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Abstract. Snowfall is an important climate change indicator affecting surface albedo, glaciers, sea ice, freshwater storage,
cloud lifetime and ecosystems. Precise snowfall measurements at high latitudes are particularly important for the estimation of
the mass balance of ice sheets; however, the snowfall is difficult to quantify with in-situ measurements in those locations. In
this context, spaceborne radar and radiometers atmospheric missions can help in the assessment of snowfall at high latitudes.

The decommissioned NASA CloudSat mission provided invaluable information about global snowfall climatology from
2006 to 2023. The CloudSat-based estimates of global snowfall are considered the reference for global snowfall estimates, but
these data suffer from poor sampling and the inability to see shallow or retrieve heavy precipitation, which limits their use, for
example, as input to surface mass balance models of the major ice sheets. WIVERN (WInd VElocity Radar Nephoscope), one
of the ESA Earth Explorer 11 candidate missions (final selection in July 2025), is equipped with a conical scanning 94 GHz
Doppler radar and a passive 94 GHz radiometer, with the main objective of measuring global in-cloud horizontal winds, but also
quantifying cloud ice water content and precipitation rate. Its conically scanning system, with a 42° incidence angle is expected
to reduce the radar blind zone near the surface (especially over the ocean) and allows the mission to have a swath width of
800 km and 70 times more sampled points than a fixed looking instrument. Fhis-The proposed radar measurements tackle the
current uncertainties in snowfall estimates, highly improving the sampling frequency and accuracy of snowfall measurements.

The uncertainty in snowfall measurements arises from various factors, including the diurnal cycle, uncertainty in the Z-S
relationship and the sampling error. This study quantifies each of these contributors individually and demonstrates the improved
sampling capabilities of the WIVERN conically scanning geometry for some specific regions (Antarctica, Greenland) by
computing the sampling error at different spatial and temporal scales via simulations of WIVERN vs. CloudSat orbits and
scanning geometry, based on the snowfall rates produced by ERAS reanalysis.

Results show that a WIVERN-like conically scanning system significantly reduces the uncertainty in polar snowfall esti-
mates, if compared to a CloudSat-like near nadir fixed viewing geometry. While CloudSat generates acceptable errors at the

annual zonal scales, WIVERN can produce estimates within the climatological variability for latitude-longitude domain larger
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than 0.5°x0.5° already at the +0-day-monthly timescale, making it a valuable product for regional climate model evaluation

and as an input to surface mass balance models of the major ice sheets and glaciers.
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1 Introduction

In polar regions and mid-latitudes, most precipitation is formed through the ice phase as snowfall (Miilmenstédt et al., 2015).
For high latitudes and mountainous regions, it is the dominating form of precipitation at the ground (Field and Heymsfield,
2015). Therefore, snowfall removes-net-enty-not only removes moisture form the atmosphere but plays a crucial, interlinking
role in the climate system. In the cryosphere, snowfall is the only mass source term for glaciers and ice sheets, and thus crucial
for their mass balance (Souverijns et al., 2018a). On sea ice, snow forms an insulating layer between sea ice and atmosphere
impacting sea ice lifetime (Perovich et al., 2017). On land, snow modifies the surface albedo relevant for the ice albedo
feedback (Hall, 2004). Furthermore, snow cover impacts ecology (Slatyer et al., 2022), traffic safety (Strong et al., 2010),
recreation (Steiger et al., 2019), and freshwater storage which is also relevant for hydropower generation (Wasti et al., 2022).
In a warming climate, precipitation amounts and extreme events, including heavy snowfall, are expected to increase (Quante
et al., 2021), but the estimates of the exact magnitudes are affected by large uncertainties (Lopez-Cantu et al., 2020). This
is because the exact pathways through which ice particles, liquid water, cloud dynamics, and aerosol particles are interacting
during snow formation are not well understood (Morrison et al., 2012; Griesche et al., 2021).

Better observations of the fingerprints of snowfall formation processes at sufficient spatio-temporal resolution are needed
to advance our understanding of ice and mixed-phase clouds and precipitation formation processes (Morrison et al., 2020).
Traditionally, snowfall is measured with in situ gauges, but high spatial variability (Scipién et al., 2013), poor coverage (Kidd
et al., 2017), and wind-related under-catch (Yang et al., 1999) pose significant challenges.

The deficits of in situ snowfall observations requires using remote sensing techniques. Because ground-based remote sensing
with weather radar is available only in densely populated areas and few sites are equipped with radars in the polar regions (e.g.,
Matrosov et al. (2008); Souverijns et al. (2018b); Li et al. (2021); Schoger et al. (2021); Matrosov et al. (2022); Tridon et al.
(2022); Alexander et al. (2023)) space-borne remote sensing techniques are the prime method to observe snowfall globally.
Passive microwave sensors such as AMSU (Advanced Microwave Sounding Unit) offer good spatial coverage due to their
km-scale imaging capabilities, but passive microwave signals are also impacted by surface properties (Chen and Staelin, 2003;
Skofronick-Jackson et al., 2004; Skofronick-Jackson and Johnson, 2011) and the presence of supercooled liquid water (Wang
et al., 2013; Battaglia and Panegrossi, 2020; Panegrossi et al., 2022) which are difficult to separate from atmospheric scattering
contributions by frozen hydrometeors.

