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Abstract. Upwelling regions are dynamic systems where relatively cold, nutrient- and CO2-rich waters reach to 

the surface from the deep. CO2 sink or source properties of these regions are dependent not only on the dissolved 

inorganic carbon content of the upwelled waters, but also on the efficiency of the biological carbon pump which 

constrains the drawdown of atmospheric CO2 in the surface waters. The Benguela Upwelling System (BUS) is a 

major upwelling region with one of the most productive marine ecosystems today. However, contrasting signals 20 

reported on the variation in upwelling intensities based on, for instance, foraminiferal and radiolarian indices over 

the last glacial cycle indicate that a complete understanding of (local) changes is currently lacking. To reconstruct 

changes in the CO2 history of the Northern Benguela upwelling region over the last 27 kyrs, we used a box core 

(64PE450-BC6) and piston core (64PE450-PC8) from the Walvis Ridge. Here, we apply various temperature and 

pCO2-proxies, representing both surface (U
Ḱ 

37, δ13C of alkenones) and subsurface (Mg/Ca, δ11B in planktonic 25 

foraminiferal shells) processes. Reconstructed pCO2 records suggest enhanced storage of carbon at depth during 

the Last Glacial Maximum. The offset between δ13C of planktonic (high δ13C) and benthic foraminifera (low δ13C) 

suggests an evidence of a more efficient biological carbon pump, potentially fuelled by remote and local iron 

supply through aeolian transport and dissolution in the shelf regions, effectively preventing release of the stored 

glacial CO2. 30 

1 Introduction 

Upwelling systems are crucial components in the global carbon cycle thanks to intense biogeochemical cycling 

and enhanced biological productivity (Turi et al., 2014). Upwelling zones return the cold, nutrient- and CO2-rich 

waters from depth to the surface which is also reflected in regional changes in surface water inorganic carbon 

chemistry. The connection between the deep and surface ocean thereby provides a potential mechanism linking 35 

changes in ocean circulation and chemistry with the atmosphere. Still, the shoaling of the thermocline and 

nutricline in these regions also favours phytoplankton growth to such a degree that these areas represent majority 

of the most productive regions of the ocean (Fig. 1 a). Thus, the leakage of CO2 from the depths to the atmosphere 

is negated by biological sequestration, simultaneously rendering its quantification a challenging undertaking. The 

surface waters of the upwelling system undergo an increase in the partial pressure of CO2 (pCO2) and decrease in 40 

pH due to upwelling of deep CO2-rich water. In turn, the enhanced primary productivity due to increased nutrients 

result in drawdown of pCO2 by converting CO2 into organic carbon, after which it may be returned to the deep 

ocean via the biological carbon pump (BCP; Volk and Hoffert, 1985; Longhurst and Glen Harrison, 1989; 

Ducklow et al., 2001; Turi et al., 2014; Hales et al., 2005; Muller-Karger et al., 2005). Ultimately, the net CO2 

flux from the ocean to the atmosphere is a function of the balance between upwelling strength (increase in CO2) 45 

and efficiency of the BCP (drawdown of CO2). On geological time scales this efficiency may have varied, 

potentially modulating local air-sea CO2 balance (Kohfeld et al., 2005; Kwon et al., 2009; Parekh et al., 2006; 

Hain et al., 2014).  

 

The efficiency of the BCP determines how much of newly produced particulate organic carbon at the surface is 50 

transported to the deep (Volk and Hoffert, 1985; Hain et al., 2014). During primary production, nutrients are 

consumed (e.g., nitrate, phosphate; Redfield, 1958) from the surface ocean and dissolved inorganic carbon (DIC) 

is taken up in organic matter, which is also reflected by the enrichment in 13C of the surface DIC (Degens et al., 
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1968). This implies that we can use seawater carbon isotopes as proxy for the efficiency of the BCP. Seawater 

carbon isotopes can be reconstructed using the carbon isotopic composition (δ13C) in shells of carbonate 55 

producers, such as foraminifera. During high productivity periods, the enhanced carbon uptake at the sea surface 

will enrich the shells of planktonic foraminifera in 13C. At the same time, the 13C-depleted carbon transported to 

the deep as organic matter will decrease the 13C content of the deep water DIC pool, resulting in low δ13C values 

in the benthic foraminifera shells (Fig. 1 b). Therefore, the stable carbon isotopic composition of these inorganic 

archives are imprinted by complex processes related to both surface to deep gradients and ocean circulations. 60 

Water masses of different origins carry distinct δ13C compositions resulting in integrated signatures of air-sea 

exchange and production/remineralization related to different water masses within the foraminiferal shells. The 

difference between planktonic and benthic δ13C, however also records a measure for the efficiency of the BCP, 

where more divergent values between the surface and the deep indicate a more efficient BCP (Hilting et al., 2008). 

 65 

This study focuses on the Benguela Upwelling System (BUS) as it is one of the major upwelling regions, where 

strength of the upwelling and productivity changed over glacial/interglacial timescales. Whether upwelling 

intensity was stronger during glacial periods (Oberhänsli, 1991; Little et al., 1997; Kirst et al., 1999; Mollenhauer 

et al., 2003) or interglacial periods (Diester-Haass et al., 1992; Des Combes and Abelmann, 2007) is, however, 

still debated. Inconsistencies in the published body of work is possibly caused by seasonal differences between 70 

proxy signal carriers and/or major spatial (depth) related gradients, which is especially true for regions with strong 

CO2 flux dynamics (Fig. 1 c). Exchange of CO2 between seawater and atmosphere at these regions may be 

constrained only by applying multiple proxies that comprise various living depths and seasonal preferences. 

Therefore here, we compare organic and inorganic proxies for temperature (U
Ḱ 

37, Mg/Ca) and the carbon system 

(alkenone-δ13C, foraminiferal-δ11B) with reconstructed efficiency of the BCP in the Benguela upwelling area to 75 

unravel the potential role of such areas in known changes in atmospheric pCO2 on glacial-interglacial time scales. 

At the same time this allows comparing proxies and investigate (in)consistencies between different carbon system- 

and temperature proxies. 

 

 80 

Figure 1: Cross sections of the Benguela Upwelling System depicting the characteristics of an upwelling 

region, where a) nutrient- and CO2-rich waters are upwelled to the surface, b) high productivity contributes 

to the drawdown of CO2 in the surface layers via the biological carbon pump, and c) the upwelling strength 
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and efficiency of the biological carbon determines variations in the marine inorganic carbon chemistry, 

and hence CO2-flux.  85 

2 Oceanographic setting 

The BUS is one of the four major Eastern Boundary Upwelling Systems, it is located between 15° and 34° S along 

the coastline of Africa (Hill, 1998; Hart and Currie, 1960). This region bears the highest productivity today among 

the Eastern Boundary Upwelling Systems, fuelled by nutrients transported mainly from the higher latitudes. 

Advection of the cold and nutrient rich water is a persistent phenomenon throughout the year (Carr, 2001; Chavez 90 

and Messié, 2009) and the magnitude of the particulate organic carbon (POC) flux from the surface to the deep 

exceeds 20 gC m-2 yr-1 (Henson et al., 2011; Laws et al., 2000; Devries and Weber, 2017). 

 

The BUS is associated with the South Atlantic anticyclonic gyre which gives rise to upwelling on its southeastern 

flank where it meets the African continent (Peterson and Stramma, 1991). The low-pressure system over western 95 

South Africa causes a pressure gradient between the continent and the ocean and thereby strengthen the southerly 

wind stress off the coast of Angola and Namibia. The interplay between the equatorward trade winds, the Coriolis 

force, and the presence of the continental boundary lead to the offshore transport of surface waters. As such, this 

causes coastal upwelling of nutrient-rich South Atlantic Central Water (formed in the western South Atlantic; 

Stramma and England, 1999) and Antarctic Intermediate Water (AAIW). The upwelled waters are transported 100 

equatorward along the coast of Africa via the Benguela Current (BC) giving rise to high biological productivity. 

Filaments of productive waters can be seen extending from the African continent (Fig. 2). Finally, the Walvis 

Ridge potentially plays a role in affecting local hydrography and hence the position of the upwelling (Peterson 

and Stramma, 1991).  

 105 

The BC with its two main branches, the Benguela Oceanic Current and the Benguela Coastal Current, is the major 

northward flowing component of the BUS which joins the poleward flowing Angola Current in the north 

(Stramma and England, 1999). This convergence zone is located between 15°S and 18°S and is known as the 

Angola-Benguela frontal zone. The upwelling zone is bounded by warm current systems, the Angola Current 

system in the north and the Agulhas Current system in the south (Shannon and Nelson, 1996; Shillington, 1998; 110 

Shannon and O’toole, 2003). Hence, the BC is composed of a mixture of waters originated not only from the mid-

latitude surface waters of the Central Southern Atlantic Ocean and the Southern Ocean but also from the Indian 

Ocean (Gordon, 1986; Lutjeharms and Valentine, 1987). This creates a north-to-south decrease in surface water 

temperature and salinity in the region (Santana-Casiano et al., 2009). Hydrographic changes in the region over 

glacial cycles have been related to changes in the transfer of Indian Ocean waters through Agulhas leakage 115 

variability (Knorr and Lohmann, 2003; Peeters et al., 2004; Scussolini and Peeters, 2013).  

