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Abstract. Root-zone water storage capacity (Sr) - the maximum water volume that can be held in the plant root zone - bolsters 

ecosystem resilience to droughts and heat waves, influences land-atmosphere exchange, and controls runoff and groundwater 

recharge. However, Sr is difficult to measure, especially at large spatial scales, hindering accurate simulations of many 

biophysical processes, such as photosynthesis, evapotranspiration, tree mortality, and wildfire risk. Here, we present a global 

estimate of Sr using direct measurements of total water storage (TWS) anomalies from the Gravity Recovery and Climate 15 

Experiment (GRACE) and GRACE Follow-On satellite missions. We find that the median Sr value for global vegetated regions 

is at least 220 ± 40 mm, which is over 50% larger than the latest estimate derived from tracking storage change via water 

fluxes, and 380% larger than that calculated using the soil and rooting depth parameterization. Parameterizing a global 

hydrological model with our Sr estimate improves TWS and evapotranspiration simulations across much of the globe. 

Furthermore, our Sr estimate, based solely on hydrological data, correlates realistically with an independent vegetation 20 

productivity dataset, underscoring the robustness of our approach. Our study highlights the importance of continued refinement 

and validation of Sr estimates and provides a new pathway for further exploring the impacts of Sr on water resource management 

and ecosystem sustainability. 

1 Introduction  

During periods of insufficient precipitation, vegetation relies on water stored underground to survive (Miguez-Macho 25 

and Fan, 2021). The larger the root-zone water storage capacity (Sr), the more water plants can store during wet periods for 

use in droughts (Teuling et al., 2006). Sr, therefore, plays an important role in regulating ecosystem resilience to droughts and 

heat waves and affecting wildfire outbreaks and mortality risk (Callahan et al., 2022; Chen et al., 2013; Goulden and Bales, 

2019; Hahm et al., 2019; Humphrey et al., 2018; Stocker et al., 2023). It is also an essential parameter for modeling plant 

carbon uptake, transpiration, soil evaporation, streamflow, and groundwater (Maxwell and Condon, 2016; Zhao et al., 2022; 30 
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Peterson et al., 2021). Despite its critical role in modulating the carbon and water cycles, global patterns of Sr remain poorly 

characterized. 

The Sr is typically calculated as the integration of plant rooting depth and soil texture-dependent water-holding 

capacity (Seneviratne et al., 2010; Vereecken et al., 2022; Speich et al., 2018; Federer et al., 2003). However, this approach 

(hereafter referred to as the rooting depth-based estimation) suffers from uncertainties associated with plant rooting depth and 35 

substrate hydraulic properties, particularly at depth, undermining the accuracy of the calculated Sr (Vereecken et al., 2022; 

Novick et al., 2022). Additionally, it overlooks a significant contribution to Sr from plant roots extracting moisture stored in 

weathered bedrock in the form of rock moisture (Rempe and Dietrich, 2018; Mccormick et al., 2021) and groundwater 

(Maxwell and Condon, 2016; Fan et al., 2017).  

More recently, Earth observations of precipitation (P) and evapotranspiration (ET) have been used to estimate Sr. 40 

Several studies (Stocker et al., 2023; Wang-Erlandsson et al., 2016; Gao et al., 2014; Mccormick et al., 2021) have proxied Sr 

using the maximum cumulative difference in ET and P during dry periods (when ET > P), which reflects the largest water 

volume that an ecosystem has withdrawn from its root zone. This method (hereafter referred to as the water deficit-based 

estimation) is based on mass balance and thus eliminates the need for information about plant access to rock moisture and 

groundwater, rooting depth, and soil and bedrock hydraulics. However, obtaining accurate P and ET data is challenging at 45 

scale (Sun et al., 2018; Miralles et al., 2016), and errors in these data can accumulate and deteriorate Sr calculations. Here, to 

avoid this shortcoming, we estimated root-zone storage dynamics directly from total water storage (TWS) anomalies measured 

by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions 

(hereafter GRACE/FO). With these direct observations, we characterized global patterns of Sr and found that both the rooting 

depth-based estimate and the water deficit-based estimate have significantly underestimated Sr.  50 

2 Materials and methods 

2.1 GRACE/FO TWS 

We use monthly measurements of the TWS anomaly from GRACE for the years 2002-2017 and from GRACE-FO 

for the years 2018-2022. These measurements were obtained from the Jet Propulsion Laboratory (JPL) RL06 solutions 

(Watkins et al., 2015; Wiese et al., 2016), which provide monthly average anomalies of the gravity field over an equal-area 55 

3° × 3° mass concentration block (mascon). We opted for the JPL mascon solutions because each JPL mascon is relatively 

uncorrelated with neighboring mascons and thus offers more localized spatial variations than other mascon solutions and the 

spherical harmonic solutions (Watkins et al., 2015; Wiese et al., 2016). We did not fill the 11-month gap (July 2017 to May 

2018) between GRACE and GRACE-FO. However, we linearly interpolated other missing months from the nearest previous 

and subsequent non-missing values (Rodell et al., 2018; Zhao et al., 2021). Because we aimed to estimate root-zone storage 60 

capacity Sr, we only included mascon locations with over 50% fractional vegetation cover based on the land cover product 
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(MCD12Q1) version 6.1 from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Sulla-Menashe and Friedl, 

2018). 

