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In the following responses, reviewers’ comments are reproduced in their entirety in 
black, and the authors’ responses are noted in blue.  
 
Reviewer 3 

 
Title: Substantial root-zone water storage capacity observed by GRACE and 
GRACE/FO 
 
Author(s): Meng Zhao et al. 
 
MS No.: egusphere-2024-1939 
  
Reviewer: The manuscript derives “root water storage capacity” (Sr) from GRACE and 
GRACE-FO observations of terrestrial water storage (TWS), along with uncertainty 
estimates.   The GRACE-based Sr estimates are compared to Sr estimates derived (i) 
from soil parameters (soil depth and soil water holding capacity) and (ii) water balance 
estimates (using precipitation and evapotranspiration [ET] observations).  The authors 
find that the GRACE-based Sr estimates are 50% larger than those derived from water 
balance estimates and 380% than those derived from soil parameters.  The different Sr 
estimates are further used to parameterize a USGS “bucket model”, with TWS and ET 
output from the model validated against GRACE TWS observations and ET estimates 
from a water balance approach.  Finally, the authors find that their GRACE-based Sr 
estimates correlate “realistically” with vegetation productivity data. 
 
The authors address a clear need for accurate estimates of root zone water storage 
capacity, a topic of interest to HESS readers.  However, the findings of the manuscript 
are not supported with independent observations and are largely circular.  It is no 
surprise that the GRACE-based Sr estimates have a relatively lower error against 
GRACE-based TWS observations.  Specifically, the GRACE-based Sr estimates 
essentially reflect the range of the GRACE TWS observations, and the NSE metrics 
primarily measures skill in terms of the mean-square error (MSE).  Additionally, it 
remains unclear to me how the authors remove the groundwater signal from the TWS 
observations.  I recommend that the manuscript be rejected.  
Response: We appreciate the reviewer’s feedback. In the revised manuscript, we will 
perform a new validation effort that employs independent datasets that do not have 
GRACE/FO inputs. This validation approach will be as robust as those used in prior 
studies. Below, we summarize key validation methods used in similar studies, clarify the 
rationale for the revised validation approach that we will adopt, and outline how we will 
present the strengths and limitations of this new validation effort. 
1. Challenges in validating Sr and methods used in previous studies: Validating large-

scale Sr remains inherently difficult because direct measurement of Sr is challenging. 
Previous studies have primarily employed two indirect validation methods:  

a. Rooting-depth comparison: Stocker et al. (2023) converted their deficit-based 
Sr estimates (~5 km resolution) into rooting-depths using soil texture and 
water-holding capacity parameters, and then compared them to field rooting-
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depth measurements aggregated at biome levels to mitigate the scale 
mismatch. However, this approach is not suitable for our study. Resolved at a 
much coarser resolution (~300 km), GRACE/FO-derived Sr samples multiple 
biome types within a single observational footprint, making biome-level 
aggregation less meaningful. Additionally, the rooting-depth validation method 
overlooks groundwater contributions to Sr, which Stocker et al. (2023) found 
to be significant in over half of their measurement sites. This omission will 
likely become more critical at the spatial scale of GRACE/FO, which averages 
larger areas and includes more diverse biome types. These factors make the 
rooting-depth comparison unsuitable for evaluating GRACE/FO-derived Sr. 

b. Implementation in a hydrological model: Wang-Erlandsson et al. (2016) used 
deficit-based Sr estimates in a simple hydrological model and assessed 
improvements in simulating hydrologic time series. While this approach better 
aligns with the spatial scale of GRACE/FO, it faces challenges, too. One is 
the limited availability of high-quality global hydrologic data, which can lead to 
a circular use of the same data for both Sr estimation and model evaluation, 
as Wang-Erlandsson et al. (2016) did with satellite-based ET data. This 
reduces the independence of the validation process. Additionally, the 
mechanistic linkage between Sr and commonly used hydrological indicators 
(e.g., ET and streamflow) is complex – pinpointing decisive indicators that are 
strongly sensitive to Sr is an important research topic yet to be addressed in 
the literature. Resolving such a complex relationship can be further 
complicated by the structural errors or uncertainties in other parameters 
adopted in the model. Together, these challenges can obscure the true 
impact of accurate Sr parameterization on ecohydrology. For example, in our 
study, streamflow simulated by the USGS model is mainly driven by 
precipitation and shows little sensitivity to Sr, similar to what was described in 
the open peer review file of Wang-Erlandsson et al. (2016), which also did not 
use streamflow measurements for model evaluation.   