 

The BUS region is characterized by year-round upwelling of varying intensity due to the seasonal shift of the 

South Atlantic gyre. This results in stronger upwelling intensities in June-August compared to the rest of the year 

(Santana-Casiano et al., 2009; Kämpf and Chapman, 2016). The spatial and temporal dynamics of the BUS result 120 

in large variability in the associated CO2 flux. Predominantly, the surface waters within the BUS act as a CO2 

source (Laruelle et al., 2014; Brady et al., 2019; Roobaert et al., 2019), but this may be interrupted by periods 
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during which it acts as a CO2 sink due to the high primary productivity (Gruber et al., 2009; Gregor and Monteiro, 

2013).  

 125 

 

Figure 2: Map showing the location of sediment core 64PE450-BC6-PC8 and the dominant currents 

shaping the characteristics of the Benguela Upwelling System. The map is overlain with the distribution of 

surface water chlorophyll-a concentration of July 2023 obtained from Global Ocean Biogeochemistry 

Analysis and Forecast (E.U. Copernicus Marine Service Information; https://doi.org/10.48670/moi-00015). 130 
High chlorophyll-a concentrations indicate the high productivity and nutrient-rich upwelled waters of this 

region today. 

3 Proxy interpretation 

Reconstruction of inorganic carbon chemistry can be used to constrain past changes in the CO2 flux between the 

ocean and atmosphere. Reconstruction of the complete inorganic carbon system is based on at least two parameters 135 

of this system (pCO2, [CO3
2-], [HCO3

-], pH, [DIC] and total alkalinity), as well as on the knowledge of temperature 

and salinity (Zeebe and Wolf-Gladrow, 2001). Commonly used tracers for constraining parameters of the marine 

inorganic carbon chemistry are based on both organic (e.g., δ13C of alkenones; Pagani et al., 2002; Pagani, 2014; 

Popp et al., 1998; Laws et al., 1995) and inorganic (e.g., δ11B of foraminifera shells; Hemming and Hanson, 1992; 

Palmer and Pearson, 2003; Foster and Rae, 2016) proxy signal carriers, although these proxies rarely agree 140 

completely for upwelling regions (Seki et al., 2010; Palmer et al., 2010) or in general (Rae et al., 2021).  

 

https://doi.org/10.48670/moi-00015
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Proxies for seawater carbon chemistry have specific inherent complications and their application require critical 

assumptions. For instance, previous studies have observed discrepancies between alkenone based pCO2 

reconstruction and ice core records (Palmer et al., 2010; Andersen et al., 1999; Zhang et al., 2013; Witkowski et 145 

al., 2020; Jasper et al., 1994), which could be related to disequilibrium between sea surface and the atmosphere, 

especially at dynamic sites like upwelling regions. However, it may also be explained by the process of CO2 

uptake in the algal cell, if passive diffusion is not the only way alkenone producers acquire CO2 in the cell, as 

suggested by the traditional framework of this proxy (Bidigare et al., 1997). Alkenone-producers do use a carbon 

concentrating mechanism (CCM; Stoll et al., 2019; Reinfelder, 2011; Bolton and Stoll, 2013; Badger, 2021), 150 

which enables carbon acquisition in the cell through the active pumping of HCO3
- to the chloroplast during low 

pCO2 conditions. Also, pCO2 reconstructions based on alkenone 13C values are subject to uncertainties related 

to the so-called b factor that expresses the effect of multiple parameters related to the physiology of the alkenone 

producers (Jasper et al., 1994; Rau et al., 1996; Popp et al., 1998). Application of the b factor for the reconstruction 

of pCO2 is much debated (e.g., Wilkes and Pearson, 2019) and an adaptation of CCM by the alkenone producers 155 

inevitably hampers the application of the proxy. However, there are examples of alkenone-based pCO2 

reconstructions reliably reproducing glacial-interglacial pCO2 variability (Palmer et al., 2010; Jasper and Hayes, 

1990; Bae et al., 2015), potentially related to specific local conditions. As the b value is best represented by a 

linear relationship to nutrient availability (Bidigare et al., 1997), we here rely on the analysis of barium over 

calcium ratio (Ba/Ca) in planktonic foraminiferal shells that correlates with seawater Ba concentration, and hence 160 

is used as a proxy for seawater [PO4
3-] (Lea and Boyle, 1989; Lea and Boyle, 1990b, a; Hönisch et al., 2011).  

4 Materials and methods 

Samples were taken from box core 64PE450-BC6 and piston core 64PE450-PC8 retrieved from the south flank 

of the Walvis Ridge, both taken at the same location (approximately -20.29 S, 10.35 E) at a water depth of ~1375 

mbss. The box core consisted of 40.59 cm of sediment, whereas the piston core collected 1453 cm (cut into 15 165 

sections, of which we dated the first 100 cm). The top of the piston core was missing and, hence, we used the BC 

to supplement the missing top of the PC and obtain a near continuous record, which we here refer to as 64PE450-

BC6-PC8. To align the box core and the piston core, lightness reflectance data (L*) was used here as an additional 

constraint to the radiocarbon dates (Supplementary Fig. S1). The detailed reflectance data (63 µm resolution) 

shows an overlap between the two cores. The top 4.24 cm of 64PE450-PC8 (later referred to as the disturbed core-170 

top) overlaps with approximately 30.14 cm of 64PE450-BC6 (i.e., from 10.45 to 40.59 cm bsf). This suggests 

severe compression of the top of 64PE450-PC8, likely due to the piston coring, but the overlap can still be used 

to align the age model of the two cores.  

 

The composite record was sampled with a resolution varying between 2 and 5 cm to optimize coverage of the 175 

glacial-interglacial transition. All samples were freeze-dried and subsequently split in sub-samples to obtain lipid 

biomarkers and foraminifera from the same core depth.  

4.1 Foraminiferal sample cleaning 
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Due to their relatively high abundance in upwelling regions as well as common use in paleoclimate reconstructions 

(e.g., Spero and Lea, 1996), we here selected specimens of Globigerina bulloides for the planktonic foraminifera-180 

based records. Freeze-dried samples were washed over a 63 µm sieve, dried and further dry sieved to separate 

size fractions 150-315 µm and 315-425 µm. Specimens of G. bulloides were picked from the latter size fraction 

for analysis of oxygen and carbon isotopes, minimizing any potential impacts of ontogeny. However, as much 

more specimens were needed, the smaller size fraction was used for radiocarbon, element / calcium (El/Ca), and 

boron isotope analysis. The foraminifer’s size has been shown to affect boron isotopes of several symbiont-bearing 185 

planktonic foraminifera species (e.g., T. sacculifer, G. ruber, O. universa; Hönisch and Hemming, 2004; Henehan 

et al., 2013; Henehan et al., 2016), and hence size fraction need to be minimized to avoid introducing uncertainties 

related to ontogenetic variability. G. bulloides is a symbiont-barren species, and therefore, boron isotopes are not 

affected by pH change in their microenvironments related to the symbionts’ physiological processes (i.e., 

respiration, photosynthesis). However, differences in shell size may correspond to different environmental 190 

conditions, and for instance, reflect changes in calcification depth and/or seasons (Jonkers et al., 2013; Osborne 

et al., 2016). Also, previous studies using G. bulloides to reconstruct pH relied on a narrow size fraction when the 

number of specimens allowed this (Raitzsch et al., 2018; Martinez-Boti et al., 2015). Alternatively, a combination 

of two or more parameters (e.g., temperature and productivity) may impact shell size, resulting in mixed isotopic 

signatures within size fractions (Metcalfe et al., 2015). Any size-dependent bias on boron isotopes of (symbiont-195 

barren) foraminifera still needs to be investigated, and hence we assume that the data presented here for G. 

bulloides reflect average conditions with respect to depth and seasonal variability. To construct a benthic 

foraminiferal carbon isotope record, specimens of Cibicidoides wuellerstorfi were picked from the 315-425 µm 

size fraction. 

 200 

Foraminiferal samples were cleaned prior to the analysis of El/Ca ratios and stable isotopes, following an adapted 

protocol of Barker et al. (2003). This adapted protocol is as follows: for the analysis of the shells’ element 

concentrations in solution and the boron isotopic composition, specimens were carefully cracked using a scalpel 

to open up the chambers and release potential clay content from the inside. The samples were subsequently 

transferred to acid cleaned 1.5 mL vials (Treff) and rinsed three times with deionized water (Milli-Q), twice with 205 

methanol, followed by another thorough rinse with deionized water, using ultra-sonication for each rinsing step. 

