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Abstract: The Atmospheric Laser Doppler Instrument (ALADIN) onboard Aeolus was the first spaceborne high-resolution 

lidar, measuring vertical profiles of aerosol optical properties at 355 nm at an incidence angle of ~35°. Although Aeolus had 10 

been primarily developed to provide vertical profiles of wind speed, aerosols, and cloud products, its lidar surface returns 

(LSR) were shown to contain useful information about ultraviolet (UV) surface reflectivity and agreed well with passive 

remote sensing reflectance. Within the process to incorporate the LSR algorithm into the Aeolus Level 2A product during the 

post-commissioning phase of Aeolus, we describe the methodology and evaluate the results of the adopted LSR retrieval. The 

algorithm combines attenuated backscattering parameters (L2 AEL-PRO data) with the information on the surface bin 15 

detection (L1 data) to produce attenuated LSR estimates (e.g. surface integrated attenuated backscatter) for all bins where the 

ground was detected. The correction for producing final LSR estimates at the original Aeolus resolution is performed using 

the Aeolus L2 retrievals, namely Aerosol Optical Depth (AOD) and Rayleigh Optical Depth to ensure that LSR is free from 

effects of atmospheric attenuative features such as optically thick clouds and thick aerosol conditions (AOD > 1.0). The 

evaluation shows that Aeolus LSR estimates produced from this approach agreed well with the UV Lambertian-Equivalent 20 

Reflectivity (LER) from GOME-2 (LERG) and TROPOMI (LERT) climatologies at all spatial scales. For four reference orbits 

(September 10, 2018; November 30, 2018; January 11, 2019; and May 1, 2019), all cloud and aerosol-free LSR estimates 

agree well with both LER references with correlation coefficients (r) varying from 0.55 to 0.71. For monthly scales, the 

agreement was moderate-to-high for LSR-LERT (r = 0.61 – 0.77 depending on the month) and was weak-to-moderate for 

LSR-LERG comparison (r = 0.44 – 0.64). Globally, the averaged 2.5 x 2.5o LSR estimates exhibit very high agreement with 25 

both LERG (0.90) and LERT (0.92) references. In reproducing regional monthly dynamics LSR and LER agree very well in 

snow/ice-covered regions (r > 0.90), semi-arid regions (r > 0.90), arid regions (r > 0.70), and only some regions with mixed 

vegetation like Australia (r = 0.94), while no agreement was found for ocean regions due to the Aeolus optical setup, favorable 

for ocean subsurface, not direct surface backscatter probing. We unveiled four reflectivity clusters of LSR at 2.5 x 2.5 degree 

grid scale, manifesting a transition from white to darker surfaces in descending LSR magnitude order: ice, snow, surface 30 

without snow, and water. Regionally, the LSR-LER agreement can vary and yields the highest correlation values in regions 

where snow is present in winter, indicating the excellent sensitivity of Aeolus LSR to white surfaces such as snow. This finding 
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is corroborated by the very good agreement of LSR to modelled snow cover we demonstrated (r = 0.62 – 0.74 between these 

parameters in such regions), while sensitivity to purely vegetation-driven changes of surface is lower, as indicated by the 

comparison between LSR and NDVI without snow (r < 0.30 in the regional analysis). By demonstrating the usability of LSR 35 

for scientific applications at non-nadir angles, our work deepened the knowledge about LSR that had been mostly based on 

nadir-looking CALIPSO studies. By taking together experiences from nadir-looking CALIPSO and highly non-nadir Aeolus 

missions, a framework on effective LSR utilization using future lidar missions such as EarthCARE and Aeolus-2 can be 

effectively designed. 

1 Introduction 40 

Most spaceborne nadir-looking lidars have been and are being developed for scientific applications focused on the atmosphere 

given the ability of lidars to provide multi-year vertical profiles of aerosols and clouds [Winker et al., 2010] in the case of 

CALIPSO and wind distribution additionally in the case of Aeolus [Lux et al., 2010]. Besides these main applications, 

spaceborne lidars can register backscattered echoes that are formed after a lidar beam interacts with the land or water surface. 

Earlier lidar studies had suggestively demonstrated that backscatter reflectance coming from surfaces may strongly vary 45 

depending on the reflector in both laboratory [Kavaya, 1983] and field campaign conditions [Reagan and Zelinskie, 1991]. 

Although most earlier studies had been focused on the surface as a target for lidar calibration [Kavaya, 1983; Cooley et al., 

1993], later works have also turned their scientific interest toward lidar surface returns (hereafter – LSR) as a proxy for deriving 

physical characteristics of land/ocean surface or atmosphere [Josset et al., 2018]. Such opportunity emerged due to the 

significantly stronger surface backscatter signals compared to atmospheric signal registered at the lidar detector [Venkata and 50 

Reagan, 2016]. In this research domain, studies which used CALIPSO observations extensively exploited ocean returns and 

repeatedly demonstrated that for visible and infrared wavelengths at nadir incidence, LSR can be most effectively used to infer 

ocean surface [Josset et al., 2008] and subsurface [Lu et al., 2014] conditions. These findings further prompted a number of 

successful, mostly CALIPSO application, studies (but not only, see Dimitrovic et al., [2023]), focused on either derivation of 

atmospheric characteristics (wind speed or aerosol) using ocean surface return [Hu et al., 2008; Josset et al., 2008; 2010; He 55 

et al. 2016] or oceanic organic carbon chlorophyll using ocean subsurface return [Lu et al., 2014; 2021; Behrenfield et al., 

2016] parametrizations. Besides that, there were initiatives to exploit CALIPSO surface reflectance signal from land (for 

instance, to use two identical reflectance tracks) for further inferring atmospheric characteristics such as aerosol optical depth 

[Josset et al., 2018].  

Most recent lidar surface return-focused studies were conducted for the recently decommissioned missions of 60 

CALIPSO and Aeolus. Overall, despite their considerable instrumental differences, both CALIPSO [Lu et al., 2018] and 

Aeolus [Labzovskii et al., 2023] were shown to be sensitive to surface reflectivity characteristics. These recent findings opened 

an interesting research niche. It has become increasingly clear that spaceborne lidars can substantially complement our 

knowledge on the surface reflectivity which had been previously based on the information from passive remote sensing 
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instruments only, limited by daylight observations and suffering from large low solar angle-driven uncertainties at high 65 

latitudes [Tilstra et al., 2017; 2024]. Despite these promising developments, our current knowledge about LSR is still mostly 

based on numerous CALIPSO studies, while Aeolus works on LSR remained scanty. This knowledge gap has emerged due to 

the challenges to retrieve robust LSR from Aeolus given its unique instrumental setup including the incidence angle of ~35o 

(the incidence angle of satellite instrument is the angle between the satellite sensor and the normal to the surface of the target 

cell.) and 355-nm wavelength. The main challenges we refer to include very weak backscatter signals from the water surface, 70 

coarse lidar surface bins of Aeolus [Ehlers et al., 2022] potentially containing subsurface, surface and atmospheric components, 

weak sensitivity and a lower sensitivity of Aeolus surface backscattering driven by the unique Aeolus setup. Most of these 

LSR-related challenges were briefly reported by the Dionisi et al. [2024] work and by preceding preliminary exploratory 

Aeolus studies [Dionisi et al., 2023; Jamet et al., 2023; Labzovskii et al., 2022] or were touched upon in Aeolus studies 

pointedly focused on atmospheric retrievals [Weiler et al., 2021; Gikas et al., 2023]. The potential roadblocks for studying 75 

Aeolus LSR had been long anticipated from both theoretical considerations [Josset et al., 2010b] and from Aeolus pre-launch 

preparations, based on the Aeolus airborne demonstrator, designed to be identical to the spaceborne ALADIN [Li et al. 2010; 

Weiler, 2017]. Despite the physical constraints of Aeolus ocean surface returns, our previous study has shown that Aeolus land 

LSR agreed with previous estimates of passive remote sensing surface reflectivity with some differences in the way how 

reflectivity varies across different land types [Labzovskii et al., 2023]. At the same time, our previous study has not described 80 

or documented the methodological approach to derive useful Aeolus LSR estimates, was limited to seasonal dynamics of one 

region (the Sahara), while showing only comparison of LSR versus LER references at gridded (2.5 x 2.5o) and regional 

(regional averages were compared) resolutions. 

 

In this light, this paper has two main objectives including (a) presentation of the detailed Aeolus LSR retrieval 85 

methodology which will be incorporated in the official Aeolus reprocessing chain (Level 2A) data as well as (b) very detailed 

LSR regional analysis that continues the effort of the Labzovskii et al. [2023] letter. In line with the availability of the latest 

reprocessing results, this study is performed for the Flight Mode-A period of Aeolus (09.2018 – 05.2019). The rest of the paper 

is organized as follows. Section 2 presents Data and Methodology, while the Sections 3, 4 and 5 represent Results, Discussion 

and Conclusions, respectively. 90 

 

2. Data and Methodology  

This section describes the data and methodology applied in this study. 

 

2.1 Data 95 

2.1.1 Aeolus data 
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Aeolus was launched on 22 August 2018 to measure atmospheric wind profiles from the ground to the stratosphere at global 

scales and remained spaceborne until July 2023 [Stoffelen et al., 2005; Reitebuch et al., 2019; Lux et al., 2020]. Aeolus carried 

the Atmospheric Laser Doppler Instrument (ALADIN), a high-spectral resolution UV lidar (355 nm) pointing at an incidence 

angle of ~35°. The instrument provided information on the lowest ~30 km of the atmosphere (0.25 – 2.00 km vertical resolution 100 

depending on the altitude) for 15.6 orbits per day with a 06:00 and 18:00 local solar time (LST) Equator overpass in a sun-

synchronous orbit. Aeolus was the first lidar instrument in space to measure the Doppler shift, using a High Spectral Resolution 

Lidar (HSRL) technique, from both lidar channels (Mie and Rayleigh). Next to wind information, Aeolus provided vertical 

information about aerosols and clouds [Flament et al., 2021; Ehlers et al., 2022] and surface backscattering echoes [Labzovskii 

et al., 2023], i.e. LSR, that we examine in this study. For calculating LSR the following data are used: Aeolus L1B [Reitebuch 105 

et al., 2018] and Aeolus AEL-PRO (the Aeolus Profile Processor Algorithm) [Donovan et al., 2022]. For additional analysis 

over ocean that requires modelled wind information, we also ingest auxiliary meteorological data, from the Aeolus 

(AUX_MET data) ground segment, compiled using ECMWF winds [Lux et al., 2022]. 

