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Abstract. 17 

Ozone pollution is secondarily produced through a complex, non-linear chemical process. Our 18 
understanding of the spatiotemporal variations in photochemically produced ozone (i.e., PO3) is limited to 19 
sparse aircraft campaigns and chemical transport models, which often carry significant biases. Hence, we 20 
present a novel satellite-derived PO3 product informed by bias-corrected TROPOMI HCHO, NO2, surface 21 
albedo data, and various models. These data are integrated into a parameterization that relies on HCHO, 22 
NO2, HCHO/NO2, jNO2, and jO1D. Despite its simplicity, it can reproduce ~90% of the variance in 23 
observationally constrained PO3 with minimal biases in moderately to highly polluted regions. We map PO3 24 
across various regions in July 2019 at a 0.1°×0.1° spatial resolution, revealing accelerated values (>8 25 
ppbv/hr) in numerous cities throughout Asia and the Middle East, resulting from the elevated ozone 26 
precursors and enhanced photochemistry. In Europe and the United States, such high levels are only 27 
detected over Benelux, Los Angeles, and New York City. PO3 maxima are seen in various seasons, attributed 28 
to changes in photolysis rates, non-linear ozone chemistry, and fluctuations in HCHO and NO2. Satellite 29 
errors result in moderate errors (10-20%) of PO3 estimates over cities on a monthly average, while these 30 
errors exceed 50% in clean areas and under low light conditions. Using the current algorithm, we have 31 
demonstrated that satellite data can provide valuable information for robust PO3 estimation. This capability 32 
expands future research through the application of data to address significant scientific questions about the 33 
locally-produced PO3 hotspots, seasonality, and long-term trends. 34 

1. Introduction 35 

Tropospheric ozone (O3) is a secondary pollutant formed through complex photochemical reactions 36 
involving various precursors, including nitrogen oxides (NOx = NO + NO2), volatile organic compounds 37 
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(VOCs), aerosols, and halogens (Kleinman et al., 2002, Simpson et al., 2015; Li et al., 2019). Ozone not 38 
only poses significant risks to human health (Fleming et al., 2018) and agricultural productivity (Mills et 39 
al., 2018) but also influences the radiation budget, thereby affecting the climate (Gaudel et al., 2018). To 40 
mitigate the problem of elevated locally-produced ozone, it is crucial to understand the spatiotemporal 41 
variability in ozone production rates (PO3), defined as the number of ozone molecules generated through 42 
secondary chemical pathways in the atmosphere. Comprehensive studies of ozone chemistry, informed by 43 
observations, are typically confined to observationally-rich air quality campaigns (e.g., Cazorla et al., 2012; 44 
Ren et al., 2013; Mazzuca et al.; 2016; Souri et al., 2020a; Schroeder et al., 2020; Brune et al., 2022; Wolfe 45 
et al., 2022; Souri et al., 2023), which are sparse in time and space. 46 

Significant advancements have been achieved in using various measurable ozone indicators to 47 
simplify the non-linear relationship between PO3 and NOx and VOCs into linear forms (Sillman and He, 48 
2002). These forms include NOx-sensitive (where PO3 is sensitive to NOx), VOC-sensitive (where PO3 is 49 
sensitive to VOCs), and the transitional regimes (where PO3 is sensitive to both NOx and VOCs). Among 50 
the numerous proposed indicators, the ratio of formaldehyde (HCHO) to nitrogen dioxide (NO2) (known as 51 
FNR) has gained popularity (Tonnesen and Dennis, 2000a,b), despite its less effective performance 52 
compared to the H2O2/HNO3 ratio in fully explaining the HOx-ROx cycle (Silman and He, 2002; Souri et 53 
al., 2023). The preference for FNR stems from the fact that both quantities can be informed by UV-Vis 54 
radiance data, such as those provided by the Ozone Monitoring Instrument (OMI) and the TROPOspheric 55 
Monitoring Instrument (TROPOMI) (Martin et al., 2005; Duncan et al., 2010; Choi et al., 2012; Choi and 56 
Souri, 2015a, b; Jin and Holloway, 2015; Jin et al., 2017; Schroeder et al., 2017; Souri et al., 2017; Jeon et 57 
al., 2018; Tao et al., 2022). Several limitations associated with the application of satellite-based FNR have 58 
been identified such as i) the inherent limitation of understanding the radical termination in the ROx-HOx 59 
cycle (Souri et al., 2020a; Souri et al., 2023), ii) the challenges associated with converting the column 60 
vertical density to the near-surface concentrations (Jin et al., 2017; Schroeder et al., 2017; Souri et al., 61 
2023), iii) spatial representativity associated with large satellite pixels (Souri et al., 2020a, 2023; Johnson 62 
et al., 2023), and iv) the retrieval errors (Souri et al., 2023; Johnson et al., 2023). Souri et al. (2023) 63 
concluded that the retrieval errors make up the largest portion of total errors associated with FNR. These 64 
errors are becoming smaller with better sensor designs, retrieval algorithms, and calibration over time.  65 

While the characterization of ozone regimes offers valuable insights for regulators to prioritize 66 
effective emission control strategies, it does not provide information about the magnitude of PO3 or the 67 
absolute quantities of PO3 derivatives relative to its precursors. Consequently, chemical transport models 68 
under various emission scenarios are typically employed (e.g., Pan et al., 2019). These models allow for 69 
the execution of process-based scenarios to elucidate the response of PO3 to different emissions and can 70 
simulate four-dimensional PO3 data. However, the results of these simulations are based on various 71 
assumptions and inputs, which carry significant uncertainties. Therefore, it is essential to optimize some of 72 
the models' prognostic inputs using observations through inverse modeling/data assimilation. The primary 73 
advantage of inverse modeling/data assimilation using satellite observations is its ability to account for 74 
satellite errors and eliminate the influence of the a priori profile, thereby carrying only radiance information 75 
into the emission estimation. Numerous studies have utilized satellite observations to constrain NOx and 76 
VOC emissions for various applications (e.g., Stavrakou et al., 2016; Souri et al., 2016; Miyazaki et al., 77 
2017; Souri et al., 2017; Souri et al., 2020b; Souri et al., 2021; Choi et al., 2022; DiMaria et al., 2023). 78 
Souri et al. (2020b) made an early attempt to simultaneously optimize both NOx and VOC emissions over 79 
East Asia for a more accurate representation of PO3. Their joint-inversion was able to account for the 80 
intertwined relationship between HCHO-NOx and NO2-VOC. However, the execution of chemical transport 81 
models optimized by multiple satellite observations remains prohibitively expensive, particularly for high-82 
resolution domains demanded by regulatory agencies. 83 

Data-driven methods for estimating PO3 can become as a more cost-effective alternative to physics-84 
based methods. While using constrained chemical transport models provides a relatively robust framework 85 
grounded in some explicit governing equations, they require extensive computation resources and expertise. 86 
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Conversely, data-driven algorithms make use of large datasets to identify patterns and make predictions 87 
with much reduced computational expenses. However, it is important to recognize that data-driven 88 
algorithms lack the ability to provide solid physical interpretability and generalizability. Despite this 89 
fundamental limitation, they are sensible tools for applications where rapid analysis over a wide spatial 90 
coverage is prioritized. Data-driven parameterizations for several components of atmospheric chemistry 91 
such as OH (Anderson et al., 2022) and dry deposition (Silva et al., 2019) have been crafted for this reason. 92 
However, to our best knowledge, Chatfield et al. (2010) and Souri et al. (2023) are the only studies that 93 
attempted to empirically parameterize PO3 using the information of HCHO and NO2 mixing ratios.  94 

Inspired by those works, we developed a novel product using TROPOMI observations in 95 
conjunction with ground-based remote sensing and atmospheric models to estimate PO3 and associated 96 
errors within the planetary boundary layer (PBL) across the globe. This enabled us to map PO3 across 97 
various regions at fine scales (i.e., 0.1o×0.1o) for the first time. 98 

2. Data 99 

2.1. Aircraft  100 

To study PO3, we use various aircraft observations from several National Aeronautics and Space 101 
Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) atmospheric 102 
composition campaigns. We have selected three sets of aircraft campaigns for the purpose of PO3 103 
estimation, targeting: i) urban/suburban air quality, including Deriving Information on Surface Conditions 104 
from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Baltimore-105 
Washington (2011), DISCOVER-AQ Houston-Texas (2013), DISCOVER-AQ Colorado (2014), and the 106 
Korea United States Air Quality Study (KORUS-AQ) (2016) (Crawford et al., 2021); ii) remote areas 107 
including Atmospheric Tomography Mission (ATOM) (Thompson et al., 2022) and Intercontinental 108 
Chemical Transport Experiment (INTEX) phase B (Singh et al., 2009); iii) a mixture of isoprene-rich 109 
environment and large emitters, including SENEX (Southeast Nexus) (Warneke et al., 2016). Figure 1 110 
shows the location of these campaigns. Inspired by the study of Miller and Brune (2022), we list their 111 
“when, where, why” characteristics in Table S1. 112 

