
Response to Reviewer Comments 

Dear Editor, 

Thank you for providing valuable feedback from the reviewers on our manuscript "High-

Resolution Snow Water Equivalent Estimation: A Data-Driven Method for Localized 

Downscaling of Climate Data." We have carefully addressed all of the comments and 

suggestions to improve the clarity and overall quality of the paper. Below, we provide a 

point-by-point response to the reviewers’ comments. 

Reviewer 1  

1. Comment: The manuscript is generally well-structured, with a clear flow from the 

introduction to the methodology, results, and discussion. However, some sections could 

benefit from further clarification, particularly where the methodology is complex. 

Consider adding a diagram or flowchart in the methodology section to visually represent 

the steps of the proposed downscaling algorithm. This would help readers better 

understand the process. 

1. Response: We would like to thank the reviewer for their constructive feedback. We 

agree and have reviewed the methodology section, making several adjustments to 

enhance clarity. Additionally, we have included a flowchart in the methodology section 

(Section 2.3) to visually represent the steps of the downscaling algorithm, as suggested. 

Lines 178-180:  

SWE is also affected by preceding meteorological conditions, such as the temperature and 

precipitation patterns of previous days. For instance, the amount of SWE today may vary 

depending on the conditions experienced in the preceding days. 

Lines 211-213: 

In this study, the k-nn algorithm is applied to downscale low-resolution climate data to 

HR-SWE estimates by selecting learning days with similar climate conditions. The 

flowchart (Fig. 2) illustrates the proposed downscaling method for estimating HR-SWE, 

and the “steps” are as follows: 

1. Gather the input variables, including the far and near intervals of temperature, 

precipitation, shortwave radiation, and the LR-SWE for both the target date and 

the training dates. 

2. Calculate the similarity or distance between the input vector of the target date and 

the input vectors of the training dates. 

3. Select the K-nearest training dates based on their proximity to the target date in 

the input space. 

4. Retrieve the corresponding HR-SWE images associated with the selected K-

nearest training dates. 

5. Aggregate the retrieved HR-SWE images to estimate SŴE for the target date. 



Fig. 2. Visual representation of the proposed downscaling algorithm process. 

Lines 219-222: 

Unlike the Euclidean distance, which calculates the shortest straight-line distance, the 

Manhattan distance computes the sum of the absolute differences between variables. This 

makes it more robust against outliers and better suited for high-dimensional datasets, 

such as those containing multiple climate variables. In our method, this distance is used 

to rank the training dates based on their similarity to the target date. 

2. Comment: The novelty of the approach is well articulated, but a more explicit 

statement of how this method advances the field compared to existing approaches would 

strengthen the introduction. 

2. Response: We agree with this suggestion and have now explicitly highlighted how our 

method advances existing approaches, as follows: 

Lines 75-110: 

One of the statistical downscaling methods is bias-correction spatial disaggregation 

(BCSD) (Wood et al., 2004), which effectively reduces uncertainties in climate model 

outputs by adjusting biases based on high-resolution observational data. These methods 

excel in capturing local variability while correcting large-scale model biases, making them 

particularly valuable for hydrological applications. However, their reliance on high-

quality and extensive in-situ data restricts their applicability, particularly in remote or 

data-scarce regions, including areas with complex terrain where reliable climatological 

observations are limited. In contrast, our method overcomes these limitations by utilizing 

low-resolution climate data without requiring ground-based observations, making it 

well-suited for a wider range of conditions, including regions with limited data 

availability. 



Another widely used statistical downscaling method in climatology is based on a pattern 

known as the analog method (Zorita and Von Storch, 1999). These methods identify 

patterns in historical data that closely match the patterns simulated by atmosphere-ocean 

general circulation models. The observed surface climate conditions corresponding to 

these historical matches are then used as downscaled predictions. Analog methods have 

seen extensive application, as highlighted in studies such as those by Abatzoglou and 

Brown (2012), who demonstrated their effectiveness in wildfire assessments through the 

multivariate adapted constructed analog, which outperformed traditional spatial 

downscaling methods. Similarly, Pons et al. (2010) utilized analog-based downscaling to 

analyze snow trends in Northern Spain, successfully replicating observed variability and 

trends, highlighting its utility for seasonal and climate change projections. The study by 

Caillouet et al. (2016) demonstrated the utility of probabilistic downscaling in 

reconstructing high-resolution precipitation and temperature fields over France, 

effectively addressing seasonal biases. The AtmoSwing software by Horton (2019) 

highlights the flexibility of analog methods for operational forecasting and climate impact 

studies. 

