
1 
 

The 2023 global warming spike was driven by El Niño/Southern 
Oscillation 
Shiv Priyam Raghuraman1, Brian Soden1, Amy Clement1, Gabriel Vecchi2, Sofia Menemenlis2, 
Wenchang Yang2 

1Dept. of Atmospheric Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 5 
Miami, 33149, USA 
2Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, 08540, USA 

Correspondence to: Shiv Priyam Raghuraman (spraghuraman@miami.edu) 

Abstract. Global-mean surface temperature rapidly increased 0.27 ± 0.05 K from 2022 to 2023. Such an interannual global 

warming spike is not unprecedented in the observational record with previous instances occurring in 1956-57 and 1976-77. 10 

However, why global warming spikes occur is unknown and the rapid global warming of 2023 has led to concerns that it 

could have been externally driven. Here we show that climate models that are subject only to internal variability can generate 

such spikes, but they are an uncommon occurrence (𝑝 = 2.6 ± 0.1%). However, when a prolonged La Niña immediately 

precedes an El Niño in the simulations, as occurred in nature in 1956-57, 1976-77, 2022-23, such spikes become much more 

common (𝑝 = 16.5 ± 0.6%). Furthermore, we find that nearly all simulated spikes (94%) are associated with El Niño 15 

occurring that year. Thus, our results underscore the importance of El Niño/Southern Oscillation in driving the occurrence of 

global warming spikes such as the one in 2023, without needing to invoke anthropogenic forcing, such as changes in 

atmospheric concentrations of greenhouse gases or aerosols, as an explanation.  

1 Introduction 

Global-mean surface temperatures (GMST) have been rising since 1880 and more rapidly since the mid-20th century, 20 

principally because of human activities (IPCC, 2021). Observational (Lenssen et al., 2019) analyses showed that GMST 

reached its highest recorded value in 2023, making it the warmest year on record. The rapid increase in annual-mean GMST 

of 0.27 ± 0.05 K in 2023 relative to 2022, an increase that occurs over a decade or more usually, has not only been a cause 

for concern societally but also scientifically as its causes were not obvious (Esper et al., 2024; Jiang et al., 2024; Kuhlbrodt 

et al., 2024; Rantanen and Laaksonen, 2024; Schmidt et al., 2024). Potential causes for this year-on-year spike include 25 

anthropogenic reasons such as greenhouse gas increases and aerosol pollution reductions, or natural reasons such as 

increased solar activity, volcanic-induced stratospheric water vapor increases, and natural climate variability such as the El 

Niño/Southern Oscillation phenomenon (ENSO) (Schmidt et al., 2024). This study focuses on the latter, and we will argue 

that ENSO is the primary reason for global warming spikes. 

 30 
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ENSO is a mode of internal variability in the climate system that comprises of a positive phase, El Niño, and a negative 

phase, La Niña (Trenberth, 1997). El Niño or La Niña occurs every few (three to seven, typically) years in the tropical 

Pacific Ocean and encompasses a global-scale rearrangement of temperatures, winds, sea level pressures, atmospheric 

convection, clouds, moisture, and radiation (Trenberth, 1997; Clement et al., 1996; Peng et al., 2024; Raghuraman et al., 

2019; Soden, 1997). El Niño brings anomalous warmth to the Central and Eastern Pacific Ocean, and to other parts of the 35 

tropics with a lag, which increases GMST, and vice-versa for La Niña. However, the degree of association of ENSO with 

global warming spikes has not yet been shown. An El Niño event occurred in 2023, which was preceded by a prolonged 

period of La Niña conditions from 2020-2022. 

 

In the observational record since 1950, 2023 is not the only year with a global warming spike to have occurred. There have 40 

been three global warming spikes (an increase in interannual GMST greater than 0.22K (Appendix A)): 1957, 1977, and 

2023 (Fig. 1a). Each of these spikes have occurred during an El Niño year and after a prolonged La Niña (1954-1956, 1973-

1976, 2020-2022) (Fig. 1a). The spatial distribution of the 2023 spike resembles the canonical El Niño spatial pattern (Fig. 