Due to their unique profiling capabilities, radar can provide profile properties of hydrometeors and separate scattering by hy-

drometeors from the surface. Even though the conversion into snowfall rates is associated with uncertainties related to the indi-



rect observation, space-borne radars on low orbit satellites such as CloudSat (Stephens et al., 2002) and EarthCare (Wehr et al.,
2023) provide the best way to observe snowfall globally (Milani and Kidd, 2023). CloudSat snowfall measurements have been
successfully evaluated with ground based in situ (Hiley et al., 2011) and ground based radar networks (Smalley et al., 2014;
Mroz et al., 2021). The data has been used to produce snowfall climatologies (Eiu;2008; Bennartz-et-al5 2019 Kulieet-al-2020)-
Liu, 2008; Palerme et al., 2014; Stephens et al., 2018; Bennartz et al., 2019; Kulie et al.,

gions with sparse in situ observations such as Antarctica or Greenland. Further, CloudSat data was used to study seasonal cycles

2020) which are most relevant in re-

(Kulie and Milani, 2018), evaluate climate models (Palerme et al., 2017), and to study the surface mass balance of ice sheets
(Boening et al., 2012; Milani et al., 2018). However, the combination of CloudSat’s revisit time of 16 days combined with
the 1 km footprint of the observations leads to a sparse spatial sampling, causing noise in snowfall climatologies even when
averaging over 10 years (Kulie et al., 2020). Further, it was found that CloudSat’s snowfall retrieval has biases for snowfall
rates exceeding 1.0 mm h—! tCao-etal;20+4: Norin; 2645)(Cao et al., 2014). Due to surface clutter contamination, CloudSat
cannot observe snowfall in the blind zone which is up to 1200 m thick and can lead to an underestimation of snowfall rate for
shallow events but also to an overestimation of snowfall rate due to sublimation (Maahn et al., 2014).

In this study, we will show the potential of the ESA Earth Explorer 11 candidate mission WIVERN (WInd VElocity Radar
Nephoscope, www.wivern.polito.it, Illingworth et al. (2018); Battaglia et al. (2018, 2022); ESA (2023); Rizik et al. (2023);
Tridon et al. (2023)) global snowfall monitoring. Different to CloudSat and EarthCare, WIVERN’s cloud radar will not measure
at nadir but will scan conically at 38° off-nadir angle (for measuring horizontal in-cloud wind) and also featurefeatures a 94
GHz passive channel. While-WIVERN-is-also-expected-to-feature-WIVERN will be characterize by a smaller blind zone over
ice-free ocean (Coppola et al., 2025) and has the potential for improved snowfall retrievals due to the availability of a passive
channel (Battaglia and Panegrossi, 2020);—we-, However, over land and sea ice, WIVERN’s blind zone is anticipated to be

larger than that of CloudSat, potentially limiting its capability to observe shallow snowfall precipitation events. This work will
focus on how the conical scanning, with 70 times better coverage than for a nadir pointing instrument such as CloudSat or

EarthCare, improves snowfall estimates. WIFVERN-and-the-The analysis is based on three main assumptions:

— Blind Zone Effect: The impact of the blind zone is related to the snowfall regime. With shallow snowfall being the
most common, significant number of snowfall events occur below CloudSat’s blind zone (Shates et al., 2025). While

WIVERN'’s surface snowfall retrieval performance would improve over ice-free oceans compared to CloudSat due to
reduced blind zone effects, it would decrease over land and sea ice. The blind zone effect is not accounted for in the

current snowfall estimate analysis. However, the resulting impact on estimates are examined in Section 4. Coppola et al. (2025

rovides a detailed discussion on the hydrometeor detection near the Earth’s surface in WIVERN and CloudSat measurements.

— 7Z-S Relationship Assumption: The Z-S relationship is assumed to be unbiased. In practice, the Z-S is typically application
dependent.

signal-to-noise ratio) at very high snowfall

rates. Also, it is expected to be larger for WIVERN due to its slant observation geometry.

— Attenuation is neglected and its contribution is expected to reduce the SNR
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WIVERN and the methodology are introduced in Section 2, results are presented in Section 3, the ground clutter impact on
surface snow precipitation is discussed in Section 4, and concluding remarks are given in Section 5.

2 Methodology

Table 1. WIVERN and CloudSat (Stephens et al., 2002) orbit and radar specifics. The shown configuration of WIVERN is the one currently
under Phase-A study for the ESA Earth Explorer 11 program.

Satellite WIVERN CloudSat
Spacecraft height, Hsc 500 km 705 km
Spacecraft velocity, vsc 7600 ms~! | 7600 ms™!
Orbit inclination, ¢ 97.42° 98.2°
Orbit Local Time of the ascending node, LT AN 06:00 13:3645
Orbit repeat cycle 5 days 16 days
Off-nadir pointing angle 38° 0.16°
Swath width at ground 800 km 1.4 km
Radar output frequency 94.05 GHz | 94.00 GHz
Radiometer channel 94 GHz -
Antenna angular velocity, (2, 12 rpm -
Footprint speed 500 kms™* 7 kms !
Minimum detectable reflectivity -21dBZ -28 dBZ

The basis for this work is the ERA 5 hourly surface snowfall (water equivalent) reanalysis product (Hersbach-et-al(2623a)
Hersbach et al., 2023a, last access: 15 March 2024), with-as it is considered to have realistic_spatio-temporal snow fields

Kouki et al., 2023). The ERAS snowfall dataset that have been used in the analysis has a spatial resolution of 0.25° x 0.25°
fer-and covers a total time span of 20 years from 2001 to 2020. We use it as a reference-for-comparison-with-benchmark to

compare the accumulated snowfall asretrieved-by-aretrieved by WIVERN-like and a-CLOUDSAT-like radar instrument-based
on-the-same-ERA-S5-instruments, both simulated with the same ERAS dataset. The sampling of the radar footprints have been
computed based on the viewing geometry (see Tab. 1) and the satellite orbits, which have been propagated in the period of
interest according to the orbital parameters reported in Tab. 1. Then, for each time stamp of the selected ERAS dataset, a mask
that indicates whether any given geolocated snowfall dataset 0.25° x 0.25° grid point is sampled by the instrument is generated
according to the radar footprints positions at ground. With a conically scanning radar, several passes over the same grid point
may occur within minutes, but we count several passes within an hour as one.

