
1 
 

The 2023 global warming spike was driven by El Niño/Southern 
Oscillation 
Shiv Priyam Raghuraman1,2, Brian Soden1, Amy Clement1, Gabriel Vecchi3,4, Sofia Menemenlis5, 
Wenchang Yang3 

1Dept. of Atmospheric Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 5 
Miami, 33149, USA 
2Department of Climate, Meteorology & Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, 61801, 
IL, USA 
3Department of Geosciences, Princeton University, Princeton, 08544, NJ, USA 
4High Meadows Environmental Institute, Princeton University, Princeton, 08544, NJ, USA 10 
5Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, 08540, USA 

Correspondence to: Shiv Priyam Raghuraman (sraghur2@illinois.edu) 

Abstract. Global-mean surface temperature rapidly increased 0.29 ± 0.04 K from 2022 to 2023. Such a large interannual 

global warming spike is not unprecedented in the observational record with a previous instance occurring in 1976-77. 

However, why such large global warming spikes occur is unknown and the rapid global warming of 2023 has led to concerns 15 

that it could have been externally driven. Here we show that climate models that are subject only to internal variability can 

generate such spikes, but they are an uncommon occurrence (𝑝 = 1.6 ± 0.1%). However, when a prolonged La Niña 

immediately precedes an El Niño in the simulations, as occurred in nature in 1976-77 and 2022-23, such spikes become 

much more common (𝑝 = 10.3 ± 0.4%). Furthermore, we find that nearly all simulated spikes (𝑝 = 88.5 ± 0.3%) are 

associated with El Niño occurring that year. Thus, our results underscore the importance of El Niño/Southern Oscillation in 20 

driving the occurrence of global warming spikes such as the one in 2023, without needing to invoke anthropogenic forcing, 

such as changes in atmospheric concentrations of greenhouse gases or aerosols, as an explanation.  

1 Introduction 

Global-mean surface temperatures (GMST) have been rising since 1850 and more rapidly since the mid-20th century, 

principally because of human activities (IPCC, 2021). Observational (Lenssen et al., 2019; Morice et al., 2021; Rohde and 25 

Hausfather, 2020) analyses showed that GMST reached its highest recorded value in 2023, making it the warmest year on 

record. The rapid increase in annual-mean GMST of 0.29 ± 0.04 K (average of three observational datasets; Appendix A) in 

2023 relative to 2022, an increase that occurs over one-two decades usually, has not only been a cause for concern societally 

but also scientifically as its causes were not obvious (Esper et al., 2024; Jiang et al., 2024; Kuhlbrodt et al., 2024; Rantanen 

and Laaksonen, 2024; Schmidt et al., 2024). Potential causes for this year-on-year spike include anthropogenic reasons such 30 

as greenhouse gas increases and aerosol pollution reductions, or natural reasons such as increased solar activity, volcanic-
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induced stratospheric water vapor increases, and natural climate variability such as the El Niño/Southern Oscillation 

phenomenon (ENSO) (Schmidt et al., 2024). Most studies have focused on the external forcing aspects, particularly the role 

of aerosol pollution reductions, rather than quantifying the role of internal variability (Gettleman et al., 2024; Quaglia and 

Visioni, 2024; Schoeberl et al., 2024; Watson-Parris et al., 2024; Yoshioka et al., 2024; Zhang et al., 2024). This study 35 

focuses on the latter, and we will argue that ENSO is the primary reason for global warming spikes. 

 

ENSO is a mode of internal variability in the climate system that comprises of a positive phase, El Niño, and a negative 

phase, La Niña (Trenberth, 1997). El Niño or La Niña occurs every few (three to seven, typically) years in the tropical 

Pacific Ocean and encompasses a global-scale rearrangement of temperatures, winds, sea level pressures, atmospheric 40 

convection, clouds, moisture, and radiation (Trenberth, 1997; Clement et al., 1996; Peng et al., 2024; Raghuraman et al., 