1b) (Peng et al., 2024). Thus, 2023 isn’t unprecedented in producing a spike, and the observational record suggests a strong 

correlation between global warming spikes and ENSO (of the four long La Niña-El Niño transitions since 1950, three have 45 

led to spikes, i.e., p=75%). However, given the short record (74 years) it is difficult to draw conclusions based on a post hoc 

analysis of just three events. As a result, we turn to all available multi-centennial to multi-millennial global climate model 

simulations spanning 58,021 years across 64 models with no human influence (“piControl”; Table A1) (Eyring et al., 2016; 

Delworth et al., 2006; Gnanadesikan et al., 2006; Vecchi et al., 2014; Rugenstein et al., 2019). In the following sections we 

quantify the critical role ENSO plays in generating global warming spikes (Sec. 2) and present our conclusions (Sec. 3). 50 

2 Results 

We find that spikes happen 2.6%± 0.1% (MMM) of the time on average in unforced model simulations (𝑝(𝑠𝑝𝑖𝑘𝑒) in Fig. 

1c). The models show little inter-model spread with a minimum-maximum range of 𝑝(𝑠𝑝𝑖𝑘𝑒) of 0-12%. That is, spikes are 

uncommon but can occur solely from internally generated climate variability. Given a long La Niña in the years prior to the 

spike followed by an El Niño during the spike year, the probability of a spike increases over six-fold (compared with 55 

unconditional probability 𝑝(𝑠𝑝𝑖𝑘𝑒)) to 16.5%± 0.6% on average in models (MMM; Fig. 1c’s 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 +

𝐸𝑙	𝑁𝑖ñ𝑜)). That is, global warming spikes become much more likely during El Niño events preceded by a long La Niña – 

even if they are not to be expected (p=16.5%) even then. The models show considerable inter-model spread with a 

minimum-maximum range of 0-80%, i.e., some models suggest no impact of a long La Niña to El Niño transition generating 

a spike while others suggest a four-in-five chance of a spike occurring given a prolonged La Niña to El Niño transition.  60 
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In addition to the impact a long La Niña to El Niño transition has on spikes, the individual impact of a long La Niña or an El 

Niño on a spike is quantified below. Given a long La Niña in the years prior to the spike, the probability of a spike amounts 

to 10.7%± 0.4% on average in models (MMM; Fig. 1c’s  𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎)). Similarly, given an El Niño during the 

spike year, the probability amounts to 10.2%± 0.3% on average in models (MMM; Fig. 1c’s 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜)). The 65 

models show less intermodel spread in 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) compared to 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎). Overall, the probability 

that a long La Niña or an El Niño can help generate a spike individually is lower than when the two are combined as a 

sequence of events. This shows the importance of how a long La Niña transition to an El Niño can increase the odds of a 

global warming spike. 

 70 

So, ENSO can substantially increase the odds of warming spikes, but is ENSO a dominant driver of spikes? To explore this 

question, we compute the probability that El Niño events co-occur with a spike (𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒)). Spikes show a strong 

association with an El Niño occurring that year: the percentage of spikes associated with El Niño conditions is 93.8%±

0.3% on average in models (MMM; Fig. 1c’s 𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒)). Thus, virtually all spikes are associated with El Niño 

conditions that year. In fact, in nearly half of the models (30/64), the spike is always associated with El Niño conditions 75 

during the year, i.e., this probability is 100%. One example of this is the NOAA GFDL CM4 model where each of its spikes 

are associated with an El Niño event occurring during the year of the spike. This El Niño signal is clearly seen in the spatial 

pattern of one of the spikes in Fig. 1d. This internally-generated spike’s spatial pattern shows striking resemblance to the 

observed 2023 spike’s spatial pattern (Fig. 1b,d): warming in the Central-East Pacific, cooling-warming dipole in the South 

Pacific, and warming in the Atlantic, Arctic, Africa, and Australia.  80 
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Figure 1: a. Annual-mean global-mean surface temperature (GMST) anomalies (baseline 1951-1980; black) and monthly-mean Oceanic 
Niño Index (detrended; grey) from NASA GISTEMP observations. Dots represent GMST spikes (𝚫GMST>0.22 K) from 1956 to 1957, 
1976 to 1977, 2022 to 2023. b. Spatial pattern of surface temperature change from 2022 to 2023, i.e., 2023 spike, from NASA GISTEMP 85 
observations. c. Probabilities based on Eq. (A1) - (A5). Dots denote each model and crosses denote the multi-model mean (MMM). d. 
Spatial pattern of a surface temperature change from Year 495 to Year 496 in one of the 64 models’ piControl simulations analyzed 
(GFDL CM4) is provided as an example. 
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3 Conclusions and Discussion 

