Dear reviewer,

Thank you for your insightful comments and constructive suggestions. We understand your
concerns regarding the limited validation presented in the manuscript. The primary aim of this
paper is to introduce new physics-based mitigation techniques for OCO retrievals, which differ
fundamentally from existing statistics-based bias correction methods.

Advancement of this methodology and an expanded validation effort are planned for future
work. In response to your feedback, we have included two additional case studies that apply
the same bypass parameters and provide a comparison with the baseline method in this
response document on page 5. Given the manuscript length, we will include only the first case
of these two samples in the appendix.

Your suggestion to streamline the abstract by focusing on the two primary mitigation
strategies is well taken. We will shorten the abstract as suggested while retaining the
description of the EaR®*T-OCO setup within the manuscript. A detailed explanation of both the
methodology and experimental setup is essential for clearly conveying the approach and
demonstrating its application.

We notice your concerns about the applicability of our method in the presence of shadows.
Since the OCO retrieval algorithm pre-screens most cloud-shadow footprints over land, we
focus our mitigation efforts on clear-sky and non-shadow footprints. These footprints
constitute most nadir observations and are therefore more critical for accurate retrievals than
cloud-shadow footprints. A detailed response addressing this concern is provided in the
following statements.

Below, we provide detailed responses to each point raised. The comments and suggestions
are highlighted in red, responses are in blue, and references to the original manuscript
content appear in black.

General comments:

The paper presents a step forward to mitigate biases of retrieved CO2 concentrations from
satellite observations (OCO-2/3) due to scattering of radiation by clouds in clear regions. 3D
scattering effects are approximated by a linear fit of the radiances against selected
wavelengths of a given spectral window.

Thank you for this summary, which accurately captures our work.

Based on another ongoing work, the authors claim that 3D scattering effects for a specific
scene can be described by the slope and the intercept of the fit. These two parameters can
be used to adjust the cloud contaminated observations to corresponding clear sky spectra.



To illustrate, we reference Fig. 2 from Schmidt et al. (2019) (references at the end of
this document), which shows three distinct types of footprints with the 3D cloud effect.
The characteristic correlation pattern forms three branches: clear-sky pixels with cloud
in the vicinity (green), footprints in cloud shadow (blue) and cloudy pixels (red). For
0OCO-2/3 land nadir footprints, our analysis focuses on the clear-sky pixels (green),
where we apply a linear fit to derive the slope and intercept parameters.
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Figure R1. (Fig 2 from Schmidt et al., 2019) Reflectance enhancement (spectral
perturbation) as a function of the reflectance for three distinct types of footprints.

In a following step an exponential fit of the slope and the intercept against the effective
distance to clouds is performed so that the adjustment of the spectra can be done without 3D
radiative transfer (3D RT) simulations for each pixel. In order to avoid 3D RT calculations
completely the so-called bypass method is also presented, which uses only observational
data to obtain the slope and the intercept as a function of distance from the cloud and "other
scene parameters" (the second is not shown in the paper).

In our study, we utilize observational data from MODIS, including cloud and aerosol
properties, to better capture the true radiance distribution. However, deriving the slope
and intercept requires direct comparisons between 1D and 3D simulations. Without
these simulations, it would not be possible to accurately determine the relationship
between radiance and cloud distance. Based on the case shown in this study, we also
simulate the radiance for different solar zenith angles, surface albedo, and aerosol
optical depth to evaluate the impact of these scene parameters on 3D cloud effects.

The basic method using the 3DRT simulations requires cloud input data (cloud optical
thickness, effective radius and cloud top height from MODIS observations), surface albedo
(also from MODIS) and several assumptions (which are not fully described). It is rather difficult
to obtain the realistic setup and therefore not straightforward to obtain the slope and intercept
parameters.

The realistic setup for a radiance simulation is indeed always difficult. However, the
short time difference between OCO-2 and MODIS-Aqua makes it more straightforward
to build up the simulation environment. Since OCO-2 and MODIS Aqua are on the



same orbit with only a 6-minute time difference, the MODIS observations provide a
highly realistic environmental setup for OCO-2, ensuring a high degree of consistency
between the two datasets. Some future missions, such as CO2M, also aim to have an
imager directly alongside the spectrometer to obtain more simultaneous cloud
information. Therefore, we think our approach is useful.

While we obtain cloud optical thickness, effective radius, cloud top height, surface
albedo, and aerosol properties from MODIS, some additional assumptions are
necessary to complete the 3D radiative transfer (3D-RT) simulations. Specifically,
MODIS does not provide cloud geometric thickness or the mixing layer height for
aerosols, which requires us to make reasonable assumptions based on typical values
and the literature. To make the assumptions clear, we will add the following sentences
in the simulation setup: “This study makes the assumption of fixed cloud geometric
thickness (1 km for cloud top height smaller than 4 km and cloud base at 3 km for
cloud top height greater than 4 km), which could lead to some uncertainties in the RT
simulations. Further investigation of the impact of cloud properties on the 3D cloud
effect is needed in the future.”

The bypass method, which derives the parameters only from the observed radiances would
be more practicable and it does not rely on other retrieval algorithms and assumptions on
input to RT simulations, therefore this is in my opinion a promising approach.

However, we want to clarify that the bypass method is a parameterized version of the
baseline method, which derives from the result of the (more complicated) RT
simulations. That is to say, the baseline method will be more accurate, but also more
time-consuming compared to the bypass method. While we aim to eventually apply
the bypass method independently to OCO-2 footprints without the need for additional
RT simulations, further refinement is required. At this stage, we need to perform more
RT simulations using the baseline method to build a robust, generalized bypass model
that can reliably capture a wide range of scenarios.

