
Authors’ Response 

We thank the Editor and the Reviewers for taking time carefully reviewing our manuscript and for 

the constructive comments. All the reviewer comments have been considered and incorporated in the 

revised manuscript. Here, we first summarise the main changes made in the revised manuscript, and 

we list, point by point, our replies to reviewers’ comments.  

1. Summary of main changes in the revised manuscript  

• Incorporated a comprehensive baseline model analysis (Section 4.2.1). 

• Presented calibrated model parameters using full 69-year records (Table 2). 

• Demonstrated the baseline model's capacity to preserve key statistical properties across 

various timescales (5-min, 1-h, 6-h and 24-h timescales) (Figures 3-6). 

• Highlighted the current model's limitations at the monthly scale (Figure 7). 

• Provided formulae for selected BL model statistical properties in Appendix A (Appendix A). 

• Extended the description of the model calibration, including the explanations of the numerical 

challenges, our proposed numerical method and the factors affecting the model calibration 

quality (Section 2.2 and Supplement S1). 

• Conducted a sensitivity analysis of BL model parameters and provided results as Supplement 

of the manuscript (Supplement S1). 

• Suggested potential improvements in the future versions of the pyBL, such as incorporating 

the shuffling components method from Kim and Onof (2020) to better address large-scale 

rainfall variability caused by storm dependence (Sections 4.2.1 and 5). 

2. Referee #1 

1. The readers will benefit from seeing all formulations of the BL model - either in the section on 

the model structure (Section 2.1) or in the supplementary material if you do not wish to lengthen 

the paper. The lack of equations in a paper that describes a model is somewhat unexpected. 

R/ Thank you for the comment. Indeed, it would be helpful to have the formulations of the BL 

model. We have added them to the appendix of the revised manuscript.  

2. In the case study presented, you address the issue of sample size. As part of the discussion of 

model calibration, I would present this information in advance to the reader. 

R/ Thank you for your comment. We have addressed this by incorporating the information 

regarding sample size in the model calibration section. 

3. I suggest adding a short section to provide readers with a more comprehensive understanding of 

the sensitivity of the model parameters. You may list all model parameters in a table (this would 

be very useful for readers to gain a better understanding of the model engine) and present the 

local or global sensitivity. 

R/ Thank you for your comments. We will address both comments together as they are closely 

related.  

A further discussion on model calibration will indeed provide readers with a better understanding 

of the model and the sensitivity of the parameters. To our understanding, three main factors affect 

the sensitivity of model parameters, ranging from local to global sensitivities: (1) the capacity of 

the numerical solver to determine optimal parameters, (2) the estimation of observed rainfall 

properties, and (3) the sample size. 



Before discussing these three factors, as suggested, we will first provide a summary of the model 

parameters and the calibration results obtained from 69 years of 5-min rainfall records at Bochum 

(the reference used in the submitted manuscript). This information will be presented in a new 

table (as Table R1 below), which we will add to the revised manuscript. 

In terms of the sensitivity of model parameters, we begin with the local sensitivity introduced by 

the numerical solver. Determining optimal parameters for a Bartlett-Lewis (BL) model is always 

a numerical challenge due to its complexity. Several strategies have been proposed. For example, 

Onof and Wang (2020) introduced a 2-stage solver, employing simulated annealing for heuristic 

searching followed by the Nelder-Mead algorithm to efficiently refine optimal parameters. In our 

work, we utilised a basin-hopping algorithm to reduce the likelihood of being trapped in local 

optima and help identify optimal parameters. As noted by Baioletti et al. (2024), basin-hopping 

outperforms algorithms like Differential Evolution and Particle Swarm Optimization in terms of 

computational efficiency and solution accuracy. Our numerical solver runs basin-hopping 

iteratively 20 times for each model calibration. The first iteration starts with a randomly assigned 

initial guess, while subsequent iterations use the solution from the previous basin-hopping 

iteration to refine the optimal solution. 

To demonstrate the impact of the numerical solver, we conducted an experiment using 69 years 

of rainfall records from Bochum. As shown in Fig. R1, when a fixed random seed (related to the 

initial guess) is used, the solver consistently results in the same parameters. When varying 

random seeds are used, the solver produces nearly identical parameters in most months, except 

for July and September, where greater variability in some parameters is observed. However, 

when these parameters are used to compute rainfall properties such as skewness at 5-minute and 

1-day time scales (shown in Fig. R2), the variability in skewness estimates is minimal. 

Comparing these results with those derived from the bootstrapping method (Sect. 2.4 of the 

original manuscript) shows that the variability in rainfall properties from bootstrapping is 

consistently larger than that caused by the numerical solver. Even in July, where parameter 

variation from varying random seeds exceeds that from bootstrapping, the resulting variability in 

rainfall properties remains smaller. This suggests that the sensitivity of model parameters, and the 

derived rainfall properties, is largely driven by the estimation of observed rainfall properties 

rather than the numerical solver. 