Our results show that global warming spikes can happen without any human influence. Such global warming spike events 90 

seem uncommon when unconditioned on ENSO history. But when conditioned on a long La Niña to El Niño transition 

occurring, these global warming spikes become much more common. We underscore that our findings regarding the 

association of global warming spikes with ENSO does not undermine the vast body of literature on how anthropogenic 

activities are causing long-term global warming (IPCC, 2021). However, ENSO variability against a background warming 

trend may lead to year-on-year spikes that are also historical temperature records (Min, 2024). 95 

Previous work concluded that internal variability has little power in explaining the September 2023 GMST spike (Rantanen 

and Laaksonen, 2024; hereafter RL24). However, our results put 2023 temperatures into broader context, and emphasize that 

internal variability plays a central role in explaining the annual-mean temperature spike. The apparent contrast between our 

conclusions and those of RL24 arise from differences in our approaches to the analysis. RL24 focus on a single month and 

define a spike/jump as relative to the previous record (September 2020). Temperatures across the multi-year gaps between 100 

monthly records may be influenced by different factors such as lower frequency variability or anthropogenic forcing. By 

contrast, we focus on the annual-mean and define a spike as relative to the previous year, considering continuous transitions 

that can be related to interannual variability. They use forced simulations, while we use unforced simulations and an order of 

magnitude of more data. They consider only the unconditional probability, for which the probability of a spike is divorced 

from the underlying atmosphere-ocean-climate processes. We compute the conditional probability, which reveals the central 105 

role of ENSO in explaining year-to-year temperature spikes. Regarding the September 2023 spike, RL24 find that the 

September 2023 GMST beat its previous record by 0.5 K and this margin is outside the realm of internal variability (~1% 

probability). We find a similar result with our methodology of GISTEMP’s GMST in September 2023 increasing 0.59 K 

relative to September 2022 and piControl simulations showing this spike being exceptionally unlikely: 𝑝(𝑠𝑝𝑖𝑘𝑒!"#) =

0.01%. However, we find other similar examples (<1% probability) in other months and years: February 1994-1995’s 110 

𝑝(𝑠𝑝𝑖𝑘𝑒$"%) = 0.13% and May 1976-1977’s 𝑝(𝑠𝑝𝑖𝑘𝑒&'() = 0.1%. Thus, 2023 is not unique in having an extreme monthly 

temperature record. 

Looking forward to 2024, our unforced climate models simulations can provide some perspective on how likely another 

spike in GMST will be. We find that the probability there are two back-to-back spikes in the models is 0.07%. Thus, back-

to-back spikes are rare, but when they do occur, we find that it is often associated with a long El Niño. Current climate 115 

forecasts are for a turnabout of the El Niño to neutral or La Niña conditions over 2024 (https://www.climate.gov/news-

features/blogs/enso/april-2024-enso-update-gone-fishing), suggesting that the probability of another global warming spike in 

2024 is low. Looking further forward, model projections diverge on whether there will be an increase or decrease in the 
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number of El Niños and long La Niñas due to greenhouse gas warming (Cai et al., 2015; DiNezio et al., 2012; Vecchi et al., 

2008). If the probability of spikes given these ENSO events remains the same, this would imply that in the future, the 120 

number of global warming spikes increases or decreases depending on ENSO frequency changes (Eq. (A6)). Finally, future 

research should quantify the impact of other forms of internal variability such as the Atlantic Multidecadal Oscillation (Li et 

al., 2024), and its relation/co-occurrence with ENSO (Fig. 1b,d show similar warming patterns in the Atlantic), on the 2023 

spike. 

Appendix A: Methods 125 

We define a spike as a year-to-year change in GMST (Δ𝑇); Fig. A1) that exceeds 0.22 K. This value is based on the 2023 

increase in GMST relative to 2022 being 0.27 ± 0.05 K (GISTEMP 95% anomaly uncertainty (Lenssen et al., 2019)). Thus, 

0.22 K is a lower bound. The piControl simulations in models are fully coupled simulations that have freely evolving 

temperatures with no human influence. We use models’ full time series and only those that span at least 500 years. Climate 

models differ in their representations of ENSO, and this may impact the probabilities we compute for each model. This is 130 

why we analyze all available climate models (64), not just a subset. Furthermore, we analyzed models not only in this 

generation (CMIP6) but also some models from previous generations (CMIP3 and CMIP5). Multi-model means (MMM) are 

reported by a simple average. Weighting by each model’s time series length has little impact on the MMM. Uncertainties are 

reported as 95% confidence intervals, i.e., 1.96 × *
√,

 where 𝜎 is the standard deviation of a probability across models and 𝑛 

is the number of models. 135 

 