Additionally, an analog-type method named nearest neighbor resampling, also used by 

Lall and Sharma (1996), relies on identifying patterns in historical point-based time series 

data and resampling them using a nearest-neighbor approach to preserve the serial 

dependence structure of the data. The k-nearest neighbors (k-nn) algorithm is a simple, 

non-parametric machine learning technique commonly used for classification and 

regression (Cover and Hart, 1967). It works by identifying the 'k' most similar data points 

(neighbors) to a target data point based on a chosen distance metric, such as the 

Manhattan distance. Building on this concept, Rajagopalan and Lall (1999) extended the 

methodology to multivariate weather simulations, incorporating variables such as 

precipitation, temperature, and wind speed to simulate daily weather sequences. Later, 

Yates et al. (2003) used an adapted version of these methods to generate daily weather 

sequences and alternative climate scenarios. k-nn downscaling by Gangopadhyay et al. 

(2005) extends the analog method by weighting several similar historical analogs to 

create predictive ensembles, adding further flexibility to this approach. They used the k-

nn approach to derive localized precipitation and temperature forecasts from large-scale 

atmospheric model outputs. The method integrates global-scale predictors with local-

scale station observations to produce downscaled forecasts at individual station 

locations. In the weather generator models based on k-nn, in general, the day directly 

succeeding the identified analog day is selected as the next day in the generated sequence, 

and this process continues iteratively (Gangopadhyay et al., 2005). Similarly, recent 

advancements, such as the study by Yiou and Déandréis (2019), have extended analog 

methods to ensemble-based probabilistic forecasts, demonstrating skill in predicting 

variables like the NAO index and temperatures at European stations. These innovations 

highlight the adaptability and growing utility of analog-based and k-nn approaches in 

climate and environmental modeling. 

Lines 118-149: 

This method provides several key advancements over existing statistical downscaling 

techniques. First, the adaptation made to the k-nn downscaling method, specifically by 

introducing far and near temporal intervals of climate data, is highly adaptable to dynamic 



variables undergoing significant changes due to climate variability. Second, unlike most 

analog methods that restrict analog candidates to a specific temporal window near the 

query date, this approach does not impose such limitations. This flexibility is crucial for 

three reasons: (1) the inclusion of far and near temporal intervals makes such restrictions 

unnecessary, as the most suitable candidates are selected based on their match within the 

temporal window; (2) it contributes to preserving extreme events, as restricting 

candidates to a narrow date range risks losing matches that represent rare but important 

extreme events; and (3) it enables downscaling for future periods where exact analogs 

may not exist in the historical record within a specific date range. However, suitable 

analogs may still be found in historical observations but on different dates. For example, 

with climate change, a specific snow day in winter may no longer match the query day, 

but an analog might be found in another season, such as fall or spring, under warmer 

climatic conditions. 

Moreover, unlike physical SWE data generation models, this method can reconstruct HR-

SWE data for historical periods where only low-resolution climate data are available, 

providing valuable insights into past snow conditions. Additionally, the method excels at 

capturing fine-scale SWE patterns in complex terrains, such as mountainous regions, 

significantly improving upon traditional statistical models that often struggle in such 

environments. Finally, our method does not require high-resolution climate input data. 

This substantially reduces computational demands while maintaining the high quality of 

the downscaled SWE data, as demonstrated in the results Section. By reducing the 

resolution requirements for input data and employing a computationally efficient data-

driven approach, our method offers significant computational advantages for practical, 

high-resolution applications, particularly compared to most physical models. These 

advantages are especially evident when snow data are needed for large areas, over long 

time periods, or when applied to ensembles of climate data. 

3. Comment: The methodology is thorough, but some sections are densely packed with 

technical details, making it challenging to follow. The description of the Manhattan 

distance metric, in particular, could be expanded to enhance reader understanding. 

Explain how the Manhattan distance operates within the context of your downscaling 

approach. This will help make the concept more accessible, especially for readers less 

familiar with the metric. 

3. Response: We have expanded the explanation of the Manhattan distance metric in 

Section 2.3 to provide greater clarity. Specifically, we explain how this metric is used to 

rank dates in the training dataset and why it is preferred over the Euclidean distance for 

this specific problem. We also added more details and made several adjustments to 

enhance clarity (please refer to Response 1). 

4. Comment: The choice of parameters (e.g., FI and NI intervals) is justified through 

sensitivity analysis, which is appropriate. However, the manuscript could benefit from a 

brief discussion on the potential limitations or assumptions made in the parameter 

selection process. 

