
1 

Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds 1 

with 3D calculations using the Education and Research 3D 2 

Radiative Transfer Toolbox (EaR3T) 3 

Yu-Wen Chena,b, K. Sebastian Schmidta,b, Hong Chenb, Steven T. Massieb,  Susan S. Kulawikc, and Hironobu 4 
Iwabuchid 5 
  6 
a Department of Atmospheric and Oceanic Science, University of Colorado Boulder, Boulder, CO, US 7 
b Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, US 8 
c Bay Area Environmental Research Institute, Earth Science Division, NASA Ames Research Center, Moffett Field, 9 
CA, US 10 
d Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Miyagi, 11 
Japan 12 
 13 
Correspondence: Yu-Wen Chen (Yu-Wen.Chen@colorado.edu) and K. Sebastian Schmidt 14 
(Sebastian.Schmidt@lasp.colorado.edu) 15 

Abstract.  16 
Accurate and continuous measurements of atmospheric carbon dioxide (CO2) are essential for climate 17 
change research and monitoring of emission reduction efforts. NASA's Orbiting Carbon Observatory 18 
(OCO-2/3) satellites have been deployed to measure the column-averaged CO2 dry air mixing ratio (XCO2) 19 
with very high precision. Although cloudy measurements are screened out, nearby clouds can still cause 20 
retrieval biases because the forward one-dimensional (1D) radiative transfer (RT) model used in the 21 
OCO retrieval algorithm does not account for the scattering induced by clouds in the vicinity of the 22 
OCO-2/3 footprints. These biases, referred to as the three-dimensional (3D) effects, can be quantified 23 
effectively using 3D-RT calculations, but these are computationally expensive, especially for 24 
hyperspectral applications (e.g., OCO-2/3). To reduce the prohibitive computational demands of 3D-RT 25 
radiance simulations across all three OCO spectral bands, this paper employs a linear approximation 26 
with two metrics (called slope and intercept) for each of the OCO bands that represent the 3D-RT 27 
perturbations on the OCO-2 spectra and accelerate the radiative transfer by a factor of 100. This is 28 
implemented by the Education and Research 3D Radiation Transfer Toolbox for OCO (EaR3T-OCO). 29 
EaR3T-OCO estimates OCO-2 satellite radiances using all available footprint-level data and imagery 30 
from the Aqua satellite, which orbits in close proximity to the OCO-2 satellite. EaR3T-OCO can 31 
calculate 3D-RT spectral perturbations for any OCO-2 footprint. These calculations can be used to 32 
spectrally adjust the OCO-2 radiance measurements with scene-dependent EaR3T-OCO perturbation 33 
calculations prior to the actual retrieval to undo cloud vicinity effects in the radiance spectra, which can 34 
subsequently be processed with the standard OCO-2 retrieval code. We find that this adjustment largely 35 
mitigates XCO2 retrieval biases in proximity to clouds over land – the first physics-based correction of 36 
3D-RT effects on OCO-2/3 retrievals. Although the accelerated 3D-RT radiance adjustment step is faster 37 
than full 3D-RT calculations for all OCO spectral bands, it still requires at least as much computational 38 
effort as the XCO2 retrieval itself.  To bypass 3D-RT altogether, the slope and intercept metrics are 39 
parameterized as a function of the weighted cloud distance of a footprint and several other scene 40 
parameters, all of which can be derived directly from Aqua-MODIS imagery. While this method is 41 
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fastest and thus feasible for operational use, it requires careful validation for various surface and 42 
atmospheric conditions. For the case we analyzed, both the 3D-RT calculation method and the 43 
parametric bypass method successfully corrected XCO2 biases, which exceeded 2 ppm at the footprint 44 
level, and reached up to 0.7 ppm in the regional average. We find that the biases depend most strongly 45 
on the cloud field morphology and surface reflectance, but also on secondary factors such as aerosol 46 
layers and sun-sensor geometry. 47 

1. Introduction 48 

Precise global carbon dioxide (CO2) measurements are becoming increasingly important as climate change 49 
intensifies. They are necessary to gain a deeper understanding of surface CO2 sources and sinks and their 50 
response to climate change, emissions reductions, and other mitigation strategies. Reducing CO2 emissions 51 
is imperative for slowing down the pace of climate change. The Greenhouse Gases Observing Satellites 52 
(GOSAT, GOSAT-2, Nakajima et al., 2010; Imasu et al., 2023) and the Orbiting Carbon Observatory 53 

(OCO-2, OCO-3, Chris, 2015; Eldering et al., 2019), launched by the Japan Aerospace Exploration Agency 54 
(JAXA) and NASA, respectively, are currently in space to observe CO2 and other greenhouse gases. They 55 
have been designed to precisely measure CO2 column dry air mixing ratios (XCO2) through the analysis of 56 
reflected solar radiances in the oxygen A-band at 765 nm (O2-A), as well as the weak and strong CO2 bands 57 
near 1.61 µm (WCO2) and 2.06 µm (SCO2). 58 
 For remote sensing measurements of XCO2 to effectively contribute to carbon flux (sources and 59 
sinks) studies, high accuracy is imperative. Miller et al. (2007) suggest that the regional uncertainty should 60 
be within 0.3-0.5% (1 to 2 ppm) to meaningfully contribute to carbon flux estimates. Deng et al. (2016) and 61 
Crowell et al. (2018) also emphasize the significance of the level of XCO2 accuracy for reliable CO2 flux 62 
determination. Precision and accuracy in CO2 remote sensing are contingent on factors including 63 
spectroscopy, calibration, aerosol scattering and absorption, and atmospheric water vapor (Nelson et al., 64 
2022; Worden et al., 2017; Connor et al., 2016). The OCO missions employ an XCO2 retrieval algorithm 65 
that integrates these elements along with observational conditions, such as solar zenith angle (SZA), 66 
viewing zenith angle, and geolocation (OCO-2 L2 ATBD, 2020) and uses a priori data such as CO2 vertical 67 
profiles and surface reflectance to initialize spectral calculations via a one-dimensional (1D) radiative 68 
transfer (RT) model. The retrieval process iteratively refines the initial a priori estimates through optimal 69 
estimation methods (Rogers, 2013) until convergence between calculated and observed spectra is achieved. 70 
 While the 1D-RT model facilitates efficient computation, it neglects lateral photon transfer between 71 
atmospheric columns as a trade-off. It has been observed that the three-dimensional (3D) cloud bias, which 72 
stems from cloud scattering, continues to affect the accuracy of trace gas retrievals. Recent studies (Massie 73 
et al., 2017, 2021, 2023; Kylling et al., 2022) have highlighted the presence of 3D cloud bias in trace gas 74 
retrievals, including OCO and TROPOspheric Monitoring Instrument (TROPOMI) nitrogen dioxide (NO2) 75 
retrievals. The cloud-related bias is also evident when examining individual footprints. With clouds 76 
covering roughly 70% of the globe (Wylie et al., 2005; King et al., 2013) and 40% of the OCO-2 77 
measurements within 4 km of clouds (Massie et al., 2021), addressing cloud-induced bias is crucial for 78 
refining XCO2 retrieval accuracy.  79 
 Schmidt et al. (2024) explain that lateral photon transport can be understood as missing physics in 80 
the operational OCO algorithm, and any adjustments for discrepancies between 1D-RT and 3D-RT could 81 
introduce additional inaccuracies in XCO2 retrieval. Although advances have been made in expediting high-82 
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resolution 3D-RT simulations by using the same photon paths for various wavelengths (Emde et al., 2011; 83 
Iwabuchi and Okamura, 2017), the computational demands of such models have still hindered their 84 
operational application. Schmidt et al. (2024) introduced the 3D-RT radiance perturbation as the percentage 85 
difference between the 3D and 1D radiance simulations. This radiance perturbation is found to be linear 86 
over the relevant dynamic range of reflectance, which allows a simple representation of the perturbation as 87 
slope and intercept for each of the three OCO-2 bands. The details will be described in Section 2. 88 