2.2 Sr from TWS drawdown and uncertainty estimate 

Ecosystem use of land water storage for ET is represented in the TWS drawdown, that is, a consecutive decline in 65 

TWS anomaly despite seasonal or intermittent recharge. An example is illustrated in Fig. 1 at a mascon location in southern 

Idaho, where the largest TWS drawdowns are annotated. From the water balance, a TWS drawdown over a time-period ∆t is 

equal to: 

 ∆TWS = 	P	– 	ET	– 	R (1) 
where P, ET, and R are the total precipitation, total evapotranspiration, and net runoff out of the mascon over ∆t, respectively. 

Based on eq (1), when precipitation exceeds runoff (P - R > 0), any TWS drawdown (or negative ∆TWS) must be influenced 70 

by a change in storage due to ET. To determine if precipitation exceeds runoff during GRACE/FO-observed TWS drawdowns, 

we compared R estimates from a multi-forcing observation-based global runoff reanalysis (Ghiggi et al., 2021) to P estimates 

from the Global Precipitation Climatology Project (Gebremichael et al., 2003). We found that in nearly all analyzed mascon 

locations, the cumulative sum of P - R is positive during at least the five largest TWS drawdowns (Fig. A1), confirming these 

TWS drawdowns reflect root-zone water storage consumed by ecosystems.   75 

  

  

Figure 1. Example of the three largest TWS drawdowns at a mascon location in southern Idaho.  
We estimated root-zone water storage capacity Sr to be the largest TWS drawdown during the record period of 

GRACE/FO (denoted as SrGRACE/FO). To avoid overestimating Sr, we removed the impact of groundwater pumping, snow, 80 

and surface water on TWS drawdowns. Groundwater pumping, often manifested as a negative long-term trend in the TWS 

The largest drawdown

The second largest 
drawdown

The third largest 
drawdown
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time series (Rodell et al., 2018; Rodell et al., 2009; Feng et al., 2013), is a human-made withdrawal of water resources. To 

avoid conflating this drawdown with Sr, we first calculated the TWS trend by simultaneously fitting an annual and a semiannual 

signal, a linear trend, and a constant to the GRACE/FO time series (Fig. A2). Then, we assumed any negative trend was 

attributable to groundwater pumping and removed the negative trend from the original GRACE/FO time series before 85 

calculating the TWS drawdowns. In high-latitude and mountainous regions, the maximum TWS anomaly during drawdowns 

may include snow. To avoid attributing snow storage to root-zone water storage, we first determined the largest drawdown 

from the full GRACE/FO time series and then calculated Sr using the maximum and minimum TWS anomaly with a monthly 

mean air temperature above 5°C. We obtained air temperature data from the fifth-generation European Centre for Medium-

Range Weather Forecasts atmospheric reanalysis of the global climate (ERA5) (Hersbach et al., 2020). Following Wang et al. 90 

(2023), we used total runoff from Ghiggi et al. (2021) as a proxy for surface water storage change and removed it from TWS 

drawdowns to isolate the subsurface contributions to the GRACE/FO signal. Note that total runoff from Ghiggi et al. (2021) 

stopped in 2019, and we used monthly climatology values between 2002 and 2019 to extend the data to 2022 and align with 

the GRACE/FO record length. Other contributions to TWS drawdowns, such as changes in water intercepted by leaf and 

branch surfaces and internal plant water storage, are too small to be detected by GRACE/FO (Rodell et al., 2005).  95 

We calculated the random error of SrGRACE/FO by adding errors of the two GRACE/FO measurements and the 

uncertainty of groundwater pumping and surface water signals in quadrature. To calculate the GRACE/FO measurement error, 

we used the formal error product provided by the JPL mascon solutions (Watkins et al., 2015; Wiese et al., 2016). For the 

uncertainty of groundwater pumping and surface water signals, we assumed a ±50% error on the magnitude of our calculated 

signals following Zhao et al. (2021). This assumption implies that the uncertainty range is equal to the signals themselves, 100 

leading to a likely conservative error estimate.  