Table 1 illustrates the Aeolus data required to produce LSR. This study uses Aeolus data including the Level 1B 

(L1B) reprocessing product #3 (baseline 14) for detecting the surface at the highest spatio-temporal resolution of Aeolus 110 

sounding. The methodology relies on, but not precisely follows, the procedure described briefly in Labzovskii et al. [2023]. 

The complete and explicit explanation of the current approach is provided in more details further. The L1B data provide basic 

Aeolus information required for calculating LSR including measurement geolocation (longitude, latitude, altitude of lidar bin, 

width of the range gate and most importantly – in which lidar bins the surface is located), L2 AEL-PRO provides essential 

data about atmospheric optical characteristics (including attenuated particle backscatter, aerosol extinction, molecular 115 

backscatter; all provided alongside their associated uncertainties and scene classification) [Donovan et al., 2023]. Note that 

L1B and L2A data types are both required to first produce AEL-FM (feature mask) data originally developed for the ATLID 

instrument of the future EarthCARE mission [van Zadelhoff et al., 2023] for classifying atmospheric features such as clouds 

that can critically attenuate our LSR estimates. All L1B, L2A and AEL_FM are further used to produce AEL-PRO data which 

represents a cornerstone dataset for retrieving robust LSR values, as shown earlier in our previous work [Labzovskii et al., 120 

2023]. We emphasize that AEL-PRO is using an optimal estimation [Rodgers 2000] forward-modelling inversion procedure, 

described by Donovan et al. [2022, 2023] in detail. 

  

 

Table 1. Aeolus data used as input in this study  125 

Type of data Version Purpose 

L1B L1bP v7.12 Input for producing AEL_FM 

Input for producing AEL-PRO 

Input for detecting ground bin 
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L2A - Input for producing AEL_FM 

Input for producing AEL-PRO 

AEL_FM 1.70 Input for producing AEL-PRO 

AEL-PRO 1.72 Source of information about cross-

talk-calibrated data: extinction 

coefficient, backscattering coefficient, 

Rayleigh backscattering 

   

 

Although this paper is focused on the entire FM-A period, we selected several orbits as illustrative examples for more detailed 

analysis of the underlying LSR data. Table 2 below shows four reference orbits from 10 September 2018, 30 November 2018, 

11 January 2019 and 01 May 2019 with the exact L1B and AEL-PRO files applied in the analysis. The orbits were selected to 

represent as different seasonal and geographic conditions as possible for such a narrow selection of orbits. 130 

 

Table 2. Reference orbits used as examples in the methodology 

orbit # L1B file AEL-PRO file 

1 AE_OPER_ALD_U_N_1B_20180910T170826021_005556004_000299 AEL-PRO_20181130T092250030_005411999 

2 AE_OPER_ALD_U_N_1B_20181130T092250030_005411999_001578 AEL-PRO_20181130T092250030_005411999 

3 AE_OPER_ALD_U_N_1B_20190111T010350031_008363990_002238 AEL-PRO_20190111T010350031_008363990 

4 AE_OPER_ALD_U_N_1B_20190501T003753023_005268013_003982 AEL-PRO_20190501T003753023_00526801 

 

 

2.1.2 Data for validating Lidar Surface Returns from Aeolus: TROPOMI and GOME-2 Lambertian Equivalent 135 

Reflectance (LER) 

From a validation perspective, we followed the methodology from our previous paper [Labzovskii et al., 2023] and used 

Lambertian-equivalent reflectivity (LER) estimates from TROPOMI (TROPOspheric Monitoring Instrument) and GOME-2 

(Global Ozone Monitoring Experiment–2), referred to as LERT and LERG, respectively. Surface LER represents the 

reflectivity of the surface that was retrieved using the assumption of Lambertian surface reflection. In reality, most surfaces 140 

do not behave as a Lambertian reflector [Maignan et al., 2004]. We acquired TROPOMI (minimum LER with snow/ice v2.0 

(accessed from https://www.temis.nl/surface/albedo/tropomi_ler.php) and GOME-2 LER (mode LER, v4.0) at 354 nm (the 

closest wavelength to the 355 nm wavelength of Aeolus) monthly climatologies [Tilstra et al., 2017; Tilstra et al., 2024] with 

the highest spatial resolution available of 0.125° × 0.125° and 0.25° × 0.25°, respectively. The TROPOMI surface DLER 

database comprises LER estimates for the Earth's surface across 21 one-nanometre (nm) wide wavelength bands between 328 145 

and 2314 nm. This contains the directionally-dependent Lambertian Equivalent Reflectivity (DLER) of the surface, with an 
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increased precision of the surface reflectance across a range of viewing angles due to the Bidirectional Reflectance Distribution 

Function (BRDF). This development is a considerable improvement for the reflectance, particularly within the longer 

wavelength bands. The latest version of LERT (2.0) is based on 60 months of TROPOMI data (02.01.00 L1B reprocessing 

data) with improved cloud filtering of scenes applied [Tilstra et al., 20243 preprint]. Both LER estimates were resampled to 150 

2.5° x 2.5 ° grids with the uncertainties as the standard deviation of LER during the month. LER was downloaded from the 

TEMIS (Tropospheric Emission Monitoring Internet Service) website. We used LER estimates reflecting snow-affected areas 

as well because it is crucial to include snow/ice regions in the analysis to evaluate the sensitivity of Aeolus LSR to the strongest 

white reflectors. As shown in our previous paper, LER and LSR reasonably represent Lambertian and unidirectional reflectivity 

characteristics for comparing them versus LSR [Labzovskii et al., 2023]. While LER is the most suitable reference for global 155 

surface UV reflectivity, perfect linear agreement with LSR is not expected. 

 

  

 

2.1.3 Land-cover related reference data 160 

To verify our previous suggestion on the  strong sensitivity of LSR to snow cover and moderate sensitivity to vegetation type 

[Labzovskii et al., 2023], we used reference datasets including snow cover and NDVI (Normalized Difference Vegetation 

Index). Snow cover data were taken from the MERRA-2 (Modern-Era Retrospective analysis for Research and Applications 

version 2) model, namely from the M2TMNXGLC dataset, where the extent of snow or ice cover on the Earth's surface is used 

(the fractional amount of a land surface covered with snow and ice within a tile, ranging from 0 to 1). NDVI is a measure used 165 

to gauge the health and density of vegetation on land surfaces. It is calculated as follows: NDVI = (NIR - VIS)/(NIR + VIS), 

where NIR is near-infrared radiation and VIS is visible wavelength radiation. NDVI ranges from 0 to 1, where higher NDVI 

values indicate healthier vegetation and lower values suggest sparse or stressed vegetation, bare soil, or non-vegetated areas. 

Negative NDVI values occur in scenarios where the reflectance properties are not typical of vegetation, like water, but such 

areas are outside of the scope of our analysis. NDVI data also originate from the MERRA-2 records (M2TMNXLND). Note 170 

that both snow cover and NDVI data were taken from MERRA-2 version 5.12.4 [GMAO, 2015]. They were accessed and 

downloaded using the  GEOVANNI tool of the NASA EarthDATA portal (accessed on 25.02.2024 last time). 

 

2.2 Methodology 

2.2.1 Ground bin detection and calculation of LSR 175 

ALADIN was a unique spaceborne lidar instrument with the range gate setting varying depending on the location [Reitebuch 

et al., 2018]. One cannot simply select a fixed lidar bin number, corresponding to the surface intersection based on some orbit 

example. Due to this, our first Aeolus LSR-focused work [Labzovskii et al., 2023] followed the experience of pre-Aeolus lidar 
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studies [Josset et al., 2018] and sought for the minimum difference between the altitude where the DEM is located according 

to the model implemented in Aeolus data and the respective Aeolus range gate (among 24 Aeolus bins). The current paper 180 

aligns the ground bin detection for LSR retrieval with the Aeolus official processing approach and takes the information where 

the ground is located from L1 data, namely, from ground wind detection block [Lux et al., 2018]. Hereafter, we refer to this 

approach as “official” for brevity. The official approach differs from Labzovskii et al. [2023] method of ground bin detection 

(Labzo-23 for brevity) as follows. The assumptions of Labzo-23 approach were: (1) ground signal is present only in the Aeolus 

bin closest to DEM and (2) that at clear atmospheric conditions, ground bin can be always detected regardless the signal 185 

strength. The assumptions of the currently applied, official approach are different: (1) the surface signal can be distributed 

across several Aeolus bins and (2) sometimes, ground signal cannot be detected (signal is too weak), which means that some 

Aeolus observations do not contain any surface signal even over land. To understand the mechanism behind the official Aeolus 

ground detection algorithm, note that it uses the GTOPO30 global model containing DEM ACE v.2 information at high 

resolution (300 m x 300 m, 9 arcsecond resolution). The height of the surface of the Earth with regard to the reference ellipsoid 190 

is used. Subsequently, the lower edge of each altitude bin is being looked for, where the height of the bin should be below the 

height of DEM. In short, the Aeolus ground detection looks for signal drops going upwards (in terms of altitude) first and then 

looks for signal drops going downwards. If ground bin candidates are more than five, the ground detection is not successful 

and therefore no ground bin is assigned for the respective observations [Lux et al., 2018]. 