The methods are demonstrated for a particular scene, showing the retrieved CO2
concentration of the original OCO retrieval versus the adapted retrieval. For this particular
case | see that the adapted retrieval gives smaller CO2 concentrations (up to 6ppm) in the
cloud shadow (for which the correction is not designed for as mentioned in the text). For in-
scattering, there is almost no difference as far as | can see in Fig.9. The corrected results are
similar for both methods, the baseline and the bypass approaches. The truth is not known,
and the authors therefore can not prove that they achieve an improvement. A way to validate
the approach would be to use synthetic observations with known input concentration.

As mentioned in lines 381-384, we refer to Massie et al. (2023), who found that relatively
few cloud shadow retrievals exist in the OCO-2 Lite files due to the pre-retrieval cloud
screening algorithms. Footprints affected by cloud shadows present additional



complexities beyond the typical 3D cloud bias, such as significant surface albedo
variations and reduced CO. absorption, which complicate the analysis further. Our
current study therefore focuses exclusively on mitigating 3D cloud biases in areas with
cloud-induced enhanced illumination, rather than addressing the complexities of cloud
shadow regions. We agree that demonstrating the method’s applicability to a broader
range of conditions, such as different solar zenith angles, surface types, cloud types,
and viewing geometries (nadir and glint), is crucial for generalization. This will be an
essential direction for future research to ensure that the method can be reliably extended
to diverse scenarios.

To clarify the results in Figure 9, we have included Figure 9c, which highlights the
differences after applying the mitigation strategies. We change the scale of the color bar
to make the difference clearer as below:
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(edited Fig. 9) Figure R2. Replicated from Fig. 9 in the manuscript, with an updated
color bar scale in panel (c) adjusted to -2 to 2 ppm to better highlight AXcoz.

We also want to state again that the bypass method is the parameterization version
of the baseline method. As a result, the corrected results are similar for this case.
Regarding the "unknown truth" issue, we acknowledge the limitations of using real
observations without a reference. This challenge is common in OCO-2 3D cloud effect
research. To address this, we followed established approaches from previous studies
(Massie et al., 2021, 2022; Mauceri et al., 2023) by comparing footprints near and far
from clouds, using those farther from clouds as a proxy for unbiased Xco2 values. The
suggestion to validate using synthetic observations is certainly well taken, but not the
emphasis of this particular study, which focused on real-world data instead of synthetic
data. Besides, such a study has previously been conducted by Emde et al. (2022). Of
course, when working with satellite data, there is no ground truth data. However, the
anomalies in Fig. R2a suggest that the Xcoz in the vicinity of clouds is too high. This
is also suggested by a companion publication (Schmidt et al., 2019, Figure 3, included
below), which shows that positive slopes of the kind shown in Figure R1 (green) in the
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vicinity of clouds lead to positive Xco2 bias. Furthermore, we show that our method
removes at least part of this positive bias (negative values near clouds in Figure R2c.

It is, technically, possible to directly compare OCO-2 retrievals with data from the
ground stations at TCCON. However, this would require the use of target mode, which
has its own limitations (here, we focused on nadir-only observations). In the future, we
plan to look at target observations as well.
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Figure R3. (Adapted from Fig. 3 from Schmidt et al., 2019) Dependence of the Xco2
retrieval when applying perturbations to the strong or weak CO2 band spectra. Positive
perturbations in either band introduce a positive retrieval bias in Xco2, while negative
perturbations result in an underestimation of Xcoo.

Certainly it is important to correct cloud effects in trace gas retrievals, therefore | think that
the topic of the paper is appropriate for AMT. However, more validation is needed and |
suggest to revise the paper in this respect. Further, several clarifications regarding the setup
of the methods are required, for example it is not explained how cloud shadows are excluded.

We agree that additional validation is necessary before our method can be applied
operationally. As we explained previously, the primary objective of this paper is to
introduce the methodology we developed and to demonstrate its potential
effectiveness. We plan to conduct more extensive validation studies in the future,
incorporating a broader range of cases, including both land and ocean observations.
Please also see our response to the previous point: Aside from TCOON (not applicable
here), satellite retrievals of Xco2 (and many other geophysical products) only rarely
come with ground truth. But looking at Figure R2, it is obvious that the near-cloud bias



is at least significantly reduced by our method. As mentioned above, we plan to extend
our study to target mode observations in the future, at which point we can use TCOON
for a direct validation of our method.

To address your comment on validation to some degree, we have included two
additional cases from the same month and general geographic area as the case in Fig.
2. These cases apply the bypass mitigation method based on parameters outlined in
Table R1 (Table 2 in the manuscript) and are compared to the baseline method as
validation examples (shown below). 1D-RT and 3D-RT simulations were conducted
for these two cases to derive the correct slope and intercept parameters. Thus, we
can evaluate the bypass mitigation based on Table R1, with the comparisons
illustrated in Figs. R4 and R7.

The results from case 1 indicate that the bypass method yields a mitigation trend
similar to that of the baseline method, although with lower magnitudes (i.e., not as
accurate as the baseline method). This could be due to differences in surface altitude
and albedo, solar geometry, AOD, and other environmental factors. This case
demonstrates promising results, yet adjustments to the bypass parameters with more
scene variables are necessary for effective operational use. For now, we therefore
recommend using the baseline method.