2.3 Comparison to other Sr estimates 

We compared our SrGRACE/FO estimate to two other Sr datasets. These datasets represent the typical rooting depth ́  soil 

texture-dependent water holding capacity approach (referred to as SrRD´WHC) and the water deficit accumulation approach 

(referred to as Sraccum). We chose the Sraccum estimate from Stocker et al. (2023) because it used the latest Earth observation-105 

constrained estimates of precipitation and evapotranspiration. We used their “SCWDX80” product which was estimated based on 

cumulative water deficit extremes occurring with a return period of 80 years. We calculated SrRD´WHC using existing datasets 

on rooting depths and soil texture. The RD´WHC approach requires effective rooting depths (Federer et al., 2003; Speich et 

al., 2018; Stocker et al., 2023; Bachofen et al., 2024). We obtained effective rooting depths from Yang et al. (2016), who 

retrieved them using an analytical model that balances the marginal carbon cost and benefits of deeper roots. Soil water holding 110 

capacity is calculated based on soil texture information from the Harmonized World Soil Database version 1.2 (Wieder et al., 

2014) and pedo-transfer functions based on Balland et al. (2008). The Harmonized World Soil Database provides information 

for depths of 0-0.3 m and 0.3-1 m. For depths greater than 1 m, we assume texture values from the 0.3-1 m depth following 
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Stocker et al. (2023). For consistency, we spatially averaged both Sraccum and SrRD´WHC estimates to match the GRACE/FO 

spatial scale (3° × 3°). 115 

2.4 Evaluation using the USGS monthly hydrologic model 

To evaluate the relative accuracy of SrGRACE/FO, Sraccum and SrRD´WHC, we used each of them to separately parameterize 

a hydrologic model, labeled as HydroModel(SrGRACE/FO), HydroModel(Sraccum), and HydroModel(SrRD´WHC), respectively. Then, 

we compared the performance of the three models, assessed by their accuracy in simulating observations of TWS and ET. The 

atmospheric forcing data and model parameters used in all simulations were identical except for Sr. Therefore, their relative 120 

model performance demonstrates the differential accuracy between the three estimates. A monthly hydrologic model 

developed by the United States Geological Survey (USGS) (Mccabe and Markstrom, 2007) was used due to its simplicity and 

transparency about physical processes. Specifically, the model relies on a straightforward specification of Sr as a “water bucket” 

depth rather than indirectly through prescribed rooting depth, soil texture, and pedo-transfer functions across the profile. This 

allows us to parameterize the model directly with SrGRACE/FO, Sraccum, and SrRD´WHC. The USGS model was run at each GRACE 125 

mascon location with air temperature forcing from ERA5 and precipitation forcing from GPCP. We used climate forcing from 

1993 to 2001 to spin up the model and performed water cycle simulations for the study period from 2002 to 2022. No 

calibrations were carried out. 

We compared the performance between HydroModel(SrGRACE/FO), HydroModel(Sraccum), and HydroModel(SrRD´WHC) 

in capturing observed anomalies in TWS and ET. We opted for TWS anomalies as a comparison because they are directly 130 

observable (by GRACE/FO) and are most relevant to the root-zone storage process. As the USGS model does not provide a 

standard output variable for TWS, we used the sum of total root-zone water storage and surface snow amount as an 

approximation of it, following previous studies (Jensen et al., 2019; Scanlon et al., 2018). Due to a lack of groundwater 

compartment, the USGS model may underestimate large decadal declining and rising water storage trends relative to 

GRACE/FO (Scanlon et al., 2018). To minimize this impact on our model comparison, we detrended both the GRACE/FO 135 

TWS time series and the model simulations of TWS. For consistency with GRACE/FO, modeled TWS anomalies were 

calculated by subtracting the time mean between 2002 and 2022 from the modeled TWS time series. Despite being the same 

dataset used in calculating SrGRACE/FO, using GRACE/FO as reference data is not circular because we calculated SrGRACE/FO by 

taking the difference of only two measurements (i.e., the maximum and minimum TWS values during the largest TWS 

drawdown). The complete GRACE/FO time series remains a useful dataset for evaluating model performance. 140 

In addition, we compared model performance in simulating ET anomaly. We noted that existing gridded ET products 

generally have assumed ecosystem responses to water stress in their algorithms and are thus highly uncertain (Miralles et al., 

2016). Most of these algorithms use so-called b-based formulations to model the impact of water stress on transpiration, 

reducing ET by a multiplicative stress factor b that depends on soil moisture (Trugman et al., 2018). These formulations contain 

errors and can have unknown impacts on the model performance evaluation (Tang et al., 2024; Miralles et al., 2016; Pascolini-145 
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Campbell et al., 2020). Instead, we used ET estimates derived from a water balance approach provided by Xiong et al. (2023). 