The mask has been applied to the ERAS snowfall dataset to produce two datasets, with the snowfall simulated as observed
by the CloudSat and WIVERN instruments using the following procedure. The hourly ERAS snowfall, .S, is converted to the

equivalent radar reflectivity factor z, according to a mean climatological relationship as proposed by Hiley et al. (2011) through
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Ze = ameansbmwn Amean = 2167 bmean =12 (1)

with z, in mm® m—3. Typically, reflectivity is used in logarithmic units dBZ converted with Z, = 10 x log;, z. The reflectivity
below the nominal radar sensitivity (—21 dBZ and —28 dBZ for WIVERN and CloudSat, respectively) is set to 0 mm® m—3,
as below these thresholds, no snow precipitation is expected to be detected. The Z,. values are converted to snowfall rate by
introducing random noise associated with the uncertainty in the Z, — S relationship. For this, Z, in dBZ, is assumed to be
normally distributed. Consequently, .S is sampled from a log-normal distribution, whose mean value corresponds to the ERAS
value and whose standard deviations are computed as half the difference S1, — S_1, where S;, and S_;,, are assumed equal

to:
1. Si1, = 0.0238 20-99;
2. S_1,=0.21 20769,

which are the inverse formulas of z, = 61.2 S™! and z. = 7.6 S3, respectively, proposed by Hiley et al. (2011) as lower and
upper boundaries for the uncertainty in the Z, — S relationship. This represents a worst-case estimate of the uncertainty caused
by the Z. — S relationship, as we assume it varies randomly from grid box to grid box, whereas in reality it may be spatially
correlated. In-this-studyHere, we neglect errors related to the fact that S is not observed at the surface, but at an higher altitude

due to the surface clutter (1200 m for CloudSat, Maahn et al., 2014). Also note that, typically, Z-S relationships cannot be

unbiased for every regime, application and context. For istance, Hiley’s distributions are derived for specific regimes (e.g., no
riming). Therefore, outside those regimes, (e.g., in presence of rimin resence of supercooled particles, presence of other

articles shapes) other sources of uncertainty might exist.
Fig. 1 shows an example case of geolocated ERAS snowfall rate (January 2, 2020 18:00 UTC) in comparison to the cor-

responding simulated WIVERN and CloudSat retrievals. Despite its sparse sampling within its 800 km swath, the WIVERN
footprint samples all 0.25° grid points within the swath, with an obvious benefit compared with the CloudSat peneil-beamnadir
Finally, the snowfall retrieved in each 0.25° x 0.25° grid-box is aggregated at different time scales (e.g., a month, a year).
The results can then be further aggregated over coarser spatial domains.
The simulated snowfall retrievals from the satellites are compared with the ERAS5 reference dataset to assess the reliability of
the WIVERN (Syy1v) and CloudSat (S¢s) data for estimating snowfall accumulation at different spatial and temporal scales.
For each investigated spatial and temporal resolution, time series data is accumulated for a total of 20 years. From the

three time series of Spras, Swrv and Scs, the bias (AByy rv/cs) the root mean square error (RMSEyw 1y, cs) and their
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Figure 1. Example of a geolocated WIVERN and CloudSat snowfall rate retrieval obtained at a given hour. Panel (a) shows the geolocated

ERAS accumulated snowfall rate at January 2, 2020 at 18:00 UTC, with the satellites’ groundtrack of WIVERN and CloudSat groundtrack

outlined with the solid and dashed red lines, respectively. Panels (b) and (c) depict what would be the corresponding snowfall rate retrieval

of WIVERN and CloudSat, respectively. Uncertainty due to application of the Z. — S relationship has been included.

normalised counterparts (N AByy rv/cs, NRMSEw v, cs) are estimated with
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The differences between the simulated fields and the ERAS reference is mainly driven by three factors: the radar sensitivity

140 leading to the omission of low-reflectivity events, the uncertainties in the Z. — S relationship and the instrument sampling (i.e.,

the fact that at any location S is sampled intermittently according to the revisit time). The latter contribution can be further

decomposed into the contribution associated with the diurnal cycle of the orbit (i.e. the fact that at any given location the

satellite passes only at certain times of the day) and to the sparseness of the measurements on different days.

To study the impact of potential blind zone effects, which are neglected in the following when using ERAS surface snowfall

145 we also use height resolved ERAS5 snow water content in section 4.
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Figure 2. Number of annual samples collected by WIVERN (b) and CloudSat (c) per 0.25° x 0.25° grid box. Note different color scales for

the two panels. Zonal overpasses averaged over 0.25° wide latitude bands are shown in panel (a).