We define a long La Niña event to be when the detrended Oceanic Niño Index (ONI) exceeds −0.5 K for at least 18 

consecutive months. The ONI is defined as the sea surface temperature change in a Central Pacific region spanning 5°S-5°N, 

190°E-240°E and is widely used for defining ENSO events  

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). We define an El Niño event as when 140 

the detrended ONI exceeds 0.5 K for at least 5 consecutive months. A long La Niña to El Niño transition is defined as one 

that occurs in less than a year. 

 

In each model, we quantify the probability of a spike (𝑝(𝑠𝑝𝑖𝑘𝑒); Eq. (A1)), the probability of a spike occurring given a long 

La Niña to El Niño transition (𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖𝑛𝑜); Eq. (A2)), the probability of a spike occurring given a 145 

long La Niña occurring in prior years (𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎); Eq. (A3)), the probability of a spike occurring given an El 

Niño occurring that year (𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜); Eq. (A4)), and the probability of a spike associated with an El Niño occurring 

during the year (𝑝(𝐸𝑙	𝑁𝑖𝑛𝑜|𝑠𝑝𝑖𝑘𝑒); Eq. (A5)). We plot Equations (A1)-(A5)’s values for each climate model in Fig. 1c.  
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The probability of a spike is given by: 150 

𝑝(𝑠𝑝𝑖𝑘𝑒) = -./%"0	23)#45")
-./%"0	23	("'0)	4,	64/"	)"04")

	         (A1) 

 

The probability of a spike given a sequence of a long La Niña event occurring in prior years followed by an El Niño event 

occurring that year can be expressed as a conditional probability: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) = #()#45"∩92,:	9'	-4ñ'<=>	-4ñ2)
#(92,:	9'	-4ñ'<=>	-4ñ2)

      (A2a) 155 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) = -./%"0	23)#45")	6@'6	32>>2A	92,:	9'	-4ñ'<	=>	-4ñ2	60',)4642,)
-./%"0	23	92,:	9'	-4ñ'<=>	-4ñ2	60',)4642,)

   (A2b) 

 

Similarly, the probability of a spike given a long La Niña event occurring in prior years can be expressed as a conditional 

probability: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎) = #()#45"∩92,:	9'	-4ñ')
#(92,:	9'	-4ñ')

        (A3a) 160 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎) = -./%"0	23)#45")	6@'6	32>>2A	'	92,:	9'	-4ñ'
-./%"0	23	92,:	9'	-4ñ')

      (A3b) 

 

Similarly, the probability of a spike given an El Niño event occurring that year can also be expressed as a conditional 

probability: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) = #()#45"∩=>	-4ñ2)
#(=>	-4ñ2)

         (A4a) 165 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) = -./%"0	23)#45")	B.04,:	=>	-4ñ2	("'0
-./%"0	23=>	-4ñ2)

       (A4b) 

 

The probability of a spike being associated with El Niño conditions, i.e., the percentage of spikes associated with El Niño 

conditions, can also be expressed as a conditional probability: 

𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒) = #(=>	-4ñ2∩)#45")
#()#45")

         (A5a) 170 

𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒) = -./%"0	23)#45")	B.04,:	',	=>	-4ń2	("'0
-./%"0	23)#45")

       (A5b) 

 

Note that Equations (A4) and (A5) can be related via Bayes’ Theorem: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) = #D𝐸𝑙	𝑁𝑖ñ𝑜E𝑠𝑝𝑖𝑘𝑒F×#()#45")
#(=>	-4ñ2)

         (A6) 

 175 
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Figure A1: Year-to-year change in GMST (Δ𝑇)) in all piControl simulations in 64 models spanning 58,021 years. Mean and 
standard deviation are 0 and 0.12 K, respectively. The shaded area represents the ±0.05 K uncertainty in the 2022-2023 
GISTEMP annual-mean GMST anomaly of 0.27 K. Simulated Δ𝑇) within and to the right of this shaded region represent 
global warming spikes. 180 
 

Table A1: piControl models and number of years for monthly-mean surface temperature (‘ts’). Only for GFDL CM2.1, 
FLOR, and CCSM3 do we exclude the first 20 years due to particularly spurious model drift. Centennial-millennial length 
drifts are inconsequential for Δ𝑇) as spikes are defined as interannual changes and are accounted in the ONI by detrending. 