They calculated ET using eq (1) for major river basins by generating 4669 probabilistic unique combinations of 23 

precipitation, 29 total runoff, and 7 water storage change datasets. These ET estimates are based on mass conservation and 

thus do not have assumed plant-water relations. We only considered basins with an area extent larger than the nominal 

resolution of GRACE/FO (~100,000 km2). As the USGS hydrologic model was run at the mascon scale, we followed Zhao et 150 

al. (2022) to aggregate basin-scale modeled ET from mascon scale model outputs. We first identified all mascons that fully or 

partially cover a given basin and calculated the percentage of the total basin area covered by each mascon. We then used these 

percentage values as weights to calculate the basin-average ET from each mascon model output. Due to biases in existing 

precipitation and runoff datasets, the water balance-based ET estimates are also biased (Xiong et al., 2023; Rodell et al., 2004; 

Swenson and Wahr, 2006; Velicogna et al., 2012). These biases are challenging to correct, as unbiased global ET products are 155 

rare and almost non-existent (Miralles et al., 2016; Tang et al., 2024). To reduce its impact on our model evaluation, we focused 

on ET anomalies and calculated them by removing the corresponding temporal mean from both model output and water 

balance-based estimates following previous studies (Pascolini-Campbell et al., 2020; Velicogna et al., 2012). 

The Nash-Sutcliffe model efficiency coefficient (NSE) was used to assess the predictive skill of each USGS 

hydrologic model, which is defined as: 160 

 NSE = 	1	–	
∑ (𝑋!" − 𝑋#" 	)$%
"&'

∑ (𝑋!" − 𝑋!222	)$%
"&'

 (2) 

where 𝑋 represents TWS anomaly or ET anomaly,  𝑋!''' is the mean of observed 𝑋, and 𝑋!" and 𝑋#"  are observed and modeled 

𝑋 at time 𝑡, respectively (Nash and Sutcliffe, 1970). An NSE value closer to 1 indicates a better model performance in 

simulating 𝑋. An NSE value less than 0 indicates that the mean observed value is a better predictor than the simulated value, 

suggesting an unsatisfactory model performance (Nash and Sutcliffe, 1970). If HydroModel(SrGRACE/FO), HydroModel(Sraccum), 

and HydroModel(SrRD´WHC) all yield negative NSE values, the efficacy of using the USGS hydrologic model to evaluate the 165 

relative accuracy of the three Sr estimates is compromised. Here, we focused on mascons and basins where at least one of the 

three models achieved a positive NSE value. 

2.5 Sr linkage to vegetation growth 

The SrGRACE/FO is derived from the water balance, but its ecological relevance remains undetermined. To investigate 

whether SrGRACE/FO reflects vegetation water use for growth, we compared it with an independent measure of ecosystem 170 

productivity. We used maximum gross primary productivity (GPPmax) to represent the potential GPP when the root zone is 

saturated with water. We obtained GPP data from the global MODIS and FLUXNET-derived daily GPP product from 2000 to 

2020 (Joiner and Yoshida, 2021). We chose this GPP product because it maximized the use of MODIS reflectance bands and 

demonstrated excellent validation results and agreement with other commonly used GPP products (Joiner and Yoshida, 2020).   
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3 Materials and methods 175 

3.1 Sr from GRACE/FO (SrGRACE/FO) 

We find a substantial root-zone water storage capacity worldwide. Across the global vegetated domain, SrGRACE/FO (or 

the largest TWS drawdown) spans from 22 to 2131 mm (Fig. 2a). The distribution of SrGRACE/FO is positively skewed, with a 

median value of 221 mm (129 - 389 mm interquartile range; note that values in parentheses hereafter always refer to the 

interquartile range). Larger SrGRACE/FO is associated with densely vegetated regions like the tropical rainforests, the Southeastern 180 

U.S., the Pacific Northwest, and the southern part of China while smaller SrGRACE/FO is found in sparsely vegetated regions like 

Central Asia, much of Australia, and some Arctic regions (Fig. 2a). Fig. 2b shows the duration of the maximum TWS 

drawdown with a global median of 2.8 years (1.6 - 5.2 years). We find no correlation between the duration and the magnitude 

of the largest TWS drawdown across different regions (Figs. 2a-b). The impact of random error sources on our SrGRACE/FO 

estimate remains moderate, with a global median relative error of 18% (13% - 26%) (Fig. 2c). 185 
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Figure 2. Sr estimated from GRACE/FO total water storage (TWS) anomaly. (a) Global patterns of SrGRACE/FO for Earth’s 
vegetated regions. (b) The duration of the maximum TWS drawdown. (c) Global patterns of the random error of SrGRACE/FO. 
Insets in (a) - (c) show the histograms of corresponding mapping variables across our study area. White spaces on land represent 
mascon locations with less than 50% vegetation cover.  190 

a

b

c
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To characterize the utilization of root-zone water storage capacity, we compared the second and third-largest TWS 

drawdowns to SrGRACE/FO. We find that, on average, the second-largest TWS drawdown consumes 83% (71% - 92%) of the 

SrGRACE/FO estimate (Fig. 3a), while the third-largest uses 68% (54% - 82%) (Fig. 3b). The average duration of the second- and 

third-largest TWS drawdowns decreases from 1.6 years (1.1 - 3.2 years) to 1.2 years (0.5 - 1.7 years) (Figs. 3c-d). In about 

40% of our analyzed mascons, the longest TWS drawdown period does not coincide with the largest drawdown magnitude. 195 

These findings underscore the nuanced dynamics of water storage use within the root zone, suggesting variability in both 

magnitude and duration across different regions. 