2. Revised validation approach and its rationale: We will use the latest version (v4.1) of 
the Global Land Evaporation Amsterdam Model (GLEAM) ET dataset 
(https://www.gleam.eu/) to validate our model results. The GLEAM ET addresses 
key shortcomings present in other gridded ET products. For example, it combines 
hybrid learning from eddy-covariance and sap flow to capture vegetation response to 
drought more accurately (Koppa et al., 2022), and it explicitly accounts for plant 
access to groundwater (Hulsman et al., 2023). Importantly, the GLEAM ET is 
independent of GRACE/FO and, therefore, allows robust validation that is free from 
circularity. To mitigate the impact of possible biases embedded in GLEAM ET, 
forcing data, and those caused by model uncertainty (as the USGS model is 
uncalibrated), we will use standardized ET anomalies (i.e., Z-scores) as the target of 
validation and focus on assessing whether Sr improves the temporal dynamics of ET 
simulations (i.e., seasonal and interannual variations) rather than the absolute 
values of ET.  

3. Strengths and limitations of the proposed new validation efforts: The key strength of 
our revised validation approach lies in its use of an independent dataset (GLEAM 

https://www.gleam.eu/
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ET), which addresses the potential circularity of our current validation efforts. We will 
also examine and discuss the following limitations in the revised manuscript.  

a. Challenges in detecting Sr influence: Given the uncertainties of modeling Sr’s 
role in ET dynamics, the improvements in Sr may be challenging to detect, 
particularly when using large-scale models that rely heavily on precipitation-
driven processes. We will examine if and to what extent this can be mitigated 
by using standardized ET anomalies (Z-scores) as the validation target.  

b. Focus on temporal dynamics over absolute values: The proposed use of 
standardized ET anomalies (Z-scores) shifts the focus from absolute ET 
values to temporal dynamics (seasonal and interannual variations). While this 
helps mitigate the impact of data biases, it may also limit the scope of the 
validation to detecting only temporal variations and not necessarily capturing 
the full range of hydrological dynamics influenced by Sr. 

Despite these limitations, the revised validation effort will represent a substantial 
improvement over Wang-Erlandsson et al. (2016) by using independent, high-quality 
ET data and focusing on the temporal dynamics of ET.  
We will also clarify the definition of root zone storage capacity (Sr), acknowledging 

the inclusion of natural groundwater fluctuations to meet plant water demands, 
supported by recent studies and field evidence, including our comparison dataset Sraccum 
from Stocker et al. (2023). Although this broadens the traditional definition of the root 
zone, it helps delineate the true amount of water available to plants and is consistent 
with evolving research on groundwater-vegetation interactions. 
 
 
Major comments: 

• Reviewer: The validation approach is circular (contrary to the statement in Lines 
137-140). The GRACE-based Sr estimates reflect, by construction, 
approximately the dynamic range of the validating GRACE TWS observations (as 
shown in Figure 1).  The surface meteorological forcing inputs to the USGS 
model are the same for all three simulations, and the only difference between the 
USGS model configurations is in the Sr parameters.  The simulated TWS and ET 
will therefore have very similar *standardized* anomalies (Z-scores), and the key 
determinant of the NSE metric will be whether the dynamic range of the 
simulated TWS anomalies matches that of the verifying observations.  The latter 
were used to determine the GRACE-based Sr, thereby essentially guaranteeing 
a lower MSE and higher NSE for the simulation with the GRACE-based Sr 
relative to the other simulations.  (As an aside, Line 226 refers to “performance in 
simulating TWS temporal dynamics”.  This is a bit of an overstatement given the 
fact that the experiment design primarily measures how well the estimated Sr 
reflects the dynamic range of the TWS observations.  “Temporal dynamics” 
suggests skill differences in seasonal and interannual variations, which are not 
explicitly examined and which are likely to be small, given the experiment setup.) 