For illustration, we demonstrate the successfully detected ground bins and the cases without ground bin detected using 195 

the official algorithm for the reference orbits from Table 2 shown earlier. As seen in Fig. 1, the cases with detected ground 

bins constitute a minor fraction of each orbit – of all observations, 12% (1 638 cases), 23% (3 119 cases), 28% (5 961 cases) 

and 18% (2 314 cases) contain detected ground bins for the reference orbits from 2018.09.10, 2018.11.30, 2019.01.11 and 

2019.05.01, respectively. However, most cases with no ground bin detected originate from ocean areas with very weak water 

returns, manifesting a signal of very low magnitude (potentially, it is noise). According to our previous experience [Labzovskii 200 

et al. 2023], more detected cases in winter in northern hemisphere are explained by the presence of sea ice over ocean. As we 

are interested in land surface signal, we applied the surface flag mask. To this end, we adopted the ‘surface’ parameter from 

the L1B data (see ‘ground_wind_detection/measurement_ground_wind_detection/mie_measuremenet_ground_wind_bin’) 

and recalculated the ground bin detection statistics for land LSR only. Among land observations, 33% (1 039), 36% (2 581), 

64% (3 438) and 32% (1 321) profiles contain ground bin signal for the same reference orbits from 2018.09.10, 2018.11.30, 205 

2019.01.11 and 2019.05.01, respectively. More detailed statistics on the number of  observations containing ground bins, and 

are clear enough to be used for LSR retrieval, are presented in supplementary material (see Table S2 and Fig. S.4). According 

to the official algorithm of Aeolus ground bin detection, most cases, the highest ground bin is taken from #21, #22, #23 or #24 

lidar bin (counted from the lidar instrument to the ground), depending on the local topography (see example of these statistics 

from Fig. S2 in the supplementary material). We remind that in the Aeolus processing chain, the #1 bin is closest to the lidar 210 

detector, so the counting starts from the top in terms of atmospheric vertical profile [Flament et al., 2021]. 
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Fig. 1. Reference files used in this study to illustrate the methodology: 2018.09.10 (panel a), 2018.11.30 (b), 2019.01.11 (c) 215 

and 2019.05.01 (d). 

 

In calculating LSR, we used all ground bin numbers marked as containing surface (see ‘ground_bin_num’ in Aeolus 

L1A data). As in Labzovskii et al. [2023], we took the attenuated backscatter (β , sr-1 m-1) from the AEL-PRO L2 data at the 

bins where ground was detected and multiplied it to the width of the surface range bin of Aeolus (Δrsurf , m). In this way, we 220 

obtained the uncorrected Surface Integrated Attenuated Backscatter (SIAB’, sr-1) or, in terms of this paper – the uncorrected 

Lidar Surface Returns (LSR’, sr-1), reflected as (γ’) in Eq. 1. The ground location was determined using the lowest bin where 

the ground is located (smin, m) and the highest bin where ground is located (smax, m) according to the DEM information at the 

given range-bin-thickness that takes into account the Aeolus pointing angle. In the supplementary material, more illustrative 

figures are provided, demonstrating the magnitude and distribution of LSR’ calculated by Eq. (1) in Fig. S1. 225 

 

𝛾
′ 

= ∑ β (𝑧𝑖)Δ𝑟(𝑧𝑖)

𝑠_𝑚𝑎𝑥

𝑠_𝑚𝑖𝑛
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 230 

 

 

2.2.2  Atmospheric correction of LSR  

 

While utilizing lidar surface backscatter, it is crucial to develop a methodology that maximizes the extraction of useful 235 

information on surface reflectivity properties from lidar signals while taking into account  the impact of atmospheric profile 

characteristics. Given the small field-of-view of ALADIN [Lux et al., 2018; Reitebuch et al. 2018], the LSR attenuation due 

to Rayleigh scattering can be simply corrected using the Beer’s law (i.e. single-scattering). Within the atmospheric correction 

of Rayleigh signal, we first obtained the Rayleigh extinction coefficient (α𝑚) profiles from the Aeolus L2A data. In essence, 

these values are determined from the atmospheric density profile (derived from ECMWF forecast data). Eq. 2 below describes 240 

the calculation of total Rayleigh optical depth (ODRay). Then, we integrated the Rayleigh extinction coefficient between the 

surface and the Aeolus top altitude while accounting for the effects of a partially filled surface bin and optical depth above the 

Aeolus top-bin that is not considered in the total optical depth initially calculated (e.g., ‘missing part’ of the optical we referred 

to in Labzovskii et al. [2023] methodological description placed in the supplementary). 

 245 

O𝐷𝑅𝑎𝑦 = ∑ α𝑚(𝑧𝑖)Δ𝑟(𝑧𝑖)

𝑖𝑡

𝑖𝑠

− k1 + k2 

 

 

  

(2) 

where z is the altitude,  𝑖_𝑡 is the top range index, 𝑖_𝑠 is the surface range index and Δr is the range-bin-thickness taking into 

account the Aeolus pointing angle. Note that k1 and k2 are two correction factors that need to be considered. The k1 factor 

accounts for the potential of over estimation in Eq. 2 due to the surface elevation situated  above the lower boundary of the 250 

surface bin. This factor is calculated using the molecular extinction coefficient at the surface bin and the difference in the top 

boundary of the surface bin and the expected surface height according to the DEM information included in the Aeolus products 

used here. Secondly, the correction factor k2 is required to alleviate the difference between the highest top bin of the Aeolus 

profile and the top of the atmosphere [Stephens, 1994]. We take into account the pressure at the top of the Aeolus profile (pt 

[mb]) and the highest range gate altitude (zt) [km], the Aeolus wavelength of 355 nm (λ) and the given (μ), the cosine of the 255 

Aeolus off-nadir pointing angle (usually ~35o). As the Aeolus off-nadir pointing angle may differ depending on the location, 

the angle estimate is  directly taken from the ‘elevation angle’ array of Aeolus data. 
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𝑘2 = μ−1
𝑝𝑡

1013.25
 0.0008 λ(−4.15+0.2 λ)   𝑒(−0.1188𝑧𝑡−0.0016𝑧𝑡

2) 

 260 

(3) 

 

Next to the molecular attenuation, the attenuating effects from Aerosol and thin clouds must be taken into account for ensuring 

the cleanest LSR statistics, manifesting ground returns only, and removing all atmospheric effects. For this, we utilized the 

AOD corresponding to the aerosol and thin cloud extinction profiles retrieved by AEL-PRO data [Donovan et al., 2023]. As 265 

ALADIN was a High-Spectral Resolution lidar (HSRL), an extinction profile can be retrieved directly without assuming the 

lidar extinction-to-backscatter ratio profile [Shipley 1983]. Unlike elastic lidar based techniques, this theoretically allows for 

providing more accurate extinction coefficients. AEL-PRO uses both the pure Rayleigh and Mie attenuated backscatters as 

input for its retrievals. By applying a cost-function, the optimal-estimation approach determines the likelihood of 

measurements given a specific forward model and our expectations. In brief, both AOD and ODRay estimates are both here 270 

used to calculate the corrected LSR signal (γ) at the original resolution of Aeolus (see Eq. 4 below).  

 

 

𝛾 =  𝛾′ 𝑒2(𝐴𝑂𝐷+𝑂𝐷𝑅𝑎𝑦) 

 275 

(4) 

 

Although this is not a technical paper, exclusively dedicated to the LSR software description, we shortly illustrate the scheme 

of Aeolus LSR retrieval below for the convenience of the reader (see supplementary material, Fig. S3). The errors behind LSR 

are calculated based on using instrumental uncertainties of input parameters of LSR equation (Eq. 4) in a simple error 280 

propagation formula. The idea is to understand how errors of LSR’ (rooted sum of squares e.g. RSS of AB instrumental 

uncertainties for lidar bins with ground) and total aerosol optical depth (RSS of extinction errors along all lidar bins over 

ground) propagate into final LSR uncertainties. To this end, we assume that uncertainties in the variables are independent and 

that the partial derivatives are evaluated at the mean values of the variables so the contribution of both optical depth and LSR’ 

can be disentangled. 285 

 

 

2.2.3 Additional processing of LSR data: quality flags and gridding 

Our previous work has indicated that LSR can be excessively weak due to presence of strongly attenuative (or even obscuring) 

features like heavy aerosol loading, thin or thick clouds [Josset et al., 2008; Hu et al., 2008; He et al., 2016]. Most crucially, 290 
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as shown in Labzovskii et al., [2023], the strength of the Aeolus LSR signal varies depending on the surface reflectivity 

characteristics. Thus, it is imperative to ensure that LSR comes from the surface and its magnitude is not altered by attenuation 

from unaccounted atmospheric features such as clouds or aerosols. Due to this, besides correcting the LSR’ for aerosol and 

molecular atmospheric extinction, the effects of atmospheric features that can weaken or completely attenuate the surface echo  

must be minimized (e.g., LSR signal-to-noise ratio is high). We repeated the quality control procedure based on the use of 295 

AEL-PRO L2 data [Donovan et al., 2023] used earlier in the first Aeolus LSR-focused study following Labzovskii et al. [2023]. 