To remove all organic material from the shells, samples were placed in a hot block and oxidized with NH4OH-

buffered 1% H2O2 solution for 45 minutes at 90 °C. To ensure complete removal of organic material, this step 

was repeated up to three times based on visual inspection. After the oxidative cleaning, the samples were 

transferred to new pre-cleaned vials (Treff) and leached with diluted acid (1 mM HNO3) followed by rinsing the 210 

samples three times with deionized water. Because the boron isotope analysis is very sensitive to contamination 

two additional leaching steps with 1% NH4OH were added followed by rinsing with deionized water before the 

acid leaching. Samples for El/Ca and δ11B analysis were finally dissolved in 500 µL 0.1 M ultra grade HNO3 and 

in 75-80 µL 0.5 M ultra grade HNO3, respectively. 

 215 

Specimens taken for the analysis of El/Ca ratios with LA-Q-ICP-MS and for the measurement of δ18O and δ13C 

were cleaned following the same clay removal and oxidative cleaning step as described above but without cracking 

the shells before the cleaning steps.  
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4.2 Radiocarbon analysis 

Radiocarbon analysis (14C/12C) on 50-100 specimens of well-preserved shells of G. bulloides were performed at 220 

Laboratory of Ion Beam Physics, ETH Zürich. The analysis of 14C/12C followed the protocol described in Wacker 

et al. (2013; 2014). Briefly, samples were measured with a gas ion source in a Mini Carbon Dating System 

(MICADAS; Synal et al., 2007) with an automated method for acid digestion of carbonates (Wacker et al., 2013). 

Samples were placed in 4.5 mL exetainer vials (Labco Limited®, UK) and purged with a flow of 60 mL min-1 of 

helium for 10 minutes and subsequently leached with 100 µL 0.02 M ultrapure HCl with an automated syringe to 225 

remove adsorbed contaminants. Analysis of the released CO2 from both the leachate and remaining sample 

provided confirmation for the near complete removal of contaminants. The released CO2 from the leachate was 

directly transported by helium to a zeolite trap and injected into the ion source for 14C/12C analysis. The remaining 

leached sample was acidified with 100 µL ultrapure H3PO4 (85%) and heated at 60 °C for a minimum of 1 hour. 

The released CO2 was then injected in the ion source for analysis (Wacker et al., 2014; Fahrni et al., 2013). The 230 

difference between the radiocarbon values of the leachate and leached samples were less than 5%. Radiocarbon 

determinations are given in the conventional radiocarbon ages and corrected for isotopic fractionation via 13C/12C 

isotope ratios. Calibration was performed using the Marine20 calibration curve (Heaton et al., 2020) with a local 

correction to the marine reservoir age (ΔR) of 146 ± 85 14C years (Dewar et al., 2012). These calculations were 

computed using the Bayesian age-depth model in the Bacon v2.3 package for the R statistical programming 235 

software (Blaauw and Christen, 2011). 

4.3 Analysis of stable oxygen and carbon isotopes 

Pre-weighed 20-40 µg of the shells of G. bulloides were dissolved in orthophosphoric acid and analysed at 71 ℃ 

by a Kiel IV device coupled to a MAT 253 Isotope Ratio Mass Spectrometer (IRMS, Thermo Fischer Scientific®) 

at the NIOZ. Analyses were calibrated using standard bracketing (NBS-19) and the NIOZ house standard (NFHS-240 

1; Mezger et al., 2016) was used to monitor drift. Accuracy and precision for δ13C = 0.814 ± 0.04 ‰ and δ18O = 

1.024 ± 0.12 ‰ were calculated across several analytical runs of NFHS-1 (± 1σ SD, n = 64). 

4.4 Analysis of foraminiferal Element/Calcium ratios 

Prior to the analysis of the samples in solution, a few planktonic foraminifera specimens were screened for 

preservation to minimize the possibility of diagenetic overprint affecting the geochemical signature of the shells. 245 

For this, the ratios of 23Na/43Ca, 24Mg/43Ca, 25Mg/43Ca, 27Al/43Ca, 55Mn/43Ca 88Sr/43Ca were simultaneously 

monitored during the ablation of single chambers of G. bulloides by Laser Ablation Quadrupole Inductively 

Coupled Plasma Mass Spectrometer (LA-Q-ICP-MS). Laser ablation data was acquired on 60-µm diameter spots 

with a repetition rate of 4 Hz and a laser energy density of ~1 J cm-2. The JCp (Porites sp. coral) nano-pellet was 

used to monitor instrumental drift and JCt (Tridacna gigas giant clam; Okai et al., 2004), MACS-3 and the NIOZ 250 

Foraminifera House Standard-2-Nano-Pellet (NFHS-2-NP; Boer et al., 2022) provided further quality control on 

the measurement. NIST SRM610 was used as calibration standard. Data was evaluated both as profiles and shell 

averages. 
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Approximately 40-50 specimens of G. bulloides were dissolved for solution analyses using a Sector-Field 255 

Inductively Coupled Plasma Mass Spectrometer (SF-ICP-MS, Thermo Fischer Scientific® Element-2). Applied 

cleaning procedure is based on Barker et al. (2003) as discussed above. A pre-scan of calcium concentrations 

([Ca2+]) was performed on an aliquot of 30 µL of the dissolved samples and based on that data subsequently all 

samples were diluted to match [Ca2+] (100 ppm) for element analyses. Isotopes of 25Mg, 138Ba were measured in 

low resolution. All samples were measured against 4 ratio calibration standards (De Villiers et al., 2002) and 260 

alternated with 0.1 M HNO3 in between samples to increase the efficiency of wash-out. All samples are drift-

corrected using the NFHS-1 standard (Mezger et al., 2016) and three additional standards: NFHS-2 (Boer et al., 

2022), JCp, and JCt (Okai et al., 2004), to evaluate accuracy and precision of the analytical runs. Uncertainty from 

the internal precision on the basis of short term stability is < 2 % for both Mg, and Ba. Samples were analysed in 

replicates yielding an uncertainty of < 0.02 mmol mol-1 for Mg, and < 0.14 µmol mol-1 for Ba.  265 

4.5 Micro-distillation and boron isotope analysis 

Approximately 150 specimens of G. bulloides were cleaned for the analysis of boron isotopes. Boron was 

separated from the calcium carbonate matrix via the micro-distillation technique (Gaillardet et al., 2001; Wang et 

al., 2010; Misra et al., 2014). 70 µL of the sample was placed on the lid of a Teflon® fin-legged conical beaker (5 

mL) and placed upside down on a hotplate at 100 ℃ for 20-24 hours. The fin-legged vials were wrapped in 270 

aluminium foil to provide a heat gradient for a more efficient separation of boron. Once the micro-distillation was 

complete, the vials were carefully removed from the hotplate while turning them over and subsequently left for 

cooling. Sample residue was removed with putting new lids on the beakers and each sample was diluted with 0.2 

M HF + 0.2 M HNO3 for a pre-scan of the boron concentration ([B]). Based on the results of the pre-scan, a final 

dilution was made to set [B] at 5 ppb for the analysis of δ11B. 275 

 

Analysis of the micro-distilled samples was performed at the NIOZ on a Neptune Plus Multi-Collector Inductively 

Coupled Mass Spectrometer (MC-ICP-MS, Thermo Fisher Scientific®) equipped with high performance 

extraction cones (Jet sample cone and ‘X’ skimmer cone) to maximize sensitivity for boron. Samples were injected 

using a Savillex® 50 µL min-1 C-flow nebulizer and Teflon® Scott type spray chamber. Beams of 10B and 11B were 280 

measured on L3 and H3 Faraday cups equipped with amplifiers using 1013Ω resistors (Misra et al., 2014; Lloyd 

et al., 2018). The instrument was tuned to obtain a stable sensitivity, typically 15-25 mV ppb-1 B. 

 

Solutions of 0.2 M HF + 0.2 M HNO3 were used for rinsing throughout the analytical run between analyses, and 

as matrix for each sample and standard. The analysis followed the approach of sample-standard bracketing using 285 

NIST 951 as reference standard. All samples and quality control standards were analysed in duplicates and thus 

here average values with ± 2σ standard deviations are reported. Samples with a replicate precision higher than ± 

0.6 ‰ (2σ) were excluded from this study. A coral standard (Chanakya and Misra, 2022) was treated with the 

complete carbonate cleaning and micro-distillation procedure for each analytical sequence and repeatedly 

analysed to monitor long term precision (δ11B = 24.57 ± 0.65 ‰ 2σ, n = 64). Additionally, non-micro-distilled 290 

AE-121 standard was analysed within each run for quality control (δ11B = 19.48 ± 0.33 ‰ 2σ, n = 46).  
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In addition to the coral standard, the initial test analysis to validate the boron purification method and instrumental 

accuracy and precision also included repeated measurements of seawater (Southern Ocean, δ11B = 39.72 ± 0.25 

‰ 2σ, n = 5) and a boron standard (AE-121) mixed with CaCO3 (trace metal basis, Acros Organics®) to mimic 295 

foraminiferal calcium concentrations (δ11B = 19.53 ± 0.25 ‰ 2σ, n = 18).  