 

 
Figure 3. Utilization of root zone water storage capacity. (a) and (b) are the SrGRACE/FO consumption percentages during the 200 
second and third-largest TWS drawdowns. (c) and (d) are the duration of the second and third-largest TWS drawdowns. Insets 
in (a) - (d) show the histograms of corresponding mapped variables.   

3.2 Comparison with other Sr estimates 

Our SrGRACE/FO estimate is larger than SrRD´WHC and Sraccum over much of the globe. Figs. 4a-b show SrGRACE/FO difference 

with SrRD´WHC and Sraccum, respectively. Across the global vegetated domain, SrGRACE/FO surpasses SrRD´WHC in over 90% of 205 

mascon locations, with a median value 175 mm (or 380%) higher than that of SrRD´WHC. The SrGRACE/FO exceeds Sraccum over 

70% of the study area, with a median value 77 mm (or 53% ) higher than that of Sraccum, despite exhibiting lower values in drier 

a b

c d
%

Sr consumption percentage during the second-largest TWS drawdown Sr consumption percentage during the third-largest TWS drawdown

Duration of the second-largest TWS drawdown Duration of the third-largest TWS drawdown
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climates and lower-biomass regions (Fig. 4b). Notably, these differences are greater than the random error of SrGRACE/FO, 

emphasizing that the underestimations by SrRD´WHC and Sraccum are significant.  

 210 
Figure 4. SrGRACE/FO comparison with other datasets. (a) The difference between SrGRACE/FO and SrRD´WHC. (b) The difference 
between SrGRACE/FO and Sraccum. 

3.3 Implementation in the USGS hydrologic model 

To assess whether SrGRACE/FO is an improvement over Sraccum and SrRD´WHC, we used each of them to separately 

parameterize the USGS hydrologic model. We first evaluated the accuracy of HydroModel(SrGRACE/FO), HydroModel(SrRD´WHC), 215 

and HydroModel(Sraccum) in replicating the time series of GRACE/FO TWS anomalies. No model attains positive NSE values 

for approximately 40% of the global vegetated domain (Fig. A3), suggesting the USGS model may not effectively discern the 

relative accuracy of the three Sr estimates at these locations. However, for the remaining 60%, at least one model achieved a 

a

b

mm H2O
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positive NSE value. In these regions, the average NSE for HydroModel(SrGRACE/FO) is 0.39 (0.23 - 0.59), for 

HydroModel(SrRD´WHC) it is -9.33 (-26.66 - 0.30), for HydroModel(Sraccum) it is 0.22 (0.09 - 0.56). The HydroModel(SrGRACE/FO) 220 

outperformed HydroModel(SrRD´WHC) in terms of NSE values across 89% of these regions and outperformed 

HydroModel(Sraccum) across 67% of these regions (Fig. 5). For example, at a wet mascon location in the Pacific Northwest (Fig. 

6a), the NSE values for HydroModel(SrGRACE/FO), HydroModel(SrRD´WHC), and HydroModel(Sraccum)  are 0.68, -3.69, and 0.42, 

respectively (Fig. 6b). For a dry mascon in Mexico (Fig. 6a), the NSE values for HydroModel(SrGRACE/FO), 

HydroModel(SrRD´WHC), and HydroModel(Sraccum) are 0.64, -45.6, and 0.54, respectively (Fig. 6c). These results suggest an 225 

improved performance in simulating TWS temporal dynamics when parameterizing root-zone water storage capacity using 

SrGRACE/FO in the hydrologic model. Nevertheless, HydroModel(Sraccum) demonstrates superior performance in some drier 

climates and lower-biomass regions. For instance, at a mascon in the Horn of Africa (Fig. 6a), the NSE value of 

HydroModel(Sraccum) is 0.46, significantly higher than that of HydroModel(SrGRACE/FO) and HydroModel(SrRD´WHC), which are -

1.4 and -2.1, respectively (Fig. 6d). The comparison between Fig. 4b and Fig. 5b reveals that the underperformance of 230 

HydroModel(SrGRACE/FO) compared to HydroModel(Sraccum) is associated with SrGRACE/FO consistently being lower than Sraccum in 

these arid regions. 