Response: You raised a good point here. To minimize the influence of dynamic 
range on the NSE metric, we reanalyzed our results using standardized 
anomalies (i.e., Z-scores) for both simulated and GRACE/FO-observed TWS time 
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series. By using Z-scores, we standardized the dynamic range while preserving 
temporal dynamics, including seasonal and interannual variations. Contrary to the 
reviewer’s assumption, our analysis shows that, even after standardizing the 
anomalies, the TWS simulations with different Sr parameterizations exhibit distinct 
patterns.  
    For example, Fig. RC3_1a compares the Z-scores of TWS from GRACE/FO 
and three simulations (HydroModel(SrGRACE/FO), HydroModel(SrRD´WHC), and 
HydroModel(Sraccum)) for the mascon location in Figure 1 of the original 
submission. The NSE values for the Z-scores time series indicate that SrGRACE/FO 

outperforms SrRD´WHC and Sraccum in capturing TWS temporal dynamics (Fig. 
RC3_1b-d).  This improvement is widespread (Fig. RC3_2) and overlaps with 
those based on the original time series (Figure 5 of the original text). Notably, this 
enhancement extends into many subtropical and Southern Hemisphere regions, 
where the USGS model struggles to simulate the dynamic range of GRACE/FO 
TWS.  
    To address the circularity concern, we will no longer use GRACE/FO TWS as a 
validation dataset. Instead, we will validate the model using GLEAM ET and 
evaluate it using standardized ET anomalies (i.e., Z-scores). GLEAM ET is 
independent of GRACE/FO and, therefore, allows robust validation and avoid the 
circularity concern. The Z-score approach also allows us to assess the model’s 
ability to capture seasonal and interannual variations without undue influence from 
potential biases embedded in GLEAM ET, forcing data, and those caused by the 
uncalibrated nature of the USGS model.  

 
Figure RC3_1. A comparison of model predictive skills for TWS z-scores. (a) Z-score time 
series comparison between GRACE/FO TWS and model simulations. (b)-(d) Scatterplots of 



 5 

GRACE/FO TWS z-scores and simulated TWS z-scores from HydroModel(SrGRACE/FO), 
HydroModel(SrRD´WHC), HydroModel(Sraccum), respectively.  

 
Figure RC3_2. Predictive skill differences for TWS z-scores. (a) The NSE difference 
between HydroModel(SrGRACE/FO) and HydroModel(SrRD´WHC). (b) The NSE difference between 
HydroModel(SrGRACE/FO) and HydroModel(Sraccum). The gray colors indicate areas where all 
models fail to achieve a positive NSE value. 

 
 

• Reviewer: The ET estimates used to validate the USGS model simulations are 
based on water balance estimates derived from precipitation and water storage 
change datasets, which is similarly circular when it comes to validating the model 
output from the simulations that use Sr estimates based on GRACE observations 
or water balance estimates. 
Response: In our revised manuscript, we will use GLEAM ET, which is 
independent of GRACE/FO and addresses key shortcomings in other gridded ET 
products. 
 
 

• Reviewer: The definition of Sr as “root zone storage capacity” seems inconsistent 
the derivation from GRACE TWS observations. The authors explain how they 
remove the snow signal and anthropogenic groundwater signals from the TWS 
observations when they derive the GRACE-based Sr estimates. However, it 
remains unclear how natural groundwater fluctuations are handled.  TWS 
observations include natural variations in groundwater levels that are not related 
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to water storage in what would usually be considered the “root zone” (e.g., in 
grasslands).   Perhaps it is intentional that such fluctuations are included, but 
then the derived parameter is then no longer a “root zone storage capacity” in the 
sense that the control volume is no longer what is commonly understood to be 
the “root zone”.  
Response: Thank you for this comment. Natural groundwater variability is indeed 
embedded in our calculation of root-zone water storage capacity (Sr), and we 
provide clarification below. As Reviewer#1 correctly pointed out, root-accessible 
water does not require roots to physically occupy the entire storage domain. 
Processes such as the capillary rise can move deep water upward to the root 
zone for vegetation transpiration, especially during dry seasons and droughts. 
Many studies have shown that natural groundwater variability (such as its 
seasonal variation) strongly correlates with the net effect of precipitation and ET 
(e.g., Li et al., 2015).   

Including groundwater in the calculation of Sr extends the traditional definition 
of the “root zone,” beyond the soil layer by recognizing the fact that the root zone 
is dynamic and can access deep groundwater and bedrock moisture during 
prolonged droughts and high transpiration demand (Gao et al., 2024). Several 
recent studies (McCormick et al., 2021; Singh et al., 2020; Stocker et al., 2023) 
have also included groundwater in their definitions of Sr. This inclusion is well-
supported by recent studies based on in situ groundwater (Baldocchi et al., 2021; 
Fan et al., 2017; Li et al., 2015; Thompson et al., 2011), remote sensing 
observations (Koirala et al., 2017; Rohde et al., 2024), and modeling efforts (Hain 
et al., 2015; Miguez-Macho & Fan, 2021), all of which showed that groundwater 
significantly contributes to ET and is accessible to plants, especially during 
extreme droughts.  