4.6 Estimating past salinity and foraminifera-based temperatures, pH, and pCO2 

Sea surface temperatures (SST) were calculated from foraminiferal Mg/Ca values using the species specific 

temperature calibration of Mashiotta et al. (1999),  

Mg/Ca = 0.47 (±0.03)0.107(±0.003)*SST,         (1) 300 

where propagated error was calculated based on 1 standard deviation of the duplicate analysis of Mg/Ca and the 

uncertainty derived from the calibration equation. Mg/Ca values of planktonic foraminifera are known to be 

affected by salinity and pH changes as well (Gray et al., 2018; Dueñas-Bohórquez et al., 2009; Gray and Evans, 

2019), however, a correction for these effects requires independent estimates for salinity and pH with species-

specific calibrations. For calculating past carbon chemistry, salinity is an important parameter and it was estimated 305 

based on its conservative relationship with relative sea level change (Waelbroeck et al., 2002). Modern seawater 

salinity of the BUS (35.43 ± 0.30) was derived from the WOCE Global Data Version 3.0 (Schlitzer, 2000) based 

on the five closest datapoints to the location of core 64PE450-BC6-PC8. Using these salinity estimates, the effect 

of salinity on Mg/Ca-based SST was evaluated, and found to have only a small offset in SST values (< 0.4 ℃). 

As the effect of salinity is relatively minor and adding it would also introduce additional uncertainties, we here 310 

decided to refrain from correcting for salinity and pH when calculating past temperatures. 

 

The measured δ11B values of G. bulloides were converted into pH (Hemming and Hanson, 1992) using Eq. (2):  

pH = pKB
* – log(-(δ11Bsw – δ11Bborate) / (δ11Bsw – α * δ11Bborate – ε)),     (2) 

where the equilibrium constant, pKB
* (Dickson, 1990), was calculated for each sample based on SST derived from 315 

the Mg/Ca values of G. bulloides and salinity based on sea level. The fractionation factor between B(OH)3 and 

B(OH)4
-, expressed here as α, is 1.0272 ± 0.0006, from which fractionation, ε, is derived as 27.2 ± 0.6 (Klochko 

et al., 2006). Boron isotopic composition of seawater, δ11Bsw is 39.61 ± 0.2 ‰, based on a large range of 

temperature, salinity and depth conditions (Foster et al., 2010), and the δ11B of borate was calculated from the 

measured δ11B of G. bulloides using the species-specific core-top calibration from Raitzsch et al. (2018). 320 

 

Constraining pCO2 based on seawater pH requires knowledge of a second independent parameter (Zeebe and 

Wolf-Gladrow, 2001). For this purpose, total alkalinity was assumed to be the same as today’s value at the BUS. 

Taking the five nearest available datapoint at the core location from the GLODAPv2023 dataset (Lauvset et al., 

2024) defines an average value of 2349 ± 11 µmol kg-1, which was used to supplement the pH-based pCO2 325 

reconstruction throughout the 27 kyrs record.   

 

Uncertainty on the reconstructed pH value was determined for each sample through error propagation that 

considered the above described uncertainties of pKB
*, α, ε, δ11Bsw and the standard deviation (external uncertainty) 

based on duplicate or triplicate analysis of foraminiferal δ11B. 330 
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Concentrations of CO2 are based on pH and inorganic carbon chemistry calculations using the PyCO2SYS 

package (Humphreys et al., 2022) in Python version 3.11.2. Uncertainty is propagated for each computed carbon 

chemistry parameter as described in Humphreys et al. (2022).  

4.7 Lipid extraction and alkenone analyses  335 

Lipids were extracted from the freeze-dried and homogenized sediment samples using an accelerated solvent 

extractor (ASE® 350, DIONEX®) at the NIOZ. Samples were extracted with dichloromethane (DCM) and 

methanol (9:1, v/v) at 100 ℃ to obtain the total lipid content and subsequently dried under N2 gas at 35 ℃ in a 

Caliper TurboVap LV Evaporator. Samples were then redissolved in DCM and run through an Na2SO4 column to 

eliminate excess water. The extract was passed through an alumina (Al2O3) column and separated into apolar, 340 

ketone and polar fractions using a mixture of hexane : DCM (9:1, v/v), hexane : DCM (1:1, v/v), and DCM : 

methanol (1:1, v/v), respectively. All extracts were dried under N2 and the ketone fraction was further utilized to 

obtain the relative abundance and δ13C values of the long chain alkenones. 

 

Ketone fractions were dissolved in ethyl acetate and concentrations of alkenones were measured using a gas 345 

chromatograph with flame ionization detection (GC-FID, Agilent® 6890N) equipped with silica capillary column 

(CP-Sil 5 CB; 50 m x 0.32 mm, 0.12 μm film thickness). The temperature program of the GC-FID analyses used 

an initial temperature of 70 ℃ that increased with a rate of 20 ℃ min-1 to 200 ℃ followed instantly by heating at 

a rate of 3 ℃ min -1 until it reached 320 ℃ where it remained constant for 10 minutes. 

 350 

Based on the initial concentration measurement, samples were diluted with ethyl acetate to allow stable carbon 

isotope analysis using a gas-chromatography-isotope ratio-mass spectrometer (GC-IRMS, Thermo Fisher 

Scientific® Delta V Advantage Trace® 1310). The GC-IRMS was equipped with crossbond trifluoropropylmethyl 

polysiloxane columns (Rtx-200; 60m x 0.32 mm, 0.5 μm film thickness) and helium as a carrier gas. Each sample 

was manually injected on the GC-IRMS. The starting temperature of the GC-IRMS was 70 ℃ which then 355 

increased with 18 ℃ min -1 until reaching 250 ℃. After reaching that temperature heating continued with 1.5 ℃ 

min -1 until 320 ℃, where it was kept stable for 25 minutes. Samples were analyzed for carbon isotopes in 

duplicates and instrumental accuracy was monitored through measurement of the of B5 n-alkane mixture standard 

(provided by A. Schimmelmann, Indiana University) every day (i.e. after every 6-7 samples). The isolink II 

combustion reactor was oxidized for 10 minutes every day before the start of standard and sample analysis. Each 360 

analysis was followed by 2 minutes of seed oxidation to maintain the reactor oxygenated.  

4.8 Calculation of alkenone based temperatures and pCO2 

Alkenone-based sea surface temperatures were derived from ketone unsaturation index (U
K ́ 

37), where U
K ́ 

37 is 

defined as the relative abundance of di- and tri-unsaturated C37 methyl alkenones (Prahl and Wakeham, 1987):  

U
K ́ 

37  = C37:2 / (C37:3 + C37:2).          (3) 365 

Sea surface temperature was then calculated using the alkenone temperature calibration model developed for the 

Atlantic region (Conte et al., 2006).  
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Fractionation of stable carbon isotopes during photosynthesis (εp37:2) can be computed based on the difference 

between the carbon isotopic ratio of aqueous carbon dioxide (δ13CCO2) and the organic biomass (δ13Corg):  

εp37:2 = [(δ13CCO2 + 1000) / (δ13Corg +1000) – 1] x 1000.      (4) 370 

δ13CCO2 was derived from the carbon isotopes of planktonic foraminifera, G. bulloides corrected for the 

temperature dependent fractionation during calcite precipitation (Romanek et al., 1992) and the fractionation 

between dissolved and gaseous carbon dioxide (Mook et al., 1974). 