 Model name Realization Number of years 

 CMIP6 piControl   

1. ACCESS-CM2 r1i1p1f1 500 

2. ACCESS-ESM1-5 r1i1p1f1 1000 

3. AWI-CM-1-1-MR r1i1p1f1 500 

4. BCC-CSM2-MR r1i1p1f1 600 

5. CAMS-CSM1-0 r1i1p1f1 500 

6. CanESM5 r1i1p1f1 1000 

7. CanESM5-1 r1i1p1f1 500 

8. CanESM5-CanOE r1i1p2f1 501 

9. CAS-ESM2-0 r1i1p1f1 550 

10. CESM2 r1i1p1f1 1200 

https://doi.org/10.5194/egusphere-2024-1937
Preprint. Discussion started: 8 July 2024
c© Author(s) 2024. CC BY 4.0 License.



9 
 

11. CESM2-FV2 r1i1p1f1 500 

12. CESM2-WACCM r1i1p1f1 499 

13. CESM2-WACCM-FV2 r1i1p1f1 500 

14. CIESM r1i1p1f1 500 

15. CMCC-CM2-SR5 r1i1p1f1 500 

16. CMCC-ESM2 r1i1p1f1 500 

17. CNRM-ESM2-1 r1i1p1f2 500 

18. E3SM-1-0 r1i1p1f1 500 

19. E3SM-2-0 r1i1p1f1 500 

20. E3SM-2-0-NARRM r1i1p1f1 500 

21. EC-Earth3 r1i1p1f1 501 

22. EC-Earth3-CC r1i1p1f1 505 

23. EC-Earth3-Veg r1i1p1f1  500 

24. EC-Earth3-Veg-LR r1i1p1f1 501 

25. FGOALS-f3-L r1i1p1f1 561 

26. FGOALS-g3 r1i1p1f1 700 

27. FIO-ESM-2-0 r1i1p1f1 500 

28. GFDL-CM4 r1i1p1f1 500 

29. GFDL-ESM4 r1i1p1f1 500 

30. GISS-E2-1-G r1i1p1f1 851 

31. GISS-E2-1-H r1i1p1f1 801 

32. HadGEM3-GC31-LL r1i1p1f1 2000 

33. HadGEM3-GC31-MM r1i1p1f1 500 

34. ICON-ESM-LR r1i1p1f1 500 

35. INM-CM4-8 r1i1p1f1 531 

36. INM-CM5-0 r1i1p1f1 1201 

37. IPSL-CM6A-LR r1i1p1f1 2000 

38. IPSL-CM6A-MR1 r1i1p1f1 500 

39. MCM-UA-1-0 r1i1p1f1 500 

40. MIROC6 r1i1p1f1 800 

41. MIROC-ES2L r1i1p1f2 500 

42. MPI-ESM-1-2-HAM r1i1p1f1 1000 
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43. MPI-ESM1-2-HR r1i1p1f1 500 

44. MPI-ESM1-2-LR r1i1p1f1 1000 

45. MRI-ESM2-0 r1i1p1f1 701 

46. NESM3 r1i1p1f1 500 

47. NorCPM1 r1i1p1f1 500 

48. NorESM2-LM r1i1p1f1 500 

49. NorESM2-MM r1i1p1f1 501 

50. SAM0-UNICON r1i1p1f1 700 

51. TaiESM1 r1i1p1f1 500 

52. UKESM1-0-LL r1i1p1f2 1880 

 LongRunMIP Control   

53. CCSM3 - 1510 

54. CESM104 - 1000 

55. CNRM-CM6-1 - 2000 

56. EC-Earth - 508 

57. GFDL CM3 - 5200 

58. GFDL ESM2M - 1340 

59. HadCM3L - 1000 

60. IPSL-CM5A - 1000 

61. MIROC3.2 - 680 

62. MPI-ESM1.2 - 1237 

 Other models’ Control   

63. GFDL CM2.1 - 3980 

64. GFDL FLOR - 2980 

Code availability 185 

Code will be made available on Zenodo upon publication. 

Data availability 

The observed surface temperature data was obtained from https://data.giss.nasa.gov/gistemp/. CMIP6 piControl data was 

obtained from the CMIP6 archive (https://esgf-node.llnl.gov/projects/cmip6/). LongRunMIP data was obtained from 
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