Although the physical mechanism of the XCO2 3D cloud retrieval bias is now largely understood, 89 
practical strategies for applying these insights to a bias correction have not been developed thus far. Mauceri 90 
et al. (2023) employed machine learning techniques to correct for 3D cloud biases using observations from 91 
the Total Carbon Column Observing Network (TCCON). This correction based on machine learning offers 92 
a dynamic means of addressing both linear and non-linear cloud-induced biases. 93 
 In this paper, we introduce the direct application of the scene-dependent slope and intercept 94 
parameters to the correction of 3D-RT biases, using a modified version of the Education and Research 3D 95 
Radiative Transfer Toolbox (EaR3T; Chen et al., 2023), tailored specifically for OCO (EaR3T-OCO). This 96 
tool simulates the radiance for OCO-2 footprints, using, among other data (Section 3), imagery from the 97 
MODIS on the Aqua satellite, which is approximately 6 minutes behind OCO-2 within the NASA A-Train 98 
(afternoon) satellite constellation. From these, the slope and intercept parameters for the OCO-2 footprints 99 
of a given scene are derived, then used to undo the 3D-RT perturbation in the observed radiance spectra, 100 
and subsequently in the XCO2 retrieval. The spectral dimensionality (3x1024 for the three OCO-2 channels), 101 
and thus computational effort, are thereby greatly reduced because our methodology (Section 4) only 102 
requires a few selected wavelengths. From our results for a few scenes in different regions of the world, we 103 
develop a parameterization of slope and intercept as a function of effective cloud distance and other scene 104 
variables (Section 5). We then show that the correction of 3D-RT biases in the spectroscopy and XCO2 105 
retrievals works both on the footprint-by-footprint basis, and by way of the new parameterization. This 106 
parameterization not only enhances our physics-based understanding of the XCO2 retrieval biases introduced 107 
by clouds, but also offers a computationally efficient pathway for applying these insights globally across 108 
extensive datasets. Conclusions are drawn in Section 6, and future work is discussed in Section 7. The 109 
appendix explains the functionality of EaR3T-OCO. 110 

2. Background information 111 
 112 
This study builds on Schmidt et al. (2024), which found a linear relationship between radiance perturbations 113 
and reflectance due to 3D-RT effects. They define the 3D-RT radiance perturbation as the percent difference 114 
between the radiances calculated by 3D and 1D radiative transfer models, as formulated in Eq. (1). 115 
 116 

(1) 117 
 118 
The magnitude of this perturbation is not uniform across the observed wavelength spectrum, but depends 119 
on the reflectance (𝑅!), defined as follows: 120 
 121 

     (2)  122 
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 123 
where 𝑆"	!

				$%& in the denominator denotes the solar irradiance at the top of the atmosphere (TOA) for a given 124 
wavelength λ, and 𝜃' is the solar zenith angle. 125 

Within the dynamic range of interest for reflectance, the dependence of the perturbation on the 126 
reflectance is linear. This is illustrated in Fig. 1, which shows simulated observations in the O2-A band 127 
(Schmidt et al., 2016). For small reflectance, the scatter increases, which is due to a limited number of 128 
photons in the calculations (Section 4.2.4). A line is fitted to the data to represent the first-order dependence 129 
of the 3D-RT perturbation on the reflectance. This can be done with either all wavelengths (grey dots) or a 130 
subset (blue), which is strategically chosen to encompass the full reflectance range.  131 
 132 

 133 
Figure 1. Example of the linear relationship between perturbation and reflectance. The grey dots represent 134 
the complete wavelength range, while the blue dots indicate the subset selected for the O2-A band 135 
simulation. 136 
 137 
The slope and intercept parameters, 𝑠()	𝑎𝑛𝑑	𝑖(),  are obtained through weighted linear regression as shown 138 
in Eq. (3), where the weights are the inverse of the perturbation uncertainty (computational noise, see 139 
Section 4.2.4). The slope and intercept are indicative of distinct physical phenomena: a non-zero slope 140 
corresponds to wavelength-dependent variations and differences in 1D and 3D radiances, photon path 141 
lengths, and absorption. Increased photon path lengths from multiple scattering in 3D-RT produce non-zero 142 
perturbations (percentage differences in 1D and 3D radiances) expressed in Eq. (1). Since wavelengths with 143 
higher absorption are attenuated more than those with lower absorption, the Eq. (1) perturbations are a 144 
function of reflectance (line absorption depth), referred to later as spectral distortion. The intercept is related 145 
to the often-reported increase of reflectance near clouds, or decrease in shadows, whereas the slope accounts 146 
for spectroscopic effects. 147 
 148 

(3) 149 
 150 
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3. DATA 151 
3.1. OCO-2 data 152 
  153 
Version 10r OCO-2 data, hosted by NASA's Goddard Earth Science Data and Information Services Center 154 
(GES DISC) data archive (https://oco2.gesdisc.eosdis.nasa.gov/data/OCO2_DATA), are used in this 155 
research. The Level 1B calibrated and geolocated science radiance spectra (L1bScND) are specified in all 156 
three OCO-2 bands, facilitating simulation comparison and retrieval adjustment. Additionally, solar zenith 157 
and azimuth angles, as well as viewing zenith and azimuth angles from this product, serve as inputs for the 158 
simulation. The standard Level 2 geolocated XCO2 retrieval results (L2StdND) provide the retrieved CO2 159 
dry air mixing ratio and surface reflectance information for the three bands. Note that the XCO2 in L2StdND 160 
files is raw XCO2 before the bias correction provided by the algorithm team. We also employed Level 2 161 
meteorological parameters interpolated from the global assimilation model for each sounding (L2MetND) 162 
and Level 2 CO2 prior based on the CO2 monthly flask record, global meteorology, and age of air 163 
(L2CO2Prior) to construct the atmosphere for the simulation (refer to Section 4.1.1.1).  164 
 165 
  166 
3.2. MODIS Aqua data 167 
  168 
The MODIS Aqua satellite, launched in May 2002, is part of NASA's A-Train constellation but is exiting 169 
the formation due to fuel issues. As MODIS Aqua shared the same orbit as OCO-2 and arrived at the same 170 
scene approximately six minutes after OCO-2, the collocated information from MODIS Aqua offers 171 
valuable insights into the meteorological and surface conditions of the OCO-2 footprints and the spatial 172 
distances of clouds to the footprints. Several products derived from MODIS Aqua observations are used in 173 
this study, including MODIS level 1B radiance products at the quarter, half, and one-kilometer scales 174 
(channels 1 to 7, MYD02QKM, MYD02HKM, and MYD021KM, MODIS Characterization Support Team 175 
(MCST), 2017a-c), the geolocation product (MYD03, MODIS Characterization Support Team (MCST), 176 
2017d), the level 2 cloud product (MYD06, Platnick et al., 2015), the level 2 aerosol product (MYD04_L2, 177 
Levy et al., 2015) and the surface reflectance product (MCD43A3, Schaaf et al., 2021) from data collection 178 
6.1. These various products contribute to a comprehensive understanding of the atmospheric and surface 179 
conditions relevant to the OCO-2 measurements, thereby enhancing the accuracy and reliability of our 180 
analysis.   181 
 182 

  183 
4. Methods 184 
4.1. Case Description    185 
 186 
In order to investigate the XCO2 retrieval biases resulting from cloud scattering, we have selected a case that 187 
features high XCO2 anomalies in close proximity to clouds, as shown in Fig. 2. The chosen case is located 188 
in Central Asia, spanning from 33.85° N, 55.15° E to 34.30° N, 55.45° E. The study focuses on the 189 
conditions observed on October 18th, 2018, which have stronger reflectance for all three OCO-2 bands. 190 
The average surface level is about 758 m based on the MODIS MYD03 file (see Fig. A1), while the OCO-191 
2 Met file specifies an altitude near 790 m. The average solar zenith angle and observation zenith angle for 192 
OCO-2 footprints are 48.5˚ and 0.31˚, and the mean surface albedo for O2-A, WCO2, and SCO2 bands are 193 
0.288, 0.375, and 0.370, respectively.  The average aerosol optical depth (AOD) at 550 nm from the MODIS 194 
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MYD04 file is 0.179 over the domain. The appendix specifies the surface altitude level from the MODIS 195 
MYD03 data file, plus the atmosphere profile for this case, derived by the method described in Section 196 
4.2.1.1.  197 
  198 