Specifically, we calculated the percentage of attenuative features above the ground bin (which contains either attenuation or 

water/tropospheric cloud) with regards to the total number of Aeolus bins. The attenuative features are all those cases marked 

with codes 1 (Water cloud), 2 (Ice cloud tropospheric), 101 (Water cloud) and <9999 (other attenuated feature flag) from AEL-

PRO. A table with the codes of each atmospheric feature is included in the supplementary material (Table S.2). This quality 300 

control parameter has been previously denoted for LSR purposes as atmospheric quality flag or qflag for brevity. It ranges 

from 0% (no attenuative features over the ground bin) to 100%, whereas the latter means that all features over the ground bin 

are attenuated. We applied the most stringent filtering strategy by filtering out all LSR observations with qflag > 0. Finally, 

we filtered out all the LSR observations with AOD > 1.0 (calculated from the AEL-PRO integrated profile of extinction 

coefficients), thereby ensuring that observations that are attenuated by excessively hazy conditions are not included in the 305 

analysis. We refer to these resultant observations that passed the threshold mentioned above as to “clear” or “final” in this 

paper. The statistics on how many attenuative features have been filtered out are provided in the supplementary material (See 

Fig. S.4 and Table S.2). In short, although the AOD = 1.0 threshold might seem arbitrary, additional analysis on how various 

AOD thresholds affect the final selection of LSR observations (and therefore 2.5 x 2.5 gridded LSR maps we describe below) 

yielded only very minor differences. This analysis is provided in the supplementary material (see Fig-s S4 and S5 alongside 310 

the corresponding paragraph). 

After filtering out high AOD cases and clouds, we gridded the final selection of LSR observations. The gridded 

estimates are needed to compare Aeolus LSR estimates to LER references at regional and global scales, while also 

understanding the prospects of the LSR product as a potential L3 climatology product. We averaged the LSR estimates for 

each month by creating 2.5o x 2.5o geographical grids and populating these with Aeolus observations. We further applied 315 

spatial joined operation using the geopandas.sjoin function of the ‘geopandas’ package. In this way, we calculated monthly 

average estimates of LSR for each grid cell with the associated uncertainties (as 1 sigma of LSR during the month). We 

summarized all the steps for calculating scientific product from LSR used in this paper on Fig. 2 (from first to the last step, 

depicted by going from top block to bottom one). Note that the final LSR on a 2.5 x 2.5 degrees global grid are calculated 

either for one month or for one year  averages. In each case, we do mention which average we refer to in the beginning of the 320 

respective paragraph or in a form of remark. 
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Fig. 2 Methodology: From raw LSR to AOD-corrected LSR where steps are shown in chronological order to be done from top 325 

to bottom 

 

Below, we show some examples with LSR vertical profiles from the reference orbits (Fig. 3). We plotted vertical profiles of 

attenuated backscattering (AB) from Aeolus observations with markers, signifying the ground detection (see red circles on 

Fig. 3). All these cases are taken from the reference orbit we described before with the index of observational point expressed 330 

over top of each subplot. The methodological framework shown in Fig. 2 is based on two types of observations from the LSR 

standpoint: attenuated observations (quality flag > 0) and clear sky observations (quality flag = 0). Attenuated cases are 

illustrated on the left side of Fig. 3 (in the red frame), where AB peaks above the ground either completely attenuated or weaker 

than the LSR we are interested in. Three attenuated cases over arctic waters (1), northern Canada (2) and arctic islands in 

Russia (3) from Fig. 3 exhibit some atmospheric peaks at ~1 500 m (qflag = 0%), 4 000 – 6 000 m (qlfag = 36%) and ~2 200 335 

m (qflag = 15%) over the ground, respectively. Despite this, all ground detection bins occur at the highest signal peaks at the 

lower altitudes, where ground was detected by the official detection algorithm. To ensure the clearest LSR statistics all such 

potentially attenuated cases are filtered out from the final analysis since these attenuative features would still weaken the 

surface echo. As mentioned, quality flags here indicate how much attenuative features (in %) were detected over the ground 

bin from the total number of lidar bins. It is worth noting that despite having highest quality flag (0%), case 1 from Fig. 1 340 

exhibits some attenuation peak around 2000 m. This example illustrates the importance of filtering out high AOD cases, 

performed at the step 3 of our methodology, shown in Fig. 2, which can otherwise remain unaccounted for. Among the 
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unattenuated or clear cases included in our final analysis, one can notice profiles over the Ural Region (4), Western U. S. (5), 

Antarctica (6) and Indian Ocean (7) in Fig. 3. As seen, all land cases exhibit very strong and strong ground returns at different 

altitudes with 2 bins detected over Western U. S. case (due to topography) and 1 ground bin detected in other cases. The 345 

altitude of the ground bin varied from ~0 m in Ural and Indian Ocean to >2 000 m in high altitude cases of Western U. S. and 

Antarctica. Unlike in the Labzo-23 method, clear LSR observations over oceans are scanty. The official ground detection 

algorithm is missing ground bin over oceans due to excessively weak signal, considered as noise. 

 

 350 

 

Fig. 3 Examples of vertical profiles of attenuated backscattering (ATB) for four reference orbits selected for the paper. Red 

frame: attenuated cases (qflag > 0), blue frame: clear cases (qflag = 0%), grey frame: cases over ocean (surface flag indicates 

water), black frame: cases over land (surface flag indicates land). 1 – Arctic waters, (2019.05.01), 2 – Northern Canada 

(2019.05.01), 3 – Arctic Island in Russia (2019.01.11), 4 – Ural Region (2019.01.11), 5 – Western U. S. (2019.01.11), 6 – 355 

Antarctica (2018.09.10), 7 – Indian Ocean (2019.05.01). Note that index of observations illustrates the number of observations 

in this particular orbit. Reference of the orbit according to L1B format is provided as well. 
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 360 

Fig. 4 illustrates the reference analysis and histograms of LSR distribution depending on the surface type, namely, depending 

on the surface flag. The distribution of LSR for every reference orbit selected earlier for three types of surfaces: land, water 

and water in low latitude regions (black, blue and magenta colours in Fig. 4, respectively). We assume that the waters between 

-35 and 35 degrees should be ice-free since no ice flag was included in the Aeolus L1B data. For the four selected orbits, the 

LSR ranges from 0.0 to ~0.6 sr-1. Plausibly, the maximum LSR values are limited by lower levels in the September orbit (low 365 

amount of snow in northern hemisphere, low amount of ice in the southern ocean) with a maximum of ~0.4 sr-1. All land LSR 

distributions are bimodal, with a weaker LSR peak at < 0.1 sr-1 and a stronger LSR peak at 0.2 sr-1. These differences are 

explained in the results section below. The water LSR peaks are either bimodal, e.g. September 2018,  or unimodal, whereas 

the latter pattern is explained by the low returns from sea ice surfaces. As mentioned in the text placed under Eq. 4, LSR errors 

were calculated using error propagation considerations taking into account optical depth and uncorrected LSR estimates. The 370 

errors for the example orbits, mean error estimates are 19±9% for 2018.09.10, 16±5% for 2018.11.30, 14±5% for 2019.01.11, 

21±7% for 2019.05.01 orbits. There are large differences between land and water LSR mean error estimates (16-23% and for 

land and water, respectively). The larger errors over land is explained by higher relative contribution of AOD error in the error 

propagation procedure we applied (59–69% depending on the orbit). In other orbits, errors are very similar, not shown here, 

but will be available upon the publication of the official LSR dataset during Aeolus Phase-F stage. Notably, once all higher 375 

latitude regions are clipped from the analysis (magenta bars), only a very low number of strong returns (< 100 cases) remain, 

compared to land LSR statistics. This difference is explained by the difference in the way how ground bin is detected using 

the official method, compared to Labzo-23 method we mentioned earlier. 
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 380 

Fig. 4 LSR histogram distributions for four reference orbits on 2018.09.10 (a), 2018.11.30 (b), 2019.01.11 (c) and 2019.05.01 

(d) showing land (black), water (blue) and water outside high latitudes regions assumingly without ice (red). Y-axis is plotted 

in the log-scale form for better visibility of red points. 

 

 385 

3. Results 

Our analysis cover several aspects of the LSR retrieval, such a LSR evaluation versus LER references (GOME-2 and 

TROPOMI) for four reference orbits, for aggregated Aeolus orbits and for gridded levels. Further, we demonstrate the LSR 

distributions across four reference orbits, examination of LSR global distribution at 2.5 x 2.5 gridded average level. On top of 

that, we evaluate the sensitivity of Aeolus LSR to land cover characteristics such as snow and vegetation cover proxy, thus 390 

examining two hypotheses  suggested earlier [Labzovskii et al. 2023] on the  strong sensitivity of LSR to snow cover and 

moderate sensitivity of LSR to vegetation cover. 
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3.1 Evaluation of LSR retrievals versus LER references (TROPOMI and GOME-2) 395 

First, we evaluate LSR retrievals versus the LER references. Our previous work had demonstrated unexpectedly high 

agreement between LSR and reference UV reflectivity datasets, namely LER climatologies from TROPOMI and GOME-2 

[Labzovskii et al., 2023; Tilstra et al., 2017]. As our analysis had been limited to the global comparison of gridded 2.5o x 2.5o 

mean estimates and regional averages across >30 arbitrarily selected regions, here we extend the validation analysis further.  