2019; Soden, 1997). El Niño brings anomalous warmth to the Central and Eastern Pacific Ocean, and to other parts of the 

tropics with a lag, which increases GMST, and vice-versa for La Niña (Mann and Park, 1994; Mann et al., 2000). However, 

the degree of association of ENSO with global warming spikes has not yet been shown. An El Niño event occurred in 2023, 

which was preceded by a prolonged period of La Niña conditions from 2020-2022. 45 

 

In the observational record since 1950, 2023 is not the only year with a global warming spike of this magnitude (an increase 

in interannual GMST greater than 0.25K (Appendix A)) to have occurred, 1977 too had a spike (0.31 ± 0.04	𝐾). Both of 

these spikes occurred during an El Niño year and after a prolonged La Niña (1973-1976 and 2020-2022) (Fig. 1a). The 

spatial distribution of the 2023 spike resembles the canonical El Niño spatial pattern (Fig. 1b) (Peng et al., 2024). Thus, 2023 50 

isn’t unprecedented in producing a spike, and the observational record suggests a strong correlation between global warming 

spikes and ENSO (of the four long La Niña-El Niño transitions since 1950, two have led to spikes, i.e., p=50%). However, 

given the short record (74 years) it is difficult to draw conclusions based on a post hoc analysis of just two events. As a 

result, we turn to all available multi-centennial to multi-millennial global climate model simulations spanning 58,021 years 

across 64 models with no human influence (“piControl”; Table A1) (Eyring et al., 2016; Delworth et al., 2006; 55 

Gnanadesikan et al., 2006; Vecchi et al., 2014; Rugenstein et al., 2019).  

 

In each model, we quantify the probability of a spike (𝑝(𝑠𝑝𝑖𝑘𝑒); Eq. (A1)), the probability of a spike occurring given a long 

La Niña to El Niño transition (𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖𝑛𝑜); Eq. (A2)), the probability of a spike occurring given a 

long La Niña occurring in prior years (𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎); Eq. (A3)), the probability of a spike occurring given an El 60 

Niño occurring that year (𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜); Eq. (A4)), and the probability of a spike associated with an El Niño occurring 

during the year (𝑝(𝐸𝑙	𝑁𝑖𝑛𝑜|𝑠𝑝𝑖𝑘𝑒); Eq. (A5)). In the following sections we quantify the critical role ENSO plays in 

generating global warming spikes (Sec. 2) and present our conclusions (Sec. 3). Throughout our study we focus on the 

spike/interannual GMST change, rather than the record that a particular year may set. 
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2 Results 65 

We find that spikes happen 1.6%± 0.1%  (Multi-model means (MMM)) of the time on average in unforced model 

simulations (𝑝(𝑠𝑝𝑖𝑘𝑒) in Fig. 1c). The models show little inter-model spread with a minimum-maximum range of 𝑝(𝑠𝑝𝑖𝑘𝑒) 

of 0-9%. That is, spikes are uncommon but can occur solely from internally generated climate variability. Given a long La 

Niña in the years prior to the spike followed by an El Niño during the spike year, the probability of a spike increases over 

six-fold (compared with unconditional probability 𝑝(𝑠𝑝𝑖𝑘𝑒)) to 10.3%± 0.4% on average in models (MMM; Fig. 1c’s 70 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) ). Thus, global warming spikes become much more likely during El Niño events 

preceded by a long La Niña – even if they are not to be expected (p=10.3%) and internal variability can produce such large 

spikes in GMST without invoking external forcing. The models show considerable inter-model spread with a minimum-

maximum range of 0-52%, i.e., one model suggests no impact of a long La Niña to El Niño transition generating a spike 

while another suggests a one-in-two chance of a spike occurring given a prolonged La Niña to El Niño transition.  75 

 

In addition to the impact a long La Niña to El Niño transition has on spikes, the individual impact of a long La Niña or an El 

Niño on a spike is quantified below. Given a long La Niña in the years prior to the spike, the probability of a spike amounts 

to 6.5%± 0.3% on average in models (MMM; Fig. 1c’s  𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎)). Similarly, given an El Niño during the 

spike year, the probability amounts to 6.3%± 0.2%  on average in models (MMM; Fig. 1c’s 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜)). The 80 

models show less intermodel spread in 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) compared to 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎). Overall, the probability 

that a long La Niña or an El Niño can help generate a spike individually is lower than when the two are combined as a 

sequence of events. This shows the importance of how a long La Niña transition to an El Niño can increase the odds of a 

global warming spike. 