 199 
 200 
Figure 2. Satellite true-color imagery of MODIS Aqua from NASA Worldview on 18 October 2018, with 201 
OCO-2 retrieved XCO2 overlaid. 202 
 203 
4.2. Radiative transfer model simulation 204 
 205 
The RT model simulates the photon-environment interactions based on the understood physical 206 
mechanisms, such as absorption, scattering, and reflection. Since this research aims to investigate the 207 
differences between 1D and 3D radiances, both 1D and 3D RT calculations are utilized. The atmospheric 208 
environment used for the RT simulation also significantly impacts the results. This subsection outlines the 209 
details of the relevant model setup. 210 
 211 

4.2.1. Vertical atmospheric structure 212 
 213 

The atmosphere profile for the simulation is constructed based on the OCO-2 Met and CO2 prior data, and 214 
it is vertically divided into 29 layers. The surface altitude and pressure are determined by the average surface 215 
height of the footprints analyzed. The heights of other layers are then linearly interpolated from the surface 216 
to 5 km for 11 points, with 0.5 km intervals from 5 km to 10 km, 1 km intervals from 10 km to 14 km, and 217 
5 km intervals from 20 km to 40 km, which was the top height of the simulation. The pressure profile 218 
corresponding to these heights is calculated using a method similar to the MERRA-2 reanalysis product 219 
(Bosilovich et al., 2015) from NASA's Global Modeling Assimilation Office (GMAO). The temperature 220 
and horizontal wind profiles are then retrieved from the OCO-2 Met data by linear interpolation between 221 
pressure and temperature/wind. 222 
 Accurate number densities of O2, CO2, and water vapor are crucial for calculating the absorption 223 
coefficients. We assumed that the atmosphere followed the ideal gas law to calculate the number density of 224 
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each layer. O2 number density is determined by multiplying its dry-air mixing ratio (0.20935, OCO-2 L2 225 
ATBD) with the dry-air number density. CO2 number density is calculated similarly but using the CO2 prior 226 
profile. We use the specific humidity in the OCO-2 Met data as well as the temperature and pressure to 227 
derive the water vapor volume mixing ratio (VMR) profile. H2O VMR is essential to obtain more accurate 228 
absorption coefficients to consider the water vapor broadening, which is discussed further in Session 3.2.2. 229 
The H2O VMR profile is also converted into number density for further absorption calculation. The derived 230 
profiles are displayed in Fig. A2. These steps ensure that the atmospheric parameters used in the simulation 231 
are as accurate as possible. 232 

 233 
4.2.2. Absorption Coefficients 234 

 235 
For missions with high spectral resolution, such as GOSAT and OCO, accurate absorption coefficients 236 
within the observed range are indispensable for meticulously modeling the absorption process. This study 237 
utilizes the same precalculated lookup tables of absorption coefficients (ABSCO tables) employed in 238 
version 10 of the OCO retrieval algorithm (ABSCO V5.1, Payne et al., 2020). These ABSCO tables furnish 239 
line-by-line absorption cross-sections for O2, CO2, and H2O within the observed wavelength range. They 240 
also account for the line mixing, speed dependence of molecular collisions, and collision-induced 241 
absorption (OCO L2 ATBD, 2021). Due to the design of OCO instruments and the varying viewing angles 242 
of the eight footprints within the same swath, the wavelengths of each band exhibit slight discrepancies 243 
(OCO L1B ATBD, 2021). To mitigate excessive computational demands, we opt to use solely the 244 
wavelengths of the first footprint.  245 
 The ABSCO tables are functions of the pressure, temperature, and water H2O VMR. Because the 246 
grid points of pressure, temperature, and H2O VMR are discrete, we calculate the absorption coefficients 247 
by applying trilinear interpolation to approximate the cross-section of each line. The instrument line shape 248 
provided in the OCO L1B file was used to weigh various lines when calculating the absorption coefficient 249 
for each wavelength. With the molecule number densities of O2, CO2, and water vapor established during 250 
step 3.2.1, we compute the absorption coefficients in km-1 for O2-A, WCO2, and SCO2 for lines whose 251 
relative cross-section exceeded 0.05 within the instrument lineshape range. The clear-sky transmittance for 252 
each wavelength can be calculated using the derived absorption coefficients. 253 

 254 
 255 

4.2.3. Cloud detection and properties 256 
 257 
MODIS products provide cloud mask information with a cloud identification accuracy of about 90% over 258 
land between 60°N and 60°S (Frey et al., 2020). However, undetected clouds can lead to a significant 259 
radiance inconsistency in RT simulation for a small footprint. To address this, we detect clouds based on 260 
the reflectance difference between the observation and white-sky surface albedo provided by the MODIS 261 
43 product. We use various reflectance thresholds for different cases to ensure that most clouds are detected. 262 
This cloud detection approach is distinct from the detection method used in Chen et al. (2023) and designed 263 
for this study specifically. 264 
 Once the cloudy pixels are identified, we retrieve the cloud top height (CTH) and cloud effective 265 
radius (CER) of the nearest location from the MODIS MYD02 cloud file and assign them to each cloudy 266 
grid point. To determine the cloud optical thickness (COT) of each pixel, we run the RT model over several 267 
COT and derive the COT-radiance relationship by ourselves to ensure the radiance consistency in 1D-RT 268 
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simulation. The COT of each pixel is then determined by applying the COT-radiance relationship. To adjust 269 
for the projection and observation time difference between OCO-2 and MODIS Aqua, we apply a cloud 270 
position adjustment as described by Chen et al. (2023). The adjustment includes a geometry parallax shift 271 
of the cloud position due to the time shift and the wind speed and direction, as determined by the CTH.  272 
 273 
 274 

4.2.4. RT model and tools 275 
 276 
In this research, a modified version of the Education and Research 3D Radiative Transfer Toolbox v0.1.1 277 
(Chen et al., 2023) for OCO (EaR3T-OCO) is utilized to model the 1D and 3D radiances of the scene. The 278 
Monte Carlo Atmospheric Radiative Transfer Simulator version 0.10.4 (MCARaTS, Iwabuchi, 2006) 279 
serves as the core engine for this simulator, which automatically ingests satellite products and simulates 1D 280 
and 3D spectral radiances. MCARaTS iteratively traces the path of each photon and calculates the 281 
distribution of photons based on the final probability. Chen et al. (2023) demonstrate the ability of EaR3T 282 
to simulate the radiance observed by OCO-2. We utilize the framework and example application 1 outlined 283 
in Chen et al. (2023) to develop a specialized version of the application, which is described in Appendix B. 284 
We improve the atmospheric structure based on the OCO-2 level 2 products and the absorption coefficient 285 
derivation method, as described in Sections 4.2.1 and 4.2.2. For the simulation of each wavelength, 1 ×109 286 
photons are used and distributed to various absorption lines for a single run. The mean radiance and the 287 
standard deviation are then calculated from three runs to estimate the uncertainty. 288 
 289 

  290 
4.3. Perturbations, Reflectance, Slopes, and Intercept Derivation 291 

 292 
Building on the foundational concepts of perturbation and reflectance introduced in Section 2 (refer to Eq. 293 
1 and Eq. 2), we run the EaR3T-OCO simulator in 1D and 3D mode to calculate 𝐼!

*+& and 𝐼!
,-. From these 294 

simulated radiances, we obtain the reflectances and perturbations. These are used to derive the slope and 295 
intercept parameters that are used for quantifying the 3D effect. We apply a weighted linear regression (see 296 
Eq. 3) to ensure that more accurate data exerts a greater influence on the parameter estimation. This 297 
approach yields not only the values of the slope and intercept but also their respective uncertainties, 298 
providing a comprehensive picture of the 3D effect's variability and reliability. The obtained slope/intercept 299 
parameters are used for quantifying the magnitude of the 3D effect, a detailed discussion of which is 300 
presented in Sections 5.2 to 5.4. Additionally, the parameters play a crucial role in the offline mitigation 301 
strategies explored in Section 5.5.  302 
 303 
4.4. OCO retrieval algorithm and spectra mitigation 304 

