Figure S1. F0AM HCHO validation against observations during SENEX aircraft campaign. **Figure S2.** (first row) PBL concentrations of HCHO, NO2, FNR and sum of scaled jO1D and jNO2 derived from TROPOMI and models in July 2019; (second row) the contributions of HCHO, NO2, and photolysis rates to PO3, along with the defined LASSO ozone production sensitivity regimes for PO3 estimates. The location is Tehran, Iran. Table S1. Characteristics of selected atmospheric composition aircraft campaigns used in this study. | Campaign | When | Where | Why | |----------------|---------------------------|--|--| | DISCOVER-AQ-TX | September 2013 | Houston-Galveston-
Brazoria in Texas | To understand a complex urban photochemical environment with abundant petrochemical facilities and elevated mobile sources | | DISCOVER-AQ-DC | June–July 2011 | Washington D.C. and
Maryland | To study urban-focused photochemical environment experiencing extreme hot and sunny days | | DISCOVER-AQ-CO | July–August 2014 | Denver-Boulder-Fort
Collins in Colorado | To understand urban air quality in a complex meteorological environment due to topography | | KORUS-AQ | May-June 2016 | South Korea | To study the effect of local and external sources of ozone in an extremely complex chemical environment | | ATOMs | August 2016 –
May 2018 | Pacific and Atlantic Ocean | To enhance our understanding of ozone pollution in remote areas | | INTEX-B | March – May
2006 | Gulf of Mexico and Pacific | To study the effect of background pollution | | SENEX | May–July 2013 | Southeast U.S. | To understand the interplay role of biogenic and anthropogenic emissions in shaping air pollution | **Table S2.** The box model configurations and inputs. | Temporal resolution of samples | 10 or 30 sec | | |--|--|--| | Time steps | 30 minutes | | | Number of solar cycles | 5 | | | Dilution constant | 1/86400 (s ⁻¹) (=24-hr lifetime) | | | Meteorological Inputs | Observed Pressure, Temperature, and Relative Humidity | | | Photolysis frequencies initial guess | LUT based on the NCAR TUV model calculations | | | Photolysis frequencies corrections (campaign#†) | Measured jNO ₂ (1-8), jO ¹ D (4-8), jHCHO (4-5 and 8), and jH ₂ O ₂ (4-5 and 8) | | | Compounds (campaign#†) used for constraining the box model | CO (1-8), NO _x (1-8), O ₃ (1-8), SO ₂ (4,7), CH ₄ (1-8), HNO ₃ (1-8), H ₂ O ₂ (4-5 and 7-8), Isoprene (1-4 and 6-7), Monoterpenes (1-4 and 7), Acetone (1-8), Ethyne (4-8), Ethane (4-8), Ethene (4-8), Methanol (1-8), Propane (4-8), Benzene (2-8), Xylene (1 and 4 and 7), Toluene (1-4 and 7), Glyoxal (4), Glycolaldehyde (4), Acetaldehyde (1-8), Ketone (1-4, 6 and 8) | | | Unconstrained compounds (campaign#†) used for validation | HO ₂ (4-5 and 8), OH (4-5 and 8), NO (1-8), NO ₂ (1-8), PAN (1-8), HCHO (1-8) | | | Chemical Mechanism | CB06 | | ^{† (1)} DISCOVER-Baltimore-Washington, (2) DISCOVER-Texas-Houston, (3) DISCOVER-Colorado, (4) KORUS-AQ, (5) INTEX-B, (6) SENEX, (7) SEAC4RS, and (8) ATOMs