 85 

So, ENSO can substantially increase the odds of warming spikes, but is ENSO a dominant driver of spikes? To explore this 

question, we compute the probability that El Niño events co-occur with a spike (𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒)). Spikes show a strong 

association with an El Niño occurring that year: the percentage of spikes associated with El Niño conditions is 88.5%±

0.3% on average in models (MMM; Fig. 1c’s 𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒)). Thus, virtually all spikes are associated with El Niño 

conditions that year. In fact, in over half of the models (38/64), the spike is always associated with El Niño conditions during 90 

the year, i.e., this probability is 100%. One example of this is the NOAA GFDL CM4 model where each of its spikes are 

associated with an El Niño event occurring during the year of the spike. This El Niño signal is clearly seen in the spatial 

pattern of one of the spikes in Fig. 1d. This fully coupled climate model has freely evolving sea surface temperatures, i.e., 

independent from 2023 observations, and yet its internally-generated spike’s spatial pattern shows striking resemblance to 

the observed 2023 spike’s spatial pattern (Fig. 1b,d): warming in the Central-East Pacific, cooling-warming dipole in the 95 

South Pacific, and warming in the Atlantic, Arctic, Africa, and Australia.  
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Figure 1: a. Annual-mean global-mean surface temperature (GMST) anomalies (baseline 1951-1980; black) and monthly-mean Oceanic 
Niño Index (detrended; grey) from NASA GISTEMP observations. Dots represent GMST spikes (𝚫GMST>0.25 K) from 1976 to 1977 
and 2022 to 2023. b. Spatial pattern of surface temperature change from 2022 to 2023, i.e., 2023 spike, from NASA GISTEMP 100 
observations. c. Probabilities based on Eq. (A1) - (A5). Dots denote each model and crosses denote the multi-model mean (MMM). d. 
Spatial pattern of a surface temperature change from Year 495 to Year 496 in one of the 64 models’ piControl simulations analyzed 
(GFDL CM4) is provided as an example. 

 

2.1 Sensitivity tests 105 

Below, we test the sensitivity of our results to choices in the ENSO metric, the annual-mean definition, and the observational 

dataset (Table 1). We find that our results remain robust. First, we use an alternative ENSO metric, the relative Niño3.4 

index, to test for the impact of different ENSO amplitudes/definitions (Van Oldenborgh et al., 2021). The MMM 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) is 10.3%± 0.4% for the regular Nino3.4 metric and 10.3%± 0.8% for the relative 

Nino3.4 index, i.e., identical values on average. Note that 𝑝(𝑠𝑝𝑖𝑘𝑒)  remains unchanged by definition, as it is an 110 

unconditional probability, i.e., independent of ENSO.  
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Second, due to a lag between ENSO and GMST, we computed the probabilities using a September-August annual-mean 

definition to test if the influence of ENSO on spikes changes. The MMM 𝑝(𝑠𝑝𝑖𝑘𝑒) = 2.3% and 𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 +

𝐸𝑙	𝑁𝑖ñ𝑜) = 17.4%, compared with the regular January-December annual-mean definition probabilities of 1.6% and 10.3%, 115 

respectively. This implies that the probability increases over seven-fold, compared to over six-fold in the regular definition. 

Thus, the September-August annual-mean definition has a larger influence on spikes as El Niño continues to impact GMST 

even the following year. 