In contrast, case 2 shows less favorable performance of the bypass method compared
to the baseline method. In case 2, the baseline method reveals a weaker correlation
between AXco2 and effective cloud distance, likely due to confounding factors, such
as surface albedo effects. This indicates that the bypass method may be less effective
in mixed or complex cloud conditions. Given the length constraints of the current
manuscript, we have decided to add only case 1 as an example in the appendix.

Regarding your concern about footprints under cloud shadows, we do not exclude
footprints that fall under cloud shadows. Instead, we apply the radiance adjustment to
all footprints that pass the quality test. In other words, if the retrieval algorithm's pre-
screening does not exclude a footprint—even if it is located in a cloud shadow—our
radiance adjustment will still be applied, despite the method being primarily designed
for bright areas.

Table R1. The same table as Table 2 in the manuscript. Amplitude and e-folding distances for s
and i fittings of the simulation with a homogeneous aerosol layer in the O2-A, WCO,, and SCO-
bands for 1.0 km geometric cloud thickness of low clouds.

Slope Intercept
S0,-4 Swco, Ssco, lo,—a lwco, Isco,
a, or a; 0.457 £0.094 | 0.123 £0.037 | 0.250 £ 0.041 | 0.755 £ 0.327 | 0.648 £ 0.227 | 0.847 + 0.406
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Figure R3. Satellite true-color imagery of MODIS Aqua from NASA Worldview on 5
October 2019 with (a) Xcoz in OCO-2 level 2 data, (b) mitigated Xco2 retrieved from the
adjusted spectra and (c) difference between the mitigated and original Xco2 values.
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Figure R4. (a) Relationship of AXco2 with De based on parameterized slopes and
intercepts from the bypass method in Table 2. (b) Corresponding relationship using
slopes and intercepts derived from the baseline approach for Fig. R3.
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Figure R5. (a) Scatter plot comparing the Xco2 anomaly of the OCO-2 L2 product (in
black) to its value post-spectra adjustment (in red) for the case shown in the figure above,
plotted against De. The Xco2 anomaly is defined as retrieved Xco2 — true Xco2, with the
true Xco2 defined by the average Xco2 of footprints with a De greater than 15 km (405.96
ppm in this case). The orange shade indicates the 1 ppm mission requirement. (b)
Histograms and probability density functions (PDFs) for the Xco2 anomaly of the OCO-2
L2 product (in black) and post spectra adjustment (in red) within a 15 km De. This
corresponds to the blue-shaded region in (a). The FWHM values of the PDFs of v10r
and adjusted data points are 5.25 and 4.28, and the PDF averages are 0.93 and 0.18,

respectively. The average change in Xco2 after the spectra adjustment for De less than
15 km is -0.86 ppm.

Additional case 2:
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Figure R6. Satellite true-color imagery of MODIS Aqua from NASA Worldview on 18
October 2018 with (a) Xco2 in OCO-2 level 2 data, (b) mitigated Xco2 retrieved from the
adjusted spectra and (c) difference between the mitigated and original Xco2 values.
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Figure R7. (a) Relationship of AXco2 with De based on parameterized slopes and
intercepts from the bypass method in Table 2. (b) Corresponding relationship using
slopes and intercepts derived from the baseline approach for Fig. R6.
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Figure R8. (a) Scatter plot comparing the Xco2 anomaly of the OCO-2 L2 product (in
black) to its value post-spectra adjustment (in red) for the case shown in the figure above,
plotted against De. The Xco2 anomaly is defined as retrieved Xco2 — true Xco2, with the
true Xco2 defined by the average Xco2 of footprints with a D greater than 15 km (405.69
ppm in this case). The orange shade indicates the 1 ppm mission requirement. (b)
Histograms and probability density functions (PDFs) for the Xco2 anomaly of the OCO-2
L2 product (in black) and post spectra adjustment (in red) within a 15 km De. This
corresponds to the blue-shaded region in (a). The FWHM values of the PDFs of v10r
and adjusted data points are 10.24 and 8.80, and the PDF averages are 0.27 and 0.20,

respectively. The average change in Xco2 after the spectra adjustment for De less than
15 km is -0.45 ppm.

Specific comments:

- The abstract is relatively long, it could be focused a more on the two mitigation strategies
and technical details about EaR3T-OCO could be shortened

Thank you for the suggestions. We will revise the abstract to make it more concise
by focusing on the two mitigation strategies and moving the technical details about
EaR3T-OCO to the methodology and appendix, as recommended.

e Revised abstract:

10



“Accurate and continuous measurements of atmospheric carbon dioxide (CO3) are
essential for climate change research and monitoring of emission reduction efforts.
NASA's Orbiting Carbon Observatory (OCO-2/3) satellites have been deployed to
measure the column-averaged CO: dry air mixing ratio (Xco2) with a designed
uncertainty of less than one ppm for the regional average. Although cloudy
measurements are screened out, nearby clouds can still cause retrieval biases due to
limitations in the forward one-dimensional (1D) radiative transfer (RT) model used in
the OCO retrieval algorithm, which does not account for the scattering from clouds
near the satellites’ footprints. These biases, known as three-dimensional (3D) effects,
can be quantified using 3D-RT models, but they are computationally expensive,
especially for hyperspectral applications like OCO-2/3. This paper employs a linear
approximation for each OCO-2 spectral band to represent the 3D-RT perturbations on
OCO-2 spectra and reduce computational demands. We apply these metrics
calculated by 3D-RT to spectrally adjust the real measured OCO-2 radiance prior to
the operational retrieval to undo cloud vicinity effects without modifying the standard
OCO-2 retrieval code. Additionally, a parameterization method is developed to bypass
the need for 3D-RT simulations by incorporating effective cloud distance and other
scene variables. The spectral adjustment mitigates Xco2 retrieval biases in proximity
to clouds over land for two cases shown in the study — the first physics-based radiance
level correction of 3D-RT effects on OCO-2/3 retrievals. While the proposed method
is computationally efficient for operational use, further validation is required for diverse
surface and atmospheric conditions.”

