimisation in Finland,555

keeping the posterior emissions close to the prior emissions. However, to verify this, it would require further investigation and,

for example, an inverse model setup where biomass-burning CH4 emissions are also optimised. There are also uncertainties in

the biomass-burning emission estimates and as discussed, GFAS had much lower emission estimates north of 50° N in 2021

(4.9 Tg, Supplementary Fig. S9). The increase in 2021 compared to 2019 was still relatively high in GFAS (2.2 Tg), i.e. it

would have explained 11 % of the global increase in CH4 emissions in 2021 estimated by Feng et al. (2023).560

4.4 Uncertainty estimations

In addition to different prior emissions, we also investigated how different prior uncertainties affected the emission estimates

in Finland. InvLPX_EDGAR_UNC, where the natural prior uncertainty was defined based on a process-based model ensemble,
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showed better agreement with observations at the southern sites than InvLPX_EDGAR, which used the default prior uncertainties

but otherwise had the same setup (Figure 11). In northern Finland, InvLPX_EDGAR had larger uncertainties and performed better565

than InvLPX_EDGAR_UNC. In addition, InvJSBACH_CAMSREG, which had the highest natural prior emissions and thus the largest

uncertainties in the north, performed best at the northern sites. One might therefore expect that large uncertainties would

give the optimisation the freedom to fit the posterior emissions to the observations and, with enough observations, lead to

better emission estimates. However, this only seemed to be the case for natural emissions. The anthropogenic prior, EDGAR

v6, had high emissions and therefore large uncertainties, so in theory, the optimisation could have reduced anthropogenic570

emissions more than it did. The largest reduction from EDGAR v6 was seen with InvLPX_EDGAR_UNC (Figure 4), even though

its anthropogenic prior uncertainty was the same as in the other runs. Thus, simply having large uncertainties and a relatively

large number of sites does not guarantee a better estimate, but it is important to know where the uncertainties lie. It can be

complicated to determine realistic uncertainty ranges, and even using an ensemble of several individual estimates may not

capture the true magnitude of CH4 emissions.575

Our uncertainty estimates were based on the process-based models from the latest published GCP-CH4 (Saunois et al., 2020).

The ongoing effort to update the global CH4 budget (Saunois et al., 2024) used an updated wetland extent product (WAD2M

v2.0; Zhang et al., 2021), and also 12 models had prognostic versions, almost doubling the number of model estimates from

Saunois et al. (2020). It would be interesting to see how the uncertainty estimates would change if the process-based models

from Saunois et al. (2024) were used.580

The optimisation in our inverse model is based on the ensemble Kalman filter, which creates an ensemble of 500 members

based on the priors and their uncertainties. By default, this method gives us a range of estimates that represent the uncertainties

in the emission estimates. With these uncertainties we can, for example, calculate the uncertainty reduction from prior to

posterior, which indicates how well the optimisation is able to constrain emissions. Another fairly robust way of estimating

the uncertainties is to use different model ensembles and obtain a range of estimates (Petrescu et al., 2024; Saunois et al.,585

2020; Stavert et al., 2022). As shown here, using a single inverse model with different setups can constrain and produce a

comparable range of CH4 emission estimates at the country-level as an ensemble of different inverse models. As it is easier for

an individual researcher or research group to maintain one inverse model at a time, it would be recommended to use different

priors to produce more constrained and reliable CH4 emission estimates.

5 Conclusions590

In this study, CH4 emissions in Finland were investigated using a range of bottom-up (inventories and process-based models)

and top-down (inverse models) estimates. We studied how different bottom-up emission estimates used as priors in the inverse

model affected the posterior CH4 emissions. This choice not only strongly influenced the posterior emissions, but was as

important as the choice of inverse model: the ensemble of inversion runs using the same inverse model but different priors

resulted in similar average total posterior emissions as when using different inverse models but similar priors.595
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Even though the CH4 emission estimates in Finland had a large range, the range of the total posterior emissions was smaller

than the range of the prior emissions. The optimisation was also able to reconcile the trends of anthropogenic and natural CH4

emissions, and the seasonal cycles of natural CH4 emissions were altered by the optimisation to better match flux measurements

from peatland sites. However, the spatial distributions were not radically changed from the prior emissions.

The comparison of atmospheric CH4 observations with model results showed no clear preference between the anthro-600

pogenic inventories (EDGAR v6 and CAMS-REG), but the comparison seemed to favour the highest natural prior (JSBACH-

HIMMELI). The optimised natural emissions were higher than their prior emissions, which could be due to missing emissions

in the prior estimates, such as freshwater. Estimates of freshwater emissions are still highly uncertain, and the estimates exam-

ined in this study (Stavert et al., 2022) appeared to be too high for Finland. We also found evidence that CH4 emissions from

biomass-burning, which were not optimised in CTE-CH4, were likely to have a large impact on the optimised anthropogenic605

and natural emissions in Finland and high northern latitudes, especially in 2021. The biomass-burning emissions used in our

inversions (GFEDv4.1s) had much higher emissions than those in GFAS, highlighting the uncertainties in the biomass-burning

CH4 emission estimates.

The optimised CH4 emissions were shown to depend on the choice of prior emissions. This choice was particularly impor-

tant for the optimisation of the different emission components, as the optimisation of the different emission components was610

based on the spatial and temporal distribution of the priors. Currently, there are six stations in Finland where atmospheric CH4

is measured. Adding more stations would most likely help to better constrain the different emission components. In addition to

more stations, we also need more reliable prior estimates and realistic uncertainty estimates. In this study, we tested an uncer-

tainty estimate based on a process-based model ensemble for natural CH4 emissions, which appeared to be an advantageous

method compared to the standard uncertainty estimates (80 % of the prior emissions). This type of uncertainty estimation could615

also be used for anthropogenic emissions, although many of the anthropogenic inventories use the same statistics and activity

data. However, as shown here, the choices made in compiling the inventories affect the estimated emissions, and the differences

between them can help us to identify where the largest uncertainties lie.

The absolute magnitude of CH4 emissions from Finland, especially anthropogenic emissions, is relatively small compared

to global totals. Consequently, these magnitudes are primarily relevant in the context of methodological comparisons or for620

verifying the NGHGI. The broader relevance of this study emerges from our assessment of the ability of a global model

to estimate CH4 emissions within a single country. Such objectives are becoming increasingly relevant, as highlighted by

initiatives such as the World Meteorological Organisation’s Global Greenhouse Gas Watch (G3W). This initiative aims to

have global inverse models operationally running that could be used to assess country-specific GHG emissions. Under G3W,

inverse model results will be available in common standard formats, making them more accessible and easier to use. This will625

likely also encourage their use in future studies also by those unfamiliar with inverse models. As discussed in this study, the

interpretation of inverse model results requires careful consideration of the model setup and, in particular, posterior estimates

should be considered alongside prior emissions rather than as stand-alone, definitive results. Ideally, those conducting the

model runs would also provide uncertainty estimates (e.g. spatial and temporal uncertainty reductions from prior to posterior,

or an ensemble of inversions using different priors) and guidance on how to interpret the results and what factors to consider.630
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Although the preparation of a comprehensive interpretation guide is challenging due to the possible diverse applications of

model results, the establishment of some common guidelines would be beneficial (Peters et al., 2023).

Code and data availability. All the model results, inputs and code will be provided on request from the corresponding author (Maria Tenka-

nen, maria.tenkanen@fmi.fi)
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