 

δ13Corg was calculated from the carbon isotopes of di-unsaturated alkenones (δ13C37:2) as  375 

δ13Corg = [(δ13C37:2 + 1000) * (Δδ13Corg + 1)] – 1000,        (5) 

where Δδ13Corg expresses the carbon isotopic difference between C37:2 and DIC, that has been defined between 3 

– 6 ‰ based on culture experiment (Riebesell et al., 2000; Schouten et al., 1998; Van Dongen et al., 2002). We 

here take the commonly applied value of 4.2 ‰ (Bijl et al., 2010; Pagani et al., 2005; Pagani et al., 2010; Pagani 

et al., 2011; Seki et al., 2010; Palmer et al., 2010). 380 

 

Based on εp37:2 , aqueous CO2 ([CO2]aq) can be reconstructed as followed (Hayes, 1993; Pagani et al., 2002):  

[CO2]aq = b / (εf - εp37:2),          (6) 

where εf  stands for the carbon isotopic fractionation associated with carbon fixation estimated as 25 ‰ (e.g., Popp 

et al., 1998). Parameter b expresses all physiological factors affecting total carbon isotope fractionation that 385 

includes cell shape and size, membrane permeability as well as the algae’s growth rate (Jasper et al., 1994; Rau 

et al., 1996; Popp et al., 1998; Conte et al., 1994; Riebesell et al., 2000). Earlier studies using phytane (Bice et al., 

2006; Damsté et al., 2008) and alkenone (Witkowski et al., 2018) to reconstruct pCO2 estimated b for a mean 

value of 165 - 170 ‰ kg µM-1. As growth rate and thereby nutrient availability have a large influence on the 

physiological factors and, accordingly, b values are highly correlated to [PO4
3-] (Bidigare et al., 1997), b can be 390 

best described at our core site by estimating past changes in [PO4
3-] (Pagani et al., 2005). Here, [PO4

3-] is estimated 

based on the Ba/Ca ratio of planktonic foraminifera, G. bulloides (Lea and Boyle, 1989; Lea and Boyle, 1990b, 

a; Martin and Lea, 1998; Lea and Boyle, 1991). We therefore constrain past changes in b as (Pagani et al., 2005): 

b = [118.52 x (Ba/Ca x [PO4
3-]modern / Ba/Camodern) + 84.07].      (7) 

Average modern PO4
3- concentration ([PO4

3-]modern) in the BUS is 0.63 µmol kg-1 (obtained from GLODAPv2023; 395 

Lauvset et al., 2024; Olsen et al., 2016; Key et al., 2015) whereas the corresponding modern foraminiferal Ba/Ca 

value (Ba/Camodern) was analyzed here (19.08 µmol mol-1). Eq. (7) basically assumes a constant and proportional 

relation between Ba and [PO4
3-]. This seems reasonable for our purposes as surface water Ba concentration has 

been shown to be reflected proportionally in foraminiferal Ba/Ca (Lea and Boyle, 1991; Hönisch et al., 2011) and 

the cold nutrient rich surface waters are generally enriched in dissolved barium (e.g., Davis et al., 2020). 400 

 

To calculate atmospheric pCO2 from aqueous concentrations of CO2, Henry’s law was applied using the 

temperature and salinity dependent solubility constant, K0.  

pCO2 = [CO2]aq / K0.          (8) 
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Uncertainty propagation for the calculated pCO2 values was based on the errors derived from 1 standard deviation 405 

of duplicate analysis of δ13C of the extracted ketone fraction, δ13C of foraminifera and Ba/Ca values of 

foraminifera. The largest uncertainty in alkenone based pCO2 reconstructions originates from the estimated past 

[PO4
3-] and to incorporate potential variation in nutrient levels during the deglaciation, an additional uncertainty 

of 0.2 µmol kg-1 was assigned to the known modern values of [PO4
3-]. This uncertainty is based on the gradient 

measured today in upper 50 meters of the water column, which is more than the variability observed in surface 410 

water today, but also includes potential changes in the upwelled waters. 

5 Results 

5.1 Radiocarbon ages 

The calibrated mean radiocarbon ages generally increase with depth in both BC and PC cores used here. Sediment 

core 64PE450-BC6 comprises 40.59 cm, where the core-top sample was dated at 4.863 ka BP, and an age of 9.551 415 

ka BP at 40 cm bsf (Fig. 3 a). This suggests an average sedimentation rate of about 10 cm kyr-1, with somewhat 

higher values (> 10 cm kyr-1) at the top 12 cm. Radiocarbon dates at the top of the box core (0-11 cm) indicate 

reversed ages (4.9 ka at 11 cm and 5.2 ka at 1 cm uncalibrated ages). This interval also corresponds to elevated 

Ca/Al, Ti/Al, and Si/Al ratios measured through X-Ray Fluorescence (XRF)-core-scanning (Supplementary Fig. 

S2; using the method described in Weltje and Tjallingii, 2008). The enrichment of elements commonly found in 420 

coarse fractions and heavy minerals is likely due to the removal of fine fraction material by winnowing, which 

may have also contributed to the loss of the last 4.8 kyrs in the sedimentary record. Alternatively, the upper 10 

cm bsf have constant ages due to bioturbation. Radiocarbon analyses from sediment core 64PE450-PC8 included 

6 samples of the upper 100 cm of sediment collected. The age-depth model for this core suggests 9.994 ka BP 

years at 5 cm bsf depth (Fig. 3 b) and indicates the presence of a disturbed core-top. Low sedimentation rates (2 425 

cm kyr-1) characterize the top 10 cm bsf of this core which is approximately in line with the sedimentation rate at 

the deepest parts of box core 64PE450-BC6 (~6 cm kyr-1). However, average sedimentation rate in 64PE450-PC8 

is lower (4 cm kyr-1) compared to the average values observed in the box core, which, in part, might also be due 

to compaction with increasing depth. The top 60 cm bsf of the core shows a steady increase in sedimentation rate 

(2 – 7 cm kyr-1) and therefore the low average values may be attributed to a relatively abrupt decrease in 430 

sedimentation rate at 60 cm bsf in the core, which correspond to an age of 23.586 ka BP. Between 60 and 100 cm 

bsf depth sedimentation rates remain 1 – 2 cm kyr-1. Due to the uncertainty related to sediment deposition between 

60 and 100 cm bsf of the piston core, this study focuses only on the 40.59 cm bsf of core 64PE450-BC6 and the 

upper 65.5 cm bsf of core 64PE450-PC8.  

 435 
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Figure 3: Age-depth model of a) 64PE450-BC6 (box core) and b) 64PE450-PC8 (piston core) based on 

radiocarbon dates, where blue diamonds indicate the sampling depth for 14C analysis. The calibration of 

radiocarbon ages and the figure was generated using the Bacon v2.3 package for the R statistical 440 
programming software (Blaauw and Christen, 2011). Calibration was performed using the Marine20 

calibration curve (Heaton et al., 2020) with a local carbon reservoir correction (ΔR) of 146 ± 85 14C years 

(Dewar et al., 2012). Red dashed lines show mean values of the best fitted model and grey dashed lines 

indicate 95% confidence interval. Note, that due to the disturbed core-top and potential hiatus in the piston 

core as indicated in panel b), only the interval from 4.25 to 65.5 cm of 64PE450-PC8 was used for 445 
temperature and carbon system reconstruction in this study.  

 

5.2 Stable isotopes  

Carbon isotope values of the planktonic foraminifer, G. bulloides, vary between -1.4 ‰ and 0.6 ‰ (VPDB). The 

glacial part of the record is marked by relatively high δ13C values with a maximum of 0.6 ‰ at 23.3 ka BP. After 450 

that, there is a rapid decrease to a value of -1.1 ‰ at 22 ka BP, followed by a period of varying δ13C values 

between -0.6 - 0.1 ‰ until 18 ka BP. Between 18 and 16 ka BP, δ13C values decrease to a minimum value of -1.4 

‰ and then with a slight increase values stabilize around -1.1 ‰ until 11 ka BP. During the Holocene, δ13C values 

of G. bulloides vary between -1.3 and -0.2 ‰ (Fig. 4 a). The δ13C values of the benthic foraminifer, C. 

wuellerstorfi, although measured at somewhat lower resolution, range between 0.5 ‰ and 1.0 ‰. It appears that 455 

benthic δ13C values were on average 0.2 ‰ heavier during the Holocene compared to the glacial (Fig. 4 a).  

 

The δ18O values of G. bulloides range from 0.0 ‰ (VPDB) to 3.2 ‰ with the most depleted values at ~8 ka BP 

(Fig. 4 b). The highest values of δ18O can be seen at 23.6 ka BP (peak glacial), after which values show rapid 

changes and subsequently, continue to decrease gradually before reaching a plateau at about 10 ka BP. During the 460 

Holocene these values stayed relatively stable and varied only between 0.0 ‰ and 0.6 ‰ (VPDB). The trend 

differs from the lower resolution benthic record of δ18O measured on C. wuellerstorfi (Fig. 4 b). The benthic 

foraminiferal δ18O values are consistently higher compared to the G. bulloides values, which is in line with lower 
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bottom water temperatures. This difference, however, appears smaller during the end glacial than during the 

Holocene. 465 

 

 

Figure 4: a) δ13C and b) δ18O values of planktonic (G. bulloides) and benthic (C. wuellerstorfi) foraminifera 

plotted with the age model. Red triangles indicate the ages tied with radiocarbon dates.  

 470 

The boron isotopic composition of the planktonic foraminifer, G. bulloides, ranges between 15.1 and 17.0 ‰ 

(relative to NIST 951) with larger variations during the last 6-5 kyrs (Fig. 5 a). The lowest δ11B values were 

observed at 5.4 ka BP, whereas δ11B values reach a maximum at 13.5 ka BP. Prior to this maximum value, δ11B 

values show an increasing trend from 27.8 to 13.5 ka BP (Fig. 5 a). 