 
Figure 5. Predictive skill differences for TWS anomalies. (a) The NSE difference between HydroModel(SrGRACE/FO) and 
HydroModel(SrRD´WHC). (b) The NSE difference between HydroModel(SrGRACE/FO) and HydroModel(Sraccum). The gray colors 235 
indicate areas where all models fail to achieve a positive NSE value. 

a

b
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Figure 6. Time series comparison between GRACE/FO TWS and model simulations. (a) Location map of the three exemplary 
mascons in the Pacific Northwest (b), Mexico (c), and the Horn of Africa (d). The values of SrGRACE/FO, SrRD´WHC, and Sraccum 240 
are annotated on top of (b) - (d).  
 
 In addition, we evaluated each model’s accuracy in simulating the time series of ET anomalies. The results show that 

at least one model achieves a positive NSE value in 48 large river basins (Fig. 7). In these basins, the average NSE for 

HydroModel(SrGRACE/FO) is 0.35 (0.13 - 0.63), for HydroModel(SrRD´WHC) it is 0.30 (0.10 - 0.54), and for HydroModel(Sraccum) 245 

it is 0.29 (0.06 - 0.58). Specifically, HydroModel(SrGRACE/FO) outperformed HydroModel(SrRD´WHC) in terms of NSE values 

across 37 basins and outperformed HydroModel(Sraccum) across 45 basins (Fig. 7).  

Taken together, despite an absence of direct root-zone storage measurements at scale, SrGRACE/FO notably improves 

upon the water deficit-based estimate and the rooting depth-based estimate and reveals a substantially larger root-zone storage 

capacity across much of the globe. The improved simulation accuracy of TWS and ET anomalies using SrGRACE/FO demonstrates 250 

the importance of accurate Sr estimates for hydrological modeling.  

 

a b

c d
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Figure 7. Predictive skill differences for basin ET anomalies. (a) The NSE difference between HydroModel(SrGRACE/FO) and 
HydroModel(SrRD´WHC). (b) The NSE difference between HydroModel(SrGRACE/FO) and HydroModel(Sraccum). White spaces on 255 
land represent basins where no model achieves a positive NSE value or no ET data is available.   

3.4 Linking Sr to vegetation growth 

We evaluated the relationship between SrGRACE/FO and GPPmax to link root-zone water storage capacity to vegetation 

growth. We observed a consistent increase in SrGRACE/FO alongside GPPmax across space (Fig. 8a). This trend reflects the intrinsic 

relationship between vegetation productivity and water supply across space (Huxman et al., 2004; Ponce-Campos et al., 2013; 260 

Hsu et al., 2012). However, we noted a saturation effect at higher SrGRACE/FO values, suggesting a diminishing influence of water 

supply beyond a certain threshold. This aligns with ecological principles, particularly in wetter regions, where factors such as 

nutrient availability and light intensity may dominate over water availability in constraining GPPmax (Huxman et al., 2004; 

Ponce-Campos et al., 2013; Hsu et al., 2012). Notably, since our SrGRACE/FO estimate is based on the water balance and does 

not rely on assumed plant-water relations, this evidence supports the reliability of SrGRACE/FO and sheds light on the intricate 265 

interplay of environmental factors influencing vegetation dynamics across landscapes.  

We also evaluated the Sr relationship with GPPmax using SrRD´WHC and Sraccum (Figs. 8b-c), finding that the overall 

pattern of the functional relationships is similar to that observed using SrGRACE/FO. Specifically, the GPPmax increases with 

increasing Sr before reaching a plateau or showing a notably smaller change with further increases in Sr. However, the 

a

b
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thresholds at which this apparent saturation occurs differ: approximately 400 mm for SrGRACE/FO, 50 mm for SrRD´WHC, and 150 270 

mm for Sraccum. To better understand the appropriate threshold, we compared our observed patterns to those inferred from the 

spatiotemporal origin of transpiration estimated by Miguez-Macho and Fan (2021). They used inverse modeling and isotopic 

analysis to map the annual contribution of root zone water storage (or total past precipitation) to transpiration on a global scale. 

By multiplying their root zone water storage contribution with simulated transpiration, we derived a lower-bound Sr estimate 

and compared it to annual transpiration across regions (Fig. 8d). Given the widely reported linear relationship between 275 

transpiration and vegetation growth across regions (Ponce-Campos et al., 2013; Biederman et al., 2016; Cooley et al., 2022), 

Fig. 8d indicates that the deceleration in vegetation growth may occur at a lower-bound Sr value of 400 mm. As Sr increases 

with higher lower-bound Sr (due to their positive correlations with vegetation growth; Figs. 8a-c vs. 8d), the Sr threshold could 

exceed the 400 mm inferred from the lower-bound Sr estimate. This aligns better with the threshold inferred from SrGRACE/FO 

but is significantly higher than those inferred from SrRD´WHC and Sraccum. Therefore, SrGRACE/FO likely provides a more accurate 280 

reflection of real-word spatial patterns of land water supply on vegetation growth than SrRD´WHC and Sraccum. 