- .24 "These biases, referred to as the three-dimensional (3D) effects, can be quantified
effectively using 3D-RT calculations, but these are computationally expensive, especially for
hyperspectral applications (e.g., OCO-2/3)."

The authors refer later to the ALIS method for spectral Monte Carlo simulations. It is true that
3D RT is generally expensive but with ALIS spectral simulations are almost as fast as
monochromatic simulations (see ALIS, Emde et al., 2011)

We agree that techniques like ALIS are valuable advancements for accelerating 3D-
RT calculations, making spectral simulations more efficient. Iwabuchi also developed
a spectral acceleration technique. In this work, we chose our own, less sophisticated,
acceleration method, but the main emphasis of the work was not on acceleration, and
more on application to real-world data. In the future, we envision to leave it to the user
to use either ALIS, or the lwabuchi method, or ours, to correct real-world spaceborne
spectroscopy data. In addition, another focus of this work is to demonstrate that the
bypass method has the potential to operationally mitigate 3D biases without the need
for running 3D-RT simulations at all, provided sufficient cloud information is available
(e.g., effective cloud distance).

11



- 1.44 "For the case we analyzed, both the 3D-RT calculation method and the parametric
bypass method successfully corrected XCO2 biases, which exceeded 2 ppm at the footprint
level, and reached up to 0.7 ppm in the regional average."

How do you know the the correction is successful, you get a difference but you do not know
the true CO2 concentration?

An approach to validate the retrieval is to use synthetic data, as shown in the cited work by
Kylling et al. 2022 for TROPOMI. A more systematic study on the mitigation of cloud
scattering for TROPOMI is shown in Hu et al. 2022, who use 2D RT simulations to derive fits
to correct retrieved airmass factors and validate this approach using realistic synthetic data
based on Large Eddy simulations. The synthetic data (Emde et al. 2022) they are using
includes also O2A band spectra and could possibly also be used to validate the mitigation
approach for COz retrievals.

Determining true CO. concentrations without simultaneous in-situ measurements,
such as airborne observations, poses a significant challenge. Observations from
TCCON stations offer an alternative for validating the mitigation method, though
precise nadir views at these stations are very uncommon because of the relative
locations of the TCCON stations relative to the sunsynchronous satellite orbits. This
"unknown truth" issue is a common limitation in OCO-2 3D cloud effect studies due to
the scarcity of ground-based and airborne observations available for validation.
Consequently, many studies compare footprints near and far from clouds, using those
farther from clouds as reference values (Massie et al., 2021, 2022; Mauceri et al.,
2023). We use a similar approach, considering footprints with larger effective cloud
distances as being relatively free of cloud bias.

We agree that synthetic data is a valuable tool for validating satellite retrieval
algorithms. However, it is nearly impossible to perfectly replicate all atmospheric
interactions exactly as they occur in the real atmosphere. Therefore, testing the
mitigation approach on real observations remains essential for capturing the
complexities of actual atmospheric conditions. In addition, Figure R2 (and others) does
show that our bias correction goes into the right direction. Quantifying this with ground
truth will need to be left for further studies that include target observations and TCCON
stations (as discussed in response to an earlier point). Nonetheless, we will keep using
synthetic data as we have in previous work, as suggested. Again, the exclusive use
of synthetic data only cannot replace the application to real-world data, where
unforeseen effects such as sensor performance, unknown aerosol layers, geolocation
inaccuracies etc. may play a role that cannot be captured by synthetic observations
only. Our own synthetic data (e.g., from Schmidt et al., 2019) convinced us that we
had to go to real-world data next, and that is the primary focus of this manuscript.
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- 1. 46 "We find that the biases depend most strongly on the cloud field morphology and
surface reflectance, but also on secondary factors such as aerosol layers and sun-sensor
geometry."

| assume with cloud field morphology, you mean the weighted distance to the clouds. The
paper does not show how the bias depends on surface reflectance and on sun-sensor
geometry. The impact of cloud scattering will certainly increase with increasing solar zenith
angle but also for slant viewing angles (here only nadir view is shown). Also the cloud
geometrical thickness is probably important.

By "cloud field morphology," we refer to the distribution of clouds, including cloud types,
cloud top height (CTH), cloud base height, and cloud optical thickness (COT), all of
which can influence the magnitude of the 3D cloud effect.

We agree that solar and viewing geometry also play a significant role in determining
the extent of these biases. We acknowledge that the impact of other geometrical
factors, such as solar zenith angle, is not explicitly shown in the current paper. We will
add a section before Section 5.5 (3D effect mitigation) discussing the impact of surface
albedo and solar zenith angle (SZA). Additionally, we plan to conduct a more extensive
investigation in future work to encompass these and other relevant factors.

To illustrate the effect of solar zenith angle and surface albedo, we provide
parameterization figures for the O2-A band across different conditions:
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Figure R9. Parameterization of (a) slope and (b) intercept for O2-A band with
effective cloud distance, varied by solar zenith angle, while holding surface albedo
and aerosol optical depth (AOD) constant.
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Figure R10. Parameterization of (a) slope and (b) intercept for O>-A band with
effective cloud distance, varied by surface albedo, while holding solar zenith angle
and AOD constant.