Finally, we conducted another experiment to examine the impact of sample size, using the 

bootstrapping method to derive model parameters from 5- and 69-year rainfall records. As shown 

in Fig. R3, sample size has a significant impact on parameter variability (or sensitivity). When 

the sample size is small, the variability in model parameters is much greater than when using the 

full records. Furthermore, this sensitivity propagates into rainfall properties, as can be seen when 

comparing Figures 2 and 4. We conclude that sample size has the largest impact on the sensitivity 

of model parameters compared to the other two factors discussed. 

A detailed discussion of this experiment is provided in Supplement S1. 

  



Table R1. Model parameters calibrated using full data records 

 

 

 

Figure R1. Variability of model parameters calibrated under three different scenarios: (1) fixed 

random seeds, (2) varying random seeds for initial guesses, and (3) the bootstrapping method. 



 

 

Figure R2. The corresponding 5-min and 1-day skewness estimates computed using the model 

parameters shown in Fig. R1. 



 

Figure R3. Boxplots of monthly model parameters (storm arrival rate (λ), cell intensity ratio (ι), cell 

duration shape (α), cell duration scale (ν), cell arrival rate (κ), and storm duration rate (φ)) calibrated 

using different record lengths (light blue boxes: 5 years, green boxes: full records). Each member of 

100 bootstrapping iterations is calculated, and their interquartile ranges (IQR) are presented. 



 

Figure R4. The corresponding 5-min and 1-day skewness estimates computed using the model 

parameters shown in Fig. R3. 

 

4. It would be useful to begin by presenting several box plots demonstrating the model's ability to 

reproduce the interannual variability, monthly and daily rainfall statistics before presenting the 

results of the extreme rainfall (e.g., Figure 3). Currently, it appears that the model is only 

calibrated to simulate extreme events correctly. 

R/ Thank you for the comment. Indeed, including information about interannual variability, and 

monthly and daily rainfall statistics is helpful to better understand the model’s ability to 

reproduce ‘standard’ rainfall properties. It is also helpful to clarify that the BL model doesn’t 

require extreme rainfall properties for model calibration. A new section discussing these findings, 

along with figures illustrating the standard statistics, has been added to the manuscript (Section 

4.2.1). 

Here, we follow the method used by Wang et al. (2006) and Kim, D. and Onof (2020) to 

calculate interannual variability, where observed monthly variance of the mean daily rainfall and 

the corresponding quantiles of monthly variance derived from 100 sample time series at each 

calendar month across study years (in this case, 69 years of rainfall records from Bochum) were 

used. As illustrated in Fig. R5, for all calendar months, the observed variances are well 

reproduced by the sampled ones over most variance range. However, it is also observed that the 

observed maximum variances for each calendar month tend to be overestimated by the sampled 

variances.  

Apart from interannual variability, Figures R6-R9 show the standard rainfall properties derived 

from the calibrated BL model at selected timescales. As seen, the BL model can well reproduce 

all selected rainfall properties at daily and sub-daily timescales. However, for rainfall properties 

at the 1-month (1-M) timescale, only rainfall mean can be well reproduced. Failing in preserving 

monthly properties lies in the fact that these properties are not considered during model 



calibration in this version of the BL model. This highlights the limitation of the current 

implementation. We understand the importance of a rainfall model to be able to reflect monthly 

rainfall variation, thus it may be addressed in the future version of the BL model. Candidate 

methods like adding the shuffling components proposed by Kim, D. and Onof (2020) can help 

involve the consideration of monthly rainfall variability, enhancing the ability of the BL model to 

reproduce this variation accurately. 

 

Figure R5. Relationship between observed and modelled monthly variances of daily rainfall amount. 

Red dots indicate the monthly variance of each year (69 samples for each month) with the diagonal 

line for reference (black dash). 



 

Figure R6. Mean by month at Bochum: comparison between RBL (boxes) and observation (crosses) 

 

Figure R7. Coefficient of variation (CV) by month at Bochum: comparison between RBL (boxes) 

and observation (crosses) 



 

Figure R8. Lag-1 autocorrelation (AR1) by month at Bochum: comparison between RBL (boxes) 

and observation (crosses) 

 

Figure R9. Skewness by month at Bochum: comparison between RBL (boxes) and observation 

(crosses) 

  



5. The font size in Figure 2 is too small.  

R/ Thank you for the comment. We will adjust the figure in the manuscript as Fig. R10 shows. 

 
Figure R10. Workflow for generating synthetic rainfall time series using historical records with the 

pyBL package. 

  



3. Referee #2 

1. Line 110: As a reviewer with a personal interest in the practical application of this model, I have 

applied it across various fields. Based on that experience, although Equation 2 has a solid 

theoretical foundation (as cited in Kaczmarska et al., 2014, which states that statistics with 

greater interannual variability should be given less weight, and vice versa), it has shown 

problems such as underestimation of extreme values in real-world applications. The most 

significant reason, I speculate, is that interannual variability, as mentioned by Marani (2003) and 

Kim and Onof (2020), is a large-scale variability that the Poisson cluster rainfall model cannot 

replicate. This large-scale variability is related to extreme values that pose real-world problems. 

For example, if a time series shows high interannual variability in 1-hour variance, the year that 

contributed to this high variability is likely to contain extreme values. Therefore, I believe it 

would be more appropriate to apply greater weight to statistics with large interannual variability. 