The number of annual samples collected by WIVERN and CloudSat shown in Fig. 2 clearly demonstrates the advantage of
the WIVERN sampling with an average of 6.696x 10 total number of samples per year compared to 1.45x 107 for CloudSat.
While WIVERN produces global coverage with a resolution of 0.25° resolution for absolute latitudes below 86°, CloudSat has
gaps (white spots in the right panel of Fig. 2) due to its periodic orbit and its viewing geometry. The WIVERN reduction of
the blind region near the Poles up to 86° latitudes means a coverage of 95% of the Antarctic continent, which is a significant
improvement in comparison to CloudSat’s coverage of only 75% of the continent. And, different to CloudSat, WIVERN can
cover Greenland and the Southern Ocean completely.

We set the estimated CloudSat and WIVERN errors in perspective to the mean snowfall rate. Fig. 3 shows the mean annual
accumulated snowfall according to the ERAS dataset in panel (a) and the normalized inter-annual variability of such snowfall
in panel (b). The figure also depicts the NRMSE of the WIVERN (panel (c)) and CloudSat (panel (d)) annual accumulations.
For WIVERN, the NRMSE is lower than 0.5 for most regions, with higher values in regions where the snowfall is rare so that
the number of samples is low (i.e. in lower latitudes). The NRMSE tends to decrease when moving toward the poles due to
the improved sampling (Fig. 2) and less intermittent snowfall observations. For CloudSat, the NRMSE is almost everywhere
above 0.5, rising to much higher values in regions where the snowfall is very rare, due to the strong intermittency of the
phenomenon and the poor sampling. The NRMSE constantly decreases as the satellite approaches the polar regions due to

the higher number of samples collected by the satellite and the high sensitivity of the CloudSat CPR. Furthermore, the nadir-
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Figure 3. Panel (a) shows the mean annual accumulated snowfall according to ERAS from 2001 to 2020. Panel (b) shows the normalized
standard deviation, hence the inter-annual variability of the snowfall. The corresponding normalized root mean squared error on the 1-year

accumulated snowfall sampled by WIVERN and CloudSat is also shown in panels (c) and (d), respectively.

looking viewing geometry of CloudSat CPR together with the repetition of the satellite’s ground-track, generates gaps in the

sampling of increased size as they get closer to the equator (see panel (d) in Fig. 3 or panel (c) in Fig. 2).
3.1 Errors on snowfall accumulation at different spatial and temporal scales

In order to answer the question of how the error varies when the temporal scale of accumulation is changed, the analysis has
been conducted examining the estimated annual, monthly-and-10-day-seasonal and monthly accumulated snowfall. Similarly,

for spatial scales, global snowfall has been aggregated into grids with latxlon box sizes of 0.25°x0.25°, 0.5°x0.5°, 1°x1°,
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Figure 4. NRMSE for WIVERN (blue lines) and CloudSat (red lines) as a function of different snowfall accumulation classes and for
different lat x lon grid box sizes and the zonal mean. The classes indicates the accumulated snowfall in the specified period and averaged
in the specified spatial resolution domain. The NRMSE considering only the sampling contribution (dashed lines) and all sources of error
(solid lines) are shown with different line styles. The +6-day,-monthly, seasonal and annual time scales are shown in the top, middle and
bottom row, respectively. The snowfall classes are defined as snowfall intervals; e.g., for the annual timescale, the first bin corresponds to
the-intervat-of-snowfall accumulations between 36 and 108 mm and the last bin between-to values > 3772 mmand-infinity. Results for the
1+0-day-and-monthly eases-(seasonal) case are shown when considering data of January (DJF) in the Northern Hemisphere, and July (JJA) in

the Southern Hemisphere.
In order to provide useful benchmarks, WIVERN (or CloudSat) NRMSE must be lower than the normalized climatological variability of
ERAS snowfall (defined as the temperal-normalized standard deviation), which is indicated by the green shaded area. The solid black line

indicates the number of occurrences in the ERAS analyzed dataset for the specific class (with the y—axis scale drawn on the right side).

5.0°x5.0° and 10.0°x10.0°. Zonal averages with a latitude resolution of 0.5° have been studied to observe the zonal mean

behavior of the error as well.
Fig—4-depiets-the-Across the entire 20-year dataset, and for each temporal and spatial scale, grid points are grouped into

classes based on the snowfall accumulation at the given time-scale, averaged within a given spatial scale size pixel. For each
class, the ERAS mean snowfall, its standard deviation, and the normalized root mean square error (NRMSE) of WIVERN and

CloudSat snowfall (relative to ERAS) are computed. Additionally, the climatological variability—defined as the class standard

deviation normalized by the class mean—is also used to benchmark results.
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Figure 4 illustrates the NRMSE of WIVERN (blue lines) and CloudSat (red lines) NRMSE-as a function of snowfall

accumulation for different temporal and spatial scalesbinned-by-snowfa e—As-highlighted-inFig:4;-the-error-and-henee

er—. The NRMSE is presented both with and without
applying a sensitivity threshold and Z-S uncertainties. Trends indicate that uncertainty decreases as snowfall accumulation
increases. This is because regions with low snowfall accumulations typically experience infrequent snowfall events, which are

more likely to be missed, especially by CloudSat due to its coarser sampling resolution.
Averaging over larger spatial domains (i-e-teft-vsleft vs. right figure columns) and longer temporal scales (i-e-tppervsupper

vs. lower figure rows) —The-errorfuncertainty-improvementis-more-pronouneced-in-CloudSat-than-in-WIVERN;-as-the Jatter-ha

the-poor sampling-of CloudSat—reduces the NRMSE. Furthermore, Z-S uncertainties diminish when averaging over broader
spatial domains, leading to a rapid convergence of the total NRMSE toward the NRMSE value expected only from sampling
errors.