4. Response: We have added a discussion in Section 2.4.1 to highlight potential 

limitations related to the choice of parameters, as follows: 



Lines 250-256: 

While the parameters are selected through a sensitivity analysis to minimize ε, it is worth 

mentioning that the selected parameters may not represent a global optimum. This means 

that while they perform well in the studied regions, they may not generalize as effectively 

to other locations or climatic conditions. Therefore, we recommend performing a 

sensitivity analysis for each region. Additionally, the sensitivity analysis assumes that the 

influence of these intervals is consistent across different temporal scales, which may not 

always hold true, particularly in regions with highly variable climate patterns. Despite 

these assumptions, the chosen parameters strike a balance between computational 

efficiency and accuracy for the downscaling task. Moreover, the subsequent weight 

optimization further mitigates the impact of non-global optimal parameter selection. 

5. Comment: The results are comprehensive and well-presented with relevant figures 

and tables. However, the discussion on the comparison between different models and 

resolutions could be expanded to provide more insights into why certain models perform 

better in specific regions. 

5. Response: We agree and have now referenced Kouki et al. (2022), who analyzed CMIP6 

models and found significant variations in model performance based on regional climatic 

and geographical conditions. Additionally, we have expanded the discussion to include 

the contributions of temperature and precipitation to SWE biases. Specifically, we 

emphasize that precipitation plays a dominant role in winter SWE biases, while 

temperature becomes more influential during the spring snowmelt season. These insights 

have been added to Section 5 to highlight important factors that affect model 

performance, although they were not the central focus of this study. 

Lines 246-256: 

In comparing the performance of different models across regions, several factors 

contribute to why certain models outperform others in specific locations. While a detailed 

comparison between model performances across various regions is beyond the scope of 

this study, other studies have explored this area. For example, Kouki et al. (2022) 

evaluated the ability of CMIP6 models to estimate SWE across the Northern Hemisphere 

and found that different models perform better in specific regions based on their capacity 

to simulate particular climatic and geographical conditions. In terms of the contribution 

of temperature and precipitation to SWE biases, precipitation plays a more dominant role, 

especially in winter. However, temperature becomes more significant during spring, 

when snowmelt occurs, particularly in regions with more temperate climates, such as the 

southern parts of North America and Europe. In regions where temperatures are closer 

to 0°C, biases in temperature can substantially affect snowmelt. This highlights the 

importance of accounting for both temperature and precipitation biases when evaluating 

model performance across different regions. 

Discussion Section, Lines 548-551: 

Accordingly, achieving accurate HR-SWE estimation relies significantly on the choice and 

accuracy of the climate model inputs, such as precipitation and temperature data, which 



can introduce biases into the SWE estimates. For example, precipitation biases are a 

dominant factor influencing SWE estimation errors, while temperature biases become 

more significant during transitional periods, such as the spring melt season.  

6. Comment: Consider including a more detailed comparison of the proposed method 

with existing downscaling techniques. This could be done in the discussion section, where 

you could highlight the strengths and limitations of your approach relative to others. 

6. Response: We agree and have now added more detail in the Discussion section, lines 

553–581, as follows: 

The following comparison provides a broader perspective on how our proposed method 

compares with other statistical downscaling techniques. BCSD methods are effective in 

reducing uncertainties in climate model outputs by adjusting model biases using high-

resolution observations. These methods are particularly valuable for ensuring that model 

outputs align with observed climatology and capture local variability. However, they 

depend heavily on the availability of high-quality in-situ data, which limits their 

application in remote or data-sparse regions. In contrast, our method excels in areas with 

sparse data, as it uses low-resolution climate data without requiring ground observations, 

making it adaptable to a broader range of conditions. 

Similarly, analog-type statistical downscaling approaches offer a relatively simple and 

computationally efficient way to project high-resolution data based on historical 

relationships between large-scale climate patterns and local climate variables. These 

methods are useful in regions where historical climate patterns are stable and well-

documented. Our method introduces several key improvements over traditional analog-

type downscaling techniques. First, the adaptation of the k-nn approach through the 

incorporation of far and near temporal intervals of climate data enhances its ability to 

handle dynamic variables, such as snow, which are subject to significant changes due to 

climate variability. Unlike conventional analog methods, which constrain analog 

candidates to a specific temporal window near the query date, our method eliminates 

such restrictions. 