 

Third, we test how sensitive our results are to the choice of the individual observational dataset and its uncertainty. 120 

GISTEMP has a slightly smaller spike and a slightly larger uncertainty when compared with the average of the three 

datasets, resulting in a smaller spike threshold. This yields larger probabilities: MMM 𝑝(𝑠𝑝𝑖𝑘𝑒) = 2.9%  and 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) = 16.8%. HadCRUT5 and Berkeley Earth Surface Temperature have slightly larger 

spikes and equal or slightly smaller uncertainties when compared with the average of the three datasets, resulting in a larger 

spike threshold. This yields smaller probabilities: MMM 𝑝(𝑠𝑝𝑖𝑘𝑒) = 1.3%  and 1.0% , respectively, and 125 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) = 8.3%  and 6.8% , respectively. The change in 𝑝(𝑠𝑝𝑖𝑘𝑒)  can be visualized in the 

probability distribution in Figure A1: an increase in the spike threshold value (going further right on the x-axis) reduces the 

probability of a spike as the magnitude of the spike increases due the Gaussian nature of the distribution. Overall, the 

average of these 3 probabilities is 10.6%, nearly identical to the probability computed based on the average of the 3 spike 

definitions (10.3%	 ± 0.4	%), placing confidence in our methods. Furthermore, in all three datasets, the six-fold increase in 130 

the probability is maintained. 

 

Table 1: Sensitivity of results to choices in the ENSO metric (relative Niño3.4, Van Oldenborgh et al., 2021), the annual-

mean definition (September-August), and the observational dataset (GISTEMP, HadCRUT5, and Berkeley Earth Surface 

Temperature). Multiplicative factor refers to the ratio !(#!$%&|()*+	(-	.$ñ-012	.$ñ))
!(#!$%&)

. 135 

Sensitivity 

parameter 

Spike ( Δ𝑇# ; 

Interannual GMST 

change) (K) 

Spike Threshold 

(K) 

𝑝(𝑠𝑝𝑖𝑘𝑒)  

(%) 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 +

𝐸𝑙	𝑁𝑖ñ𝑜)   

(%) 

Multiplicative 

factor (unitless) 

Relative 

Niño3.4 

0.29 ± 0.04 0.25 1.6 10.3 6.4 

Sep-Aug 

annual-mean 

0.29 ± 0.04 0.25 2.3 17.4 7.6 

GISTEMP 0.27 ± 0.05 0.22 2.9 16.8 5.8 

HadCRUT5 0.30 ± 0.04 0.26 1.3 8.3 6.4 

Berkeley 0.30 ± 0.03 0.27 1.0 6.8 6.8 
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3 Conclusions and Discussion 

Our results show that global warming spikes can happen without any human influence. Such global warming spike events 

seem uncommon when unconditioned on ENSO history. But when conditioned on a long La Niña to El Niño transition 

occurring, these global warming spikes become much more common. We underscore that our findings regarding the 140 

association of global warming spikes with ENSO does not undermine the vast body of literature on how anthropogenic 

activities are causing long-term global warming (IPCC, 2021). However, ENSO variability against a background warming 

trend may lead to year-on-year spikes that are also historical temperature records (Forster et al., 2024; Min, 2024). 

Previous work concluded that it’s extremely unlikely that internal variability alone can explain the September 2023 GMST 

spike (Rantanen and Laaksonen, 2024; hereafter RL24). However, our results put 2023 temperatures into broader context, 145 

and emphasize that internal variability plays a central role in explaining the annual-mean temperature spike. The apparent 

contrast between our conclusions and those of RL24 arise from differences in our approaches to the analysis. RL24 focus on 

a single month and define a spike/jump as relative to the previous record (September 2020). Temperatures across the multi-

year gaps between monthly records may be influenced by different factors such as lower frequency variability or 

anthropogenic forcing. By contrast, we focus on the annual-mean and define a spike as relative to the previous year, 150 

considering continuous transitions that can be related to interannual variability. They use forced simulations, while we use 

unforced simulations and an order of magnitude of more data. They consider only the unconditional probability, for which 

the probability of a spike is divorced from the underlying atmosphere-ocean-climate processes. We compute the conditional 

probability, which reveals the central role of ENSO in explaining year-to-year temperature spikes. Regarding the September 

2023 spike, RL24 find that the September 2023 GMST beat its previous record by 0.5 K and this margin is outside the realm 155 

of internal variability (~1% probability). We find a similar result with our methodology of GISTEMP’s GMST in September 