These trends behave according to the central limit theorem: the probability density function (PDF) being sampled by the
two instruments is the ERAS hourly snowfall product, for each pixel. Each sampling process results in RMSE convergence
WIVERN and n, for CloudSat, with 1) > 122). As the temporal and spatial scales increase, n grows, and the RMSE converges.
WIVERN experiences faster convergence than CloudSat due to its larger number of collected samples.

At the annual, seasonal and monthly scales, the CloudSat NRMSE for zonal snow is lower than the climatological variability
(with exceptions at very low snowfall rates). However, when looking at CloudSat 5° x5°, the error exceeds the variability and
is comparable to the WIVERN error at a much finer scale (0.25°x0.25°).

If the climatological variability is used as a threshold for acceptable measurement uncertainty, then CloudSat annual accu-
mulations can only be used at the annual zonal domains. Vice versa, WIVERN produces errors lower than the natural variability

at domains of at least 0.5°x0.5°. WIVERN 0.25°x0.25° can still be useful but only for annual, seasonal and monthly accu-

mulations larger than 864 mm, 270 mm and 108 mm, respectively.

As highlighted by Roberts et al. (2018), it is important to have precipitation datasets with spatial resolution better than
100 km poleward of 50°; the WIVERN mission could significantly contribute to such goal by providing snowfall rates at

spatial scales better than 0.5°.

10
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3.1.1 Impact of sampling error

The sampling error associated with the intermittent sampling of the snowfall (Fig. 4) is typically the dominant source of error; it
decreases if the number of samples increases e.g., when coarsening the spatial and/or the temporal scale and/or if the snowfall
becomes less intermittent (e.g., typically for higher accumulations). As the WIVERN sampling is much better than that of
CloudSat, its sampling error is always lower than that of CloudSat (by at least a factor of two).

WIVERN and CloudSat orbits are both sun-synchronous, with a mean local time of the ascending node (MLTAN) of 06:00
AM and 01:45 PM, respectively. This means that for any given point on the Earth’s surface, the spacecraft will always pass over
that point at the same local time. The local time of the observation is the same as the local time of the satellite overpass. This
is also true for WIVERN; however, the large swath width means that the same point can be observed at different local times,
especially at high latitudes (e.g., at 80°S latitude there are on average 6.4 samples per day, see Fig. 2). Sampling a given site at
only a few specific times of the day introduces an error in the snowfall accumulation due to the snowfall diurnal cycle (Watters
et al., 2021; Milani and Wood, 2021), which is considered to be part of the sampling error. Since for WIVERN measurements
at latitudes above 60° N and 60°S, the maximum revisit time (worst case scenario) is always less than 1 day (Battaglia et al.,
2022), WIVERN sampling errors are only induced by the diurnal cycle effect. However, this is not the case for CloudSat CPR
sampling which is characterized by an orbit repetition time of 16 days.

WIVERN’s sampling errors are always smaller than the climatological variability at any spatial and temporal scales. Con-
versely, averaging over domains larger than 5°x5° is required at all timescales to reduce CloudSat sampling errors below
the threshold dictated by the natural variability, with the sampling errors on the zonal snowfall being comparable with the

WIVERN sampling errors for domains 0.25°x0.25° in size.
3.1.2 TImpact of the radar sensitivity

The effect of the sensitivity emerges at locations where the snowfall rates generate reflectivities below the sensitivity of
the radar. When adopting the Z, — S relationship of Eq. (1) the minimum detectable snowfall rate is 7.9 x 1072 and 1.6 x
1073 mms_! for WIVERN and CloudSat, respectively. Due to WIVERN’s worse sensitivity, this effect is more pronounced
than for CloudSat, and is only really significant only for specific regions where snow rates below the detection threshold con-
tribute significantly to the total accumulation. In particular, the error of the WIVERN accumulated snowfall in the region of the
Antarctic desert comprised between 0° and 150° E is strongly affected by this source of error, as it can be seen in Fig. 3 and
Fig. 5. Other regions such as central Greenland and western China are affected as well. However, globally, or when looking at
the snowfall zonal behavior depicted in Fig. 6, or at points clustered based on similar snowfall values as outlined in Fig. 4, this

effect appears to be negligible.
3.1.3 Impact of uncertainties in Z. — S relationship
Snowfall retrievals, especially those based on a single frequency, are limited by various uncertainties such as the characteriza-

tion of the snowflake size distribution and the medeting-modelling of the backscattering properties of the ice crystals (Hiley

11
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Figure 5. Normalized absolute bias between Sw v computed with sensitivity = -21 dBZ, and Sw v computed without the error induced by

the sensitivity, normalized by the latter.