 305 
The retrieval algorithm plays a vital role in determining XCO2 based on the radiances of the three bands. 306 
Notably, the retrieval algorithm accounts for various processes, and post-retrieval processing calculates 307 
linear bias corrections. Different retrieval versions may yield diverse outcomes even with identical inputs. 308 
In this study, we utilize the corresponding OCO retrieval algorithm version B10.04 to compare with version 309 
10r XCO2. The retrieval code is publicly available on NASA's GitHub repository 310 
(https://github.com/nasa/RtRetrievalFramework).  311 
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 Given that the 1D-RT model does not account for additional scattered photons, the mitigation 312 
strategy proposed in this study involves modifying the observed spectra to eliminate radiance changes 313 
induced by the 3D effect. This adjustment process is referred to as “radiance adjustment” and is derived 314 
from Eq. (1-3). Upon deriving the 3D parameters in Section 4.3, we can convert the OCO-2 spectra using 315 
Eq. (4) with the observed radiance spectra and corresponding reflectance, slope, and intercept. Assuming 316 
the absence of 3D effects in the adjusted 1D radiance, we can employ the B10.04 retrieval algorithm with 317 
un-perturbed spectra to obtain mitigated XCO2.  318 
 319 

     (4) 320 
 321 

 322 

5. RESULTS 323 
5.1. 3D-RT simulation radiance closure 324 

In order to derive the slope (s) and intercept (i) parameters that accurately represent the 3D cloud effect in 325 
the OCO-2 observations, it is crucial to perform realistic radiance simulations near the satellite's footprint. 326 
Chen et al. (2023) show that the extent of radiance closure (the percent difference in the forward radiance 327 
model and observed radiances) can indicate the correctness of the retrieved cloud properties. Fig. 3a-b 328 
presents the 3D-RT simulation and MODIS observation of 650 nm using the COT, CER, and CTH shown 329 
in Fig. A3. The heat map in Fig. 3c shows a good agreement between the simulation and observation. As a 330 
result, we are confident that the simulation at other wavelengths is able to approach the actual condition. 331 
We then used the same COT, CER, and COT settings to model the wavelengths of O2-A, WCO2, and SCO2 332 
bands. 333 
 334 

 335 
Figure 3. MODIS observation at 650 nm (a) and 3D radiance simulation at 650 nm by EaR3T (b). A heatmap 336 
comparison between (a) and (b) is depicted in (c). 337 
 338 
Multiple reflectances or wavelengths are needed to derive s and i for the linear expression of the 339 
perturbations and reflectances of three bands. To balance computational demands with accuracy, we 340 
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selected 11 wavelengths evenly distributed over the high 60% transmittance based on sorted clear-sky 341 
transmittance for further RT simulation (depicted in Fig. 4 as an example, the transmittance of full spectra 342 
is presented in Fig. A4). The transmittance is calculated based on the atmosphere profile, 𝜃', etc. This 343 
reduction in simulated wavelengths is feasible due to the linear relationship between perturbations and 344 
reflectance. Employing a reduced number of wavelengths, uniformly distributed across the reflectance 345 
space, effectively minimizes computational demands while still permitting the derivation of 𝒔 and 𝒊 for the 346 
linear relationships within each band. Note that the number of wavelengths (11) utilized for determining 347 
the 3D parameters is adaptable. Employing additional wavelengths could decrease the uncertainty of the 348 
derived s and i, albeit at the expense of increased computation time. 349 
 Since the radiance simulation is cyclic at the edges, leaking radiance from one edge of the 350 
simulation to the other edge could introduce unrealistic artifacts from RT simulations. We extended the 351 
margin by 0.15˚ on each side but excluded the additional margins during the analysis. Fig. A5 illustrates 352 
the simulation and the analysis domains with cloud distribution and cloud distance serving as the 353 
background. 354 
 355 

 356 
Figure 4. (a) Sorted clear-sky transmittance as per Section 4.2.2, the wavelength index presents the lowest 357 
to highest transmittance. (b) Illustration of the selected wavelength distribution in reflectance space versus 358 
the Eq. (3) perturbation for 34.08˚ N, 55.31˚ E. 359 
 360 
 361 

5.2. 3D cloud effect parameters analysis 362 

We employed simulated radiance data across three distinct bands to quantify the 3D cloud effect 363 
perturbation: s and i. With the horizontal grid cell size being around 0.25 km, we derived an approximate 364 
mean radiance for a 1 km2 area by calculating the average radiance of the 5×5 nearest grid points, thereby 365 
approximating the OCO-2 footprint. We excluded the data if the 25 nearest grid points contained cloud 366 
pixels used in the RT simulation. The distribution of s and i for the O2-A band (𝑠%!.&, 𝑖%!.&) is illustrated 367 
in Fig. 5, with the cloud positions denoted by red dots.  368 
 369 
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 370 
Figure 5. Distribution of (a) s and (b) i of O2-A band. Red dots denote the cloud pixels employed in the RT 371 
simulation. 372 
 373 
The analysis shows the magnitudes of the 3D cloud effect parameters diminish (s and i get close to 0) as 374 
the grid point distance from the cloud increases. This decrease in magnitude corresponds to the smaller 3D 375 
cloud effect when the cloud is not in close proximity. Additionally, we divided the clear sky area into two 376 
distinct categories: bright and shadow areas. The bright area represents grid points that receive more 377 
scattered photons, whereas the shadow area encompasses grid points within the cloud shadow region. 378 
Separating these categories is necessary due to the negative and positive intercepts associated with shadow 379 
and bright areas, respectively. Notably, both categories exhibit positive s for the three different bands, 380 
exhibiting characteristics consistent with those described by Schmidt et al. (2024). Though it is instructive 381 
to discuss both cloud brightening and cloud shadowing effects, Massie et al. (2023) determined that 382 
there are relatively few cloud shadow retrievals in the OCO-2 Lite files, since many observations 383 
impacted by shadowing are screened by the OCO-2 pre-retrieval cloud screening algorithms. 384 
Thereafter, bright area analyses are the primary focus of our study.  385 
 Upon plotting s and i as a function of various definitions of the distance of a given pixel to the 386 
surrounding clouds, we identified an exponential decay relationship between the 3D cloud effect parameters 387 
and the effective horizontal cloud distance (𝐷/, Fig. 6), which is defined as the average distance of the pixel 388 
to the surrounding cloudy pixels, weighted by the inverse square distance to the cloudy pixel (Eq. 5): 389 
 390 

𝐷! =
∑ #0$00	∈	{surrounding	clouds}

∑ #00	∈	{surrounding	clouds}
  (5) 391 

 392 
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where 𝐷>is the distance of a given pixel to a pixel location of a surrounding cloud, and 𝑤> = 𝐷>.? is the 393 
weight. The exponential drop-off shown in Fig. 6 aligns with the result shown in Fig. 6 of Massie et al. 394 
(2021), although they used the nearest cloud distance.  395 
 396 
The effective cloud distance (𝐷/) helps minimize the effect of one small isolated cloud versus multiple 397 
scattered clouds, as displayed in Fig. A5. This exponential decay relationship can be attributed to 398 
atmospheric attenuation proportional to their current values. Subsequently, we fitted these parameters and 399 
𝐷/ using Eq. (6-7); 400 
  401 
𝒔 = 	𝑎' 		× 		exp(−

-"
@#
) (6) 402 

 403 
𝒊 = 	𝑎> 		× 		exp(−

-"
@$
) (7) 404 

 405 
where amplitude (𝑎', 𝑎>) and e-folding distance (𝑑', 𝑑>) are the fitting parameters (separate sets for s and i, 406 
the slope (s) and intercept (i) parameters that represent the 3D cloud effect). The data are partitioned into 407 
multiple columns, employing a bin size of 0.05 reflectance, and we utilize the median of each bin for the 408 
fitting procedure. However, we observed that the median s and i values did not approach zero as the cloud 409 
distance increased, possibly due to an inadequate number of grid points at larger cloud distances. To rectify 410 
this issue, we optimized the fitting coefficients by iteratively increasing the number of points employed in 411 
the fitting process until the maximum R2 value was attained.  412 
 413 
 414 
 415 
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 416 
Figure 6. Exponential fitting (green dashed lines) of three bands in the bright area. The black dots present 417 
data from each pixel, while the background shading indicates the density of the black dots’ distribution. 418 
The red points denote the median of each bin, and the blue error bars indicate the first and third quantiles 419 
for each bin. 420 
 421 
The intercept parameter relates to what is traditionally known as the 3D-RT effect in spectrometry for a 422 
wavelength range with minimal gas absorption, whereas the slope is its spectroscopic equivalent, 423 
representing spectral distortion due to strongly varying gas absorption cross-sections over a wavelength 424 
range. Even slight changes in absorption may result in substantial changes in the retrieved trace gas 425 
concentration. The disparity in 𝑑' for each band is not statistically significant, suggesting a similarity in the 426 
photon path histories across the different spectral bands. The initial method, denoted the baseline method, 427 
uses only about 1% of the available wavelengths, resulting in a substantial reduction in computation time 428 
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for 3D-RT calculations. By using these exponential relationships, we can parameterize six 3D effect 429 
parameters, thereby eliminating the need for 3D-RT simulations altogether. This parametric approach will 430 
be denoted as the bypass method. 431 
 432 
Table 1. Amplitude and e-folding distances for s and i fittings in the O2-A, WCO2, and SCO2 bands. 433 

 Slope Intercept 

𝑠%!.& 𝑠AB%!  𝑠CB%!  𝑖%!.& 𝑖AB%!  𝑖CB%!  