 475 

The carbon isotopic composition of the alkenones shows its heaviest value (-22.4 ‰) at 19.6 ka BP. After this 

peak, δ13C values reach a minimum (-23.4 ‰) at 15.9 ka, then increasing again towards the most recent values (-

22.7 to -22.9 ‰; Fig. 5 b).  

5.3 Element/Ca ratios in the planktonic foraminifer, G. bulloides 

Mg/Ca reaches maximum values of 2.85 and 2.81 mmol mol-1 at 16.9 and 6.7 ka BP, respectively (Fig. 5 c). 480 

Substantially lower values characterise the interval between 16.9 and 6.7 ka BP, when Mg/Ca ranges between 

2.46 and 2.69 mmol mol-1. The lowest values (2.30-2.40 mmol mol-1) were found at 4.9-5.4 ka BP and 21.3-27.8 

ka BP.  



16 
 

 

The general trend in foraminiferal Ba/Ca shows an increase from glacial to recent (Fig. 5 d). The oldest part of 485 

the record shows relatively stable Ba/Ca values at around 6 μmol mol-1. During the last 15 kyrs, however, more 

variability is observed for Ba/Ca. The highest Ba/Ca value (19.1 µmol mol-1) is observed in the top of the record 

and the lowest values, 4.02 and 3.94 µmol mol-1 at 17.6 and 27.8 ka BP, respectively.  

 

 490 

 

Figure 5: Measured a) foraminiferal δ11B, b) alkenone δ13C, and foraminiferal element concentrations: c) 

Mg/Ca, d) Ba/Ca plotted over the past 27.8 kyrs at the Benguela Upwelling System. Error bars show ± 1σ 

standard deviation. When error bars are not shown, the error of the duplicate measurement is smaller than 

the symbol.  495 

 

5.4 U
Ḱ 

37 sea surface temperatures  

The alkenone based U
Ḱ

37 record shows continues increase throughout the deglaciation (Supplementary Fig. S3). 

The lowest value (0.56) was measured at 27.8 ka BP which increases to 0.58 until 23.6 ka BP. The interval of 

22.0 - 19.6 ka BP records again low U
Ḱ 

37 values, which then follows a steady increase until 9.6 ka BP. During the 500 

early Holocene U
Ḱ 

37 values stabilize around 0.7 until 6.8 ka BP when values slightly start to decrease reaching 

0.67 in the uppermost part of the record.  

6 Discussion 

6.1 Local temperatures over the LGM, last deglaciation, and Holocene  
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The proxy-based temperature reconstructions resemble to the Southern Hemisphere climate responses based on 505 

the gradual temperature increase from 23 ka BP onwards (e.g., Petit et al., 1999; Suggate and Almond, 2005; 

Clark et al., 2009). However, comparing these reconstructions with both Northern (NGRIP; North Greenland Ice 

Core Project Members, 2004) and Southern Hemisphere (EPICA-Dome C; EDC; Jouzel et al., 2007) records, it 

is evident that individual climate events show similarities also to the trends observed in the Northern Hemisphere 

(Fig. 6). This suggests that the location of 64PE450-BC6-PC8 reflects a complex structure of the water column 510 

temperature, potentially affected by both Northern and Southern Hemisphere climatic changes.  

 

The U
Ḱ 

37 based sea surface temperature reconstruction shows low temperatures (18.2 – 18.5 °C) between 23.6 and 

18.6 ka BP (Fig. 6 a) which corresponds to the relatively low temperatures in the record based on the δ18O values 

from the shells of G. bulloides. These temperature minima and the relatively high variability (1.5 – 3.2 ‰) shown 515 

by the δ18O record between 24 and 21 ka BP indicate the Last Glacial Maximum (LGM; e.g., Clark et al., 2009; 

Hughes et al., 2013) within this record. While the here observed trends are in agreement with the general deglacial 

temperature records from higher latitudes, such a pattern is not reflected by the temperature record based on 

Mg/Ca ratios of G. bulloides. In fact, the Mg/Ca-based temperature trend is only between 23 and 16 ka BP 

comparable to the other local (U
Ḱ 

37, foraminifera-δ18O) and high latitude reconstructions (ice core-δ18O; e.g., 520 

Jouzel et al., 2007), after which this trend deviates from the classic deglacial pattern showing decreasing 

temperatures towards the Holocene.  

 

While all these proxies have their inherent complications, the discrepancies between these records likely also 

reflect changes in the interaction between the core site and the higher latitudes. For instance, foraminiferal δ18O 525 

values not only depend on temperature, but also on the stable oxygen isotopic signature of the water and hence 

salinity. This may result in a signal of increasing temperatures in the U
Ḱ 

37 and Mg/Ca records, but not in the δ18O 

record (e.g., between 20 to 18 ka BP), due to a change in salinity that may compensate the impact of warming on 

δ18O values. Shifts in e.g., river runoff, might also have impacted local seawater δ18O and hence foraminiferal 

oxygen isotopes. Similarly, multiple studies suggested an overall reduced Agulhas leakage during the LGM 530 

compared to deglacial levels (Pether, 1994; Flores et al., 1999; Rau et al., 2002; Peeters et al., 2004; Charles and 

Morley, 1988; Wefer et al., 1996; Franzese et al., 2006), and changes therein could also have resulted in enhanced 

δ18O variability during the LGM. 

 

Not only the trends but also absolute values differ between the temperature reconstructions (i.e., U
Ḱ 

37 and Mg/Ca), 535 

which is likely reflecting a difference in water depth where the proxy signal carriers lived. Alkenone-based 

temperature reconstruction agrees with reported modern SSTs from the upper 50 m of the Northern Benguela 

(Santana-Casiano et al., 2009), while the foraminifer-based temperature (Mg/Ca) corresponds to the values 

observed somewhat deeper (100-150 m, GLODAPv2023; Lauvset et al., 2024; Supplementary Fig. S4). The 

vertical dispersion of G. bulloides may be large, but the 100-150 m living habitat corresponds well with previously 540 

reported living depths for this species (Tapia et al., 2022; Lessa et al., 2020; Rebotim et al., 2017). The offset 

between U
Ḱ 

37 and foraminiferal Mg/Ca values during the LGM is about 3.0 °C, and this gradually increases to 5.6 

°C during the early Holocene. This implies that foraminiferal Mg/Ca values are affected by other factors than 

local SST alone. Partial dissolution of foraminiferal shells at depth may affect Mg/Ca values and thereby bias 
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reconstructed temperatures through the preferential loss of Mg2+ (Dekens et al., 2002; Regenberg et al., 2006). 545 

However, the impact of dissolution is probably minor only as the water depth at site 64PE450-PC8-BC6 is less 

than 1.4 km and G. bulloides is reported to be less sensitive to dissolution compared to other surface dwellers 

(Mekik et al., 2007). Whereas Mg/Ca values may also be affected by early diagenesis (Hover et al., 2001; Kozdon 

et al., 2013; Ni et al., 2020; Panieri et al., 2017; Sexton et al., 2006; Stainbank et al., 2020), El/Ca ratios in the 

shell’s profile obtained through laser ablation did not show any evidence for such diagenetic effects. 550 

 

Inconsistent trends and minor changes in absolute temperature values over the last 27 kyrs in this record make it 

challenging to identify millennial scale climate events with confidence. The last deglacial was marked by large 

climate fluctuations primarily linked to the release of meltwater in the Northern Hemisphere, weakening Atlantic 

Meridional Overturning Circulation (AMOC; Mcmanus et al., 2004; Rahmstorf, 2002; Denton et al., 2010; Hodell 555 

et al., 2017; Pöppelmeier et al., 2023). This, in turn changed global heat distribution causing cooling in the North 

Atlantic region that may have been accompanied by warming in the Southern Hemisphere (Broecker, 1998; 

Stocker, 1998). Such well-known climate events include the Heinrich Stadial 1 (HS1; ~17.8-14.5 ka BP; e.g., 

Bond et al., 1993; Cacho et al., 1999; Mcmanus et al., 1994; Calvo et al., 2007; Wang et al., 2013) and the Younger 

Dryas (YD; ~12.8-11.6 ka BP; Rühlemann et al., 1999; Kaplan et al., 2010; Panmei et al., 2017; Blunier and 560 

Brook, 2001; Alley, 2000), which were interrupted by a warming known as the Bølling-Allerød Northern 

Hemisphere warming (B-A; ~14.6-12.9 ka BP; e.g., Pedro et al., 2016; Blunier et al., 1997; Lamy et al., 2007; 

Vandergoes et al., 2008). While high latitude Southern Hemisphere records present warming signals during HS1 

and YD, our temperature records remain relatively constant at the time of these events, and only the alkenone 

based temperatures indicate slight warming at 12.4-11.4 ka BP. Deviating trends shown by the different proxy 565 

signal carriers are evident at the time of the B-A Northern Hemisphere warming, when Southern Hemisphere 

temperature reconstructions are also inconsistent at other locations (Lamy et al., 2007; Vandergoes et al., 2008).  