2023 increasing 0.59 K relative to September 2022 and piControl simulations showing this spike being exceptionally 

unlikely: 𝒑(𝒔𝒑𝒊𝒌𝒆𝑺𝒆𝒑) = 𝟎. 𝟎𝟏%. However, we also find other such examples of small probabilities (<1% probability) in 

other months and years outside of 2023: models simulate spikes of the magnitude of February 1994-1995’s with a 

probability 𝒑(𝒔𝒑𝒊𝒌𝒆𝑭𝒆𝒃) = 𝟎. 𝟏𝟑% and May 1976-1977’s with a probability of 𝒑(𝒔𝒑𝒊𝒌𝒆𝑴𝒂𝒚) = 𝟎. 𝟏%.  160 

Looking forward to 2024, our unforced climate models simulations can provide some perspective on how likely another 

spike in GMST will be. We find that the probability there are two back-to-back spikes in the models is 0.02%. Thus, back-

to-back spikes are rare, but when they do occur, we find that it is often associated with a long El Niño. Tropical Pacific 
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conditions have turned neutral over 2024 ((https://www.climate.gov/news-features/blogs/enso/september-2024-enso-update-

binge-watch), suggesting that the probability of another global warming spike (another 0.25 K increase or more in GMST) in 165 

2024 is low. Looking further forward, model projections diverge on whether there will be an increase or decrease in the 

number of El Niños and long La Niñas due to greenhouse gas warming (Cai et al., 2015; DiNezio et al., 2012; Vecchi et al., 

2008). If the probability of spikes given these ENSO events remains the same, this would imply that in the future, the 

number of global warming spikes increases or decreases depending on ENSO frequency changes (Eq. (A6)). Finally, future 

research should quantify the impact of other forms of internal variability such as the Atlantic Multidecadal Oscillation (Li et 170 

al., 2024), and its relation/co-occurrence with ENSO (Fig. 1b,d show similar warming patterns in the Atlantic), on the 2023 

spike. 

Appendix A: Methods 

We define a spike as a year-to-year change in GMST (Δ𝑇#; Fig. A1) that exceeds 0.25 K. This value is based on the 2023 

increase in GMST relative to 2022 being 0.29 ± 0.04 K (average of GISTEMP, HadCRUT5, BEST estimates (Lenssen et 175 

al., 2019; Morice et al., 2021; Rohde and Hausfather, 2020); 95% anomaly uncertainty). Thus, 0.25 K is a lower bound. The 

piControl simulations in models are fully coupled simulations that have freely evolving temperatures with no human 

influence. We use models’ full time series and only those that span at least 500 years. Climate models differ in their 

representations of ENSO, and this may impact the probabilities we compute for each model. This is why we analyze all 

available climate models (64), not just a subset. Furthermore, we analyzed models not only in this generation (CMIP6) but 180 

also some models from previous generations (CMIP3 and CMIP5). Multi-model means (MMM) are reported by weighting 

by each model’s time series length. Simple averaging yields similar results. Uncertainties are reported as 95% confidence 

intervals, i.e., 1.96 × <
√*

 where 𝜎 is the standard deviation of a probability across models and 𝑛 is the number of models. 

 

We define a long La Niña event to be when the detrended Oceanic Niño Index (ONI) exceeds −0.5 K for at least 18 185 

consecutive months (this threshold was chosen to mimic the conditions leading up to 2023). The ONI is defined as the three-

month running mean of sea surface temperature monthly anomalies in the Niño3.4 region, a Central Pacific region spanning 

5°S-5°N, 190°E-240°E, and is widely used for defining ENSO events  

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). We define an El Niño event as when 

the detrended ONI exceeds 0.5 K for at least 5 consecutive months. A long La Niña to El Niño transition is defined as one 190 

that occurs in less than a year. 