Combining these results across different solar zenith angles and surface albedo
values allows us to develop a two-variable linear parameterization of as and ds (slope
parameters) and a; and di (intercept parameters). As summarized in Table R1 below,
we find that the amplitude of slope and intercept is inversely proportional to surface
albedo and directly proportional to the cosine of SZA (denoted as y). Additionally, the
e-folding distances of the slope are negatively proportional to both surface albedo and
M, while those of the intercept are positively proportional to surface albedo and
negatively proportional to p.

Table R1. The parameterization of as and ds of slope and a; and d; of intercept for the
three OCO-2 bands.

slope intercept
0O2-A as =-0.34 x alboz-a + 0.57 x y-0.03 ai =-0.60 x alboz2-a + 0.36 x p+0.72
ds =-3.2 x albo2a-9.9 x y+14.9 di=0.42 x albo2-a-2.1xy+5.2
WCQO, | as=-0.15 x albwcoz + 0.11 x p - 0.05 ai =-2.07 x albwcoz + 1.65 x p + 1.17
ds =-30.7 x albwcoz - 7.0 x y + 27.5 di=0.63 x albwcoz2-1.6 x y + 3.7
SCO, |[as=-0.18 x albscoz2 + 0.29 x p - 0.03 ai=-2.77 x albscoz + 2.22 x y + 1.14
ds =-22.6 x albscoz - 21.2 x y + 34.9 di =0.51 x albscoz2 - 1.73 x y + 3.35

- Eq.1: Remove 100%, because 100%=1. Or multiply by 100 and say that the unit of the
perturbation is in per cent.
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We will remove 100% in Eq. 1 to simplify the expression, as the perturbation will then
be represented in unit form.

- Fig.1: Is the fitted line obtained by fitting the blue dots or the grey dots? You should show
that both fits result in the same slope and intercept (you could include the two fitting lines and
the corresponding equations).

Thank you for the suggestion. We modify Fig. 1 and have both fitting lines as shown

below:
20.- Black line:
slope =124+*0.8
15 1 intercpet = 5.2 £ 0.2
2 o
5 A~ .4-'——:-"’5_#
T e
g S .
S
E 04 Red line:
Qo slope =159+ 6.9
B intercpet =4.6 + 1.7
_10 .

000 005 010 015 020 025 030 035
Reflectance

(edited version of Fig. 1) Figure R11. Example of the linear relationship between
perturbation and reflectance. The grey dots represent the complete wavelength
range, while the red dots indicate the subset selected for the O>-A band simulation.
The black and red lines represent the linear fit of the grey and red dots, respectively,

- 1. 146: "The intercept is related to the often-reported increase of reflectance near clouds,
or decrease in shadows, whereas the slope accounts for spectroscopic effects."

This interpretation is correct as long as the spectral dependence of scattering can be
neglected which is true for small spectral windows.

We will add the description in the sentence that this is true when the spectral window
is small, which can be applied to OCO spectral windows as below:

e Revised text, with the main changes underlined:
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“The intercept is related to the often-reported increase of reflectance near clouds, or
decrease in shadows, whereas the slope accounts for spectroscopic effects for a small
spectral range, where the scattering effect can be considered spectral independent.”

- Fig.2: It looks as if the main differences between the retrievals are in the cloud shadow
region. Could you also show the image without the CO2 concentration included to see
whether there is a cloud shadow at the place with higher CO2 concentrations?

Here are the MODIS-Aqua images (a) without and (b) with OCO-2 footprints
overlapped. Note that there is a six-minute time difference between the two satellites.
Again, we want to emphasize that footprints over cloud shadows are out of the scope
of this research.

34.3

Latitude (° N)
Latitude (° N)
Xco2 (ppm)

33.9 33.9

55.2 55.3 55.4
Longitude (° E) Longitude (° E)

55.2 55.3

Figure R12. Satellite true-color imagery of MODIS Aqua from NASA Worldview on
18 October 2018, (a) without and (b) with OCO-2 retrieved Xco2 overlaid.

- 1. 267: "To determine the cloud optical thickness (COT) of each pixel, we run the RT model
over several COT and derive the COT-radiance relationship by ourselves to ensure the
radiance consistency in 1D-RT simulation."

This is not so clear. It means you do not use the cloud optical thickness as from the MODIS
retrieval algorithm but an adjusted optical thickness that is needed as input for the 1D RT
simulation to be consistent with the observed radiance? Isn't this exactly the same as the
MODIS retrieval?

The retrieved optical thickness is of course biased by 3D effects because generally the
reflectance is smaller in 3D simulations compared to 1D for the same vertical optical thickness
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due to photon leakage on the cloud sides. That means that the COT is underestimated, but
this is not what you mean here?

Converting radiance to COT follows the method detailed in Appendix C2 of Chen et
al. (2023). We do not use the MODIS COT directly because the MODIS cloud
identification algorithm may overlook small, isolated clouds, leading to significant
radiance discrepancies for nearby OCO footprints. Instead, we apply an optimized
cloud detection radiance threshold tailored for each scene and then perform the
radiance-to-COT mapping accordingly.

Regarding the concern about the underestimation of COT, we acknowledge that using
1D-RT-based radiance-to-COT mapping can result in biases, where COT may indeed
be overestimated for low radiances and underestimated for high radiances due to the
3D effects. Since our primary area of interest is in bright regions, we focus on
minimizing radiance discrepancies over these areas rather than on correcting the
biases at cloudy pixels. In essence, the clouds in our calculations serve as source of
additional diffuse illumination, which is not as strongly dependent on COT than, say,
the reflectance. Still, we acknowledge that we may be under- or overestimating the
amount of diffuse illumination. Therefore, in the future, integrating COT correction
techniques could further refine COT mapping. For instance, Nataraja et al. (2022)
developed a neural network-based COT correction using 650 nm reflectance, which
could be a potential approach to incorporate.