 

Comparing the trends observed in the different proxies point to the dynamic glacial-deglacial history of the BUS, 

which was likely shaped by a varying influence of Southern and Northern sourced waters. Also, minor offsets  570 

might be explained by changes in either seasonality between haptophytes and G. bulloides (Leduc et al., 2010), 

or differences in water depth where the signals were recorded. Hence, such differences between the records could 

be due to a shift in productive season and/or a shift in depth habitat. As unravelling these signals is highly 

speculative, we here focus on the glacial vs. interglacial contrasts observed.  

 575 
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Figure 6: Reconstructed sea surface temperatures (SST) based on a) the alkenone unsaturation index, U
Ḱ 

37, and b) foraminiferal Mg/Ca, c) δ13C analysed in benthic (C. wuellerstorfi) and planktonic (G. bulloides) 

foraminifera with corrected values, d) δ18O of benthic (C. wuellerstorfi) and planktonic (G. bulloides) 

foraminifera, and e) δ18O ice core record from EPICA-Dome C (EDC; Jouzel et al., 2007) and North 580 
Greenland Ice Core Project (NGRIP; North Greenland Ice Core Project Members, 2004) shown for the 

past 29 kyrs. Corrected δ13C values of G. bulloides marked with green diamonds in panel c) are based on 

temperature (derived from Mg/Ca ratios; Bemis et al., 2000) and [CO3
2-] values (derived from pH and TA; 

Bijma et al., 1999), and arrows indicate the direction of the correction. Modern day SST at core site 
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64PE450-BC6-PC8 is approximately 20.7 ℃ (GLODAPv2023; Lauvset et al., 2024; Santana-Casiano et al., 585 
2009). Major climate events (YD: Younger Dryas; B-A: Bølling-Allerød interval; HS1: Heinrich Stadial 1) 

are marked above the top panel as reference. Horizontal error bars in panel a) show the age uncertainty 

based on 95 % confidence interval of the calibrated age. Blue shaded area in panel b) indicates the error 

propagated from temperature calibration uncertainty and ± 1σ standard deviation of the duplicate 

measurement of the samples. Analysis of the stable isotopes (panel c and d) provided an error smaller than 590 
the symbols shown on the figure.  

 

6.2 Biological carbon pump 

Comparing benthic (C. wuellerstorfi) and planktonic (G. bulloides) trends in δ13C shows they have similar values 

during the last glacial and higher δ13C values for the benthic than for the planktonic foraminifera during the 595 

interglacial. This is in contrast to what would be expected if BCP determined the foraminiferal carbon isotope 

signatures (Hain et al., 2014; Hilting et al., 2008). Generally, DIC in surface waters is enriched in 13C as the BCP 

results in preferential export of 12C rich organic matter to the deeper water masses, where it is released through 

remineralization. The efficiency and strength of the BCP is known to be affected by multiple processes, such as 

the formation, sinking, and interaction of aggregates with other minerals (Fowler and Knauer, 1986; Alldredge 600 

and Silver, 1988; Armstrong et al., 2001; Francois et al., 2002; Klaas and Archer, 2002; De La Rocha and Passow, 

2007; Turner, 2015), and the efficiency is generally reflected by the offset in 13C between the surface and deep 

water (Δδ13C). However, species specific offsets from equilibrium values between seawater DIC δ13C and 

foraminiferal carbonate δ13C can challenge interpretation of the Δδ13C and are likely responsible for the here 

observed lower δ13C values of G. bulloides compared to C. wuellerstorfi. 605 

 

Application of foraminiferal δ13C as their proxy for BCP efficiency requires a direct relation with the δ13C of 

DIC. Benthic foraminiferal δ13C values, and in particular δ13C values of the epifaunal C. wuellerstorfi, are 

generally considered faithful recorders of the δ13C values of DIC, with carbonate δ13C values being close to 

equilibrium (Thomas and Shackleton, 1996; Hilting et al., 2008). The stable carbon isotopic composition of DIC 610 

today is approximately 0.5 – 0.7 ‰ at a depth of 1.3 km along the latitude 20° S (Kroopnick, 1980; Kroopnick, 

1985; Sarnthein et al., 1994; Curry and Oppo, 2005; Schmittner et al., 2013) which agrees well with the value 

inferred from C. wuellerstorfi in the uppermost sample (6.0 ka BP) of core 64PE450-BC6-PC8. 

 

Stable carbon isotopic values from planktonic foraminifera have been shown to be generally lower with respect 615 

to the equilibrium values of DIC (Kahn, 1979; Kahn and Williams, 1981; Oppo and Fairbanks, 1989; Spero, 

1992), indicating a strong biological impact (i.e. the vital effect; e.g., Spero, 1992; De Nooijer et al., 2014; Erez, 

2003). For instance, symbiont-bearing species such as O. universa and T. sacculifer show offsets in δ13C as much 

as 1.8 and 1.4 ‰ respectively, depending on irradiance level (Spero, 1992; Spero and Lea, 1993). Although G. 

bulloides lacks algal symbionts (Hemleben et al., 1989) it has been shown to deviate even more from the ambient 620 

seawater δ13C values (Kahn and Williams, 1981; Spero and Lea, 1996). Several factors likely add together to the 

observed offset, such as carbon chemistry ([CO3
2-]; Spero et al., 1997; Bijma et al., 1999), temperature (Bemis et 

al., 2000), and respiration (Zeebe et al., 1999). The range of [CO3
2-] and temperature observed within our 27 kyrs 

record may yield a δ13C-offset of 0.6-1.4 ‰ and 2.4-2.6 ‰, respectively. More recently, Bird et al. (2017) 
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suggested that also bacterial symbiosis may partly explain the observed offset for δ13C in G. bulloides. While 625 

symbiont photosynthesis contributes to elevating foraminiferal δ13C due to preferential 12C removal, geochemical 

signature of G. bulloides is more likely to be controlled by the respiration of photoautotrophic cyanobacteria that 

produces depleted CO2 and hence, decreases shell δ13C values (Bird et al., 2017). Irrespective of the process 

involved, a substantial correction has to be applied to the δ13C values of G. bulloides to approach the heavier 

seawater DIC δ13C values. Increasing temperature (Bemis et al., 2000) and [CO3
2-] (Bijma et al., 1999) will also 630 

increase the offset between δ13C values of G. bulloides and seawater [DIC] suggesting that larger corrections are 

required during the Holocene than during the last glacial. Still, when the corrections for changes in temperature 

and [CO3
2-] are applied individually or combined, trends remain the same, showing the highest δ13C values of 

planktonic foraminifera during the LGM (Supplementary Fig. S5). Hence, despite the uncertainties in interpreting 

the absolute planktonic δ13C values, the trend in Δδ13C should still provide a measure for changes in the efficiency 635 

of the BCP. Therefore, we here applied a combined correction for both temperature (Bemis et al., 2000) and [CO3
2-

] (Bijma et al., 1999), derived from foraminiferal Mg/Ca and δ11B, respectively (Fig. 6 c). The offset of the δ13C 

value of the core-top sample with the modern δ13C values of the DIC is approximately 2.4 ‰ (Kroopnick, 1985), 

which agrees with the applied corrections based on temperature and [CO3
2-] in the most recent samples (2.4 – 2.8 

‰; 4.9-5.4 ka BP).  640 

 

Offsets between the δ13C of the planktonic and benthic foraminifera reflect differences in the BCP, but potentially 

also changes in the dominant water mass at the cores’ locations. Intermediate depths of the South Atlantic are 

dominated today by the Antarctic Intermediate Water and this likely remained the major water mass over the last 

glacial cycle (Pahnke et al., 2008; Howe et al., 2016; Gu et al., 2017). However, it is unclear whether the depth 645 

range of the AAIW increased (Muratli et al., 2010) or decreased (Ronge et al., 2015; Li et al., 2021) during the 

LGM compared to the present day. In the western Atlantic, δ13C values of benthic foraminifera suggest persistence 

of AAIW water masses at the depth of our core site (e.g., Curry and Oppo, 2005). As our values correspond to 

those found in the western Atlantic (Curry and Oppo, 2005; Lacerra et al., 2019; Umling et al., 2019),  a sustained 

influence of southern water masses is likely, with the δ13C value of DIC in the AAIW during the LGM remaining 650 

relatively similar to the present day.  