 

The probability of a spike is given by: 

𝑝(𝑠𝑝𝑖𝑘𝑒) = .>?@&A	)B#!$%&#
.>?@&A	)B	C&-A#	$*	D$?&	#&A$&#

	         (A1) 
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 195 

The probability of a spike given a sequence of a long La Niña event occurring in prior years followed by an El Niño event 

occurring the year of the spike can be expressed as a conditional probability: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) = !(#!$%&∩()*+	(-	.$ñ-012	.$ñ))
!(()*+	(-	.$ñ-012	.$ñ))

      (A2a) 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎 + 𝐸𝑙	𝑁𝑖ñ𝑜) = .>?@&A	)B#!$%&#	DF-D	B)22)G	()*+	(-	.$ñ-0	12	.$ñ)	DA-*#$D$)*#
.>?@&A	)B	()*+	(-	.$ñ-012	.$ñ)	DA-*#$D$)*#

   (A2b) 

 200 

Similarly, the probability of a spike given a long La Niña event occurring in prior years (the end of the event must be less 

than a year from the spike year) can be expressed as a conditional probability: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎) = !(#!$%&∩()*+	(-	.$ñ-)
!(()*+	(-	.$ñ-)

        (A3a) 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐿𝑜𝑛𝑔	𝐿𝑎	𝑁𝑖ñ𝑎) = .>?@&A	)B#!$%&#	DF-D	B)22)G	-	()*+	(-	.$ñ-
.>?@&A	)B	()*+	(-	.$ñ-#

      (A3b) 

 205 

Similarly, the probability of a spike given an El Niño event occurring that year can also be expressed as a conditional 

probability: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) = !(#!$%&∩12	.$ñ))
!(12	.$ñ))

         (A4a) 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) = .>?@&A	)B#!$%&#	H>A$*+	12	.$ñ)	C&-A
.>?@&A	)B12	.$ñ)#

       (A4b) 

 210 

The probability of a spike being associated with El Niño conditions, i.e., the percentage of spikes associated with El Niño 

conditions, can also be expressed as a conditional probability: 

𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒) = !(12	.$ñ)∩#!$%&)
!(#!$%&)

         (A5a) 

𝑝(𝐸𝑙	𝑁𝑖ñ𝑜|𝑠𝑝𝑖𝑘𝑒) = .>?@&A	)B#!$%&#	H>A$*+	-*	12	.$ń)	C&-A
.>?@&A	)B#!$%&#

       (A5b) 

 215 

We plot Equations (A1)-(A5)’s values for each climate model in Fig. 1c. Note that Equations (A4) and (A5) can be related 

via Bayes’ Theorem: 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝐸𝑙	𝑁𝑖ñ𝑜) = !J𝐸𝑙	𝑁𝑖ñ𝑜K𝑠𝑝𝑖𝑘𝑒L×!(#!$%&)
!(12	.$ñ))

         (A6) 
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 220 
Figure A1: Probability distribution of year-to-year change in GMST (Δ𝑇!) in all piControl simulations in 64 models spanning 58,021 
years. Mean and standard deviation are 0 and 0.12 K, respectively. The shaded area represents the ±0.04 K uncertainty in the 2022-2023 
observed annual-mean GMST anomaly of 0.29 K. Simulated Δ𝑇! within and to the right of this shaded region represent the probability of 
global warming spikes (𝑝(𝑠𝑝𝑖𝑘𝑒)). This is an unconditional probability, i.e., independent of ENSO. 
 225 

Table A1: piControl models and number of years for monthly-mean surface temperature (‘ts’). Only for GFDL CM2.1, 
FLOR, and CCSM3 do we exclude the first 20 years due to particularly spurious model drift. Centennial-millennial length 
drifts are inconsequential for Δ𝑇# as spikes are defined as interannual changes and are accounted in the ONI by detrending. 