 400 

3.1.1 LSR vs LER references for four selected orbits 

First, we evaluated the agreement between LSR and reference LER estimates for the four reference orbits we selected for the 

analysis earlier including: 2018.09.10, 2018.11.30, 2019.01.11 and 2019.05.01, as shown on Fig. 5 and Table 3. We sampled 

LER values from multi-year climatologies to each Aeolus observation for each orbit of interest and unveiled the following 

agreement patterns. First, there are two distinct populations of LER including very weak reflectivity (< 0.2) and very strong 405 

reflectivity (> 0.8) dominating the statistics for every orbit (Fig. 5). Second, both LSR-LERG and LSR-LERT comparisons 

exhibit high agreements with varying correlations for every orbit. This agreement varies depending on the orbit and whether 

we compared LSR with TROPOMI or with GOME-2 estimates. In short, over all surfaces, correlation coefficient (r) ranges 

from 0.55 in 2019.05.01 (LSR-LERG comparison) to 0.77 in 2018.11.30 (LSR-LERT comparison). The agreement between 

LSR and LER, except 2018.09.10 orbit, is driven by the agreement over land, as indicated by Table 3. 410 
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Fig. 5 Aeolus LSR vs LERG (blue) and vs LERT (red) for four reference orbits of 2018-09-10 (a), 2018-11-30 (b), 2019-01-

11 (c), 2019-05-01 (d). LSR axis-y is log-scaled (the experience of Labzovskii et al. (2023) on LSR indicated that log-scale is 

more optimal for LSR visualization)   415 

 

Table 3 Correlation coefficients in the comparison between Aeolus LSR (AEL) and reference LER estimates from GOME-2 

(GOM) and TROPOMI (TRO) for all surfaces, land only (‘l’) and water only (‘w’). Second and third columns: all observations; 

columns with marker ‘l’ – land; columns with marker ‘w’ – ocean/waters 

 420 

date TRO-AEL GOM-AEL TRO-AEL_l GOM-AEL_l TRO-AEL_w GOM-AEL_w 

2018.09.10 0.71 0.57 0.77 0.59 0.70 0.65 

2018.11.30 0.74 0.77 0.76 0.79 0.08 0.08 

2019.01.11 0.61 0.65 0.60 0.64 0.58 0.58 

2019.05.01 0.55 0.64 0.52 0.60 -0.13 0.41 
 

 

3.2.2 LSR vs LER references for monthly aggregated orbits during the entire FM-A period 
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We further analyzed the LSR-LER agreement for monthly aggregated orbits of Aeolus during the FM-A period. By monthly 

aggregated orbits we refer to all clear LSR observations per month merged into one dataset for statistical analysis. For each 425 

clear LSR observation, we sampled corresponding LER climatology points from both TROPOMI and GOME-2. Fig-s 6 and 

7 show the comparison of Aeolus LSR versus two LERs references: LSR-LERG and LSR-LERT, respectively. At this finest-

scale observational level, we identified a weak-to-moderate agreement between LSR and LER estimates. In case of GOME-2, 

the highest agreement was found in September 2018 (r = 0.64) and the lowest in February 2019 (r = 0.44) showing no distinct 

seasonal patterns, as seen from Fig-s 6a and Fig. 6f, respectively. Moreover, the LSR-LERT comparison yielded higher 430 

agreement with r > 0.60 for any month (with the highest agreement in September: r = 0.77 and the lowest agreement in 

November: r = 0.61). The lack of linear agreement at regional level can be related to different factors. First, there is a sigmoid-

alike behavior of LSR across different land types with nearly exponential growth of LSR towards the most strongly reflecting 

regions – snow-covered areas [Labzovskii et al., 2023]. This effect can be seen by strong LSR “hot spots” on Fig-s 6 and 7, 

which are elongated along y-axis, thus is indicating a higher sensitivity of Aeolus to snow. Second, this comparison is limited 435 

by strongly bi-modal distribution of LER with most values either distributed at low UV reflectivity range (< 0.20) or high 

reflectivity range (> 0.80).  

Indeed, the relationship between LSR and LER is far from being linear and therefore Pearson correlation agreement 

metrics would be inevitably skewed towards lower agreement metrics. One can assume linear association between LSR and 

LER by seeking for a correction factor. We performed such experimental attempt by applying different power law functions 440 

to LSR. Specifically, we applied different power law coefficients (l) in a simple power law equation (γl) by seeking the highest 

linear correlation between LSR and LER. We found that by correcting LSR through applying γ0.1 ,we achieved the strongest 

positive correlation between LSR and LER. In this case, the correlation between LSR and GOME-2 is increased r = 0.63 – 

0.77 and for LSR vs TROPOMI is increased to r = 0.65 – 0.81 (depending on month). Overall, given no prior indications that 

LSR-LER agreement should be precisely linear, such agreement can be deemed generally high and promising, but no 445 

conclusions on the  physical relationship between these parameters can be made based on these statistics. 
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Fig. 6 Global LSR vs LER (GOME-2) density plots for each month of the study period on the observational scale. 450 
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Fig. 7 Global LSR vs LER (TROPOMI) density plots for each month of the study period at the observation scale. 

 455 

 

3.2.1 Global agreement between LER and LSR 

We further evaluated the LSR ability to represent the surface reflectivity characteristics in the UV at global scales. To this end, 

we compared 2.5 x 2.5 degree gridded mean estimates of LSR versus both LERG and LERT (Fig. 8). In particular, each point 
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in Fig. 8 represents the  averaged LSR (or LER) estimate, corresponding to one grid cell shown later in Fig 13 (FM-A period). 460 

We found a very good agreement between LSR and LER estimates for Aeolus-TROPOMI and Aeolus-GOME-2 comparisons, 

with r = 0.92 and r = 0.90, respectively. The very high agreement shows some improvement on the LSR-LER agreement, 

compared to our previous work [Labzovskii et al., 2023] where we had reported (r) correlation coefficients with TROPOMI (r 

= 0.89) and GOME-2 (0.62) for the FM-A period. Since we used exactly the same dataset for LSR and GOME-2 (TROPOMI 

LER was updated to version 2.0), this improvement can be explained by the change of the methodology in (a) surface bin was 465 

detected or not for a certain observation and (b) assumption on how many bins contain the surface information. Most likely, 

as indicated by Fig-s 7-9, the current official Aeolus ground bin detection methodology implies that not every observed profile 

contains surface backscatter returns. This results in many ocean surface returns, with the weakest LSR signals being filtered 

out from the analysis. This effect seemingly further improves the overall agreement between the datasets. This explanation is 

plausible because it is already known that LSR agrees well over LER mostly over land, not over water [Labzovskii et al., 470 

2023]. We discuss these differences in short further in the paper. 

 

 

Fig. 8 Results: Monthly gridded averages of LSR and LER for 2.5o x 2.5o grid cell resolution for FM-A period. Panel a: LSR 

vs TROPOMI LER; panel b: LSR vs GOME-2 LER. 475 

 

3.1 Examination of LSR regional patterns: orbits, monthly gridded estimates and seasonal gridded estimates 

 

For illustration purposes, we  demonstrate LSR distributions across the four mentioned orbits below in Fig. 9. Note that only 

the clearest cases are shown (qflag = 0%). Several  patterns are visible. First, there are less observations that are deemed “clear” 480 

in this official ground bin detection method from oceans, compared to the Labzo-23 approach to detect surface bins. In many 

cases, the surface bin here is simply missing, while in the Labzo-23 method such bins were considered to have very weak 

signal. However, there are some clear ocean surface returns such as those over Eastern Pacific on 2018.09.10 (Fig. 9a) or 

several clear ground bins over Indian Ocean on 2019.05.01 (Fig. 9d). As expected, the strongest and most continuous sets of 
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LSR observations are retrieved over high latitudes, covered by white surfaces of snow or ice [Taskanen and Manninen 2007; 485 

Weiler, 2017]. The prevalence of LSR returns from high-latitude regions using the official ground bin detection algorithm is 

plausible and had been already mentioned by Weiler et al. [2021]. Yellow-coloured observations from Fig. 9, manifesting 

strongest LSR returns from snow/ice surfaces (> 0.16 sr-1) are visible over Arctic and Antarctic regions in all four analysed 

orbits. Over land outside high latitudes, there are abundant LSR observations with highly variable LSR magnitude. In most 

cases, land LSR for these four referenced orbits varies from ~0.05 to 0.16 sr-1, but more detailed statistics are described in this 490 

section. 

 

 

Fig. 9 LSR distributions across four reference orbits on 2018.09.10 (a), 2018.11.30 (b), 2019.01.11 (c) and 2019.05.01 (d). 

Only the highest quality flag (qflag = 0) observations are included in this analysis. 495 

 

Since Aeolus LSR has been previously shown to reasonably reflect several land cover-related gradients on the map such as: 

water – land, vegetation – arid, no snow – snow gradients, we used a clustering method to classify the LSR signal for better 

illustration purposes. To this end, we used natural breaks-based clustering of LSR data for plotting (e.g. Jenks clustering 

method) for identifying breakpoints between different clusters of LSR data [Sadeghfam et al., 2016]. The method minimizes 500 

the average deviation (e.g. variance as well) of each class from its respective mean, concurrently maximizing the divergence 

of each class from the means characterizing the other classes [Jenks, 1967]. Note that we simply applied this approach for 
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clustering and visualization purposes without intention to disentangle physical differences behind reflectivity patterns of 

different regions.  

Fig-s 10-12 below show the LSR distribution on two different resolutions including the original Aeolus resolution 505 

(LSR per sounding), shown at the left panel of each figure and the gridded mean LSR estimates at 2.5o x 2.5o grid cell 

resolution. We plotted not only gridded LSR estimates, but also the observation-resolution LSR estimates to give a visual 

insight into the data abundance behind the gridded estimates. Fig. 10 demonstrates that most signals with the detected surface 

according to the official algorithm were found over land in autumn. In line with Fig. 9 four-orbit statistics, the ocean bins were 

detected only for some regions like the Pacific Ocean (September, October and November 2018) and some other scattered, 510 

less spatially distinct regions like the Mid-West Atlantic. As expected, in most cases, there is a distinct gradient between 

strength of LSR over water returns (shown in dark blue reflecting LSR < 0.018 sr-1) and land returns (in most cases > 0.018 sr-

1). Moreover, agreeing with our first Aeolus LSR-focused work [Labzovskii et al., 2023], the strength of the LSR signal is 

visibly enhanced over the areas, covered by snow and ice. Snow/ice-covered areas are seen by orange-red colours in Fig. 10 

(LSR > 0.121 sr-1) and this cluster plausibly moves southwards from September to end of November in the Northern 515 

Hemisphere (see northern Canada and Russia on Fig. 10 (panels d, f)). In line with the Labzo-23 method, some LSR gradients 

discerned from the currently applied official ground bin detection algorithm are visible here such as water – land, snow – no 

snow gradients. Interestingly, the differences between arid and vegetated areas reported in our previous work, are not salient 

here.  