In many ecosystems, water stress can stimulate root growth into deep 
subsurface through the capillary rise effect, with roots extending to the capillary 
fringe and the water table, as observed in both field and laboratory studies (Fan 
et al., 2017; Kuzyakov & Razavi, 2019; Naumburg et al., 2005; Orellana et al., 
2012). Although individual shallow-rooted plants (e.g., grassland sites) may not 
directly tap into groundwater, the large spatial scale of GRACE/FO data likely 
captures water uptake across diverse vegetation types. This blending makes it 
likely that vegetation types not typically associated with groundwater use may still 
access it indirectly, such as through hydraulic redistribution by neighboring 
deeper-rooted plants (e.g., Espeleta et al., 2004; Orellana et al., 2012). Indeed, 
satellite observations have revealed widespread plant-groundwater interactions 
at large spatial scales (Koirala et al., 2017), even in dryland regions dominated 
by grasslands (Rohde et al., 2024; Wang et al., 2023). 

Neglecting groundwater in root zone storage capacity can lead to 
underestimation of land and air interactions (Dong et al., 2022; Maxwell & 
Condon, 2016; Schlemmer et al., 2018), affect accurate simulation of runoff 
(Hahm et al., 2019), and misrepresent vegetation resilience to droughts and heat 
waves (Esteban et al., 2021; Jiménez-Rodríguez et al., 2022).  
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Overall, our SrGRACE/FO definition aligns with our comparison dataset Sraccum 
from Stocker et al. (2023) and helps explain why the traditional rooting depth 
approach (SrRD´WHC), which does not include groundwater, yields lower values 
than SrGRACE/FO and Sraccum. This expanded definition is consistent with emerging 
research on groundwater-vegetation interactions.  We will add these discussions 
to the revised manuscript.  
 
 

• Reviewer: It is highly concerning that no model attains positive NSE values for 
40% of the global *vegetated* domain (Lines 216-217). This area includes most 
of the subtropics and Southern Hemisphere!  If the model is so poor that for 
nearly half of the domain of interest a time-invariant constant would be a better 
estimator, what does it say about the skill of the model in the other half of the 
domain?  And what does it mean for the Sr estimates in nearly half of the domain 
of interest where NSE is negative for all three model simulations?    
Response: The USGS model, which was run without any local calibration, failed 
to have positive NSE values in 40% of the vegetated regions, primarily due to its 
inability to capture the dynamic range of GRACE/FO-observed TWS (Figs. A4 
and A5, and the discussion from lines 328 to 347 of the original submission). This 
underperformance is likely due to uncalibrated parameters and the model’s 
simplified representation of key hydrological processes. However, by applying 
the Z-score approach — which minimizes the impact of dynamic range mismatch 
on the NSE metric — Fig. RC3_2 shows that the USGS model effectively 
captures TWS temporal variations in many subtropical and Southern Hemisphere 
regions. The area with no positive NSE values was reduced from 40% to 24%, 
indicating that the USGS model still provides valuable insights into the relative 
accuracy of the three Sr estimates in most global vegetated regions. 
 Although 24% of the domain continues to show negative NSE values, this 
does not invalidate the SrGRACE/FO estimates. Rather, it highlights regions where 
further investigation and refinement are needed. Future work could involve local 
calibration of model parameters or using more sophisticated hydrological models 
to improve accuracy in these challenging areas. Despite the negative NSE 
values, the SrGRACE/FO estimate remains informative, offering valuable insights into 
water storage dynamics when interpreted within the context of known model 
limitations. 
 Given the discussions above, while the Z-score-based GRACE/FO TWS 
results are informative, we will not include them in the revision. Instead, we will 
use the GLEAM ET dataset for model validation to ensure our validation is 
independent of GRACE/FO and free from circularity. 
 

 
Minor comments: 

1. Reviewer: The heading of section 3 should probably be “Results” 
Response: We will use “Results” in our revised manuscript. 
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2. Reviewer: The caption of Figure 3 does not clearly state the base for the 
“percentage changes”. This can only be understood from the text. 
Response: We will change the caption to “(a) and (b) are the consumption 
percentages of SrGRACE/FO during the second and third-largest TWS drawdowns.” 
 

3. Reviewer: Line 208: Be more specific about the “drier climates and lower-
biomass regions” 
Response:  We will specify these regions in our revised manuscript.  
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