This is important for three main reasons: (1) the inclusion of far and near temporal 

intervals allows the selection of the most suitable candidates across a broader temporal 

range, making narrow constraints unnecessary; (2) it helps in preserving extreme events, 

as restricting candidates to a narrow temporal window may risk excluding matches that 

represent rare but important extreme events; and (3) it facilitates downscaling for future 

periods where no exact analogs exist in the historical record within a specific date range. 

Instead, suitable analogs may still be found in historical data but during different periods. 

For instance, as climate change progresses, a future day in winter may no longer have a 

match on the same calendar day in the past but might find an analog on another calendar 

day, for example, in a warmer season such as fall or spring. 

In terms of computational efficiency, our method is highly effective. By using very low-

resolution climate data as input, it reduces both memory requirements and computation 

time compared to physical snow models, which require high-resolution climate data as 

input to estimate HR-SWE information. This efficiency enables the generation of HR-SWE 

estimates over large spatial domains with reduced computational overhead. This is 



particularly beneficial when applying the method to large areas, long temporal scales, or 

ensembles of climate data. 

7. Comment: The conclusion could be more definitive in summarizing the key findings 

and contributions of the study. The main quantities results should be added in the 

conclusion. 

7. Response: We have now divided the conclusion and discussion section into two 

separate sections: Section 6, Discussion, which includes more detailed analysis, and 

Section 7, Conclusion, to more definitively summarize the key findings and contributions 

of the study. 

Below, we provide a portion focused on the results.  

6. Discussion, Lines 531-551 

In general, using the 'cnrm-esm2-1' model as an estimator results in better accuracy in 

Colorado at both 100 km and 9 km resolutions compared to other models. For instance, 

in Colorado, the use of the 'cnrm-esm2-1' model at a 9 km resolution demonstrated close 

agreement with observed SWE, with an average RMSE of 0.06 meters. This performance 

highlights the model's strong compatibility with the climatic and geographical 

complexities of Colorado. Conversely, in California, the 'ec-earth3-veg' model excels at a 9 

km resolution, providing the most accurate results with an average RMSE of 0.13 meters 

compared to the reference datasets. This suggests that its higher resolution better 

captures the region's complex environmental and topographical variations. 

It also appears that a finer resolution of 9 km provides slightly better accuracy than a 100 

km resolution across all models, although the difference is not substantial. This 

underscores the importance of selecting the appropriate climate model for SWE 

estimation, which can have a more significant impact than merely choosing a higher-

resolution model. Moreover, CMIP6 models are designed for long-term climate 

projections and capture broad climate trends rather than predicting specific weather 

events. Despite this, the downscaled SWE using the proposed approach based on CMIP6 

is comparable to that of WRF-CMIP6, which dynamically downscales CMIP6 data by 

incorporating ERA5 reanalysis data. This is largely because the proposed methodology 

relies on long-term climate data through the use of far and near temporal intervals, and 

CMIP6 effectively captures broad climatic trends and seasonality, including changes in 

temperature and precipitation patterns. 

Additional details have also been incorporated into this Section, as highlighted in 

Response 5, Discussion Section, Lines 548–551. 

7. Conclusion, Lines 600-604: 

Overall, the 'cnrm-esm2-1' model tends to provide higher accuracy in Colorado when 

used as an estimator, outperforming other models at both 100 km and 9 km resolutions. 

In contrast, the 'ec-earth3-veg' model performs best in California at a 9 km resolution. A 

finer resolution (9 km) generally offers slightly better accuracy than a 100 km resolution 

across models, though the difference is modest, emphasizing the importance of selecting 

the right climate model over simply increasing resolution. 



 

8. Comment: Given the limitations of ground observations in data-scarce high mountain 

regions, to what extent do you believe that the method used in your study can provide 

accurate and comprehensive insights into SWE? Are there any potential sources of 

uncertainty or bias that need to be addressed? 

8. Response: The proposed methodology does not use ground observation data as input. 

Instead, it focuses on downscaling low-resolution climate data to generate high-

resolution SWE information. However, we have now added more details to Section 6, 

Discussion, and Section 7, Conclusion, addressing potential sources of uncertainty. 

Specifically, we discuss how the choice and accuracy of climate model inputs may 

introduce biases into the SWE estimates (please refer to Response 7). 

9. Comment: Abstract (Lines 1-20): The abstract is informative but could be condensed 

to focus more on the results and implications rather than the background. The key 

findings should be more prominently highlighted. 