 
Figure 8. Scatterplots of GPPmax and Sr across regions based on SrGRACE/FO (a), SrRD´WHC (b), and Sraccum (c). All analyzed 
mascons are grouped into 40 equal-sized bins based on Sr. Circle and error bar denote the mean and standard deviation of 
GPPmax within each bin, respectively. The dashed black line in each plot represents a model fit using a nonlinear concave-285 
down model. (d) is the lower-bound estimate of Sr derived from Miguez-Macho and Fan (2021) in relation to their simulated 
annual transpiration. Due to the high resolution of their inverse modeling (30′), model grid cells are grouped into 1000 equal-
sized bins based on the lower-bound estimate of Sr. Circle and error bar denote the mean and standard deviation of annual 
transpiration within each bin. 

a b

c d
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4 Discussion 290 

Our SrGRACE/FO estimate provides a conservative lower bound on Sr because the largest TWS drawdown during the 

GRACE/FO record period may not cover a period during which ET from storage exhausts the entire root-zone water storage 

capacity, particularly in areas experiencing water accumulation in the root zone due to increased precipitation. This likely 

explains why our SrGRACE/FO estimate is lower than Sraccum in North and East Africa, where strong increasing TWS trends were 

observed (Fig. 3b and Fig. A2). Additionally, our approach to account for groundwater pumping and surface water may 295 

overestimate these signals' actual magnitudes and thus likely contribute to underestimating Sr. Specifically, we assumed all 

negative TWS trends to be caused by groundwater withdrawal and removed them from SrGRACE/FO. However, groundwater 

withdrawal is concentrated in specific regions such as northwest India, California’s Central Valley, and the North China Plain 

(Rodell et al., 2009; Feng et al., 2013; Liu et al., 2022). Consequently, we may remove TWS depletion trends caused by natural 

variability, as seen in the drought-stricken Southeast Brazil (Rodell et al., 2018). This likely explains why SrGRACE/FO is lower 300 

than Sraccum there (Fig. 3b). Furthermore, we used total runoff (which includes surface runoff, snowmelt, and groundwater flow) 

as a proxy to remove surface water storage change from the TWS drawdown. We used total runoff  – as opposed to surface 

runoff alone (Wang et al., 2023) – due to observational data availability, though doing so may lead to an overestimation of 

surface water storage change and, therefore, an underestimation of Sr.  

 Despite being conservative, SrGRACE/FO reveals a substantially larger volume of root-zone water storage capacity than 305 

Sraccum. One reason for this discrepancy may be the lack of interannual storage variability considered in the Sraccum calculation 

(Stocker et al., 2023). Although Stocker et al. (2023) used a cumulative water deficit approach to infer root-zone water storage 

drawdown, akin to our TWS drawdown approach, they found that the annual totals of P exceeded those of ET at almost all 

locations. Because their method resets the calculation whenever accumulated P-ET is positive, this suggests their method 

generally was unable to account for carryover storage and multiyear drawdowns of root-zone storage. Our use of GRACE/FO 310 

TWS, which allows for multiyear drawdowns, is supported by recent observations (Goulden and Bales, 2019; Mccormick et 

al., 2021; Pérez‐Ruiz et al., 2022; Peterson et al., 2021; Scott and Biederman, 2019) and modeling efforts (Miguez-Macho and 

Fan, 2021; Livneh and Hoerling, 2016) suggesting widespread carryover storage effects. Our calculations of SrGRACE/FO found 

that the largest TWS drawdown period lasted a median of 2.8 years, with an interquartile range between 1.6 and 5.2 years (Fig. 

2c). Even the second and third-largest TWS drawdowns had a median duration of more than one year globally (Figs. 3c-d). 315 

These findings align with the results reported in the previously referenced studies on carryover storage effects.  

 The SrRD´WHC estimate notably falls below both SrGRACE/FO and Sraccum. This discrepancy may be attributed to the 

RD´WHC approach ignoring plant access to bedrock moisture and groundwater, which are known to significantly affect ET 

and thus contribute to Sr (e.g., Fan et al., 2017; Rempe and Dietrich, 2018; Mccormick et al., 2021). Moreover, the RD´WHC 

approach lacks consideration for root density and its vertical and lateral distribution, simplifying the root zone’s complexity 320 

into a single effective rooting depth parameter (Federer et al., 2003; Speich et al., 2018). This parameter tends to be shallower 

than both the maximum rooting depth (Federer et al., 2003) and the depth that contains the upper 95% of the root biomass 
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(Yang et al., 2016), although these depths may play a disproportionately important role in ecosystem water uptake (Fan et al., 

2017; Jackson et al., 1999; Bachofen et al., 2024). Additionally, when dividing SrGRACE/FO with the same WHC used in SrRD´WHC 

to calculate effective rooting depth, this depth exceeds 2 m in nearly 50% of global vegetated areas, in contrast to Yang et al.’s 325 

(2016) estimate of 10% and Stocker et al.’s (2023) estimate of 37%. These results suggest that the potential for plants to tab 

into deep water stores is more prevalent than previously understood.  