For aircraft campaigns targeting polluted areas, including DISCOVERs, KORUS-AQ, SENEX, 113 
and SEAC4RS, we use 10-sec merged data, whereas, for other measurements taken in relatively remote 114 
areas, such as INTEX-B and ATOMs, we used 30-sec merged data. A more detailed description of the 115 
measurements is provided in Section 3.2. We exclude times with no measurements of NO, NO2, or HCHO. 116 
The concentrations of OH and HO2 were only measured during INTEX-B, ATOMs, and KORUS-AQ. 117 
Likewise, we void any data points lacking either HO2 or OH measurements. There are frequent gaps in 118 
some measurements, especially for VOCs, because of instrument issues or measurement techniques. 119 
Following Souri et al. (2020a), Miller and Brune (2020), Souri et al. (2023), and Bottorff et al. (2023), we 120 
fill the gaps in measurements using a linear interpolation method with no extrapolation allowed beyond 15 121 
minutes. We drop any remaining gaps from the analysis. To better capture the rapid fluctuation of VOCs, 122 
we pick the PTR-TOF-MS instrument with high temporal resolution over the whole air sampler (WAS) 123 
when both instruments have measured the same quantity. Regarding the INTEX-B campaign, we drop 124 
isoprene observation due to infrequent samples downgrading the performance of our box model.  125 
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 126 

Figure 1. The location of seven different atmospheric composition aircraft campaigns used in this study. 127 

2.2. TROPOMI NO2 and HCHO 128 

We use the recently reprocessed daily level-2 (L2) TROPOMI tropospheric NO2 and total HCHO 129 
columns (v2.4) derived from UV-visible radiances onboard the European Space Agency’s (ESA’s) Sentinel-130 
5 Precursor (S5P) spacecraft (~328-496 nm) (Veefkind et al., 2012, De Smedt et al. 2021; van Geffen et al., 131 
2022). This sensor has been operational since May 2018, providing global coverage of NO2 and HCHO at 132 
~1:30 local standard time at the Equator. Since NO2 and HCHO are optically thin absorbers in the UV-133 
Visible, meaning their concentrations do not substantially affect the sensitivity of the radiance to the optical 134 
thickness of the absorber, the retrieval follows the conventional two-step algorithm involving spectral fitting 135 
for Slant Column Density (SCD) retrieval and Air Mass Factor (AMF) calculations for SCD to Vertical 136 
Column Density (VCD) conversion. The product has a spatial resolution of 7.2 km (5.6 km as of August 137 
2019) by 3.6 km at nadir. To remove unfit measurements, we use the provided quality flag (q_value) and 138 
choose only those above 0.75 for NO2 and 0.5 for HCHO. As the L2 product does not come in a regular 139 
grid, we use a mass-conserved regridding technique based on barycentric linear interpolation to map out 140 
the data onto a 0.1o×0.1o regular grid. 141 

van Geffen et al. (2022) demonstrated that the reprocessed TROPOMI tropospheric NO2 columns 142 
exhibit a good level of correspondence with those obtained from ground-based MAX-DOAS sky 143 
spectrometers, with a correlation of 0.88 and a median bias of -23%, improving on the older product 144 
versions which were biased low by about 30% with respect to ground-based measurements at polluted sites 145 
(Verhoelst et al., 2021). More information about new modifications and their impacts on the retrieval can 146 
be found in van Geffen et al. (2022).  147 

The studies of Vigouroux et al. (2020) and De Smedt et al. (2021) validated the reprocessed 148 
monthly-mean TROPOMI HCHO columns against FTIR and MAX-DOAS observations and found a good 149 
correlation above 0.8 with a negative bias of 20-30% for polluted sites. The bias tends to be slightly positive 150 
or neutral over clean sites. 151 

2.2.1. Error characterization of TROPOMI NO2 and HCHO using ground-based retrievals 152 

To propagate TROPOMI retrieval errors to the PO3 product and to remove potential biases, we 153 
assume three origins for errors: i) random errors resulting from instrument noise, ii) a fixed additive 154 
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component that is magnitude-independent (i.e., a uniform offset persisting over all pixels), and iii) 155 
unresolved systematic biases that are multiplicative and irreducible by oversampling. The first component 156 
is derived from the column precision variable provided along with the L2 product. In the spatial domain, 157 
we interpolate the squares of this error the same of way we map the irregular L2 pixels into the 0.1o×0.1o 158 
regular grid. Moreover, we average the random errors over a month to reduce random noise by the squared 159 
number of pixels available at the same location (Eq. 3). Two other errors are determined by comparing 160 
FTIR (for HCHO) and MAX-DOAS (for tropospheric NO2) with TROPOMI data (Section 4.3.3). Detailed 161 
explanation of how these datasets are paired can be found in Vigouroux et al. (2020) and Verhoelst et al. 162 
(2021). Both datasets cover the period of 2018-2023.   163 

To achieve an optimal linear fit (𝑦 = 𝑎𝑥 + 𝑏 + 𝜀) between the paired observations, where a and b 164 
are slope and offset to be determined, we follow a Monte-Carlo Chi-squares minimization such that 𝜒2 =165 
∑

[𝑦−𝑓(𝑥𝑖,𝑎,𝑏)]
2

𝜎𝑦
2+𝑎2𝜎𝑥

2  is minimized. In this equation, 𝜎𝑦
2 and 𝜎𝑥

2 are the variances of y (TROPOMI) and x (the 166 

benchmark, here FTIR or MAX-DOAS), respectively; i is the subscript refers to i-th observation point, and 167 
f is the proposed linear fit subject to optimization. In terms of TROPOMI NO2 and HCHO, the errors are 168 
populated based on the L2 information. According to Verhoelst et al. (2021), a fixed error of 30% is assumed 169 
for MAX-DOAS NO2 observations whose values are above 1.4×1015molec/cm2. Because of the detection 170 
limit of MAX-DOAS NO2, we set errors for values below that threshold to 1.4×1015molec/cm2. The FTIR 171 
retrieval errors described in Vigouroux et al. (2020) were used to populate the errors associated with this 172 
benchmark. The minimization is performed 10000 times, each with a set of random perturbations of x and 173 
y within their respective prescribed errors. This approach allows us to assess the robustness of the estimates 174 
across the range of errors associated with each data point.  175 

The offset (a uniform additive term) and the slope (multiplicative error) drawn from the ground 176 
validation are used to correct the biases associated with TROPOMI via: 177 

𝑉𝐶𝐷𝑏𝑖𝑎𝑠−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑉𝐶𝐷𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑜𝑓𝑓𝑠𝑒𝑡

𝑠𝑙𝑜𝑝𝑒
 

(1) 

Since there are errors associated with this adjustment resulting from instrument and representation errors, 178 
we augment errors of the slope and offset to the total error and label them constant errors (𝑒𝑐𝑜𝑛𝑠𝑡) via: 179 

𝑒𝑐𝑜𝑛𝑠𝑡
2 = 𝑒𝑜𝑓𝑓𝑠𝑒𝑡

2 + 𝑒𝑠𝑙𝑜𝑝𝑒
2 × 𝑉𝐶𝐷𝑏𝑖𝑎𝑠−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

2 (2) 

where 𝑒𝑜𝑓𝑓𝑠𝑒𝑡
2  and 𝑒𝑠𝑙𝑜𝑝𝑒

2  are squares of errors of offset and slope calculated from the linear regression (Eq. 180 
1). Ultimately, the sum of all three errors constitutes the total errors given: 181 

𝑒2 = 𝑒𝑐𝑜𝑛𝑠𝑡
2 +

1

𝑚2
∑𝑒𝑟𝑎𝑛𝑑𝑜𝑚,𝑖

2

𝑚

𝑖=1

 
(3) 

where m is the number of samples for a given grid and timeframe and 𝑒𝑟𝑎𝑛𝑑𝑜𝑚
2  is squares of random errors. 182 

2.3. TROPOMI Surface Albedo 183 

To account for the effect of surface albedo on photolysis rates (Section 2.5), we use a newly 184 
developed algorithm based on the directionally dependent Lambertian-equivalent reflectivity (DLER) UV 185 
surface albedo climatology made from TROPOMI radiance (Tilstra et al., 2024). This new database 186 
leverages 60 months of TROPOMI reprocessed radiance and is produced at the grid resolution of 187 
0.125o×0.125o. The product has outperformed traditional LER products such as OMI when both were 188 
compared to MODIS surface the bidirectional reflectance distribution function (BRDF) results (Tilstra et 189 
al., 2024). 190 
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2.4. MERRA2-GMI 191 