9. Response: The abstract has been revised to highlight key results as follows: 

Lines 15-21: 

To evaluate the performance of our approach, we conduct tests in California's Sierra 

Nevada and Colorado's Upper Colorado River Basin in the western United States using 

different low-resolution climate models ('ec-earth3-veg', 'mpi-esm1-2', and 'cnrm-esm2-

1') at both 100 km and 9 km scales. A cross-validation analysis is performed, and 

comparisons are made with commonly used gridded SWE datasets as well as through 

point-scale time series comparisons. The results demonstrate that our approach enables 

the generation of downscaled SWE that closely matches observations in reanalysis data 

in terms of statistical properties. The outputs demonstrate that, for each region, 

performance depends on the choice and accuracy of the climate model inputs, such as 

precipitation and temperature data. Overall, the 'cnrm-esm2-1' model demonstrates 

superior accuracy in Colorado, outperforming other models at both 100 km and 9 km 

resolutions. Conversely, the 'ec-earth3-veg' model achieves the best performance in 

California at a 9 km resolution. Across models, a 9 km resolution typically provides 

slightly better accuracy compared to a 100 km resolution. 

10. Comment: Please describe the study regions in the abstract to provide context for 

where the proposed method was tested. This addition will give readers a better 

understanding of the geographical relevance of the study, as follows: 

10. Response: We have added a brief description of the study regions (California and 

Colorado) to the abstract to provide context. Please refer to Response 9. 

11. Comment: Section 2.3 (Lines 115-130): The explanation of the K-nearest neighbor 

algorithm could be clarified. Please further illustrate how the algorithm works in the 

context of downscaling SWE. 

11. Response: We have revised the paper to include a more detailed explanation of how 

the K-nearest neighbor algorithm operates in the context of SWE downscaling (please 



refer to Response 2). Additionally, we have incorporated more details and made several 

adjustments to improve clarity (please refer to Response 1). 

12. Comment: Ensure consistency in the use of terms such as "high-resolution" and "low-

resolution" throughout the manuscript. Some sections use these terms interchangeably 

with "HR-SWE" and "LR-SWE," which could confuse readers. 

12. Response: We have carefully reviewed the manuscript to ensure consistency in the 

use of the terms "high-resolution SWE" (HR-SWE) and "low-resolution SWE" (LR-SWE). 

13. Comment: There seems to be an issue with Table 3, as some information might be 

missing or incomplete. 

13. Response: It is corrected now and also based on the second reviewer's comment that 

Table 3 contains commonly used metrics, we have moved Table 3 to the Supplementary. 

14. Comment: Lines 268-269: The reference to "Evaluation criteria Table 1" appears to 

be incorrect. Please check this sentence and ensure that the correct table is referenced. 

14. Response: This issue has been corrected. 

15. Comment: The legend and boxplot in Figure 6 require revision, as they currently do 

not appear to be properly formatted. Please ensure that the legend is clear and correctly 

labeled, and that the boxplot is visually consistent with the rest of the figure. 

15. Response: We use a combination of color and line style to avoid repetitions.To make 

it clear, now we have added an explanation in the figure caption as follows: 

The average of the UCLA SWE (black dotted line, reference) and the downscaled SWEs 

(SŴE; blue and green lines) for each area over the six-year period from 2005 to 2010 are 

shown. The three climate models used in the downscaling are represented by different 

colors: light blue for 'ec-earth3-veg', green for 'cnrm-esm2-1', and dark blue for 'mpi-

esm1-2'. Line styles indicate the spatial resolution of the climate models: solid lines 

correspond to results based on a 9 km resolution, and dashed lines represent results 

based on a 100 km resolution. The dotted black line represents the average UCLA SWE, 

which is the reference.  

16. Comment: Figures 9, 11, 13, and supplementary figures: The Y-axis values in Figures 

9, 11, 13, and the supplementary figures need to be revised. Please check that the scales 

are appropriate and clearly labeled to ensure that they accurately represent the data 

being presented. 

16. Response: We have revised the Y-axis values in Figures 9, 11, 13, and the 

supplementary figures.  

17. Comment: Tables and Figures Captions: Please remove the bold formatting from all 

table and figure captions. The current formatting detracts from the overall appearance of 

the manuscript. Standardize the captions to match the style used throughout the 

manuscript. 



17. Response: We have removed the bold formatting from all table and figure captions 

and standardized the style. 

18. Comment: There are a few minor grammatical errors and typos that should be 

corrected. For example, in line 30, "Snow Eater equivalent" should be corrected to "Snow 

Water Equivalent." 

18. Response: We have corrected all identified grammatical errors and typos, including 

changing "Snow Eater equivalent" to "Snow Water Equivalent." 

We hope these revisions address all of your concerns, and we thank you once again for 

your valuable feedback. 
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