 Model name Realization Number of years 

 CMIP6 piControl   

1. ACCESS-CM2 r1i1p1f1 500 

2. ACCESS-ESM1-5 r1i1p1f1 1000 

3. AWI-CM-1-1-MR r1i1p1f1 500 

4. BCC-CSM2-MR r1i1p1f1 600 

5. CAMS-CSM1-0 r1i1p1f1 500 

6. CanESM5 r1i1p1f1 1000 

7. CanESM5-1 r1i1p1f1 500 

8. CanESM5-CanOE r1i1p2f1 501 

9. CAS-ESM2-0 r1i1p1f1 550 

10. CESM2 r1i1p1f1 1200 

11. CESM2-FV2 r1i1p1f1 500 
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12. CESM2-WACCM r1i1p1f1 499 

13. CESM2-WACCM-FV2 r1i1p1f1 500 

14. CIESM r1i1p1f1 500 

15. CMCC-CM2-SR5 r1i1p1f1 500 

16. CMCC-ESM2 r1i1p1f1 500 

17. CNRM-ESM2-1 r1i1p1f2 500 

18. E3SM-1-0 r1i1p1f1 500 

19. E3SM-2-0 r1i1p1f1 500 

20. E3SM-2-0-NARRM r1i1p1f1 500 

21. EC-Earth3 r1i1p1f1 501 

22. EC-Earth3-CC r1i1p1f1 505 

23. EC-Earth3-Veg r1i1p1f1  500 

24. EC-Earth3-Veg-LR r1i1p1f1 501 

25. FGOALS-f3-L r1i1p1f1 561 

26. FGOALS-g3 r1i1p1f1 700 

27. FIO-ESM-2-0 r1i1p1f1 500 

28. GFDL-CM4 r1i1p1f1 500 

29. GFDL-ESM4 r1i1p1f1 500 

30. GISS-E2-1-G r1i1p1f1 851 

31. GISS-E2-1-H r1i1p1f1 801 

32. HadGEM3-GC31-LL r1i1p1f1 2000 

33. HadGEM3-GC31-MM r1i1p1f1 500 

34. ICON-ESM-LR r1i1p1f1 500 

35. INM-CM4-8 r1i1p1f1 531 

36. INM-CM5-0 r1i1p1f1 1201 

37. IPSL-CM6A-LR r1i1p1f1 2000 

38. IPSL-CM6A-MR1 r1i1p1f1 500 

39. MCM-UA-1-0 r1i1p1f1 500 

40. MIROC6 r1i1p1f1 800 

41. MIROC-ES2L r1i1p1f2 500 

42. MPI-ESM-1-2-HAM r1i1p1f1 1000 

43. MPI-ESM1-2-HR r1i1p1f1 500 
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44. MPI-ESM1-2-LR r1i1p1f1 1000 

45. MRI-ESM2-0 r1i1p1f1 701 

46. NESM3 r1i1p1f1 500 

47. NorCPM1 r1i1p1f1 500 

48. NorESM2-LM r1i1p1f1 500 

49. NorESM2-MM r1i1p1f1 501 

50. SAM0-UNICON r1i1p1f1 700 

51. TaiESM1 r1i1p1f1 500 

52. UKESM1-0-LL r1i1p1f2 1880 

 LongRunMIP Control   

53. CCSM3 - 1510 

54. CESM104 - 1000 

55. CNRM-CM6-1 - 2000 

56. EC-Earth - 508 

57. GFDL CM3 - 5200 

58. GFDL ESM2M - 1340 

59. HadCM3L - 1000 

60. IPSL-CM5A - 1000 

61. MIROC3.2 - 680 

62. MPI-ESM1.2 - 1237 

 Other models’ Control   

63. GFDL CM2.1 - 3980 

64. GFDL FLOR - 2980 

Code availability 

Code can be accessed at Raghuraman (2024). 230 

Data availability 

The observed surface temperature data was obtained from https://data.giss.nasa.gov/gistemp/, 

https://www.metoffice.gov.uk/hadobs/hadcrut5/, and https://berkeleyearth.org/data/. CMIP6 piControl data was obtained 

from the CMIP6 archive (https://esgf-node.llnl.gov/projects/cmip6/). LongRunMIP data was obtained from 
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https://www.longrunmip.org/. CM2.1 and FLOR surface temperature data have been deposited in the Zenodo database 235 

(Raghuraman et al., 2024). 
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