To convert vertical column densities of HCHO and NO2 from TROPOMI to their volume mixing 192 
ratios in the PBL region, we use the MERRA2-GMI (M2GMI) model (https://acd-193 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/, last access: 10 Sep 2023). This model is NASA’s 194 
Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM) run spanning for the period 195 
of 1980-2019, exploiting MERRA2 (Modern Era Retrospective analysis for Research and Applications) to 196 
constrain meteorological fields (Orbe et al., 2017). The model uses the Global Modeling Initiative (GMI) 197 
chemical mechanism (Duncan et al., 2007; Strahan et al., 2007), which involves over 120 species and 400 198 
reactions. It has a resolution of approximately 0.625o longitude by 0.5o latitude with 72 vertical layers 199 
stretching from the surface up to 0.1 hPa. Additional information about the configuration of this model can 200 
be found in Strode et al. (2019). To carry out the conversion, we apply the following conversion factor (γ) 201 
to the TROPOMI VCDs: 202 

𝛾 =
�̅�𝑃𝐵𝐿𝐻

𝑁𝐴
𝑔 ×𝑀𝑎𝑖𝑟

∑𝑞𝑑𝑝
 

(4) 

where �̅�𝑃𝐵𝐿𝐻 is the average of the target trace gas mixing ratios in the PBLH, g is the acceleration 203 
of the gravity (assumed 9.81 m/s2), NA is the Avogadro constant, Mair is the air molecular weight 204 
(assumed 28.96 g/mol), q is the target trace gas mixing ratio at a given altitude, and dp is the 205 
thickness of each model vertical grid box in hPa. The denominator in Eq. 4 represents the modeled 206 
VCD. We integrate modeled partial VCDs up to top of the atmosphere for HCHO, and up to the 207 
tropopause pressure layer for NO2.  208 

2.5. TUV NCAR Photolysis Rates Look-up Table 209 

To estimate photolysis rates, JNO2 (NO2+hv) and JO1D (O3+hv), we use a comprehensive look-up 210 
table provided by the F0AM model (Section 3.2) created for clear-sky conditions. This look-up table is 211 
based on the calculation of more than 20,064 solar spectra over a wide range of solar zenith angle (SZA) 212 
(the range [0, 90] in steps of 5o), altitude (the range [0, 15] in steps of 1 km), overhead total ozone column 213 
(the range [100, 600] in steps of 50 DU), and surface UV albedo (the range [0, 1] in steps of 0.2) using 214 
NCAR’s Tropospheric Ultraviolent and Visible radiation model (TUV v5.2) and cross sections and quantum 215 
yields from IUPAC and JPL (Wolfe et al., 2016). The L2 TROPOMI granule information populates SZA, 216 
surface elevation, and surface UV albedo, while overhead total ozone columns are obtained from MERRA2-217 
GMI (Section 2.4) which is found to agree well with satellite observations (Souri et al., 2024). Any values 218 
between these tables are bilinearly interpolated for a smoother result.  219 

3. Methods 220 

In this section, we begin by discussing a robust regression model specifically developed for 221 
feature selection in the parameterization of PO3. We then describe the training dataset created for this 222 
purpose. Following that, we introduce a clustering technique utilized to organize the training data, which 223 
enables us to identify the key drivers of PO3 variability. Finally, we provide a comprehensive overview of 224 
the PO3 estimates algorithm by integrating data from the TROPOMI retrievals, ground-based remote 225 
sensing, and various models. 226 

3.1. LASSO 227 

Through the use of multi-linear regression models, it is possible to establish a simple but robust 228 
relationship between multiple variables and a target. However, when dealing with a large number of 229 
variables, there is a chance of introducing overfitting issues. This can lead to predictions that are either 230 
overly optimistic or unrealistic for values outside of the training dataset. To avoid this, it is recommended 231 
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to simplify the model by removing variables that are loosely connected with the target or highly correlated 232 
with others. This process is known as "model shrinkage" and can narrow down the number of possible 233 
solutions (i.e., variance) at the cost of increasing the biases between the observed target and predictions. 234 
Ideally, we want a model that minimizes the sum of the bias and the variance. To achieve this, we can use 235 
LASSO (least absolute shrinkage and selection operator) (Tibshirani, 1996). They consider a regression, 236 

𝑌 = 𝑋𝛽 + 𝛼 + 𝜀 (5) 

with response Y = (y1, …, yn)T, n×p explanatory variables X, coefficients β = (β1, …, βp)T, an intercept α, 237 
and noise variables ε = (ε1, …, εn)T. n is the number of data points, and p is the number of explanatory 238 
variables. We can label the regression model sparse when many of β values are zero, and we can label it 239 
high dimensional when p≫n. LASSO attempts to select variables such that the following cost function is 240 
minimized: 241 

(�̂�, �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛 {‖𝑌 − 𝑋𝛽 − 𝛼‖2 + 𝜆∑|𝛽𝑖|

𝑝

𝑖=1

} 

(6) 

where �̂� and �̂� are optimized intercept and coefficients, 𝜆 is a non-negative regularization factor subject to 242 
tuning, i is the subscript of the i-th explanatory variable, and ‖. ‖2 is the L2-norm operator. The first term 243 
on the right side of Eq.6 minimizes the squares of the residuals, whereas the second term reduces the sum 244 
of absolute value of coefficients resulting in a simpler model with fewer parameters. Without the second 245 
term, the regression model becomes an ordinary least-squares estimation. The most critical element here is 246 
𝜆. A large 𝜆 results in more aggressive regularization leading to more model shrinkage, whereas a small 247 
value preserves a high dimensional model. To optimize this value, we discretize 𝜆 in 100 values between 248 
10-4 up to 101, divide the training dataset into 10 folds (i.e., spliting the dataset into equal size segments), 249 
determine the average of cross-validated error prediction among all folds, and find 𝜆 that yields the smallest 250 
error. The final solution ensures a balanced model with respect to model parsimony and bias. All 251 
explanatory variables are standardized during the regularization procedure such that their mean becomes 252 
zero and their standard deviation one. 253 

3.2. Photochemical box modeling 254 

To produce training data sets for LASSO-based PO3 estimation, we use the Framework for 0-D 255 
Atmospheric Modeling (F0AM) v4 box model (Wolfe et al., 2016), constrained by a wide range of 256 
observations. These observations ensure that the model achieves a realistic range of values found in the 257 
atmosphere. We follow past setups which apply the Carbon Bond 6 (CB06, r2) chemical mechanism in 258 
F0AM (Souri et al., 2020a; Souri et al., 2023). The model is constrained by aircraft data, including 259 
meteorology, photolysis rates, and trace gas concentrations. The model configuration and observations used 260 
are listed in Table S2.  261 

Once the model is initialized and held constant with respect to a wide range of constraining 262 
quantities, it runs at 30 minutes integration time cycling for five days to approach a steady-state 263 
environment. Several key compounds including OH, HO2, HCHO, PAN, NO, and NO2 are initialized with 264 
aircraft observations but they are left free to cycle with incoming solar radiation variability. These 265 
compounds play a crucial role in validating the efficacy of model performance as well as the adequacy of 266 
observations used as constraints. In particular, allowing HCHO to vary freely enables us to assess whether 267 
our mechanism for VOC treatment, steady-state, and the number of measured VOCs suffice to reproduce 268 
its concentrations reasonably. Although the individual concentration of NO2 and NO are not constrained, 269 
we constrain total NOx (NO+NO2). Not all aircraft campaigns measured all photolysis rates included in the 270 
chemical mechanism. We first initialize the photolysis rates included in CB06 using the look-up-tables 271 
described in Section 2.5. If any photolysis reaction rates in CB06 were measured, we replace the initial 272 
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guess with the observed values. For those reactions with photolysis rates not been measured, we apply a 273 
scaling factor made of the average of the ratio of the observed J-values to the modeled J-values. This 274 
approach is a sensible choice for accounting for large particles such as clouds, as their extinction coefficient 275 
is somewhat non-selective in the UV-Vis range; however, applying a wavelength-independent scaling factor 276 
may introduce some biases for optically complex environments introduced by aerosols.  277 

It is essential to acknowledge the inherent limitations of a box model in our research. The model 278 
does not consider the diverse physical loss pathways that trace gases may undergo, including deposition 279 
and transport. As a result, we have simplified the physical loss by employing a first-order dilution rate set 280 
to 1/86400 s-1, equivalent to a lifetime of 24 hours. This approach ensures that unconstrained trace gases 281 
that take longer to break down do not accumulate over time. Exact knowledge of dilution factors requires 282 
knowing molecular and turbulent diffusion, entrainment and detrainment, and deposition rates, all of which 283 
are unknown at the micro-scale level of aircraft observations. Nonetheless, studies of Brune et al. (2022) 284 
and Souri et al. (2023) showed that HO2, OH, NOx, and HCHO are relatively immune to the choice of the 285 
dilution factor, whereas RO2 mixing ratios can depart introducing some biases in PO3 estimates.  286 