 520 
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Fig 10. Panels a, c, e: all clear (qflag = 0, AOD < 1.0) LSR observations for September, October and November 2018, 

respectively. Panels b, d, f; gridded LSR estimates at 2.5o x 2.5o resolution based on the observations from the left for same 

months 

 525 

Fig. 11 illustrates the LSR distributions in the winter of the FM-A period. It is obvious that LSR is very sensitive to snow 

cover changes in the northern hemispheric winter, whereas very strong LSR returns are being registered over major parts of 

Canada, Northern Russia, Central Asia and the Himalaya. Moreover, large numbers of strong signals were discerned over 

water near Antarctica and the Artic regions, indicating the presence of sea ice. Interestingly, the number of strong water returns 

is at their minimum in February 2019. Moreover, some regions like Mid-West Africa or Amazon are missing from the final 530 

gridded estimates. Some weakening of LSR signal over these regions, especially, over Mid-West Africa, is attributed to the 

diminishing of surface signal due to high AOD [Labzovskii et al., 2023]. Alternatively, this phenomenon could be caused by 

extremely weak LSRs, which, according to the official surface bin detection approach, are assumed to lack any surface signal. 

We underline that Mid-West Africa and the Amazon are being most heavily influenced by biomass burning [Randerson et al., 

2012] and tropical cloud convection processes [Chakraborty et al., 2019] among other geographic areas. Fig. S4 of the 535 

supplementary material indicates that such atmospheric conditions lead to a dearth of clear LSR observations over the region 

even if one lifts the clear LSR threshold to “AOD = 1.5” in the quality assurance procedure, shown in Fig. 2. 
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Fig 11. Panels a, c, e: all clear (qflag = 0, AOD < 1.0) LSR observations for December 2018, January 2019 and February 2019, 540 

respectively. Panels b, d, f; gridded LSR estimates at 2.5o x 2.5o resolution based on the observations from the left for same 

months 

 

Fig. 12 below shows the northern hemisphere spring LSR distributions. A line of snow retreat towards the north is distinctly 

visible in the northern hemisphere as seen by the shift of the orange-to-red LSR cluster northwards. While snow-related clusters 545 

nearly disappeared from the northern hemisphere in May 2019, strong LSR signal remained over the Arctic, perhaps indicating 

a localized peak in sea ice seasonality in the region. Alternatively, there can be an effect of potential wetting of the ice/snow 

with warmer temperatures behind the increasing LSR because by as snow melts, the below ice surface emerges, potentially 

contributing to this signal. Moreover, there is a noticeable weakening of the signal over the entire land regions in the northern 

hemisphere, manifested on the map as the emergence of dark blue-coloured clusters similar to water in magnitude. This is 550 

potentially related to the greening of vegetation during northern hemisphere growing season as indicated by passive remote 

sensing studies [Tilstra et al., 2017] and our previous lidar-based LSR work [Labzovskii et al., 2023]. From a land reflectivity 

perspective, the weakest UV returns are registered over densely vegetated, i.e., green areas. More unexpectedly, the distribution 

of the detected ocean surface returns changed in spring 2019. Specifically, the LSR formed two longitudinal bands near the 

tropics, which reach their respective peaks in area in March – April 2019. These ocean areas are the so-called south hemisphere 555 

gyres, where the concentration of chlorophyll is very low, near surface wind speeds are low and ocean mixing is weak [Morel 



26 

 

et al., 20211]. It should be noted that we do not have sufficient empirical arguments to support this hypothesis though and such 

analysis is outside of the scope of this paper. 

 

Fig 12. Panels a, c, e: all clear (qflag = 0, AOD < 1.0) LSR observations for March, April and May 2019, respectively. Panels 560 

b, d, f; gridded LSR estimates at 2.5o x 2.5o resolution based on the observations from the left for same months 

 

To finalize the global seasonal analysis of LSR, we also visualized the LSR mean gridded estimates for the entire FM-A period 

and for each season separately in Fig. 13. Interestingly, LSR exhibited several distinct gradients like (1) land – water, (2) snow 

– no snow, (3) snow – ice. To remind, this coloring reflects the Jenks optimization clustering result, described earlier. In 565 

particular, the gradient between land and oceans is best visible in  the difference between light blue (0.018 – 0.044 sr-1) and 

dark blue (< 0.018 sr-1) colours, respectively. Over land, LSR can strongly vary with the weakest signals, similar to water 

returns, observed mostly over Northern Hemisphere during high productivity seasons. In general, LSR over land varies from 

0.018 to 0.121 sr-1 outside very high latitudes or highland areas, where snow can be formed (see the yellow clusters in Fig. 13 

over North Siberia, North Canada, Tibet and Pamir mountains for example). On one hand, the difference between arid and 570 

vegetation areas is unexpectedly subtle on such maps. On the other hand, orange clusters indicate the areas where snow can 

be found (0.12 – 0.16 sr-1), while red-coloured areas are located over high-latitude seas/oceans, representing sea ice formation 

areas with the strongest LSR of > 0.16 sr1. This is an interesting finding as the LSR magnitude over sea ice is stronger using 

the current official ground bin detection method, compared to the Labzo-23 method, which has previously yielded the highest 
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gridded values of ~0.10 sr-1 over Greenland and Antarctica. Moreover, the difference between ice-covered ocean areas and 575 

snow-covered areas was also not distinct in the Labzo-23 approach. This is an interesting result that can be explained by the 

ability of the official ground bin detection approach to register only strong returns. In other words, while Labzo-23 gridded 

statistics would be based on omnipresent weak returns from water alongside occasional cases of sea ice from high-latitudes, 

the current approach yields only strongest returns as the weaker ocean returns are not considered as ground bin detections here. 

See noticeable scarcity of any weak ocean signals over Southern Ocean – they are simply missing on global statistics in Fig-s 580 

10-12.  

 

 

 

Fig 13. Seasonal LSR means at 2.5o x 2.5o  grid for Autumn 2018 (a), Winter 2018-19 (b), Spring 2019, (d) entire FM-A period 585 

from 2018-09 to 2019-05. Note that we refer to Northern Hemisphere seasons here. 

 

 

 

3.3 Region-specific analysis of LSR and LER 590 

Furthermore, we analyzed the regional agreement between LSR and LER. To remind, a promising agreement between LER 

regional monthly averages and corresponding Aeolus averages in arid regions like Sahara with low reflectivity variability 
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during the year has been previously reported [Labzovskii et al. 2023]. In other words, very weak annual reflectivity variability 

of poorly-vegetated areas, that had been previously thought to be insignificant, has been detected by Aeolus LSR in the 

September 2018 – September 2019 period. Since the prior seasonal analysis had been limited to the Sahara only, we extend 595 

the seasonal analysis by incorporating > 30 regions within. These regions had been previously selected in Labzovskii et al. 

[2023] to represent typical geographical conditions from an ecosystem perspective. This region-specific analysis illustrates 

seasonal LSR-LER comparisons at monthly scales for each representative region from ecosystem point of view (Fig. 14) and 

correlation table between LSR and LER for each selected region is shown (Fig. 15). The regions in Fig. 15 are ranked based 

on the TROPOMI-GOME-2 agreement in descending order with (red color – higher agreement). 600 

In geographical terms, the highest agreement between LSR and LER was  found in the regions where snow occurrence 

is common in winter (Fig. 15), thus forming white surfaces that strongly reflect UV light [Tanskanen and Manninen, 2007]. 

For example, high correlation coefficients of 0.87, 0.88, 0.86 and 0.75 were discerned between LSR and LERT in Eastern-

Central Eurasia, Scandinavia, North Siberia and Northern Canda, respectively (in the case of LSR-LERG they were 0.89, 0.85, 

0.79 and 0.72, respectively). Fig. 14c illustrates an example of Scandinavia, where both LSR and LER are sensitive to 605 

emergence of snow with reflectivity peaks in December – January. In terms of magnitude, LSR goes up to ~0.15 sr-1 in January 

2019, corresponding to ~0.3 in terms of LER. This one-peak curve is evident for both the LER and LSR estimates except in 

Northern Canada, where LSR decreases at a faster rate in comparison to LER estimates at the end of winter. Interestingly, for 

year-round ice-covered regions the agreement is less obvious with high agreement for Central Greenland on one hand (r = 0.63 

and r = 0.88 for LSR-LERG and LSR-LERT comparisons, respectively), but lower agreement over Antarctica on the other 610 

hand (r < 0.10 for both Aeolus-GOME-2 and Aeolus-TROPOMI comparisons). Note that LERG and LERT both yielded 

moderate agreement (r = 0.67 and 0.51) to each other over Antarctica and over Central Greenland, respectively. The reason 

behind the lower agreement is because LER estimates show very low variability throughout the year over these regions, while 

Aeolus detects several LSR changes  in March – April 2019 in Central Greenland (see supplementary material; Fig S. 7). It is 

hard to compare these dynamics with existing reference seasonal data on ice in Antarctica even qualitatively because most 615 

studies address ice extent [Parkinson, 2014] in the region, not snow cover, to which LSR is most sensitive to. Another reason 

can be the fact that Aeolus stands out with unprecedented coverage of these high latitudes with many observations in polar 

night and no issues arising from solar zenith angle, typical for passive remote sensing instruments [Tilstra et al., 2017]. 