et al., 2011; Kneifel et al., 2020; Tridon et al., 2019). At large snowfall rates, non-Rayleigh effects at the 94 GHz band cause
further problems in the estimation of the snowfall rate. Uncertainties associated with the retrieval of .S from Z. are considered
in this study as described in section 2, but it is important to note that the estimate of the Z, — .S is assumed to be unbiased.
Fig. 4 shows the contributions of the sampling error, the Z, — S uncertainty and the sensitivity to the total error. As the latter
contribution is negligible, the difference between the sampling error and the total error highlights the importance of the Z, — .S
uncertainties in the snowfall retrieval. For both WIVERN and CloudSat, the total NRMSE almost doubles compared to when
considering only the effect of sampling at finer spatial scales, such as for the grid box size of 0.25° x 0.25°. Instead, when
averaging the snowfall on larger areas, e.g., increasing the size of the grid boxes, the impact of the Z, — S is strongly mitigated,
as expected from the assumption of the Z, — S estimate being unbiased. For WIVERN, thanks to the high number of collected

samples, the contribution of the Z, — S uncertainty becomes negligible starting from 1.0°x1.0° spatial scale (not shown).
3.2 Errors on zonal snowfall: from annual to 10-day-monthly scales

For global precipitation studies, zonal precipitation estimates are of particular interest for the observation of the Earth’s climate,
the detection of climate change and to evaluate and constrain historical and future climate simulations (Hagemann et al., 2006;
Hegerl et al., 2015; Egli et al., 2022).

The zonal mean snowfall, where the latitude resolution is 0.5°, is shown in Fig. 6. WIVERN and CloudSat can capture

the zonal climatological mean of the reference at the monthly, seasonal and annual timescalestnot-shews), with the second

12
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Figure 6. The figure shows the zonal mean snowfall at the monthly (January +in panel {&)-a, and July +-in panel b), seasonal (bDJF in panel c,
and JJA in panel d) y-and annual (in panel tee) )-timescales. The ERAS5, WIVERN and CloudSat mean value is-are depicted with a solid black

< , blue markers and they-are-indistinguishablefrom-the ERAS-meanred markers,
respectively. The inter-annual variability of the zonal mean (i.e. ERAS standard deviation) is shown by the black dashed line. The shaded

areas outline the RMSE of WIVERN and CloudSat.

line-

being a bit more noisy than the first. CloudSat RMSE is within the standard deviation of ERAS only for annual means. At
the monthly sealeand seasonal scales, CloudSat exceeds the standard deviation of ERAS5 in the Northern Hemisphere during
the warm season between 60° N-65° N and 25° N-40° N, and during the cold season between 25° N-60° N and 25°5-60°5.
For-the-inter-annual-variability-at-annual-timeseate;CloudSat exceeds the natural-inter-annual climatological variability only
at latitudes between 25° N-45° N and 25°5-45°S. Instead, WIVERN RMSE remains within the climatological variability not

3.3 Regional estimation of accumulated snowfall

Fhe-estimation—of-the_Estimation of snowfall in polar regions is of primary importance for quantifying the ice sheet mass
balance and monitoring potential ice loss. Typically, estimates at annual and greater scales are useful to understand the ice

the impact
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Figure 7. Division of Greenland and Antarctica into sub-regions based on the basins, according to Zwally et al. (2012).

of ice sheet melting on the sea level rise and the inter-annual variability of the ice sheet mass balance. On the other hand

estimates at daily to seasonal time scales are useful to understand the seasonal variability, the egrounding line migrations and
short-term oceanic or atmospheric forcing. Therefore, an analysis to quantify the regional effects of CloudSat and WIVERN

sampling has been carried out in regions of Antarctica and Greenland defined by their drainage systems in Zwally et al. (2012).
In Zwally et al. (2012), each basin is assigned an ID number and the subdivision is shown in Fig. 7. Antarctic regions of

particular interests are the following:

— the Amundsen Sea sector, which consists of basins ranging from 20 to 22: it is characterized by the strongest ice mass

loss on the continent, as described in Yang et al. (2023).
— the Antarctic Peninsula, which consists of basins ranging from 24 to 27, has experienced a rapid warming in recent years.

Such regions are also characterized by a large snowfall accumulations.
For Greenland, when considering the loss of ice sheet mass, the conditions are less variable over the area (Mouginot et al.,
2019) and the regions of interests correspond to the basins 3.3, 4.1, 4.2, 4.3 and 5.0, which are the ones affected by the highest
snowfall precipitation (see Fig. 3).

In order to provide useful measurements for estimating the total snowfall accumulation in a certain region, the RMSE
must be significantly lower than the climatological variability of the region. As shown in Fig. 8, when trying to estimate the
total snowfall in the regions of Antarctica, both-WHVERN-and-CloudSat-measurements-WIVERN can provide very useful

benchmarks at all time scales, as their RMSE is low compared to the climatological variability of the regions, with seme

ions the WIVERN’s RMSE being systematically lower than the RMSE of CloudSat. Also CloudSat’s
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Figure 8. For each of the Antarctic regions (x-axis), the ERAS mean snowfall accumulation (black line) and the climatological variability
(grey shaded area) is shown. The mean accumulated snowfall £ RMSE sampled by WIVERN and CloudSat is shown with blue and red error

bars, respectively. The result is shown for the +0-day,-monthly and-annuat-time-sealesin-panels(a)-panels a and tbb), seasonal (e)-panels ¢
and {dd) --and annual (epanel e) respeetivelytime scales. Results at the first two timescales are shown for Januaryand-, July, DJF and JJA to

highlight the different behavior between the two seasons.