We determine simulated PO3 by:  287 

𝑃𝑂3 = 𝐹𝑂3 − 𝐿𝑂3 (7) 

where LO3 is all possible chemical loss pathways of ozone (negative stoichiometric multiplier matrix) and 288 
FO3 is all possible chemical pathways producing ozone molecules (positive stoichiometric multiplier 289 
matrix). This calculation is theoretically equivalent to a value obtained from a chemical solver quantifying 290 
the number of ozone molecules produced/lost for each model timestep. The adoption of Eq.7 facilitates the 291 
direct comparison of PO3 estimations with those derived from other models, including CTM-based results 292 
(see Figure 10 in Souri et al., 2021). Furthermore, it allows for a seamless integration of these estimates 293 
into Lagrangian transport models for ozone forecasting purposes. 294 

3.3. Clustering 295 

The aim of using a classifier to group the large quantity and types of aircraft data into similar 296 
features is to allow us to study the primary contributors to PO3 under different chemical, solar, and 297 
meteorological conditions. Additionally, this approach will help us understand the range of atmospheric 298 
conditions included in the training dataset. To accomplish this, we employ a widely-used technique known 299 
as k-means, which has been used in a variety of applications (e.g., Beddows et al., 2009; Souri et al., 2016b; 300 
Govender and Sivakumar, 2020). In this approach, centroids are distributed randomly throughout a multi-301 
dimensional dataset, with each centroid representing a distinct class. The algorithm proceeds to assign a 302 
label to each data point by identifying its closest Euclidean distance to the centroids. Following the labeling 303 
of all data points, the algorithm updates the centroids based on the means of the newly-labeled group. This 304 
process continues iteratively until there is minimal change in the location of the centroids. It is worth noting 305 
that k-means does not guarantee an optimal solution, so we reinitialize the classification 1000 times with a 306 
new set of initial centroids. We select the result with the lowest value for the sum of the Euclidean distance 307 
among data points and centroids to ensure the outcomes are not influenced by random seeding. 308 

Redundant features in the input can significantly compromise the effectiveness of the classification, 309 
so we apply principal component analysis (PCA) to the matrix of datasets (Z) with n data points and p 310 
features to reduce the dimension to a PCA-transformed matrix of Z (Z`) with the dimension n×q, where 311 
q<p. Despite this reduction in dimension, Z` preserves a significant variance in Z, helping us to overcome 312 
the issues of dimensionality or overfitting.  313 

We select 11 features simulated by the F0AM model, many of which are set to the observed values, 314 
or their precursors are observationally-constrained. These features are SZA, HCHO/NO2, HCHO×NO2, 315 
HCHO, NO2, pressure, temperature, jNO2, jO1D, H2O, and NO2/NOy (NOy=NO+NO2+PAN+HNO3+alkyl 316 
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nitrate +N2O5). There are indeed correlations among these features such as SZA and jNO2, or HCHO and 317 
HCHO×NO2; nonetheless, we have used PCA to eliminate the possibility of these correlated factors causing 318 
overfitting issues. 319 

3.4. The estimation of PO3  320 

In order to predict PO3, we have developed empirical equations using LASSO to link PO3 with 321 
various relevant prognostic candidates related to ozone chemistry. A schematic presentation on how this 322 
estimation can be done to provide daily PO3 maps at the TROPOMI revisit time across the globe is shown 323 
in Figure 2. It is important to note that relying solely on linear regressions for a non-linear problem is not a 324 
viable approach. To address this, we have divided the data points into four distinct groups based on FNR 325 
values, meaning we divide a non-linear realm into smaller linear segments (i.e., an empirical linearization). 326 
In a study by Souri et al. (2023), a wide range of aircraft observations and box model results were used to 327 
determine that FNR~1.7 was a universal threshold for separating NOx-sensitive from VOC-sensitive 328 
regimes. We have found that by breaking down the datapoints into slightly weaker or stronger variations of 329 
the regimes, we can improve the accuracy of our results. As a result, we have established four distinct 330 
groups: VOC-sensitive (FNR<1.5), transitions (1.5<FNR<2.5 and 2.5<FNR<3.5), and NOx-sensitive 331 
(FNR>3.5). The coefficients and intercepts based on the LASSO regressions for each group were computed 332 
separately. From a long list of explanatory parameters, we selected SZA, temperature, pressure, H2O, jNO2, 333 
jO1D, HCHO, and NO2 as the most sensible candidates. The reasoning behind this selection will be 334 
discussed in Section 4.2.  335 

Once the LASSO parameters are determined, we apply the linear functions to variables 336 
modeled/observed in the PBL region. We show that the LASSO method votes for dropping SZA, 337 
temperature, water vapor, and pressure as they do not provide significant information on PO3 compared to 338 
the rest. As for jNO2 and jO1D, we use the TUV NCAR’s LUT described in Section 2.5. HCHO and NO2 339 
are derived by converting the bias-corrected TROPOMI VCDs into PBL mixing ratios using MERRA2-340 
GMI described in Section 2.4. To carry out the conversion, we multiply the satellite VCDs by the ratio of 341 
averaged modeled mixing ratios of a target gas (i.e., NO2 or HCHO) in the PBL region divided by modeled 342 
VCDs (Section 2.4). The PBL field also comes from MERRA2-GMI. 343 

 344 
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Figure 2. Schematic illustration of daily PO3 estimation calculated in this study. This process consists of 345 
two major steps: formulating PO3 as a function of various prognostic inputs derived from the box model 346 
results, and predicting PO3 based on optimized features/coefficients suggested by LASSO and using 347 
information obtained from TROPOMI, TUV, and M2GMI.  348 

4. Results and Discussion 349 

4.1. Box Model Validation 350 

In order to assess the accuracy of the assumptions used in the box model's setup, which involves 351 
factors such as chemical mechanism, dilution rate, and photolysis rate correction, we will compare the 352 
simulated values of HCHO, NO2, NO, PAN, HO2, and OH with their actual measured values. This 353 
comparison will help us determine if our model falls within an acceptable range of errors as seen in other 354 
reputable photochemical box modeling studies. This comparison is represented in Figure 3, which displays 355 
a scatterplot of the data collected from all seven aircraft campaigns. A discussion on each parameter follows: 356 

HCHO – The box model is proficient in capturing over 77% of variance in observations with less 357 
than 15% absolute bias. While many box modeling studies prefer to have this compound constrained to 358 
potentially enhance the representation of HOx, it comes with the trade-off of hindering us from validating 359 
the number/quality of observed HCHO precursors and/or the VOC treatment. Besides the study of Souri et 360 
al. (2023), Marvin et al. (2017) is one of the few studies that did not constrain this compound to verify the 361 
efficacy of different pathways involved in HCHO formation and loss simulated by various chemical 362 
mechanisms. Marvin et al. (2017) reproduced HCHO formation during the SENEX campaign using the 363 
CB06 mechanism with a R2=0.66 and a bias of 32% at 1-min averaged samples. Compared to that study, 364 
we recreate 86% variance in observed HCHO during the same campaign with a bias of 23% (Figure S1) at 365 
10-sec averaged samples. The remaining unresolved variance can be attributed to an incomplete list of VOC 366 
measurements for several campaigns including DISCOVER-AQs and errors of VOCs measurements. It is 367 
unlikely for the chemical mechanism to be reason for this, as Marvin et al. (2017) did not observe substantial 368 
differences in R2 values among various chemical mechanisms including the near-explicit MCM. A mild 369 
underestimation of HCHO could be likely due to the steady-state assumption, fixed arbitrary dilution factor, 370 
or uncertain isoprene chemistry (Archibald et al., 2000; Wolfe et al., 2016; Marvin et al., 2017).  371 

NO2 and NO – Comparisons for both species demonstrate a high degree of correspondence for 372 
values above 0.1 ppbv. Nonetheless, we have noted a substantial amount of fluctuation in the simulations 373 
in clean regions, particularly for NO. While we cannot rule out the possibility of chemical mechanism 374 
uncertainty contributing to this deviation, the reported measurement errors for NO2 and NO are usually 375 
±0.05 ppbv and ±0.1 ppbv, respectively. Consequently, it is likely that the measurements error resulted in 376 
more spread in comparison. In particular, Shah et al. (2023) found that these measurements could be 377 
contaminated by various reactive nitrogen species in remote regions precluding a robust validation of 378 
atmospheric models. 379 