- 1.281: "MCARaTS iteratively traces the path of each photon and calculates the distribution
of photons based on the final probability."

What do you mean with "distribution of photons" and "final probability"?

MCARaTS traces each of the photons (10° photons for this study) and records their
paths within the simulation domain to determine where they are absorbed, scattered,
or transmitted. This process results in a distribution of photon interactions across the
simulation area. By dividing the number of photons reaching a particular region by the
total number of photons simulated, we obtain a probability distribution, which is then
used to calculate the resulting radiance.

- |. 287: "The mean radiance and the standard deviation are then calculated from three runs
to estimate the uncertainty."

Three samples are not sufficient to estimate the standard deviation. Why not running more
simulations with less photons to get a better estimate?

We agree that using only three runs may not provide a robust estimate of the standard
deviation. However, due to the high computational cost of each MCARaTS simulation,
we opted for three runs with a larger number of photons (10° per run) to ensure stable
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mean radiance values. Running more simulations with fewer photons could increase
the noise, affecting the reliability of the radiance estimates. In future work, we will
explore optimizing the balance between the number of photons per run and the
number of runs to achieve a more precise estimate of the standard deviation while
maintaining computational efficiency.

- Eq. 4: Remove 100% which is equal to 1.
We will modify it as suggested.

- 1. 328: "Fig. 3a-b presents the 3D-RT simulation and MODIS observation of 650 nm using
the COT, CER, and CTH shown in Fig. A3."

It is not fully clear how the cloud input is created from the MODIS data.

Why is CER seems constant (looks like this in Fig. A3)? Please provide the value of CER.
How is the cloud vertically constructed? What is the cloud base height? What is the sun-
observer geometry?

We apologize for not making this clearer in the manuscript. For this study, we chose
to keep the cloud effective radius (CER) constant for simplicity, which is why it appears
uniform in Fig. A3c. Specifically, we assigned CER values of 10 ym for low clouds and
25 pym for high clouds. In future work, we intend to incorporate MODIS-derived CER
values to better capture spatial variability.

Regarding cloud structure and geometry, clouds are vertically constructed with cloud
top height (CTH) derived from MODIS data, as shown in Fig. A3a. The cloud base
height (CBH) is set to 1 km for low clouds and 3 km for higher clouds. The sun-
observer geometry is matched to OCO-2 observation conditions, using an average
viewing angle of 0.31° and an SZA of 48.5° across all OCO-2 footprints in the area of
interest.

In response to your other questions, we have clarified the description in line 265 as
follows:

e Original text (Line 265):
“Once the cloudy pixels are identified, we retrieve the cloud top height (CTH) and
cloud effective radius (CER) of the nearest location from the MODIS MYDO02 cloud
file and assign them to each cloudy grid point.”

e Revised text:
“Once the cloudy pixels are identified, we retrieve the cloud top height (CTH) of the
nearest location from the MODIS MYDO02 cloud file and assign it to each cloudy grid
point. The cloud effective radius (CER) is manually set to 10 ym for low clouds and

18



25 um for high clouds in this study. In future versions, we plan to use the actual
MODIS CER values to capture more realistic variations.”

Can the method also be applied for ice clouds? Is it valid over ocean?

We have not yet tested the method on ice clouds, so its applicability in such cases
remains uncertain. Over ocean surfaces, OCO-2 is operated in glint mode, not in nadir
mode. We only studied nadir mode in this manuscript. In glint, the CO2 bias behaves
differently due to factors such as ocean glint reflection and specific scattering
processes. Our preliminary result (not in this manuscript) shows that the bypass
method may also work for ocean cases. However, additional investigations are
needed to adapt and validate the method for oceanic conditions.

How is the spectral albedo generated from MODIS data? A dataset and a method to generate
hyperspectral surface albedo data from MODIS data is presented in Roccetti et al. 2024,
could this be included in your model?

For the surface albedo in this study, we used both the “brdf_reflectance” from the
OCO-2 Level 2 data and the MODIS MCD43A3 data. The spatial distribution of surface
albedo over the area of interest is derived from the MCD43A3 product and then scaled
using the OCO-2 BRDF reflectance values. Currently, we assume a wavelength-
independent surface albedo within each band range. Incorporating hyperspectral
surface albedo data, such as that presented in Roccetti et al. (2024), is an excellent
suggestion. Unfortunately the publication was not available when we developed our
method. However, we expect that it will enhance the accuracy of our EaR3*T-OCO
simulator, particularly for surface types with significant spectral variability over small
wavelength ranges. We plan on implementing this improvement in future versions of
the model. Thank you for the excellent suggestion!

- 1. 330: "The heat map in Fig. 3c shows a good agreement between the simulation and
observation. As a result, we are confident that the simulation at other wavelengths is able to
approach the actual condition."

More tests needed to draw this conclusion. How do other bands compare? At least one image
in NIR should be shown.

To address your request, we have included the simulations for all three channels
overlaid with OCO footprint observations, as shown below:
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Figure R13. Simulated continuum radiance overlaid with OCO-2 observed radiance
(c) for the (a) O2-A, (b) WCO,, and (c) SCO- band.

Most of the points in the image correspond to clear sky. How is the correlation for the cloudy
pixels only? This would show better whether the cloud input is realistic.