𝑎! or 𝑎" 0.263 ± 0.088 0.120 ± 0.033 0.102 ± 0.022 0.667 ± 0.257 0.667 ± 0.213 0.745 ± 0.259 

𝑑! or 𝑑" (km) 4.86 ± 0.99 5.06 ± 0.86 6.17 ± 1.04 2.81 ± 0.33 3.03 ± 0.31 2.67 ± 0.29 

 434 
 435 
 436 
5.3. Impact of aerosol 437 
 438 
Upon establishing the relationship between the 3D cloud effect parameters and the cloud distance, we 439 
proceeded to analyze the impact of aerosols on this phenomenon since aerosols play an important role in 440 
shortwave radiation. In the presence of aerosols, photons near clouds experience increased extinction 441 
(scattering or absorption depending on aerosol radiative properties), making them travel shorter horizontal 442 
distances. Consequently, the e-folding distance is expected to be smaller when there is a higher aerosol 443 
loading. To maintain consistency with the previous section, we kept several variables constant, including 444 
cloud optical thickness (COT), cloud effective radius (CER), cloud top height (CTH), cloud position, and 445 
atmospheric conditions. However, we introduced a homogeneous aerosol layer into the scenario to 446 
investigate its effect on the fitting amplitude and e-folding distance, as detailed in Section 5.2. The aerosol 447 
optical depth (AOD) data were obtained from the MODIS MYD04 data file using the aerosol optical depth 448 
and angstrom exponent at 550 nm. The top height of the aerosol layer was determined by the prevailing 449 
cloud of cloud top heights below 4 km, and we assumed uniform AOD values for layers beneath this top 450 
height. Aerosol optical depths in the O2-A, WCO2, and SCO2 bands are 0.098, 0.038, and 0.024, respectively. 451 
 In the simulation incorporating aerosols, analysis was conducted utilizing the methodology 452 
discussed in Section 5.2. Analogous correlations were identified between the 3D cloud parameters and 𝐷/, 453 
as shown in Fig. 7 and Table 2. Notably, the presentation of an aerosol layer exhibited a pronounced impact 454 
on the O2-A and SCO2 bands. This observation aligns with the absorption strength of each spectral band. 455 
Consequently, 𝑑' associated with the O2-A and SCO2 bands witness a reduction while 𝑎' of those two bands 456 
increases. This suggests that, in the presence of aerosols, the spectral distortion processes within the strong 457 
absorption bands are predominantly localized in proximity to the cloud. These findings underscore the 458 
pronounced influence of aerosols on the spectral distortion of bands with strong absorptivity. 459 
 It's important to note that our simulation relied on the assumption of uniform aerosol distribution 460 
within the boundary layer, derived from the mean AOD obtained from the MODIS product. However, this 461 
assumption may not always hold true in real-world scenarios. We illustrate that the presence of aerosols 462 
can lead to alterations in both the s and i of the O2-A and SCO2 bands, potentially increasing the uncertainty 463 
associated with the derivation of 3D effect parameters. 464 
 465 
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 466 
Figure 7. Exponential fitting (green dashed lines) of the three OCO-2 bands in the bright area of the 467 
simulation with a homogeneous aerosol layer. The black dots present data from each pixel, while the 468 
background shading indicates the density of the black dots’ distribution. The red points denote the median 469 
of each bin, and the blue error bars indicate the first and third quantiles for each bin. 470 
 471 
 472 
Table 2. Amplitude and e-folding distances for s and i fittings of the simulation with a homogeneous 473 
aerosol layer in the O2-A, WCO2, and SCO2 bands. 474 

 Slope Intercept 

𝑠%!.& 𝑠AB%!  𝑠CB%!  𝑖%!.& 𝑖AB%!  𝑖CB%!  

𝑎! or 𝑎" 0.457 ± 0.094 0.123 ± 0.037 0.250 ± 0.041 0.755 ± 0.327 0.648 ± 0.227 0.847 ± 0.406 
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𝑑! or 𝑑" (km) 3.82 ± 0.44 5.04 ± 0.89 4.58 ± 0.78 2.69 ± 0.32 2.91 ± 0.31 2.35 ± 0.33 

 475 
 476 
 477 
5.4. Impact of Footprint Size 478 
 479 
Since the OCO instrument series have a narrow field of view (FOV) of 1.3 km × 2.3 km, compared to 78 480 
km2 (10.5 km in diameter) for the GOSAT series, the 3D cloud bias is considered more significant for the 481 
OCO retrieval when small footprints are in close proximity to clouds. Numerous upcoming satellites for 482 
CO2 remote sensing will adopt similar retrieval algorithms but feature varying footprint sizes in accordance 483 
with their specific mission objectives. Thus, exploring the influence of footprint size on 3D effect 484 
parameters is vital. We performed an analysis analogous to the one described in Section 5.3 but expanded 485 
the average domain from the closest 5×5 grid points (approximately 1×1 km2) to 9×9, and 13×13 grid points 486 
(approximately 2×2, and 3×3 km2). Fig. A6 displays the updated distributions of s and i. The results of the 487 
s/i and cloud distance fitting in the bypass method, presented in Table 3, indicate a decrease in 𝑎' across 488 
all three bands. This decline aligns with the expectation that larger footprints would mitigate the spectral 489 
distortion effect, reducing the prevalence of pronounced biases. Notably, there is no statistically significant 490 
change in 𝑎> and 𝑑> of the intercept. 491 
 In addition, 𝑑! exhibit an increase when compared to the smaller footprint size. This implies that 492 
even though the baseline radiance change may demonstrate a minor deviation compared to the 1D-RT 493 
simulation as the footprint size expands, the perturbation difference in relation to reflectance might persist 494 
due to the increasing 𝑑'. In conclusion, future satellite missions with any footprint size must account for 495 
3D biases to ensure accurate remote sensing of XCO2. For missions utilizing larger footprint sizes to achieve 496 
broader global coverage, the 3D cloud effect may be diminished but distributed over a more extensive area. 497 
Conversely, missions designed with smaller footprint sizes than OCO-2, particularly those targeting 498 
enhanced data acquisition in cloud-prone regions such as the Amazon Basin (Frankenberg et al., 2024) will 499 
be susceptible to substantial 3D cloud biases. It is therefore imperative that these missions integrate 3D-RT 500 
mitigation strategies (such as the ones we proposed in Section 5.5) from the initial planning stages. 501 
 502 
Table 3. Amplitude and e-folding distances for s and i, determined using different average grid points in 503 
simulations with a homogeneous aerosol layer for the O2-A, WCO2, and SCO2 bands. 504 

 grid points 
Slope Intercept 

𝑠%!.& 𝑠AB%!  𝑠CB%!  𝑖%!.& 𝑖AB%!  𝑖CB%!  