PAN – Our model reproduced 61% of the variance observed in PAN with a marginal absolute bias. 380 
According to Xu et al. (2021), the presence of oxygenated VOCs, particularly acetaldehyde, and the 381 
NO/NO2 ratio are key factors controlling PAN levels. While we have constrained acetaldehyde, variations 382 
in the NO/NO2 ratio in heavily polluted regions (where NOx levels exceed 1 ppbv) could potentially lead 383 
to biases in PAN simulations. Furthermore, our model's dilution factor has been arbitrarily set, and it is 384 
possible that any bias caused by this factor has been canceled out by other effects, leading to seemingly 385 
bias-free performance. However, Souri et al. (2023) showed that an incorrect dilution factor can 386 
significantly impact PAN performance, causing a sharp decline in R2 resulting in a value below 30%. 387 
Therefore, the fact that our box model has performed well with respect to PAN could be an indication that 388 
our choice of the dilution factor is reasonable. 389 
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HO2 and OH – Based on our analysis of HO2 and OH simulations during KORUS-AQ, INTEX-B, 390 
and ATOMs, we have found a reasonable level of correspondence (R2>0.6) with the performance in 391 
previous studies conducted by Souri et al. (2020), Brune et al. (2022), Miller and Brune (2022), and Souri 392 
et al. (2023) that focused on some of these campaigns. Although the box model OH simulations reported in 393 
Brune et al. (2019) during ATOMs seemed to be better than ours (R2~0.8 vs R2~0.6), it is important to 394 
consider that their observations were averaged over 1-minute intervals as opposed to our 30-second 395 
intervals. It should also be noted that there can be large errors in ATHOS HOx measurements of up to ±40% 396 
(Miller et al., 2022), so recreating the exact variance in the observations should not be the main objective. 397 
Nonetheless, the performance of our simulations in terms of HOx compared to observations suggests that 398 
the number of measured compounds and chemical mechanisms used in the model was effective. Our 399 
model's performance with respect to HOx is comparable to more sophisticated mechanisms that encompass 400 
a larger number of measured species (Brune et al., 2022; Miller and Brune, 2022). 401 

Overall, while there are inevitably some differences between the box model results and 402 
observations, they are consistent with what other studies have found in similar aircraft campaigns. Our 403 
extensive box model results, which consider a variety of meteorological, chemical, and photolysis rates, 404 
demonstrate satisfactory results for unconstrained compounds across a wide range of atmospheric 405 
conditions. This suggests that our training dataset from the box model is a reliable source for understanding 406 
local PO3.  407 

It is important to note that even if a simulated data point does not match up perfectly with actual 408 
observations, it still plays a role in establishing PO3 and other explanatory variables. Hypothetically, one 409 
can generate synthetic training data points by running the box model under random numbers for the inputs; 410 
but only a fraction of those can be truly observed in nature. Therefore, a mild outlier in our training dataset 411 
should be viewed as less likely to occur in nature (presuming that these campaigns could represent all 412 
conditions happening in nature), but still a valuable data point drawn from a physical model that can be 413 
used to bridge PO3 with explanatory variables.  414 
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 415 

Figure 3. The scatterplot comparison of simulations with observed concentrations for six unconstrained 416 
species. More than ~133,000 observations are used for HCHO, NO2, NO, and PAN. HOx data points are 417 
limited to ~55,000 observations. Heat maps show the density of the data. Linear fits are calculated using 418 
the ordinary least squares method.  419 

4.2. Classification of aircraft data 420 

Following the method described in Section 3.3, we cluster the cloud of aircraft data (~ 133k points) 421 
into seven distinct classes. We describe them using three categories: pollution level, altitude, and SZA. 422 
Figure 4 illustrates the violin plot of these classes for various chemical, solar, and meteorological 423 
conditions. Figure 5 shows their corresponding violin plot of simulated PO3. A discussion of each class and 424 
their relationship to PO3 follows: 425 

C1 (clean, high altitude, high SZA) – Characterized by high altitude flights, cold ambient temperature, and 426 
negligible water vapor content, this class consists of observations that were typically taken during relatively 427 
high SZA with a median of 50o. While high altitude observations in clear-sky conditions often should have 428 
large photolysis rates due to reduced overhead ozone, the relatively high SZA of this class leads to low 429 
photolysis rates. FNRs tend to be large in this class due to a higher amount of HCHO over NO2, and FNP 430 
(HCHO×NO2) and NO2/NOy ratios are low due to the pristine conditions. The lack of sufficient ozone 431 
precursors and reduced photochemistry make this class undergo the lowest PO3 rates with a median of 0.11 432 
ppbv/hr. 433 

C2 (clean, high altitude, low SZA) - This category represents samples collected in low SZA conditions, 434 
resulting in the highest photolysis rates among all classes. The mass of ozone precursors and the ozone 435 
sensitivity condition are similar to those in C1. However, C2 PO3 rates are approximately 60% higher than 436 
C1 due to increased photochemistry. 437 
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C3 (moderately clean, medium altitude, high SZA) - This class is characterized by observations collected 438 
in mid-altitudes and high SZA. Airsheds in C3 experienced relatively more polluted air compared to C1 439 
and C2 due to being closer to the surface. Photolysis rates are smaller than C1 possibly because of higher 440 
ozone overhead, although we cannot rule out the varying surface albedo between the classes. Despite the 441 
lower photolysis rates, C3 PO3 (0.28 ppbv/hr) is larger than that of C2 and C1, indicating that pollution 442 
levels can have a more significant impact than favorable conditions for photochemistry. 443 

C4 (moderately clean, medium altitude, low SZA) - This category is distinct from C3 in terms of lower 444 
SZA (resulting in more photochemistry) and a slightly smaller number of ozone precursors. As a result of 445 
the lower ozone precursor concentration, not only is C4 PO3 (0.19 ppbv/hr) lower than C3, but also is not 446 
different from C2. This again implies that the amount of ozone precursors is more important than the 447 
photochemistry for these conditions.  448 

C5 (extremely polluted, low altitude, low SZA) - This class features the highest amount of ozone precursors 449 
(median FNP ~ 58 ppbv2) among all classes. Furthermore, it is characterized by low photolysis rates due to 450 
its proximity to the surface, and high NO2/NOy indicative of localized polluted airshed. Unlike the previous 451 
classes, this class has the lowest FNR, indicating that it is mainly located in the VOC-sensitive regime. C5 452 
PO3 values are much higher than the previous classes, with a value of 3.0 ppbv/hr. 453 

C6 (polluted, low altitude, low SZA) - While this class shares similar features with C5 in terms of altitude, 454 
photolysis rates, and meteorology, it experiences a lower FNP (median of 8 ppbv2). Despite the lower FNP, 455 
C6 has the highest amount of PO3 (5.2 ppbv/hr) among all classes. This is a result of reduced non-linearities, 456 
as this class does not often fall into an extreme VOC-sensitive regime (median FNR ~ 1.0) where nitrogen 457 
oxides (NOx) can hamper ozone production. This tendency coincides with Souri et al. (2023) which also 458 
found that the highest amount of PO3, lied between the transitional regimes, gravitated towards VOC-459 
sensitive because of abundant ozone precursors and reduced negative chemical feedback of NOx. 460 

C7 (moderately polluted, low altitude, high SZA) - C7 is characterized by aged air close to the surface with 461 
slightly higher photolysis rates than C5 and C6. C7 PO3 is 2.5 ppbv/hr, only slightly smaller than C5 despite 462 
much lower FNP (median of 0.9 ppbv2). This could be caused by the combined effect of higher photolysis 463 
rates and reduced non-linear ozone chemistry. 464 

The analysis of aircraft data has revealed that the levels of HCHO and NO2, as well as the rates of 465 
jNO2 and jO1D photolysis, play an important role in influencing PO3. Additionally, FNRs can offer insights 466 
into the sensitivity of PO3 to its main precursors. These findings align with numerous other studies that 467 
have examined the factors driving PO3 (e.g., Duncan and Chameides, 1998; Thornton et al., 2002; Kleiman 468 
et al., 2002; Gerasopoulos et al., 2006; Chatfield et al., 2010; Baylon et al., 2018; Wang et al., 2020; Souri 469 
et al., 2023). Consequently, our PO3 estimates will incorporate HCHO, NO2, jNO2, jO1D, and FNR. While 470 
the cluster analysis did not definitively indicate whether meteorological conditions impact PO3, we will 471 
also include ambient temperature, water vapor, pressure, and SZA to determine if they provide any 472 
additional insights into PO3 estimates. 473 
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 474 

Figure 4. The violin plots of six different parameters coming from the box model clustered into seven 475 
distinct categories. Each cluster is described by three labels: air pollution levels (C: clean, M: moderately 476 
clean, P: moderately polluted, P+: polluted, P++: extremely polluted), altitude (H: high, M: medium, L: 477 
low), and SZA (H: high, L: low). The white dot is the median and the bars explain the 75th and 25th 478 
percentiles. Both FNR and FNP are scaled using the logarithmic function to enable the simultaneous 479 
visualization of low and high values within a single plot. 480 

 481 
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Figure 5. The corresponding violin plots of simulated PO3 for the seven clusters described in Figure 4. 482 
The lowest PO3 is seen in remote regions (C-M) where ozone precursors are minimal. The highest PO3 483 
does not happen in the most polluted region (P++) resulting from the non-linear ozone chemistry.  484 

4.3. Estimates of PO3 485 

4.3.1. LASSO coefficients 486 

Armed with a procedure that finds the important features in a linear model (Section 3.1), we now 487 
explore using LASSO for PO3 estimation. We make use of all data points generated by the observationally-488 
constrained box model from various atmospheric composition campaigns. Among the selected variables 489 
shown in Figure 2, the LASSO algorithm assigns zero coefficients to SZA, pressure, temperature, and water 490 
vapor, indicating that they offer less valuable information compared to other variables. This decision was 491 
made by systematically adjusting the regularization factor within a 10-fold cross-validation framework to 492 
identify the optimal factor that strikes a balance between solution variance and prediction bias. As a result, 493 
the LASSO algorithm suggests that HCHO, NO2, jNO2, and jO1D contain sufficient information to 494 
accurately predict PO3 for the most part.  495 