We recognize that our radiance-to-COT mapping, which is based on 1D-RT, can lead
to an overestimation of COT for low radiance values and an underestimation for high
radiance values due to 3D effects. For example, comparing the cloudy pixels between
our simulation and observation presents an underestimated radiance. Since our
primary focus is on bright areas, where radiance values are typically higher, we
prioritize minimizing radiance discrepancies in these regions rather than at the cloudy
pixels. As mentioned above, integrating COT correction techniques could further refine
COT mapping in the future.
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Figure R14. A scatter comparison between Fig. 3a and 3b (Fig. R15 below) for pixels
with COT greater than 0.
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| think "scatter plot" is a better name than "heat map". Could you also include a colorbar?

Thank you for your suggestion. We will update the Fig.3 as below with changing the
heatmap to scatterplot and adding color bar:
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(edited Fig. 3) Figure R15. MODIS observation at 650 nm (a) and 3D radiance
simulation at 650 nm by EaR>T (b). A scatter comparison between (a) and (b) is
depicted in (c).

- . 345: "Employing a reduced number of wavelengths, uniformly distributed across the
reflectance space, effectively minimizes computational demands while still permitting the
derivation of s and i for the linear relationships within each band."

How are the wavelengths selected? Do you use the same set of wavelengths for all scenes?

We describe the wavelength selection approach in Lines 340-343. For each band, we
first calculate the average transmittance of the region of interest using representative
values for solar and viewing geometries, surface albedo, and surface height. To avoid
running simulations at wavelengths with extremely low transmittance, we define a
minimum threshold for each band, set as the lower of (1) 40% of the band’s maximum
transmittance or (2) the band’s minimum transmittance. As a result, the selected
wavelengths for different scenes could be different.

Once the applicable wavelengths are identified, we sort them by transmittance and
select a fixed number (e.g., 11) that are uniformly distributed within the transmittance
space, as shown in Fig. 4a. This selection ensures that we capture the key spectral
variations while minimizing computational cost. The same method is applied for each
scene, but the exact set of wavelengths may vary slightly depending on the scene-
specific atmospheric conditions.

21



e Original text (Lines 340-343):
“To balance computational demands with accuracy, we selected 11 wavelengths
evenly distributed over the high 60% transmittance based on sorted clear-sky
transmittance for further RT simulation (depicted in Fig. 4 as an example, the
transmittance of full spectra is presented in Fig. A4). The transmittance is calculated
based on the atmosphere profile, 65, etc.”

Have you tested whether this relationship remains linear in different cloud situations? Clouds
can shield the lower atmosphere so that due to the presence of clouds the amount of CO2
absorption is significantly decreased. | would expect non-linearity effects and would like to
understand better why this relation should always be linear.

Thank you for the question. We have observed that when reflectance becomes too
low, the linearity of the relationship can deviate significantly. In other words, the main
linear part would start from a certain reflectance, the mechanism of which remains
unclear. This is one of the reasons why we established a transmittance threshold to
exclude wavelengths associated with extremely low reflectance, thereby minimizing
non-linear effects.

In cloud-shadowed areas, clouds can shield the lower atmosphere and reduce the
total reflected radiance, introducing a negative intercept term. The ratio of CO-
absorption to the total reflected radiance would remain relatively similar to clear-sky
conditions, though the slope behaves differently under shadowed conditions. In some
cloud-shadowed areas, however, we also observe non-linear behavior, which will
require further investigation to fully understand. Nevertheless, our study primarily
focuses on bright areas where the linear relationship remains more stable. The
dynamics within cloudier or shadowed regions fall outside the scope of this analysis
and would require a separate investigation to address potential non-linearities fully.

- 1. 365: 1Tkm? -> 1.25km??

The area is 1 km? because the 5x5 grid points correspond to a 1 km x 1 km region,
with each side of the grid representing 1 km in length.

- . 366: "We excluded the data if the 25 nearest grid points contained cloud pixels used in
the RT simulation."”

Does this mean you consider only completely clear sky pixels? What about partially cloudy
pixels for which CO2 retrievals are also performed, if the cloud fraction is not too high?

Partially cloudy footprints can pass the pre-screening process, but they are much
fewer in number compared to clear-sky footprints close to clouds. In this paper, we
focus primarily on footprints located in clear-sky regions to isolate the impact of 3D
cloud scattering. Partially cloudy footprints are more complex, as they can be affected
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by additional factors beyond scattering, such as cloud fraction and sub-pixel cloud
variability. Addressing these would require further investigation, which is outside the
scope of this study.

- 1. 381: "Though it is instructive to discuss both cloud brightening and cloud shadowing effects,
Massie et al. (2023) determined that there are relatively few cloud shadow retrievals in the
OCO-2 Lite files, since many observations impacted by shadowing are screened by the OCO-
2 pre-retrieval cloud screening algorithms. Thereafter, bright area analyses are the primary
focus of our study."

As mentioned before, in the specific scene that you present it seems that you obtain largest
differences in a cloud shadow region?

While some large negative-bias footprints do indeed appear in shadowed regions, the
majority of positive-bias footprints are located in clear-sky areas. In our investigations,
we observed that the version 11 dataset more effectively screens out these negative-
bias footprints compared to version 10. We will move toward version 11 retrieval in the
future. Footprints under cloud shadows encounter more complexities beyond cloud-
induced photon scattering, such as surface albedo variations and reduced CO:
absorption, which are not fully addressed by our current bright area mitigation
approach. As a result, applying this method to cloud-shadowed regions may
unintentionally worsen the bias. Our study focuses on mitigating biases in bright, clear-
sky regions, while addressing cloud-shadowed areas would require a distinct and
targeted strategy.