𝑎! or 𝑎" 
1 x 1 0.457 ± 0.094 0.123 ± 0.037 0.250 ± 0.041 0.755 ± 0.327 0.648 ± 0.227 0.847 ± 0.406 

2 x 2 0.355 ± 0.110 0.097 ± 0.025 0.217 ± 0.044 0.758 ± 0.483 0.698 ± 0.360 1.138 ± 0.785 

3 x 3 0.180 ± 0.044 0.079 ± 0.031 0.173 ± 0.058 0.971 ± 0.738 0.922 ± 0.551 1.768 ± 1.548 

𝑑! or 𝑑" 
(km) 

1 x 1 3.82 ± 0.44 5.04 ± 0.89 4.58 ± 0.78 2.69 ± 0.32 2.91 ± 0.31 2.35 ± 0.33 

2 x 2 4.24 ± 0.68 5.82 ± 0.95 4.94 ± 0.62 2.61 ± 0.45 2.78 ± 0.40 2.16 ± 0.36 

3 x 3 6.20 ± 1.03 6.46 ± 1.57 5.46 ± 1.07 2.47 ± 0.46 2.61 ± 0.40 2.00 ± 0.36 

 505 
 506 
5.5. 3D effect mitigation 507 
 508 
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Utilizing the derived s and i for the 3D effect, we can mitigate the 3D effect through the "radiance 509 
adjustment" process, as elaborated in Section 4.4. The assumption is that the 3D effect is removed in the 510 
adjusted 1D radiance, allowing us to retrieve the mitigated XCO2 using existing operational retrieval 511 
algorithms. Nevertheless, both the bypass method and the baseline method can be used to determine the 3D 512 
effect parameters for each footprint. The bypass method uses a generalized parameterization derived from 513 
Eq. (6-7) to conserve computational resources, which eliminates the need for any 3D simulation and could 514 
be feasibly implemented in the operational retrieval algorithm. However, the bypass method is less precise 515 
than conducting a 3D-RT simulation with our baseline approach to derive s and i on a pixel-by-pixel basis. 516 
This bypass approach also disregards the presence of cloud shadows. We investigate the parameterization 517 
method considering the practicality of integrating this approach with the current operational retrieval 518 
algorithm. 519 
 To examine the efficiency of the bypass approach in mitigation, we apply the exponential 520 
relationships between the 3D parameters and cloud distance to footprints in our study case.  Initially, the 521 
cloud distance of each footprint is computed based on the cloud position, incorporating parallax and wind 522 
correction (refer to Fig. A5). Subsequently, we determine the s and i of the three bands using the coefficients 523 
in Table 2 for all footprints that are the best quality (Quality Flag = 0 or 1) data points. The adjusted 524 
spectra are derived accordingly using Eq. (6). Fig. 8 presents an example of the original and corresponding 525 
adjusted spectra of the O2-A band. 526 
 527 

 528 
Figure 8. Example of an O2-A spectrum before and after radiance adjustment. 529 
 530 
Utilizing the B10.04 retrieval algorithm (refer to Section 4.4), we calculate the newly retrieved XCO2 values 531 
for each footprint. Fig. 9 displays the distribution of retrieved XCO2 before and after the spectral adjustment 532 
process, superimposed on the collocated MODIS Aqua image. The elevated XCO2 near the cloud decreases 533 
after the adjustment approximation, with the newly retrieved XCO2 values reduced by approximately 0 to 3 534 
ppm for  𝐷/ exceeding 5 km. We perform a similar calculation using s and i close to the footprint (the pixel-535 
by-pixel method) and calculate XCO2 differences (defined as ΔXCO2, which represents the difference 536 
between the newly retrieved XCO2 and level 2 XCO2). 537 
 Figure 10 compares ΔXCO2 and 𝐷/ by using the bypass method and baseline method. The bypass 538 
method calculates s and i for each grid point based solely on 𝐷/, without considering the effects of cloud 539 
shadowing. In contrast, the baseline method derives the 3D parameters from simulation data, accounting 540 
for shadowing effects. Preliminary observations suggest that both methods exhibit analogous ΔXCO2 541 
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patterns and offer similar average reductions. Specifically, the bypass method registers an average ΔXCO2 542 
of -0.778 ppm, in contrast to the baseline method which delineates an average ΔXCO2 of -0.876 ppm. Both 543 
methodologies illustrate that pronounced ΔXCO2 usually occurs near clouds and attenuates with an 544 
increasing cloud distance. This trend aligns coherently with the observed distribution of s and i. Notably, 545 
the pronounced negative values predominantly arise at shorter cloud distances, an aspect overlooked by the 546 
bypass method. Moreover, the accurate s and i near the cloud edge in the baseline method give a larger 547 
XCO2 deduction than the bypass approach.  548 
 549 
 550 
 551 

 552 
Figure 9. Satellite true-color imagery of MODIS Aqua from NASA Worldview on 18 October 2018 with 553 
(a) XCO2 in OCO-2 level 2 data, (b) mitigated XCO2 retrieved from the adjusted spectra and (c) difference 554 
between the mitigated and original XCO2 values.  555 
 556 
 557 

 558 
Figure 10. (a) Relationship of ΔXCO2 with 𝐷/ as depicted in Fig. 7c, based on parameterized slopes and 559 
intercepts from the bypass method. ΔXCO2 is defined as the difference between the newly retrieved XCO2 560 
and level 2 XCO2. (b) Corresponding relationship using slopes and intercepts derived from the baseline 561 
approach. 562 
 563 
 564 
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The observed variance of XCO2 potentially emanates from the oversimplification of the 3D cloud effect by 565 
the current bypass method, which predominantly draws from brightening regions. Nikolaeva et al. (2005) 566 
classified the 3D cloud effect into four distinct types (brightening, shadowing, photons channeling, and 567 
photons leaking), with only the brightening effect being investigated in this study. The shadow area, which 568 
is not the primary focus of this research, also contributes to XCO2 retrieval biases. The existing bypass 569 
method cannot mitigate these biases and may even be exacerbated after the adjustment. Moreover, specific 570 
footprints containing thin clouds that pass the cloud-screening test also exhibit XCO2 retrieval biases. Such 571 
footprints, near the cloud periphery or partially encompassing the cloud, might not be optimal candidates 572 
for the parameterization (i.e. bypass) technique.  573 
 The requirement of the OCO-2 mission is to determine XCO2 uncertainty to within 1 ppm. Setting 574 
the true mixing ratio to the mean XCO2 for an effective distance exceeding 15 km, we see that XCO2 scatter 575 
is accentuated within 15 km of clouds, as demarcated by the black markers in Fig. 11a. The mitigated XCO2 576 
after the spectra adjustment, represented by the red markers in Fig. 11a, exhibits reduced scatter within 15 577 
km of clouds, a fact further corroborated by the full width at half maximum (FWHM) depicted in Fig. 11b. 578 
Cumulatively, the bypass method aligns favorably with the baseline methodology, offering the added 579 
benefit of small computational demands. Concurrently, our proposed mitigation method could integrate 580 
into the current retrieval system, which deploys the 1D-RT model by introducing it as a preprocessing step 581 
and effectively diminishes the impact of the 3D effect at the footprint level for the first time. The next step 582 
in this process is to test this methodology on a larger dataset.  583 
 The processing time per footprint for baseline analysis is approximately 7 minutes when using 32 584 
CPUs (AMD EPYC Processor 7713) on a cluster at the University of Colorado to simulate 1 ×109 photons 585 
for the full experiment domain. This is contrasted with the standard retrieval time of roughly 2.5 minutes 586 
per footprint using 16 CPUs (Intel Xeon Processor E5-2623 v3) on a local workstation. Although the 3D 587 
computation time of 7 minutes marks a significant improvement over full-spectra 3D simulation, the 588 
additional 3D-RT calculations required to account for the missing physics could extend the duration to 589 
nearly 6 times that of standard retrieval on a per-footprint, per-CPU basis. Such a duration is impractical in 590 
operational settings. Therefore, our bypass method offers a pragmatic alternative to mitigating the 3D cloud 591 
effect while conserving computational resources. This method can be supplemented by periodic full 592 
calculations to increase the accuracy of the bypass approach.  593 
 594 
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 595 
Figure 11. (a) Scatter plot comparing the XCO2 anomaly of the OCO-2 L2 product (in black) to its value 596 
post-spectra adjustment (in red), plotted against 𝐷/. The XCO2 anomaly is defined as retrieved XCO2 – true 597 
XCO2, with the true XCO2 defined by the average XCO2 of footprints with a 𝐷/ greater than 15 km (403.714 598 
ppm in this case). The orange shade indicates the 1 ppm mission requirement. (b) Histograms and 599 
probability density functions (PDFs) for the XCO2 anomaly of the OCO-2 L2 product (in black) and post-600 
spectra adjustment (in red) within a 15 km 𝐷/ . This corresponds to the blue-shaded region in (a). The 601 
FWHM values of the PDFs of v10r and adjusted data points are 5.38 and 4.87, and the PDF averages are 602 
0.796 and -0.178, respectively. The average change in XCO2 after the spectra adjustment for De less than 15 603 
km is -1.131 ppm.  604 
 605 
With the utilization of the bypass method, we aim to assess how the 3D cloud effect impacts XCO2 606 
measurements across various cloud distribution patterns. As illustrated in Fig. 12, we examined four distinct 607 
cloud distribution scenarios within the same spatial domain. These patterns allowed us to evaluate the 608 
regional biases in XCO2 retrievals. Moving from the leftmost panel to the rightmost panel, we observe a 609 
sequential reduction in regional mean 𝐷/: from 36.86 km to 17.90 km, 15.60 km, and 12.08 km, respectively. 610 
Corresponding cloud fractions for these regions are 0.002, 0.004, 0.077, and 0.059.  611 
 Importantly, as cloud distances decrease and cloud fractions increase, we note a corresponding 612 
escalation in regional XCO2 overestimations. Specifically, the regional overestimations transition from 0.096 613 
± 0.081 ppm to 0.380 ± 0.135 ppm, 0.559 ± 0.246 ppm, and 0.747 ± 0.377 ppm, respectively. This 614 
relationship underscores the significance of the 3D cloud effect on XCO2 measurements. Notably, regions 615 
characterized by more uniformly distributed “popcorn” clouds exhibit a higher regional bias due to their 616 
shorter 𝐷/ . Therefore, our analysis highlights the importance of comprehending the 3D cloud effect, 617 
particularly in regions known for their “popcorn” cloud patterns, both over land and ocean. 618 
 619 
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 620 