Table 1 provides the intercepts and the corresponding coefficients for four different regions 496 
separated by FNR. While we do not expect for a statistical model to fully single out the “cause and effect” 497 
relationship between explanatory variables and the target, we note that it has some basic understanding of 498 
ozone chemistry; the HCHO coefficients increase as moving towards smaller FNRs (i.e., more VOC-499 
sensitive). The same tendency is evident with respect to NO2 and larger FNRs (i.e., more NOx-sensitive). 500 
The negative coefficient of NO2 in regions having FNR≤1.5, implies some levels of non-linear feedback 501 
embedded in this parameterization. Both jNO2 and JO1D have positive coefficients throughout the chemical 502 
conditions, suggesting that higher photolysis rates accelerate PO3. JO1D has a smaller effect than jNO2 on 503 
PO3 over remote regions (FNR≥3.5) perhaps because of redundant information available compared to jNO2.   504 

Table 1. Calibrated coefficients derived from the LASSO estimator using seven atmospheric 505 
composition aircraft campaigns.  506 

Group Criteria for FNR Intercept HCHO [ppbv] NO2 [ppbv] jNO2×103 [s-1] jO1D×106 [s-1] 

1 FNR≤1.5 -1.98 1.85 -0.14 0.12 0.09 

2 1.5<FNR<2.5 -3.38 1.79 0.98 0.19 0.07 

3 2.5<FNR<3.5 -3.27 1.07 3.48 0.21 0.03 

4 FNR≥3.5 -1.63 0.41 6.54 0.11 0.01 

 507 

4.3.2. Validation of PO3 predictions 508 

The validation of PO3 prediction against the box model results is performed in threefold with an 509 
increasing stringency order: i) using all data points used in the LASSO algorithm, ii) by randomly dropping 510 
data points, and iii) by dropping each air quality campaign from the LASSO estimation and using its data 511 
as benchmark.  512 

Figure 6a shows the scatterplot of predicted PO3 against the box model for all data points used to 513 
estimate the coefficients described in Section 4.3.1. Despite the algorithm's simplicity, we can recreate more 514 
than 88% of the variance in PO3 with negligible absolute bias. This has an important indication that our 515 
scientific problem is not overly complex. There is less than 30% bias with respect to the mean absolute bias 516 
of the prediction. The positive offset and a slope smaller than one indicate a mild underestimation 517 
(overestimation) of PO3 in polluted (clean) regions. Figure 6b shows the same analysis for 20,000 randomly 518 
chosen data points (~15% of the total) that we purposefully dropped from the LASSO estimation to gauge 519 
if the predictor model can replicate numbers for points not used during the training. We find almost identical 520 
statistics for these points, suggesting that the prediction stays robust for points outside the training data set. 521 
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However, the most stringent method is to drop each campaign data set entirely to understand where the 522 
prediction model struggles most.  523 

 524 

Figure 6. Scatterplots comparing observationally-constrained F0AM model PO3 and the predictions based 525 
on the proposed algorithm for (a) all data points and (b) 20,000 randomly-dropped data points as 526 
benchmarks. Despite the simplicity of the algorithm, we can reproduce a large variance in PO3 using only 527 
four explanatory variables.  528 

Figure 7 shows several subplots pertaining to dropped campaigns from the analysis. Immediately 529 
evident is that our PO3 estimation has considerable skills at capturing PO3 for most polluted cases, including 530 
DISCOVER-AQs, KORUS-AQ, and SENEX without using their individual datasets. This provides 531 
convincing evidence about a high degree of generalizability of the predictor. However, the model has a 532 
reduction in performance in INTEX-B for PO3 <1 ppbv/h. Moreover, the model prediction power is 533 
consistently poor for ATOMs where a significant fraction of airsheds were samples in pristine areas. We see 534 
such poor performance for PO3<1 ppbv/hr for other campaigns such as KORUS-AQ. Therefore, it is 535 
difficult to have confidence in the predictive power of the model in remote regions, which may be caused 536 
by the lack of inclusion of HOx, halogens, and H2O in the fit, as they can become an important sink for 537 
tropospheric ozone in those areas (Simpson et al., 2015). Nonetheless, while our predictive accuracy 538 
remains poor for this specific subset of the data, the practical utility and significance of this specific region 539 
(i.e., pristine areas) for air quality applications are notably limited. Given these results, we limit our 540 
predictions to PO3>1 ppbv/hr for the subsequent analyses. 541 
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 542 

Figure 7. Same as Figure 6b, but each campaign is dropped from the LASSO estimation and subsequently 543 
used as an independent benchmark. The designed algorithm has shown a high degree of skill at predicting 544 
PO3 in polluted regions; however, it performs poorly in pristine areas.  545 

4.3.3. TROPOMI NO2 and HCHO validation 546 

To build confidence in our quantitative application of TROPOMI data for PO3 estimates, we 547 
validate the daily tropospheric NO2 and total HCHO columns against MAX-DOAS and FTIR observations 548 
based upon the validation framework outlined in Vigouroux et al. (2020) and Verheolst et al. (2021). Both 549 
paired datasets have been expanded to late 2023 showing a fuller picture of TROPOMI error 550 
characterization compared to former studies. Figure 8 shows the comparison of daily TROPOMI, the 551 
benchmarks and the optimal fit associated with their errors for the period of 2018-2023.  552 

In the context of tropospheric NO2 comparison, we observe a slope smaller than one (~ 0.66) with 553 
a positive offset (0.32 ×1015 molec/cm2). This tendency has been repeatedly documented in various studies 554 
for various satellites or benchmarks (e.g., Griffin et al., 2019; Choi et al., 2020; Verhoelst et al. 2021; van 555 
Geffen et al., 2022). A slope smaller than one, originating from unresolved systematic biases, implies that 556 
TROPOMI is biased-low in polluted regions. A slight positive offset suggests that TROPOMI NO2 is 557 
biased-high in remote regions. The errors of slope and the offset are relatively small, evidence of the 558 
robustness of the optimal fit against the dataset variance. Nonetheless, we will incorporate them into Eqs 2 559 
and 3 to take the adjustment error into consideration. 560 

Despite the inherent difficulty in obtaining HCHO observations from the UV-Vis imagery 561 
(González Abad et al., 2019), the HCHO comparison exhibits a good alignment with benchmarks. Like the 562 
previous comparison, the slope is smaller than one (~0.59) and the offset is positive (~0.9 ×1015molec/cm2) 563 
agreeing within 10% with studies done by Vigouroux et al. (2020) and De Smedt et al. (2021). 564 
Consequently, we will consider the fit errors and adjust all VCDs based on the slope and the offset obtained 565 
from this comparison. 566 



18 
 

 567 

Figure 8. The comparison of TROPOMI tropospheric NO2 and MAX-DOAS (left) and TROPOMI HCHO 568 
and FTIR (right). The data points cover the period of 2018-2023. Both errors of in-situ measurements and 569 
TROPOMI are considered in the fit. The data curation procedure has been discussed in Verhoelst et al. 570 
(2021) and Vigouroux et al. (2020). The slope smaller than one suggests that both HCHO and NO2 retrievals 571 
are underestimated in polluted regions.  572 

4.3.4. Maps of PO3 across various regions and qualitative description 573 

Taking advantage of the wealth of bias-corrected TROPOMI observations, we present the first-ever 574 
reported PO3 maps at 0.1×0.1 degrees in the PBL in July 2019 across various geographic regions. Moreover, 575 
because of the explicit nature of our algorithm, it is straightforward to break down the contributors of PO3 576 
to gather insights into how each driver has shaped the distribution of PO3. Therefore, in addition to PO3 577 
maps, we will show the magnitudes of various drivers of PO3 including NO2, HCHO, and FNR 578 
concentrations in the PBL region, the sum of scaled jO1D and jNO2 values, along with their contributions 579 
to PO3. It is worth noting that these maps are only a snapshot of PO3 whose precursors can have large 580 
interannual and interdecadal variability caused by meteorology, chemistry, and emissions. A discussion on 581 
each region follows: 582 