- |. 387: "we identified an exponential decay relationship between the 3D cloud effect
parameters and the effective horizontal cloud distance (D, Fig. 6)"

What is the "bright area" (mentioned in the caption of Fig. 6) in the images, how do you select
which is bright area and which is shadow?

The "bright area" is defined as the region where the reflectance calculated from the
3D-RT model is greater than that from the 1D-RT model. These areas show enhanced
reflectance due to cloud-induced brightening effects. In contrast, regions where the
reflectance is lower than that from the 1D-RT model are classified as cloud shadows,
indicating areas where clouds reduce the reflected radiance.

| assume that this exponential decay is only valid in the bright area, because in the shadow
there are abrubt changes in reflectance where the shadow ends. Is this the reason, why you
say that your method is focused on the bright area?

The exponential decay pattern can also be observed in shadow areas to some extent,
but the relationship behaves in the opposite direction, with a decrease in reflectance
instead of brightening. Our retrieval method is not optimized for footprints in shadowed
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regions, as these areas present additional challenges, including severe changes in
reflectance at shadow boundaries, as you mentioned. These complexities would
require further investigation to address effectively, so we focus primarily on bright
areas in this study.

In Fig. 6 | don't see the "background shading". Could you include colors corresponding to the
density of the dots as in Fig.3?

Thank you for pointing out the issue. We understand that the density shading might
be confusing. We will replace the density kernel with the density scatter plot as below:
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(edited Fig. 6) Figure R16. The same figure as Fig. 6 but changing from heatmap to
scatter plot.

- Table 1: These parameters are valid only for the specific scene, correct? This should be
clarified. Is the number of digits meaningful?

Yes, the parameters in Table 1 are derived specifically from the results shown in
Figures 5 and 6. Considering the uncertainty, the number of digits is not meaningful.
We will update the table description to make this clearer as below:

e Original text (Line 433):
“Table 1. Amplitude and e-folding distances for s and i fittings in the O2-A, WCO.,
and SCO; bands.”

e Revised text:
“Table 1. Amplitude and e-folding distances for s and i fittings in the O2-A, WCO,
and SCO; bands for the simulation shown in Fig. 5.”

- |. 516: "However, the bypass method is less precise than conducting a 3D-RT simulation
with our baseline approach to derive s and i on a pixel-by-pixel basis."

Why is it less precise? | think it could even be more precise because it does not rely on
assumptions to produce the input for the 3DRT simulations.

As mentioned earlier, the bypass method is a parameterized approach derived from
our baseline method, which itself relies on 3D-RT simulation results. Therefore, it still
inherits the assumptions made in the baseline method. While the bypass method
offers a computational advantage, its precision can be lower because it uses
generalized relationships rather than performing pixel-specific 3D-RT calculations,
which can capture more localized variations.

- 1. 517: "This bypass approach also disregards the presence of cloud shadows."

Why can the bypass approach not account for the shadows? Shadows are included in the
observed radiances.

While it's true that shadows are present in the observed radiances, footprints over
cloud-shadowed regions introduce additional complexities beyond the 3D cloud bias
that the bypass method is designed to address. Adapting the bypass method to
accurately handle shadowed regions would require further development and validation,
which lies outside the scope of this study.

- Fig. 12: Are the results shown here based on the basic approach or the bypass approach?
There are many shadows in the images. Do you include a cloud mask to exclude the shadows
or how are they treated?
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The results shown in Fig. 12 are based on the bypass parameterization listed in Table
2. The purpose of this figure is to demonstrate how variations in cloud distribution can
lead to different cloud-induced biases. For this analysis, we consider the effective
cloud distance for non-cloudy pixels, but we do not apply a cloud mask to exclude
shadowed areas. As a result, cloud shadows are included in the images, but shadow-
induced biases are not specifically addressed. Investigating these biases would
require a more detailed analysis, which is beyond the scope of this study.

- |. 647: "... it allows the parameterization of the six spectral perturbation parameters
themselves as a function of macroscopic scene parameters ..."

Which are the macroscopic scene parameters?

The macroscopic scene parameters include solar and viewing geometry (e.g., solar
zenith angle, viewing angle), cloud properties (e.g., cloud top height, cloud optical
thickness), aerosol properties, and surface albedo. For example, we have
demonstrated how variations in surface albedo can influence the spectral perturbation
parameters in our analysis.

Couldn't one use only the spectral radiance observations to obtain the perturbation
parameters using the bypass method?

We have attempted to retrieve the perturbation parameters directly from the spectral
radiance observations, but the results have not been satisfactory so far. We believe
this is due to an insufficient degree of freedom for independently retrieving all six
perturbation parameters, as they are highly coupled with other factors such as surface
albedo and aerosol optical thickness. Decoupling these variables would require
additional constraints or assumptions, which complicates the retrieval process.

- 1. 656: "While the bypass method does capture the significant modulators of the 3D cloud
effects, including surface reflectance and sun-sensor geometry, it is not granular enough to
consider detailed scene variables such as cloud top height, cloud morphology, or aerosol
load."

Shouldn't the bypass method, since it uses reflectances containing all 3D cloud effects,
capture all modulators?

While the bypass method indeed uses reflectance that inherently captures all 3D cloud
effects, it simplifies the variation in perturbation parameters by grouping them based
solely on effective cloud distances. This simplification does not fully account for the
spread in perturbation values that may arise due to more detailed factors, such as
variations in cloud top height, cloud morphology, or aerosol distributions, which are
not explicitly parameterized in the bypass method.
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