 621 
Figure 12. Examination of diverse cloud distributions within the selected region. Upper row (a-d): 622 
Worldview true-color snapshots from MODIS Aqua captured on (a) 14 April 2021, (b) 30 November 2014, 623 
(c) 3 September 2016, and (d) 2 August 2017. Lower row (e-h): Histograms showcasing 𝐷/  for the 624 
corresponding dates mentioned above. The error bars depict the ΔXCO2 variations at respective 𝐷/. From 625 
the left to the right panel, the regional mean 𝐷/diminishes sequentially from 36.86 km to 17.90 km, 15.60 626 
km, and 12.08 km. Correspondingly, the cloud fractions for these cases are 0.002, 0.004, 0.077, and 0.059. 627 
 628 

6. Conclusions 629 

We documented the EaR3T-OCO radiance simulator, an automated tool for calculating spectral radiances 630 
observed by NASA’s OCO-2 satellite. In contrast to the standard forward model, EaR3T-OCO considers 631 
the scene context of a given footprint. This is a prerequisite to account for the missing physics in the context-632 
agnostic operational retrieval that stems from clouds in the vicinity of an OCO-2 sounding. We then used 633 
the simulator to undo the effects of such clouds by reversing the perturbations relative to the clear sky that 634 
they exert on the observed radiances. In essence, the observed radiance spectra were mapped back to what 635 
they would have been in the absence of clouds in the vicinity of a footprint. This radiance mapping is done 636 
based upon the difference between simulated 1D and 3D radiance calculations (3D perturbations). After 637 
this mapping, the standard XCO2 retrieval can then be applied. In this way, we introduced a physics-based 638 
mitigation of 3D-RT effects on trace gas spectroscopy products, which has been previously regarded as 639 
intractable for real-world applications such as this.  640 

Since ‘brute-force’ 3D fully spectral calculations would be computationally prohibitive, we 641 
introduced a physics-based acceleration approach with only a few representative wavelengths, where the 642 
3D-RT spectral perturbations for the three bands are captured by linear fit parameters (slope and offset). 643 
These six parameters are much more cost-effective to simulate than the full spectra, especially while 644 
moving towards operational mitigation of 3D-RT effects. This acceleration method is distinct from 645 
previously published methods, including approaches to “freeze” photon paths for various wavelengths 646 
(Emde et al., 2011, and Iwabuchi and Okamura, 2017). More importantly, it allows the parameterization of 647 
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the six spectral perturbation parameters themselves as a function of macroscopic scene parameters, which, 648 
if successful, bypasses 3D-RT calculations altogether while retaining the core physics. This approach may 649 
bring 3D-RT mitigation within reach for operational application, not just for OCO-2 and OCO-3 but also 650 
for other spectroscopy missions – even with limited computational resources, so long as co-located imagery 651 
exists to estimate effective cloud distance. In our paper, we tested the imagery-derived effective cloud 652 
distance as the basis for this bypass option and found that it leads to almost the same results in terms of 653 
mitigation quality as the baseline method that does entail 3D calculations.  654 

Further validation of this bypass option is necessary across a larger variety of scenes before it can 655 
be applied in practice. While the bypass method does capture the significant modulators of the 3D cloud 656 
effects, including surface reflectance and sun-sensor geometry, it is not granular enough to consider detailed 657 
scene variables such as cloud top height, cloud morphology, or aerosol load. Also, our study focused on 658 
nadir observations. Further investigation into these factors, especially for target and glint mode, is required. 659 
Meanwhile, using our baseline approach provided by our simulator should work across all scenes since it 660 
considers all the scene-specific details.  661 

Our findings highlight the impact of cloud distributions on regional CO2 assessments and 662 
emphasize the importance of aerosols and footprint size for the accuracy of upcoming CO2 measurement 663 
satellites, such as MicroCarb, CO2M, and GOSAT-GW. In general, our research elucidates the 3D cloud 664 
perturbation on spectroscopy with high spectral resolution (trace gas retrievals) as opposed to spectrometry 665 
(cloud and aerosol imagery retrievals) where 3D effects are traditionally studied more extensively. We now 666 
understand that 3D effects are best addressed at the radiance level because this is where the physics that is 667 
missing in standard retrievals is operating. We also understand that the effects are spectrally dependent, 668 
with cloud morphology, band-specific surface reflectance, and aerosol properties acting as the primary 669 
drivers. Our work can become the stepping stone toward more accurate and efficient trace gas retrievals 670 
even in complex scenes, ultimately bringing spaceborne trace gas retrievals to a more accurate level of 671 
accuracy. It will improve current flux inversions (especially over the cloud-prone Amazon) and other 672 
applications. 673 
 674 

7. Future work 675 

This research emphasizes the substantial impact of aerosols, particularly on the 3D effect parameters of the 676 
O2-A band. Concurrently, the solar zenith angle and surface albedo emerge as critical determinants for these 677 
3D effect parameters. With additional simulations, there is an opportunity to incorporate the impacts of 678 
aerosols, solar zenith angle, and surface albedo into the existing parameterization framework. The current 679 
investigation concentrates on scenarios over land in Nadir mode. We will develop a similar 680 
parameterization (as in Table 3) for ocean and land in Glint mode.  681 
 682 

Code availability 683 

The EaR3T code (Chen et al., 2023) is available at https://github.com/hong-chen/er3t, and the EaR3T-OCO 684 
code is available at https://github.com/ywchen-tw/OCO-2. 685 
 686 
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Abbreviations 712 

The following abbreviations are used in this manuscript: 713 
A-train Earth Observing System Afternoon Constellation 

ABSCO Absorption coefficients 

AOD Aerosol optical depth 

CER Cloud effective radius 

CO2 Carbon dioxide 

COT Cloud optical thickness 
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CTH Cloud top height 

EaR3T Education and Research 3D Radiative Transfer Toolbox 

FOV Field of view 

FWHM Full Width at Half Maximum 

GMAO Global Modeling Assimilation Office 

GOSAT Greenhouse Gases Observing Satellite 

L (0,1..) Level 0, Level 1, etc. (data product) 

MCARaTS Monte Carlo Atmospheric Radiative Transfer Simulator 

MODIS Moderate-Resolution Imaging Spectroradiometer 

O2-A Oxygen A-band 

OCO Orbiting Carbon Observatory 

ppm parts per million 

R2 Determination coefficient 

RT Radiative transfer 

SCO2 Strong CO2 

SZA Solar zenith angle 

TOA Top of atmosphere 

VMR Volume mixing ratio 

WCO2 Weak CO2 

XCO2 Column-averaged CO2 dry air mole fraction 
 714 
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Appendix 833 