Africa and the Middle East – Figure 9 illustrates the accelerated rates of PO3 over the region, particularly 583 
concentrated over major cities such as Tehran (Iran), Cairo (Egypt), Riyadh (Saudi), Baghdad (Iraq), Algiers 584 
(Algeria), and Johannesburg (South Africa). These urban areas consistently experience poor air quality 585 
episodes (e.g., Chaichan et al., 2016; Belhout et al., 2018; Yousefian et al., 2020; Thompson et al., 2014; 586 
Boraiy et al., 2023; Choi and Souri et al. 2015a). The biomass burning activities in Africa (see Figure 1 in 587 
Roberts et al., 2009) significantly contribute to the high rates of PO3. Moreover, we see accelerated PO3 588 
over the Persian Gulf, a region housing oil and gas production facilities, leading to high PO3 in the region 589 
(Lelieveld et al., 2009; Choi and Souri et al. 2015a). Figure 10 shows NO2 and HCHO concentrations are 590 
highly correlated in the Middle East (r=0.82) due to co-emitted NOx and VOC emissions, predominantly 591 
from anthropogenic sources. Over the whole region, HCHO and NO2 concentrations are only moderately 592 
correlated (r=0.61). This is because there is strong spatial heterogeneity associated with NOx and VOC 593 
emissions over Africa that are not spatially correlated. One possible explanation for this could be the 594 
emission dependence on the type of fire combustion in Africa (van der Velde et al., 2021) and the location 595 
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of biogenic isoprene emissions (Marais et al., 2014). For the most part, FNRs tend to fall in ranges above 596 
>3.5 (LASSO group 4, highly NOx-sensitive). However, lower FNRs are prevalent in the core of cities due 597 
to elevated NOx emissions. The contributions of HCHO to PO3 occur predominantly over areas with low 598 
FNRs. These results suggest that NOx emissions dictate the location of maximum VOC contributions to 599 
PO3. The contribution of NO2 to PO3 behaves non-linearly with negative values at the core of cities such as 600 
Johannesburg and Tehran (Figure S2). Photolysis rates are high over low SZA and bright surface albedo 601 
(i.e., arid land). Accordingly, photolysis rates exhibit a latitudinal gradient in response to changes in SZA. 602 
Greater contributions of photolysis rates to PO3 are observed in areas with low FNRs, as determined by the 603 
LASSO estimator (Table 1).  604 

 605 

Figure 9. The spatial distribution of PO3 within the PBL region averaged over July 2019 in Africa and the 606 
Middle East. PO3<1 ppbv/hr is masked due to the algorithm deficiencies. Accelerated PO3 can be seen over 607 
major cities and biomass burning activities in Africa. 608 
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 609 

Figure 10. (first row) PBL concentrations of HCHO, NO2, FNR and sum of scaled jO1D and jNO2 derived 610 
from TROPOMI and models in July 2019; (second row) the contributions of HCHO, NO2, and photolysis 611 
rates to PO3, along with the defined LASSO ozone production sensitivity regimes for PO3 estimates.   612 

Contiguous United States (CONUS) – New York City, Los Angeles (LA), the San Francisco Bay area, and 613 
Lake Michigan areas all experience accelerated PO3 in July 2019, as shown in Figure 11. All the regions 614 
fall into non-attainment regions (marginal to extreme) with respect to ozone standards and have been 615 
immensely studied (Wu et al., 2024; Kim et al., 2022; Stainer et al., 2021). A robust relationship between 616 
PO3 and ozone concentrations can only be established by factoring in physical processes such as horizontal 617 
and vertical transport, dry deposition rates, and background values. In regions with high background ozone 618 
concentrations, for example in mountainous areas, even a moderate level of PO3 can elevate ozone 619 
concentration to unhealthy levels. Conversely, if there is a strong correlation between PO3 and frequent 620 
ozone exceedances, such as those observed in the mentioned U.S. cities, it indicates that locally produced 621 
ozone through chemical reactions is the primary factor contributing to those events. Except for LA, the vast 622 
majority of CONUS fall into large FNRs (>3.5), meaning NO2 levels largely shape the spatial distribution 623 
of PO3 (Figure 12). HCHO levels are found to be relatively large over LA, causing PO3 to increase due to 624 
its greater sensitivity to VOCs. In addition to high levels of HCHO and NO2 in several Californian regions, 625 
accelerated photochemistry caused by the bright surface albedo enhances PO3. 626 
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 627 

Figure 11. Same as Figure 9 but for CONUS. Elevated PO3 prevails over various areas such as New York 628 
City, Los Angeles, San Francisco Bay area, and Lake Michigan.  629 

 630 

Figure 12. Same as Figure 10 but for CONUS. 631 

East and Southeast Asia – Figure 13 shows extremely accelerated PO3 values over East Asia, particularly 632 
over North China Plain, Yangtze River Delta, Pearl River Delta, and Seoul. These regions have experienced 633 
severely degraded air quality with respect to ozone (Souri et al., 2020a,b; Li et al., 2019; Colombi et al., 634 
2023; Schroeder et al., 2020; Wang et al., 2017; Zhang et al., 2007). In southeast Asia, Hanoi (Vietnam), 635 
Kuala Lumpur (Malaysia), and Jakarta (Indonesia), undergoing heightened PO3 as well, have received less 636 
attention in literature (Ahamad et al., 2020; Kusumaningtyas et al., 2024; Sakamoto et al., 2018). Figure 14 637 
suggests that the chemical condition of many regions in China and South Korea, falling within the 638 
transitional regimes (LASSO group 2 and 3, 1.5<FNR<3.5), has made them susceptible to high PO3 levels 639 
due to concurrent high concentrations of HCHO and NO2. Moreover, photochemistry appears to be active 640 
throughout the region. 641 
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 642 

Figure 13. Same as Figure 9 but for east and southeast Asia. Because of heightened amount of 643 
photochemistry, NO2, and HCHO, we observe accelerated PO3 throughout the majority of the cities in East 644 
and Southeast Asia.  645 

 646 
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Figure 14. Same as Figure 10 but for east and southeast Asia. 647 

Europe – Figure 15 reveals high PO3 over Benelux (Belgium, The Netherlands, and Luxembourg), Po 648 
Valley (Italy), and several major cities such as Barcelona (Spain) and Rome (Italy). Benelux has the largest 649 
hotspot of PO3 in the region (e.g., Zara et al., 2021). A significant portion of England, Benelux, fall into 650 
VOC-sensitive, or the transitional regime (FNR<2.5) shown in Figure 16. Because of diminished 651 
photochemistry in these high latitude regions, we do not see significant PBL concentrations of HCHO in 652 
order for PO3 to be as high as the previous areas; moreover, the non-linear NOx feedback has led to negative 653 
contributions of NO2 to PO3 in several cities such as London. In general, low photolysis rates compared to 654 
the previous regions have made most of Europe less prone to elevated PO3. 655 

 656 

Figure 15. Same as Figure 9 but for Europe. Because of reduced photochemistry, PO3 values tend to be 657 
smaller than the previous cases. Benelux has experienced the highest PO3 in this region. 658 
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 659 

Figure 16. Same as Figure 10 but for Europe. 660 

4.3.5. Seasonality of PO3 over the Middle East 661 

It is attractive to study the seasonal variations in the contributors to PO3 over several major cities 662 
because the PO3 drivers’ seasonality can vary from location to location. We decide to focus on several 663 
Middle Eastern countries that have experienced rapid growth and degraded air quality: Cairo (Egypt), 664 
Ghaza (Palestine), Baghdad (Iraq), Riyadh (Saudi Arabia), Tehran (Iran), and the Persian Gulf region. We 665 
illustrate the seasonality of four major contributors to PO3 including NO2, HCHO, jNO2, and jO1D in 2019 666 
in Figure 17. 667 

The levels of HCHO (a proxy for VOCs) consistently have the greatest impact on PO3 throughout 668 
the year in these regions. Specifically, both Baghdad and Tehran experience high levels of HCHO even 669 
during colder months, which can be observed using TROPOMI. This suggests that regulations targeting the 670 
reduction of man-made VOC emissions should be prioritized in this region. PO3 levels over Cairo, Gaza, 671 
Baghdad, and the Persian Gulf peak during summertime, while Tehran experiences a comparable peak in 672 
the autumn due to increased VOC emissions. Additionally, we notice a decrease in PO3 levels over the 673 
Persian Gulf and Riyadh in July, possibly due to a decline in HCHO contributions caused by meteorological 674 
factors. Even though NO2 concentrations decline in summertime due to shorter lifetime against OH, the 675 
higher amount of HCHO makes PO3 more sensitive to NO2 in this season. Ghaza shows the least seasonal 676 
variation among these regions, likely due to consistently active photochemistry throughout the year. 677 
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 678 

Figure 17. The contributions of NO2, HCHO, jNO2, and jO1D to the PBL PO3 for several major regions in 679 
the Middle East. These estimates are based on the proposed algorithm integrating TROPOMI, ground-based 680 
remote sensing, and atmospheric models, to estimate PO3 based upon a statistical approach. PO3 tends to 681 
spike around the summer due to increased HCHO, higher sensitivity of PO3 to NOx, and enhanced 682 
photochemistry. However, Tehran shows a second peak in autumn due to unusual high values of HCHO.  683 