Moreover, LER is a multiyear average and is filled in with constant with detection is not successful, while Aeolus provides 

direct measurements of unidirectional reflectivity. 620 

In arid and semi-arid regions, the agreement between LSR and LER is generally high for most regions with a few  

exceptions. Note that we labelled the regions semi-arid like Mongolia [Han et al., 2014] not based on the conventional 

ecosystem classification, but on the possibility of snow occurrence in these generally arid regions. Like in Labzovskii et al., 

[2023], a very good agreement between LSR and LER over Sahara is discerned despite the very weak reflectivity variability 

identified (Fig. 14a). We have previously discovered a rather surprising sensitive of Aeolus to reflectivity changes in the Sahara 625 

desert [Labzovskii et al., 2023]. Importantly, here we confirm these findings by applying the official method of bin detection 
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and extending our analysis to other arid regions, where vegetation changes are minimized. Specifically, for LSR-LERT, good-

to-very good agreement was found over all arid regions including Middle East (r = 0.81), Sahara (0.86), Iran (0.70) and also 

all semi-arid regions including Mongolia (0.90), Central Asia (0.96) and Arid U.S. (0.97). For LSR-LERG comparison, we 

found good agreement only for Middle East (0.80) among arid regions, but for all semi-arid regions including Mongolia (0.91), 630 

Central Asia (0.96) and Arid U.S. (0.90). For semi-arid regions like Mongolia, shown in Fig. 14b, a one-peaked curve with the 

maximum in winter indicates that the agreement is driven by the presence of snow, which manifests the highest reflectivity in 

the UV spectrum [Maninen and Taskinen, 2007]. Clear strong LSR peaks of ~0.15 sr-1 were discerned over Mongolia in winter 

(Fig. 14b), which are not present over Sahara (Fig. 14a), where LSR remains below 0.05 sr -1. Moreover, these lower LSR 

values, compared to snow-affected months are typical for semi-arid regions like Mongolia in spring and autumn (see 635 

September, October, April and May in Fig. 14b). 

For other regions, the agreement between LSR and LER varies depending on the ecosystem type. For instance, in 

ever-green ecosystems of southern hemisphere like tropical regions, the agreement is rather low or lacking. To be specific, for 

southern hemisphere while LER intercomparison agreement is high for tropical forests like Southern-Hemisphere Amazon 

region (r = 0.93), Indochinese Peninsula (0.86) or mixed ecosystems like South-Central Africa (0.96), Aeolus does not exhibit 640 

any statistical agreement with either of LER references in any of these regions (r < 0.10). The dynamic range of LSR variability 

is very low and close to instrumental noise magnitude of Aeolus in evergreen regions, as indicated by Fig. 15d showing 

Amazon region. Perhaps, Aeolus LSR is less sensitive to green vegetation changes at lower reflectivity ranges or has weaker 

returns from green surfaces, thereby reducing dynamic range of LSR change over such areas [Weiler et al., 2021]. We should 

stress that this suggestion is merely a hypothesis, which necessitated deeper exploration, shown in the next section. In the 645 

mixed vegetation regions, the agreement patterns may vary with the best LSR-LER agreement in Australia (Fig. 15) with LSR 

agreeing well with both LERG and LERT (r = 0.50 and 0.94, respectively). Thus, seasonal surface changes can be resolved 

using Aeolus LSR even in the regions without snow cover. The presence of snow cover over the region called Australia in this 

paper is unlikely because we focused solely on central Australia, excluding mountainous regions where snow pixels might be 

present. In ocean areas, like the Guinea Gulf depicted in Fig. 15f, either LSR-LER agreement is low or there's a lack of data 650 

for comparison. 
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 655 

Fig. 14 LSR (red and blue) comparison with LERT (black) and LERG (grey) for several representative regions including: a – 

Scandinavia (Region with frequent snow occurrence e.g. “snowy region” as described on the plot), b – Mongolia (Semi-Arid), 

c – Sahara (arid), d – South-Hemispheric (SH) part of Amazon (Evergreen region), e – Australia (Mixed Region), f – Guinea 

Gulf (Ocean Region). Error bars are taken from one-sigma monthly deviations of average LSR. Red-colored and blue-colored 

plots have different y-axis ranges (red – strongest LSR regions, blue – weak-to-moderate LSR regions). 660 
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 665 

Fig. 15 Correlation table between Aeolus (LSR), GOME-2 (LERG) and TROPOMI (LERT) monthly regional averages for all 

regions considered in this study. The correlation table is sorted in descending order of correlation coefficient between LERG 

and LERT 

 

 670 

3.4 Sensitivity of LSR to land cover: snow cover and vegetation proxy 

Thus far, we registered good linear agreement between LSR and LER references at orbit, aggregated monthly orbit, yearly 

global and regional monthly scales for most cases. Moreover, we have previously revealed a distinct clustering of annual LSR 

regional averages in Labzovskii et al. [2023]. This clustering closely reflected the ecosystem characteristics of different 

regions, with the LSR magnitude in the following ascending order: ocean regions, highly vegetated regions, arid regions, snow 675 

cover-prone region. On top of that, we had previously registered moderate negative correlations between yearly averaged LSR 
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and NDVI values, which indicates a simple relationship – less vegetation, stronger LSR. However, all these results do not 

directly demonstrate the ability of Aeolus to resolve ecosystem-driven changes of land surface. To remind, we had arbitrarily 

selected the regions that reflect different geographical characteristics worldwide. To this end, we quantitatively evaluated two 

previously suggested and the most promising hypotheses stemming from all our LSR works [Labzovskii et al., 2021; 2022; 680 

2023], namely; (1) strong sensitivity of Aeolus LSR to snow cover change and (2) moderate sensitivity to vegetation change. 

To this end, we selected two proxy datasets for reflecting these characteristics including snow cover and vegetation proxies – 

NDVI; both parameters were described and explained in the methodology. 

Like in the aggregated orbit analysis, shown in Fig-s 11 and 12, we sampled the modelled values reflecting land cover 

conditions to every clear LSR observation for every month. The analysis of snow cover (Fig. 16) unveiled very high agreement 685 

with LSR yielding positive correlation for all months during the analysis. The highest agreement was found for November and 

December 2018 (r = 0.74 for both months) seemingly due to the high dynamic range of snow cover during these months and 

high differences between snow-covered high latitudes of NH and other regions in these months. In other months, the correlation 

was moderate (r = 0.60, 0.62 and 0.68 for February 2019, March 2019, September 2018) or high as well (r = 0.70, 0.71 and 

0.72 for April 2019, January 2019 and October 2018). Regarding vegetation, we evaluated the LSR-NDVI hypothesis by 690 

estimating statistical agreement between LSR and vegetation cover (see Fig. 17). We found weak-to-moderate negative 

association between LSR and the vegetation reference – NDVI with the strongest negative correlation in November 2018, 

December 2018 and January 2019 (r = -0.62, 0.61 and 0.60, respectively). For other months, rather weak negative association 

between NDVI and LSR was registered with correlations ranging from -0.48 (September 2018) to -0.59 (May 2019). We 

noticed an interesting pattern manifested by the highest agreement in the periods when snow cover is highest in northern 695 

hemisphere. Moreover, during these months, two distinct populations of LSR with negative association: stronger LSR (see the 

horizontally prolonged upper population) and the lower LSR population of the same shape. The stronger LSR population is 

distributed across the entire NDVI range, while the lower shape population mostly ranges from 0.5 to 1.0. Since the stronger 

population density on the plot is lowest in September and the agreement with the snow cover is also lowest in September, we 

suspect that the stronger LSR population is related to snow cover occurrence, not vegetation directly. This suggestion is 700 

sensible since numerous previous studies, many of which were mentioned by Taskanen and Manninen [2007] had 

demonstrated that UV reflectivity of green Earth surfaces is very weak, unless covered by a white layer such as snow [Warren 

1980, Wiscombe 1980, Chyleck 1983, Grenfell 1994, Feister 1995, McKenzie 1996, Frei 1999, Robinson 1999, Wuttke 2006, 

Weiler 2017]. To evaluate this hypothesis, we applied a snow cover mask of 0.05 and filtered out all observations above this 

threshold. This evaluation indirectly confirmed our suggestion as shown by supplementary Fig. E4. Once we filtered out all 705 

snowy cases, the stronger LSR population at the higher segment of the plot nearly disappears (see Fig. S8 in the 

supplementary). Most crucially, the negative correlation between NDVI and LSR dwindles to very low values (r < 0.30) for 

every month of the analysis if all snow cover cases are masked out. 
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Fig. 16 Monthly scatterplots comparing LSR (sr-1) and snow cover (SNW_1) during entire FM-A period. Y-axis and colorbar 710 

are both shown in logarithmic scales. 

 

 

 

 715 
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Fig. 17 Monthly scatterplots comparing LSR (sr-1) and NDVI during entire FM-A period. Y-axis and colourbar are both shown 

in logarithmic scales. 

 720 
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To finalize about the discussion on the sensitivity of LSR to NDVI, we also evaluated the bin-based agreement of LSR versus 

snow cover, LSR versus NDVI, LSR versus NDVI without snow (snow cover < 0.05). As seen from Fig. 18 below, the 725 

agreement of LSR with NDVI (grey colour markers) is mostly driven by the changing snow cover (e.g. more snow, lower 

NDVI). The snow cover (blue colour markers) is in nearly ideal antiphase with NDVI while both compared with LSR. The 

pattern here is as follows – the higher snow cover, the higher LSR. At the same time, another side of this pattern is – the lower 

NDVI, the higher LSR as well. However, if we filter out all snowy cases from NDVI (see red color markers on Fig. 18), LSR 

remains nearly unchanged and weak (below 0.05 sr-1) across all variations of NDVI. It is unclear why NDVI binning does not 730 

reflect the pattern we noticed in previous paper namely a distinct gradient between rich vegetation and arid regions, as well as 

moderate negative agreement between yearly averaged NDVI values and yearly averaged LSR values at regional lever 

[Labzovskii et al., 2023]. Perhaps, the LSR difference between arid and vegetated regions is lower than we expected prior to 

this work and LSR is mostly sensitive to the appearance of white surfaces [Taskanen and Manninen, 2007]. We discuss another 

suggestion explaining this phenomenon in discussion in detail.  735 
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Fig. 18 Bin-based plots (50 averaging bins), illustrating: NDVI with snow (VEG-Y), NDVI without snow (VEG-N) and snow 

cover cases (SNW) for every month in the FM-A period. 