RMSE falls above the variability in regions 1, 2, 17 and 26 at al-timeseales; S-and-25-at-the-10-day-seale;-seasonal and annual
timescales, and 1, 2, 17, 26 and 27 at +0-day-and-monthly-seales)-monthly scales. Their estimates are thus both enough precisc.
and accurate to provide useful insights for short and long-term frequency effects on the ice sheets, with some exceptions for

When-examining-In the regions of Greenland, as shown in Fig.-9;--while- WIVERN-generally-provides-useful-measurements
forestimating-total-snowfall;—9, CloudSat’s peer-sampling results in a very large RMSE, strongly exceeding ERAS variability
in alot-ofeasessome regions: 3,3, 4.1, 4.2, 4.3, 5.0 and 6.1 at-att-the-time-seales—-on all time scales and 3.2at-the 10-day-and

Overall, WIVERN produces a significantly lower RMSE than CloudSat (lower by at least a factor of 2), indicating that

WIVERN ean-provide-more-reliable-might provide more robust estimates of regional snowfall variability.
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Figure 9. For each of the Greenland regions (x-axis), the ERAS mean snowfall accumulation (black line) and the climatological variability

(grey shaded area) is shown. The mean accumulated snowfall £ RMSE sampled by WIVERN and CloudSat is shown with blue and red error

bars, respectively. The result is shown for the +6-day;-monthly and-annual-time-seates-in-panels-(a)-panels a and (bb), seasonal (e)}-panels ¢
and (dd) --and annual (epanel e) respeetivelytime scales. Results at the first two timescales are shown for Januaryané-, July, DJF and JJA to

highlight the different behavior between the two seasons.

Biases in the mean snowfall are introduced by the sampling, indicating an overestimation or underestimation of the snowfall,
and are larger in Greenland than in Antarctica. Overall, WIVERN produces smaller biases than CloudSat, with some exceptions
(e.g., region G:4.3 at the annual scale) related to the sensitivity. The number of samples collected by both satellites is higher in
Antarctica than in Greenland (see Fig. 2), causing the RMSE and the bias to be larger in the latter.

WIVERN ean-also-better capture the local variability within each regionmuch-better-than-, e.g., the snowfall hotspots in
the Antarctica Peninsula and along the southern east coast of Greenland are captured by WIVERN at the monthly to seasonal
timescale, but not by CloudSat, as demenstrated-by-shown in Fig. 10 and Fig. 11 for the Antarctic Peninsula and Greenland,

respectively.

4 Influence of the ground clutter on the detection of the surface snowfall precipitation
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Figure 10. The top row shows the mean monthly and annual snowfall on the Antarctic Peninsula according to ERAS on a lat-lon grid with

box sizes of 0.25° x0.25°. The middle and bottom rows show the corresponding NRMSE of WIVERN and CloudSat, respectively.

305 For space-borne radar observations, precipitation at the surface may be biased by ground clutter, with some very shallow events

completely missed. Given the strong reduction of the normalised surface backscatter cross-section over the ocean at oblique
angles of incidence (Battaglia et al., 2017; Wolde et al., 2019), WIVERN is expected to reduce the blind layer over ocean
surfaces compared to nadir-looking radars (Meneghini and Kozu, 1990; Coppola et al., 2025). For sea ice and land surfaces, the
importance of the clutter increases. The ERAS vertical resolved snow water content profiles (Hersbach et al., 2023b, last seen:
310 12 April 2025) can be used in synergy with the CloudSat and WIVERN ground clutter height retrieved in Coppola et al. (2025)
to determine the impact of the clutter on snowfall estimates. The ground clutter height, defined as the height of the SCR (signal
Therefore, this analysis is conducted for three different types of surface where snowfall is likely to occur: i.e. ice-free ocean,
sea ice, and land assuming the attenuation caused by snowfall precipitation is negligible. WIVERN ground clutter height is
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Figure 11. The top row shows the mean monthly and annual snowfall on Greenland and Iceland according to ERAS on a lat-lon grid with
box sizes of 0.25° x0.25°. The middle and bottom rows show the corresponding NRMSE of WIVERN and CloudSat, respectively. Note that,
in July, the snowfall on the points above the ocean is very low and is characterized by very weak or very rare snowfall events, which cause
the NRMSE being ~1 for WIVERN and CloudSat.

lower over ice-free ocean and higher over land and sea ice than the clutter height of CloudSat (Coppola et al., 2025). Over land
and sea-ice og at WIVERN incidence angle is assumed to be 5 dB lower than the one measured at nadir like for CloudSat.
The following procedure is implemented for each of the types of surface of interest:

1. Radar reflectivity profiles are computed from the snow water content (SWC) profiles given by ERAS using the Z-IWC
relationship for the 94 GHz in Liu and Illingworth (2000).

2. The ERA 5 sea ice edge product (Aaboe et al., 2023, last seen: 12 April 2025) has been used to determine if a given
rofile is located over land, sea ice or ice free ocean.
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3. For each snow Z-profile, the ground clutter height (of WIVERN and CloudSat) is retrieved based on the reflectivity at

the surface, Z h’ydm as the median value of the histogram of the ground clutter height for that given Z }fydT'O shown in
Coppola et al. (2025).

4. 7 at the eround clutter height, Z"¥%° s then retrieved, and statistics on the 7Y% — zMdro = histogram is
computed,
P hydro hydro . . ISCICT] hydro hydro .
Mean and standard deviation of Z —7Z are shown in Fig. 12. The variability of Z . — 7 o 1S

very small for both WIVERN and CloudSat, with WIVERN showing slightly better standard deviation results than CloudSat
over ice-free oceans, while the opposite occurs over land and sea ice. CloudSat exhibits slightly lower biases compared
to WIVERN, including ice-free ocean regions, despite WIVERN's ability to observe closer to the surface. This could be
attributed to compensating effects of sublimation and shallow precipitation which cancel out at 1200 m better than at at 600 m
(see also Maahn et al., 2014).