A. Supplementary figures 834 

Appendix A contains supplementary information that complements the details of the simulation setting. 835 
These supplementary elements cover a range of topics, from atmospheric profiles and cloud-related 836 
parameters to radiative transfer simulations. 837 
 838 

 839 
Figure A1. Contour plot showcasing surface height from the MODIS MYD03 file for the outer simulation 840 
domain and the inner analysis domain. 841 
 842 
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 843 
Figure A2. (a) Skew-T diagram of the atmosphere and (b) CO2 and H2O VMR profiles of Fig. 1 scene. 844 

 845 
 846 

 847 
Figure A3. The cloud optical thickness (a), cloud liquid effective radius (b), and cloud top height (c) for the 848 
3D simulation at 650 nm. 849 
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 850 
Figure A4. Simulated transmittance of (a) O2-A, (c) WCO2, and (e) SCO2 bands derived from the 851 
atmospheric structure presented in Fig. A2. Right panels present the sorted transmittance with the selected 852 
wavelength index for (b) O2-A, (d) WCO2, and (f) SCO2 bands. The orange markers on the left panels 853 
denote corresponding selected wavelengths shown in the right panels. 854 
 855 

 856 
 857 
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 858 
Figure A5. Distribution of the effective cloud distance, with blue dots marking the positions of the clouds. 859 
The black rectangle designates the analysis domain, while the entire domain represents the region of the 860 
RT simulation. 861 

 862 
 863 

 864 
 865 

 866 
 867 
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 868 
 869 
Figure A6. Distribution of s (left) and i (right) for the O2-A band computed using average radiance from 870 
the (a, b) 9×9 and (c, d) 13×13 grid points. Red dots indicate the cloud pixels employed in the RT simulation. 871 
 872 
 873 
 874 
 875 
 876 
 877 

  878 
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B. Code walkthrough 879 

The codes utilized for this study can be accessed from GitHub at: https://github.com/ywchen-880 
tw/OCO2. Subsequent sections specify the configuration file settings and provide an overview of 881 
the simulation and analysis process. 882 
 883 

a. Configuration file 884 
 885 
The changeable parameters for the EaR3T-OCO simulation are controlled by the configuration 886 
file in CSV format. The following table describes the meaning and data type of each variable. If 887 
the variable is not required to be specified, the default value is used. 888 

 889 
Parameter name Description Datatype Required 
descriptor Case description string v 
date Date of interest integer, YYYYMMDD v 
juld Julian date of the year integer  
    
pngwesn Region for retrieving the MODIS RGB image 4 floats v 
subdomain Region for analysis 4 floats v 
    
path_sat_data directory of satellite files string v 
l2 File name of geolocated XCO2 retrieval results 

data 
string  

lt File name of OCO-2 Level 2 bias-corrected 
XCO2 and other select fields from the full-
physics retrieval aggregated as daily files  

string  

l1b File name of calibrated, geolocated OCO-2 
science spectra  

string  

dia File name of geolocated XCO2 retrieval results 
plus algorithm diagnostic information  

string  

met File name of OCO-2 Level 2 meteorological 
parameters interpolated from global 
assimilation model for each sounding 

string  

imap File name of geolocated retrieved values of 
XCO2 and fluorescence generated by the 
IMAP-DOAS algorithm 

string  

co2prior File name of OCO-2 Level 2 CO2 prior based 
on CO2 monthly flask record, 
global meteorology, and age of air 

string  

sol File name of the solar spectra string  
    
nx Interval of selected wavelength Integer, default = 5  
Trn_min Minimum ratio of the largest transmittance for float, 0 ≤ Trn_min < 1,  
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wavelength selection default = 0 

abs_interpolation Option for doing the interpolation “single”, “linear”, or 
“trilinear”, default = 
“trilinear” 

 

    
_aerosol Add a homogeneous aerosol layer TRUE or FALSE  
asy Aerosol asymmetry parameter float  
    
cth_thick Cloud top height for thick clouds (km) float  
cgt_thick Cloud geometric thickness for thick clouds 

(km) 
float  

cth_thin Cloud top height for thin clouds (km) float  
cgt_thin Cloud geometric thickness for thin clouds 

(km) 
float  

cot_Nphotons Number of photons used for COT-Ref 
relationship simulation 

float  

    
path_out Directory of output files string  
o2 File name of O2-A band simulation output string  
wco2 File name of WCO2 band simulation output string  
sco2 File name of SCO2 band simulation output string  
    
retrieval Retrieval version   
    
ref_threshold Radiance threshold @ 470 nm as cloudy pixel float v 
modis_650_N_photon
s 

Number of photons used for 650 nm 
simulation 

integer v 

oco_N_photons Number of photons used for OCO 3 bands 
simulation 

integer v 

 890 
 891 
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b. Preprocess 892 

 893 
 894 
The oco_simulation.py code is the main code for data acquisition and radiance simulation. Here we 895 
focus on the first part of the code (the preprocess function) dealing with the data download and 896 
preprocessing.  897 
 898 

1. satellite_download function: This function accesses the configuration file variables, 899 
subsequently downloading the pertinent MODIS and OCO-2 data as dictated by the 900 
specified date and geolocation details. 901 

2. create_oco_atm function: Leveraging OCO-2 data, this function constructs vertical 902 
profiles for temperature, water vapor, and wind. 903 

3. oco_abs function: Based on the atmospheric profiles, this function computes the optimal 904 
absorption coefficients for all three OCO-2 bands, subsequently identifying the 905 
wavelengths for simulation. 906 

4. cdata_sat_raw function: Extracts data from the MODIS and OCO-2 files, then 907 
restructures this data to a 250 m resolution. 908 

5. cdata_cld_ipa function: Using the EaR3T simulator, this function establishes a COT-909 
radiance relationship and designates a COT for every grid point. 910 

 911 
Upon completion of the preprocessing stage, the system will generate the following files: 912 
 913 

● zpt.h5: Details the vertical atmospheric structure. 914 
● pre-data.h5: Contains information on cloud and radiance. 915 
● atm_abs_band_nx.h5: Captures data on the absorption coefficients. 916 

 917 
 918 

c. Simulation 919 
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 920 
 921 
The second part of the oco_simulation.py code (run_case_modis and run_case functions) is 922 
primarily concerned with radiance simulation. 923 
 924 

1. run_case_modis function: This function drives the EaR3T simulator to simulate 925 
radiance at 650 nm, operating in either the IPA mode or the 3D mode. It employs the 926 
correlated-k distribution method as detailed in Chen et al. (2023). Upon completion, 927 
simulation results are stored in the post_data.h5 file. 928 

2. run_case_oco function: This function activates the EaR3T simulator to simulate 929 
radiance for each designated wavelength, as identified by the oco_abs function. It utilizes 930 
the IPA mode for clear-sky simulations and the 3D mode for real-world conditions. The 931 
respective simulation outcomes for each band are archived as 932 
data_all_YYYYMMDD_xxxx_xxxx_band.h5. 933 

 934 
d. Postprocess 935 

 936 
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937 
Following the radiance simulation, we proceeded with an analysis leveraging the case_analysis.py 938 
code, and subsequently executed oco_retrieve.py to extract the mitigated XCO2. 939 
 940 

1. case_analysis function: This function accesses the output files from the radiance 941 
simulation and computes the mean radiance across various average sizes, a process 942 
managed by the near_rad_calc function. Next, the slopes_propogation function 943 
determines the slope and intercept for each grid point. With the help of the 944 
weighted_cld_dist_calc function, the effective cloud distance for each grid point is 945 
gauged based on cloud positioning. The fitting_3bands function determines the most 946 
suitable fitting coefficients for the 3D parameters and the effective cloud distance. 947 
Following this, the effective cloud distance for every footprint is established and used to 948 
derive the corresponding parameterized slopes and intercepts. All results are consolidated 949 
in the configuration file. 950 

2. oco_retrieve function: Initially, this function adjusts the radiance of the footprint in line 951 
with the set slopes and intercepts. It then triggers the OCO retrieval algorithm with the 952 
modified spectra to obtain the mitigated XCO2. 953 

3. case_retrieval_analysis function: This function reviews the output of the mitigated 954 
XCO2 and juxtaposes the findings with the OCO-2 L2 product. 955 

 956 
 957 
 958 
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