Additionally, the magnitude of each MMM in this equation varies significantly. Thus, the weight 

factor should be adjusted to account for these relative differences, which could introduce 

confusion. Therefore, I recommend adopting a method of determining the weight factor based on 

the application field of the generated rainfall, as suggested by Kim and Olivera (2012). 

Moreover, I suggest using a normalized form of the function, such as Sigma(w_i \times (1 - f_k / 

f'_k)), instead of Equation 2. At the very least, users should have the option to choose such a 

method. 

R/ Thank you for the comment. We note the suggestion of having the possibility of choosing a 

different objective function, which we agree would be a good idea, so that will be included as an 

option in the software. 

The reviewer correctly mentions the issue of underestimation of large-scale variance which, 

indeed, has potential impacts upon the reproduction of extremes. However, the solution proposed 

by the reviewer conflicts with the theoretical result obtained by Jesus and Chandler (2011) which 

shows that statistics with lower variability should have more weight and that the weight should 

indeed be the inverse of the variance of the corresponding statistic. While we appreciate the 

reviewer’s intention to obtain parameters that will achieve greater variability by giving more 

weight to statistics with greater variability, the problem is that the objective function only 

includes the mean value of the corresponding statistic. It therefore has no information indicating 

that this statistic has greater variability. 

Depending on the application, the underestimation of large-scale variability will or will not be a 

concern. If it is, then the hypothesis of storm independence would have to be revised, and the 

best way of doing that would be to use the added shuffling components of the model by Kim and 

Onof (2020). We include the coding of these components as our next task in terms of further 

research. 

2. Section 2.4: The Bartlett-Lewis model is likely to produce different parameters corresponding to 

different local minima with each calibration attempt. However, there is no way to discern 

whether the variability of the parameters derived from the method presented here is due to 

parameter calibration or sampling. To demonstrate the validity of the method proposed in this 

section, you must show that calibration consistently produces the same parameters for the same 

rainfall statistics. 

R/ Thank you for your comment. The issue raised by the Reviewer can be addressed from two 

perspectives: (1) identifying globally optimal parameters and (2) ensuring the consistency of 

parameter estimation during each model calibration. 

Regarding the identification of optimal parameters, it is indeed challenging to verify whether the 

parameters found in each calibration are globally optimal. To address this, we employed a 

numerical strategy based on the basin-hopping algorithm, which reduces the likelihood of being 



trapped in local optima and helps determine optimal parameters. According to a recent study by 

Baioletti et al. (2024), basin-hopping outperforms many other numerical algorithms, such as 

Differential Evolution and Particle Swarm Optimization, in terms of computational efficiency 

and solution accuracy. Specifically, in the default setting, our numerical solver runs basin-

hopping iteratively 20 times for each model calibration (i.e., for a given set of rainfall statistics). 

The first iteration begins with a randomly assigned initial guess, and subsequent iterations use the 

solution from the previous basin-hopping as input to refine the optimal solution. 

For the consistency of parameter estimation, we demonstrate that when the same random seed is 

used, the proposed numerical solver consistently produces the same parameters. However, when 

a different random seed is used, the solver may indeed yield different parameters. This variation 

is however due to the complexity of the Bartlett-Lewis model, where the parameters are inter-

correlated, allowing different sets of parameters to produce similar rainfall statistics. 

To further elaborate on the consistency issue, we conducted an experiment on the sensitivity of 

model calibration using pyBL under three scenarios: (a) fixed random seeds, (b) varying random 

seeds for initial guesses, and (c) the proposed bootstrapping method (see Sect. 2.4 of the original 

manuscript). 

Figure R11 shows the results of model calibration using 69 years of rainfall records from 

Bochum (as used in the submitted manuscript). As can be seen, with fixed random seeds, the 

numerical solver consistently produces the same parameters. When varying random seeds, the 

solver yields nearly identical parameters in most months, except for July and September, where 

greater variability in some parameters is observed. However, when these parameters are used to 

compute rainfall properties, such as skewness at 5-minute and 1-day time scales (shown in Fig. 

R12), the variability in skewness estimates is minimal. This confirms the consistency of the 

solver and supports the statement that different parameter sets can produce similar rainfall 

statistics. 

We also included results from model calibration using the proposed bootstrapping method. As 

shown in Fig. R12, the variability of rainfall properties derived from bootstrapping is consistently 

larger than that obtained from the other two scenarios. Interestingly, even for July, where the 

variation in some parameters from varying random seeds exceeds that from bootstrapping, the 

variability in rainfall properties is still smaller with varying random seeds. This suggests that, 

while the consistency of the numerical solver is important, the uncertainty in model calibration is 

largely driven by the estimation of observed rainfall properties rather than the solver’s 

consistency. 

  



 

 

Figure R11. Variability of model parameters calibrated under three different scenarios: (1) fixed 

random seeds, (2) varying random seeds for initial guesses, and (3) the bootstrapping method. 

 



 

Figure R12. The corresponding 5-min and 1-day skewness estimates computed using the model 

parameters shown in Fig. R11. 
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