 740 

 

 

4. Discussion 
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We described the methodology behind the Aeolus lidar surface return (LSR) retrieval algorithm to be incorporated as the 

official Aeolus Level 2A product during the post-commissioning phase. In short, the algorithm relies on the combination of 745 

Aeolus L1B (information about ground bin detection and geolocation parameters) and L2A AEL-PRO data (backscattering 

coefficient) for calculating the LSR as surface integrated attenuated backscatter for all bins, where ground return was located 

using the official surface detection algorithm. The ability of Aeolus to resolve optical characteristics of Rayleigh contribution, 

aerosols and clouds made the atmospheric correction procedures simple and effective. We (1) used Rayleigh and aerosol optical 

depths calculated from L2A molecular backscattering and aerosol extinction of AEL-PRO data, respectively, as well as (2) 750 

quality flagging of LSR signal. To include only useful LSR observations for the analysis, one should account for the number 

of attenuative features over ground bin and aerosol conditions, both can be estimated from the atmospheric quality flag (‘qflag’) 

we introduced and AOD, calculated using extinction from Aeolus L2A data. As a minimum quality assurance procedure, we 

strongly advise to include only clear LSR observations, namely, only those observations satisfying qflag = 0 (no attenuative 

features above ground bin) and AOD < 1.0 conditions.  755 

According to the official algorithm of ground bin detection, of all the Aeolus soundings in FM-A period, the ground bin 

was detected in 8 – 22% cases per month (19% cases in median) and clear useful LSR observations were available in 7 – 16% 

cases per month (14% in median), depending on month. The largest number of clear LSR observations were available from 

November (2018) to April (2019), seemingly due to the presence of strongly reflecting white surfaces in the northern 

hemisphere. Importantly, the LSR algorithm was shown to be relatively stable to the change of AOD threshold (0.5 – 1.5), 760 

therefore indicating its potential for being used as Level 3 like gridded product at the Aeolus given observational data 

abundance. The official Aeolus ground detection algorithm yielded fewer ocean surface returns due to the weakness of water 

signal, compared to our previous work [Labzovskii et al., 2023]. Other LSR differences with the aforementioned work were 

minor and were simply driven by different data filtering strategies and which observations are deemed to have clear LSR. 

Since land and ocean LSR demonstrate not only different magnitude of return in terms of signal, but likely different physical 765 

effect in returns, our results prompt us to create another holistic quality flag for LSR (or hflag) for users. In this context, ‘hflag’ 

can reflect three conditions including type of surface (0 – water, 1 – land), presence of cloud-driven attenuation over the ground 

bin (0 – no attenuation, 1 – more than one attenuative feature is detected and LSR can be therefore noisy or not representative) 

and presence of aerosol-driven attenuation over the ground bin (0 – low aerosol load, no attenuation, 1 – potential aerosol 

attenuation). Users are advised to use the ‘000’ flag for land surface reflectivity-oriented studies. 770 

The detailed examination of Aeolus LSR during the FM-A period conducted in this study unveiled interesting results. 

Monthly average gridded LSR forms distinct clusters and varies from very weak returns of < 0.0018 sr-1 registered over water 

surfaces to the range of 0.018 – 0.080 sr-1 typical for land surfaces without snow, up to 0.080 < LSR < 0.417 sr-1 values 

emerging in regions with occasional or permanent snow/ice cover. Such LSR signal distribution makes Aeolus non-nadir UV 

reflectivity pattern very different from CALIPSO near-nadir visible reflectivity pattern. The CALIPSO LSR pattern previously 775 

exhibited strongest reflectivity returns from deserts and ocean surfaces and did not exhibit any exceptionally weak returns, 

compared to land [Lu et al., 2018]. In our work, the brightest sea ice returns are the highest being ~26 times stronger than the 
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strongest water returns, resembling the magnitudes of UV returns from the same type of surfaces from Chadysienne [2008]. 

Unlike the Labzovskii et al. [2023] work, this detailed study revealed no differences between arid and vegetation regions, but 

we noticed a previously unseen gradient between snow (in most cases < 0.160 sr-1) and sea ice in Antarctica or Arctic waters 780 

(0.160 – 0.417 sr-1) on global 2.5o x 2.5o LSR maps. In terms of LSR evaluation, we achieved a very good agreement between 

LSR and LER references (both GOME-2 and TROPOMI) at nearly all spatio-temporal levels. Four reference orbits we selected 

from 2018.09.10, 2018.11.30, 2019.01.11 and 2019.05.01; all exhibited reasonable agreements in terms of LSR-LER 

comparisons. Correlation coefficients ranged from 0.55 to 0.71 in Aeolus-TROPOMI and from 0.57 to 0.65 in Aeolus-GOME-

2 comparisons, respectively, whereas the agreement was mostly driven by land LSR. For monthly aggregated orbits, containing 785 

all clear LSR observations and corresponding sampled LER values from climatologies, we found moderate-to-good agreement 

for Aeolus-TROPOMI (ranging from r = 0.61 in February 2019 to 0.77 in September 2018) and weak-to-moderate agreement 

in Aeolus-GOME-2 comparisons (ranging from r = 0.44 in February 2019 to 0.64 in September 2018). The absence of perfect 

linear agreement is attributed to the distinct physical behaviors of LSR and LER, which vary depending on surface changes. 

Unlike quasi-linear growth of LER, LSR exhibits a sigmoid-like increase in reflectivity when transitioning from a dark to a 790 

white surface. At regional level, seasonal dynamics of LSR agreed very well with LER dynamics in snowy regions (North 

Siberia, North Canada, Eastern-Central Eurasia, Scandinavia; r > 0.90), arid regions (Sahara, Middle East, Iran; r = 0.70 – 

0.86), semi-arid regions (Mongolia, Central Asia, Western U.S., r = 0.90 – 0.97) and some regions with mixed vegetation as 

Australia (r = 0.94 in Aeolus-TROPOMI comparison). However, in greener regions, the agreement between seasonal dynamics 

of LSR and LER is lower or non-existent due to low dynamic range of reflectivity and weaker sensitivity of Aeolus LSR to 795 

green surfaces we discuss below. At the global level, averaged 2.5o x 2.5o LSR estimates for the entire FM-A period exhibited 

excellent agreement with the averaged LER estimates yielding correlations of 0.90 with GOME-2 and 0.92 with TROPOMI, 

respectively. 

The expectations that Aeolus LSR is extremely sensitive to snow cover changes were confirmed in this study. On the 

aggregated monthly orbit level, we found a very high agreement between modelled snow cover and LSR with correlation 800 

ranging from 0.62 in March 2019 to 0.74 in November and December 2018. These results directly confirm both literature-

based expectations about exceptionally strong reflectivity of white surfaces at UV for lidars [Weiler, 2017] and our previous 

suggestion about sensitivity of Aeolus LSR at UV to snow cover. For NDVI, we found some complex interdependencies 

between vegetation cover and snow cover. Due to a nearly ideal antiphase of snow cover with NDVI while both compared 

with LSR, we decided to also filter out all snowy cases from NDVI-LSR comparison as an additional examination. After such 805 

filtering, nearly no change of LSR depending on the NDVI change could be registered and LSR remained fairly weak with 

values mostly below 0.05 sr-1. Possibly, Aeolus exhibits less sensitivity to variations among different vegetated surfaces. 

Alternatively, in moderate latitudes, where most Aeolus clear LSR observations are available, the vegetation frequently 

stretches upward past the snow layer, substantially affecting the snow-covered terrain's reflective capacity depending on land 

cover type and snow condition [Taskanen and Manninen 2007]. The mechanisms tied to the transition of surface albedo in 810 
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vegetated areas with occasional presence of snow can therefore manifest a very complex interplay that is challenging to 

disentangle in the current paper. 

 

5. Conclusions 

While the main aim of this study was to familiarize readers with the Aeolus Lidar Surface Return (LSR) algorithm and resultant 815 

LSR parameter, we also showed that gridded LSR estimates manifest some reflectivity and land-cover-relevant patterns can 

be useful for researchers. We encourage a production of not only operational LSR data at the original resolution but also a 

gridded 2.5 x 2.5° LSR product in the form of Aeolus-lifetime LSR Level 3 climatology as a future effort. Leveraging Aeolus 

LSR's excellent sensitivity to white surfaces like snow cover, particularly in high latitudes, such products can significantly 

benefit researchers interested in radiative transfer, reflectivity, and snow cover studies. Most crucially, together with 820 

CALIPSO-based works on land surface returns [Lu et al., 2018] and ocean surface returns [Josset et al., 2008; Hu et al., 2008; 

He et al., 2016; Venkata and Reagan, 2016], our methodological framework and scientific results on Aeolus LSR will 

complement Aeolus post-commissioning studies and pave the way for future lidar missions. These efforts have partially 

addressed the gaps in understanding surface LSR at UV and non-nadir angles by Aeolus, thereby deepening the existing 

understanding provided by CALIPSO studies mentioned above. Considering these experiences collectively, a practical 825 

framework on maximizing the benefits from surface return signals for future lidar missions like EarthCARE and even Aeolus-

2 can now be outlined. EarthCARE, with its operation of collocated radar and UV nadir lidar measurements, suggests that lidar 

surface returns can be utilized to construct UV surface climatologies sensitive to white surfaces. Additionally, EarthCARE's 

ocean surface returns will aid in implementing Aerosol Optical Depth (AOD) algorithms based on both the inverse relationship 

of ocean surface backscatter and wind speed [Hu et al., 2008], as well as combining lidar with radar surface returns to infer 830 

AOD [Josset et al., 2008]. For Aeolus-2, assuming a similar optical setup, it is clear that AOD retrieval using ocean surface 

returns will be challenging, but efforts to deliver subsurface reflectance contributions of the ocean and continuation of the LSR 

2.5 x 2.5 gridded record, which will build upon current efforts, would be highly beneficial. Moreover, the current LSR efforts 

can be used for modelling expected reflectance from Aeolus-2 in lidar simulation tools. 
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