This analysis has some limitations: the resolution of the ERAS data is 0.25° in latitude and longitude and may be too coarse
to capture the vertical variability of the snow profiles. Also, the vertical resolution near the surface is only of ~~190 m. Together
with known problems of ERAS to represent the atmospheric boundary layer (Sinclair et al., 2022), this could limit the validity.
of this analysis. To our knowledge, however, there is no alternative data product available that can characterize the vertical
profile of cloud properties reliably all the way to the surface..

5 Summary and conclusions

Spaceborne cloud radars are essential tools for observing snowfall globally (Stephens et al., 2018; Battaglia et al., 2020).
Fhe-Snowfall measurements are relevant for providing estimates of the snowfall accumulation, and thus for a wide range of
applications: from regional water cycle budgets to quantification of the mass balance changes of the ice sheet, the ice shelves

and the glaciers. The-However, the reliability of such products is-can be severely compromised by the intermittent and sparse

sampling of snowfall carried out by the radar, with the number of samples collected in a given region in a given a time frame
depending on the satellite orbit and on the radar scan geometry. For example, the WIVERN conically scanning radar (currently
in Phase A of ESA’s Earth Explorer programme) collects an order of magnitude more samples than a CloudSat or EarthCARE-
like fixed near-nadir radar, which also has gaps in coverage due to the narrow swath.

In this paper, the ERAS hourly snowfall dataset has been used as a reference to simulate 20 years of snowfall accumulation
as would have been sampled by a 94 GHz radar with WIVERN and CloudSat sampling geometry. Such accumulations are
compared with the reference to assess the spatial and temporal scales at which these sensors become useful tools for estimating
seasonal and/or regional accumulated snowfall. The error introduced by the two radars can be decomposed into the sampling
error directly related to the intermittent sampling of the phenomenon, the error due to the uncertainty in the Z, — .S relationship
(assumed to be unbiased) and the error introduced by the minimum detectability threshold of the radar. Each contribution to
the error has also been analyzed separately. To provide useful measurements, the error should be lower than the climatological

variability, which is set to be the threshold of acceptable errors. The results show that:
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ice-free ocean; right:sea ice).

es (left:land; centre:

1. For WIVERN and CloudSat, the sampling error is the main cause of uncertainty. It decreases as the temporal and spatial

scale increase, with the error of WIVERN always beaing-being at least twice as small as the error of CloudSat —(Fig. 4).
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360 3. The radar sensitivity error is higher for WIVERN than for CloudSat (—21 vs. —28 dBZ) but the error is generally
negligible, except for WIVERN in the regions where the snowfall rates are very low and eonstantin-time-for-WHVERN
{e-g=very frequent in time (e.g., in the centre of Antarctica, Fig. 5). As it is only relevant in correspondence of marginal

snowy areas, its effect is globally insignificant -

for snowfall accumulation.

365 4. Overall-WIVERN produces-aceeptable-errors-whieh The error due to the Z, — 5 uncertainty is strongly mitigated when
averaging spatially and temporally, as expected from the assumption of it being unbiased. For WIVERN, the large
number of samples collected makes the error negligible starting from the 1.0°x1.0° spatial scale with excellent results
already at the monthly scale.

Overall, total errors produced by WIVERN are below the ERAS5 climatological variability at all-analyzed-timeseales-at
370 the 0.5°x0.5° spatial scales already at the monthly scale. Conversely, CloudSat needs to be averaged at annual zonal

scales to produce reliable estimates —

5. In the context of

375 6. In-the-context-of-assessing total accumulation in various regions of Antarctica and Greenland (Fig. 8 and 9), WIVERN
can provide estimates-that-fall-within-the-climatologieal-vartability-of-the region-at-all-the-analyzed-timeseales—reliable
estimates already at the monthly scale. Instead, CloudSat offers less precise estimates, with RMSE exceeding the variabil-
ity in some of the regions. Furthermore, when examining the local variability within these regions—, CloudSat estimates
are highly imprecise —1In

380 Fig. 10 and Fig. 11).

7. Based on ERAS reanalysis profiles, surface blind zone generates small bias in the reflectivity lower than 2 dB for Z>-20
dBZ (i.e. for snowfall that are important for mass accumulation) (Fig. 12). CloudSat has slightly lower biases than

WIVERN over land, sea ice and ice-free ocean surfaces. Standard deviation is also lower except over ocean.

In conclusion, CloudSat is suitable for estimating snowfall accumulation over large areas and longer time scales (e.g., annual
385 zonal), but its poor sampling capabilities limit the possibility to derive annual or monthly precipitation over domain smaller than
zonal scales. The recently launched EarthCARE radar will face very similar sampling issues. On the other hand, a conically

scanning wide swath radar, such as the one proposed by the WIVERN team, could represent a unique observing system due to
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its improved sampling capabilities, contributing to the snowfall accumulation estimates over domains smaller than 0.5°x0.5°

already at the +0-day-monthly timescale.

Finally, the WIVERN radar will have a low NEBT-(Noise Equivalent Delta Temperature )-radiometer mode and will pro-
vide (noisy) estimates of polarimetric variables such as differential reflectivity and differential phase shifts (Battaglia et al.,

2025). This could further improve the estimation of snowfall rates

investigated, e identifying the presence of rimed snow and supercooled droplets (Maherndl et al., 2025).
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