Despite different Sr parameterizations, the USGS hydrological model performs poorly in extremely wet and dry 

regions, such as the Amazon rainforest and much of Australia (Fig. A3), likely due to a lack of calibration of other parameters 

or an overly simplistic representation of key hydrological processes. The model’s algorithm aims to meet the potential ET 330 

(PET), or the atmospheric demand for water, using precipitation and withdrawals from root-zone water storage (Mccabe and 

Markstrom, 2007). It uses the Hamon equation (Hamon, 1964) to calculate PET, and previous studies (e.g., Sun et al., 2008; 

Mccabe et al., 2015) have found that the Hamon coefficient needs to be calibrated to generate realistic ET. However, calibrating 

the Hamon coefficient could absorb or compensate for the Sr parameterization error, undermining the objectiveness of the 

USGS model in evaluating the relative accuracy of the three Sr estimates. In very wet regions, the USGS model often simulates 335 

the PET significantly lower than incoming precipitation (Fig. A4). Consequently, the model does not need to tap root zone 

water storage for ET, resulting in little variability in TWS for these regions (Fig. A4). Conversely, in very dry regions, the 

USGS model simulates the PET to be notably higher than incoming precipitation most of the time, leaving the root-zone water 

storage close to zero (Fig. A5). However, large variability in TWS was observed by GRACE/FO for these regions, which is 

consistent with other studies indicating strong soil moisture variations (Swann and Koven, 2017; Chen et al., 2014). These 340 

results suggest that structural errors or uncertainty of other parameters in the USGS model may outweigh the uncertainty of Sr 

parameterization in these very wet and dry environments.  

  This paper demonstrates how GRACE/FO data can be used to constrain vegetation water use patterns. Although 

observed at a coarse resolution, the SrGRACE/FO can be used to evaluate high-resolution Sr estimates to ensure consistency and 

accuracy across different scales. In addition, our methodology can be applied to downscaled TWS products, leveraging 345 

techniques such as data assimilation systems or artificial intelligence (Li et al., 2019; Gou and Soja, 2024), to improve the 

characterization of Sr and its impact on the water and carbon cycles at a higher spatial resolution.   

5 Conclusions 

We used GRACE/FO to provide a direct observational constraint on root-zone water storage capacity (Sr), an essential 

yet challenging-to-observe variable. The overall better performance of HydroModel(SrGRACE/FO) in simulating TWS and ET 350 

observations and the superior SrGRACE/FO relationship with GPPmax altogether imply that SrGRACE/FO more accurately reflects the 

real-word root-zone water storage capacity compared to SrRD´WHC  and Sraccum. These results suggest that Sr is, on average, at 

least 50% larger than the water deficit-based estimate and by a staggering 380% compared to the rooting depth-based estimate. 

The underestimations by Sraccum and SrRD´WHC exceed the random error of SrGRACE/FO, underscoring the need for continued 
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refinement and validation of Sr. Underestimating Sr may lead to overestimating ecosystem sensitivity to water stress, potentially 355 

biasing predictions of future carbon cycle (Ukkola et al., 2021; Giardina et al., 2023). Given the strong coupling between the 

carbon and water cycles, underestimating Sr may also lead to underestimating ecosystem water consumption and 

overestimating human-available water resources, particularly during droughts and heat waves, with important implications for 

water resource planning (Zhao et al., 2022; Mastrotheodoros et al., 2020).  

  360 
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Appendix A 

 
Figure A1. The cumulative sum of P - R during the largest (a), the second largest (b), the third largest (c), the fourth largest 

(d), and the fifth largest (e) TWS drawdowns.   

 365 
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Figure A2. Trends in TWS obtained from GRACE/FO observations from 2002 to 2022.  
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Figure A3. NSE values for simulating GRACE/FO TWS by HydroModel(SrGRACE/FO) (a), HydroModel(SrRD´WHC) (b), and 
HydroModel(Sraccum) (c), respectively.   370 
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Figure A4. Model results for a very wet mascon in the Amazon rainforest (a). (b) The comparison between modeled TWS and 

GRACE/FO TWS. (c) The comparison between the precipitation (P) forcing and model simulated potential evapotranspiration 

(PET).  

  375 
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Figure A5. Same as Fig. A4 but for a very dry mascon in Australia. 
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