4.3.6. The effect of satellite errors on PO3 684 

Satellite retrieval errors have been identified as the primary obstacle to achieving a robust 685 
understanding of ozone chemistry using HCHO and NO2 data (Souri et al., 2023; Johnson et al., 2023); 686 
therefore, generating uncertainty maps is crucial for informing the scientific community about the 687 
credibility of our PO3 estimates. In this study, we utilize the equations outlined in Section 2.2.1 to propagate 688 
the errors of HCHO and NO2 retrievals to the final PO3 estimates. We achieve this by recalculating the PO3 689 
value for a given pixel 10,000 times, with each recalculation based on a sample drawn from a normal 690 
distribution with a standard deviation equal to the satellite total error. The standard deviation of these 691 
samples offers a good approximation of the impact of satellite errors on PO3 estimates.  692 

Figure 18 illustrates the maps of PO3 absolute and relative errors over the targeted regions in the 693 
course of the month of July. The errors of PO3 estimates tend to be high (> 50%) in remote regions where 694 
the trace gas signals are small. However, the PO3 errors are within 10-20% in polluted regions where the 695 
signals are larger. Currently, the absence of absolute measurements of PO3 at this vast spatial coverage 696 
makes it challenging to judge the severity of these errors for PO3 applications. Nonetheless, any application 697 
based on this product should be recalculated within the reported errors through a Monte-Carlo to gauge the 698 
significance of the outcome.  699 
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 700 

Figure 18. The influence of the satellite errors on PO3 estimates (absolute and relative) over four major 701 
regions tackled in this work. The errors are based on monthly-averaged TROPOMI errors. The errors tend 702 
to be mild over polluted regions (10-20%) but they can exceed above 50% over pristine ones.  703 

5. Conclusion 704 

Providing data-driven and integrated maps of ozone production rates (PO3) using a synergy of 705 
satellite retrievals, ground-based remote sensing, and atmospheric models enabled us to generate the first 706 
satellite-informed product of this kind, offering extensive spatial coverage with important applications in 707 
atmospheric chemistry. These data have indeed extended the use of formaldehyde (HCHO) over nitrogen 708 
dioxide (NO2) ratios (FNR) beyond their current role. Through this product, we can shed light on the effects 709 
of emission regulations, wildfires, widespread lockdown, wars, and economic recessions on PO3 levels. 710 
Furthermore, given the long-term records of satellite observations (e.g., OMI since 2005 and TROPOMI 711 
since 2018), this product can inform emission regulators about locally-produced ozone hotspots, and 712 
ultimately, enhance our understanding of the spatiotemporal variability of ozone formation for over two 713 
decades. 714 

In this study, we generated PO3 maps within the planetary boundary layer (PBL), constrained by 715 
bias-corrected TROPOspheric Monitoring Instrument (TROPOMI) observations, using a piecewise 716 
regularized regression model. This model was calibrated using a blend of data from a comprehensive suite 717 
of aircraft observations and a well-characterized box model. These maps, produced for various regions, 718 
allowed us to identify hotspots of locally-produced ozone pollution with unprecedented resolution. Our 719 
findings indicated that numerous urban areas in the Middle East, East Asia, and Southeast Asia exhibit 720 
accelerated PO3 rates (>8 ppbv/hr), attributed to high levels of anthropogenic nitrogen oxides (NOx = NO 721 
+ NO2), volatile organic compounds (VOCs), and active photochemistry. In contrast, such elevated PO3 722 
levels were less prevalent in the United States and Europe, with exceptions including Los Angeles, New 723 
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York City, and the entire region of the Benelux. Additionally, biomass burning activities in Africa 724 
contributed to high PO3 rates across extensive areas. Seasonality of PO3 peaked around the summer for 725 
several regions in the Middle East because of active photochemistry and concurrent large HCHO and NO2 726 
levels; however, Tehran experienced elevated PO3 in the autumn due to large HCHO values possibly 727 
produced from anthropogenic emissions. 728 

The production of these maps relied heavily on a robust training dataset. To this end, we 729 
incorporated an extensive array of aircraft observations from multiple atmospheric composition campaigns, 730 
including DISCOVER-AQ, KORUS-AQ, INTEX-B, ATOM, and SENEX, into the Framework for 0-D 731 
Atmospheric Modeling (F0AM) photochemical box model. The box model demonstrated a high level of 732 
correspondence (R2 > 0.6, with minimal biases) between several unconstrained compounds (e.g., HCHO, 733 
OH, HO2, PAN, NO, and NO2) and their observed counterparts, indicating its effectiveness in understanding 734 
local ozone chemistry. Utilizing a classification algorithm applied to the data obtained from the constrained 735 
box model, we identified HCHO, NO2, their ratio (known as FNR), photolysis rates, and, to some extent, 736 
meteorological factors as good candidates for reproducing PO3 variability and magnitudes. 737 

Subsequently, we employed a piecewise linear model known as LASSO, which is capable of 738 
feature selection by eliminating unimportant inputs, to parameterize PO3. A key component of this 739 
parameterization was the use of FNR to empirically linearize the non-linear ozone chemistry. The LASSO 740 
algorithm indicated that more than 88% of the variance in PO3 could be reproduced with low bias using 741 
only five parameters: FNR, HCHO, NO2, jNO2 (photolysis rates for NO2 + hv), and jO1D (photolysis rates 742 
for O3 + hv). This parameterization demonstrated remarkable performance for the majority of air parcels 743 
collected in moderately to extremely polluted regions (PO3 > 1 ppbv/hr). However, it performed poorly in 744 
pristine regions due to the exclusion of certain ozone loss pathways, such as HOx (OH+HO2), which are 745 
more challenging to predict. 746 

Fortunately, TROPOMI provided critical data to enhance the representation of FNR, HCHO, NO2, 747 
jNO2, and jO1D. We utilized TROPOMI's viewing geometry, UV surface albedo, and total ozone overhead 748 
from a model to predict jNO2 and jO1D using look-up tables derived from NCAR’s TUV model. To convert 749 
TROPOMI tropospheric NO2 and HCHO columns to their PBL mixing ratios, we employed the 750 
MERRA2GMI global transport model, extensively used in various studies. However, the coarse resolution 751 
of this model might have introduced underrepresentation issues, which could be mitigated by using higher 752 
spatial resolution models in future research. 753 

To address the biases associated with TROPOMI observations, we updated comparisons from 754 
Verhoelst et al. (2021) and Vigouroux et al. (2020) with a larger dataset of paired TROPOMI and 755 
FTIR/MAX-DOAS measurements. TROPOMI retrievals significantly underestimated HCHO and NO2 756 
magnitudes in polluted regions (slope ~0.6 - 0.7) and moderately overestimated them in pristine areas. 757 
These biases were corrected using regression lines, enabling a relatively unbiased application of the data. 758 

To build confidence in our product, we propagated TROPOMI HCHO and NO2 errors to PO3 759 
estimates using a Monte Carlo approach. Results indicated that PO3 estimates were uncertain (>50%) in 760 
clean regions due to a low trace gas signal in TROPOMI retrievals. However, in polluted regions, the errors 761 
were more moderate (10-20%) due to the stronger signal. 762 

Over the years, extensive efforts have been devoted to measuring various critical atmospheric 763 
compounds globally, developing robust atmospheric models, and enhancing satellite retrievals along with 764 
their benchmarks. These advancements have enabled us to estimate PO3 maps within the PBL. Nonetheless, 765 
it is crucial to acknowledge some limitations of our work, many of which are the focus of ongoing research 766 
within our team: 767 
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i) The direct measurement of PO3 using specialized instruments (Cazorla and Brune, 2010; 768 
Sadanaga et al., 2017; Sklaveniti et al., 2018) is lacking in most atmospheric composition datasets, limiting 769 
our ability to fully understand the effects of assumptions (such as the exclusion of heterogeneous chemistry) 770 
made in the box model on PO3. 771 

ii) There is potential for improvement in the parameterization process by employing more 772 
sophisticated algorithms, such as neural networks, which could increase the variance explained in the 773 
predicted PO3. 774 

iii) The conversion of satellite column data to PBL mixing ratios requires error characterization 775 
and the use of finer-resolution models that are comparable in size to the PO3 grid boxes. 776 

iv) Partially cloudy pixels and aerosols can affect photolysis rates, which should be considered in 777 
future parameterization efforts. 778 

It is important to recognize that PO3 maps are just one piece of the puzzle when it comes to 779 
determining ozone concentrations. Several studies have indicated that accurately representing surface ozone 780 
is challenging due to difficulties in representing background ozone, transport, and dry deposition rates. 781 
Therefore, we advise against directly linking high PO3 rates from our product to increased unhealthy ozone 782 
exposure. However, our product does provide indications as to whether heightened ozone concentrations 783 
are associated with chemistry contributions as opposed to other processes (e.g., meteorology or dry 784 
deposition rates). Further investigation using additional tools/data is necessary to gather a full picture of 785 
these processes. 786 

Despite these limitations, our novel product offers an asset to the atmospheric science community. 787 
It provides a more comprehensive understanding of the complexities associated with spatiotemporal 788 
variability associated with the non-linear ozone chemistry at a large domain and enhances confidence in 789 
high-resolution maps of chemically-produced ozone hotspots. 790 
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