 

Variations in the stable carbon isotopic composition of surface seawater DIC are attributed to the changes in 

biological activity and air-sea exchange (Lynch-Stieglitz et al., 1995). While enhanced biological activity will 

result in an increase of δ13C values of DIC, more intense air-sea exchange will contribute to a decrease. In 655 

upwelling regions, the upwelled light carbon may still result in a net decrease in δ13C values despite the enhanced 

biological activity. The analysed δ13C values of benthic foraminifera from the LGM in this study show on average 

values that are 0.2 ‰ lower than those during the Holocene, with a minimum-glacial to a maximum-Holocene 

range of 0.4 – 1 ‰. This increasing trend of mid-depth, benthic δ13C values from glacial to interglacial agrees 

with the trends reported from the Brazilian Margin, where potentially both air-sea CO2 exchange (Umling et al., 660 

2019) and remineralization (Lacerra et al., 2019) affect the δ13C signal. Estimates of [PO4
3-] based on foraminiferal 

Ba/Ca show a general increase from glacial to interglacial with relatively low values between 18 to 15 ka BP 

corresponding to the observed benthic δ13C minimum (Supplementary Fig. S6). Although we cannot rule out a 
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contribution of air-sea gas exchange, especially on the time scale of short-term climatic changes, we believe that 

the observed glacial-interglacial trend was primarily driven by change in the BCP efficiency. 665 

 

Summarizing the observed impacts, assuming a more or less stable presence of AAIW at intermediate depth and 

minimal impact of change in air-sea CO2 exchange on δ13C values, after correcting for offsets, a larger difference 

between planktonic and benthic foraminiferal δ13C values during the LGM compared to the Holocene is evident 

(Fig. 6 c; and Supplementary Fig. S5), suggesting a more efficient BCP.  670 

6.3 pCO2 record of the BUS over the last 27 kyrs 

Although δ11B in foraminifera shells and δ13C of alkenones are the most commonly applied methods to reconstruct 

pCO2, these proxies are only very rarely compared in the same record. Since these proxies are recording different 

components of the speciation of carbon in seawater and have different biases, they not necessarily have to show 

similar results. Here, we observe only a modest change in pH (8.08-8.23 ± 0.07, derived from foraminiferal δ11B) 675 

during the last deglaciation, whereas pCO2 values show a change from 180 to 280 ppm (± 42 ppm, derived from 

δ13C of alkenones; Fig. 7). 

 

Minor variability in pH was reported previously by Raitzsch et al. (2018) for the Walvis Ridge for the same time 

interval, although reconstructed pH values were slightly higher (0.10-0.14 pH units). Although only minor, the 680 

offset is in line with the core studied here being closer to the upwelling area, as the major upwelling area extends 

only about 200 km out of the coast today (Lutjeharms and Meeuwis, 1987; Lutjeharms and Stockton, 1987). With 

lowest pH values in the core of the upwelling area and values increasing towards the open ocean, the trend in the 

offset between the two areas is minor but in the right direction. 

 685 

Using pH and total alkalinity, pCO2 can be calculated, suggesting higher pCO2 compared to the known 

atmospheric values over the past 27 kyrs (Fig. 7; Petit et al., 1999). Calculated pCO2 based on the foraminiferal 

δ11B only match seawater equilibrium values at 13.5 and 8.2 ka BP. Whereas the Bølling-Allerød event marks an 

AMOC amplification, AMOC was reduced around 8.2 ka BP due to the meltwater input in the North Atlantic 

(Matero et al., 2017; Barber et al., 1999; Pedro et al., 2016; Blunier et al., 1997). However, the calculated pCO2 690 

values are associated with considerable uncertainty for a large part related to total alkalinity being ill-constrained. 

Using estimates of total alkalinity based on relative sea level change is debated (e.g., De La Vega et al., 2023) as 

this does not account for all changes in alkalinity on glacial-interglacial timescales. Because total alkalinity 

calculated based on the relative sea level change during the last deglaciation results in only a small (less than 10 

ppm) offset, we here used constant alkalinity (2349 ± 11 µmol kg-1, GLODAPv2023; Lauvset et al., 2024) in 695 

combination with boron isotope-based pH to determine pCO2. The trends observed here are not affected by the 

alkalinity values used. 

 

The seawater pCO2 reconstruction based on the δ13C of alkenones follows past atmospheric pCO2 known from 

the Vostok ice core record well (Petit et al., 1999). This suggests that over the interval studied here, the BUS 700 

remained more or less in equilibrium with the atmosphere with regard to CO2 and did not act as an appreciable 

source or sink. An offset is observed (about 65 ppm) during the Holocene, between 11 and 7 ka BP, when 
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alkenone-based reconstruction suggests somewhat lower pCO2 values compared to the ice core record, although 

this difference falls well within the uncertainty of the proxy. This could indicate a temporary transition of the area 

to a CO2 sink as the seawater becomes undersaturated with respect to CO2. 705 

 

The good agreement between alkenone-based and ice core pCO2 records suggests that previously recognized 

complications in applying this proxy may not be relevant in the BUS region. Adaptation of CCM by the alkenone 

producers can hamper the use of the proxy under low pCO2 conditions (Badger, 2021). However, the mechanisms 

that may control CCM in the alkenone producers are not fully constrained (e.g., Reinfelder, 2011), and 710 

effectiveness of the CCM may differ between species (e.g., Goudet et al., 2020; Heureux et al., 2017). As the 

reconstruction of pCO2 values based on alkenone δ13C provided a reasonable record here and in another upwelling 

region (Palmer et al., 2010), application of this proxy in upwelling sites may be able to rely on the classical concept 

of passive diffusion of CO2 (Bidigare et al., 1997; Laws et al., 1995). Additional uncertainty in the alkenone-based 

pCO2 reconstruction may derive from the estimation of the b factor. Often modern, constant, [PO4
3-] is assumed 715 

to estimate the b factor for reconstructing pCO2 (Pagani et al., 1999; Zhang et al., 2013; Pagani et al., 2005; 

Witkowski et al., 2020), or assuming that the membrane permeability has not changed significantly, one can 

correct for the growth rate effects of the alkenone producers (Zhang et al., 2019; Zhang et al., 2020). Here, we 

used foraminiferal Ba/Ca, which is suggested to reflect nutrient ([PO4
3-]) variations but does not vary with 

temperature, salinity or carbon chemistry parameters (Lea and Spero, 1994; Hönisch et al., 2011) unlike other 720 

suggested nutrient proxies such as Cd/Ca (Oppo and Rosenthal, 1994; Allen et al., 2016) and Zn/Ca (Van Dijk et 

al., 2017). Using the Ba/Ca approach to constrain the b factor yields here 10 to 105 ppm lower pCO2 values 

compared to the approach of using a constant [PO4
3-] based on modern value over the last 27 kyrs (Supplementary 

Fig. S7). These approaches give nonnegligible difference in our conclusions, as the results based on the use of 

constant [PO4
3-] imply constant net CO2 outgassing in the BUS over the last glacial and deglacial. However, 725 

variability in surface pCO2 remains minor, causing only 32 ppm change in pCO2 in the BUS over 27 kyrs, which 

is unlikely considering the highly dynamic properties of the region on glacial-interglacial timescale (Mollenhauer 

et al., 2002; Mckay et al., 2016; Romero et al., 2003). Also, previous studies pointed out an overestimation of 

surface pCO2 when constant nutrient levels are applied to constrain the b factor (Zhang et al., 2019 and references 

therein), which is in line with our observation when the two approaches (Ba/Ca and constant-[PO4
3-]) are 730 

compared. While the Ba/Ca method still awaits refinements in future studies, this approach may provide an 

efficient way to address some of the uncertainties originating from local conditions, that are not targeted when 

constant [PO4
3-] values are assumed.  
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 735 

Figure 7: Reconstruction of a) pH based on δ11B of G. bulloides, and b) pCO2 based on δ11B of G. bulloides 

combined with a constant total alkalinity value of 2349 ± 11.07 µmol kg-1 (dark blues diamonds) and δ13C 

of alkenones with Ba/Ca-based [PO4
3-] estimate (red diamonds). Modern day pCO2 value of the AAIW is 

approximately 326 ppm (Lauvset et al., 2024; Salt et al., 2015). Blue dashed line shows the Vostok ice core 

record of pCO2 (Petit et al., 1999). Light green and red shaded area represent propagated error for the 740 
foraminifera and alkenone based reconstructions, respectively. See further details on uncertainty 

propagation in the text.  

 

6.4 Change in the efficiency of BCP and CO2 disequilibrium 

Most obvious from comparing the alkenone and foraminifera-based pCO2 reconstruction is the difference in 745 

amplitude of change on a glacial-interglacial time scale. Whereas the alkenone-based reconstruction closely 

mimics atmospheric changes, the foraminifera-based reconstruction shows a constant pCO2. This results in an 

interglacial difference in pCO2 (ΔpCO2 = pCO2(foraminifera) - pCO2(alkenone)) of about 64 ± 20 ppm between the 

alkenone and foraminifera-based reconstructions, while during glacial times ΔpCO2 increases to approximately 

94 ± 20 ppm (Fig. 8). Because the G. bulloides are proliferating during the upwelling season, they likely primarily 750 

reflect the deeper upwelled water (i.e., subsurface) compared to the alkenones which are synthesized e.g., by the 

surface-dwelling coccolithophorids. Note that G. bulloides may migrate between approximately 50 and 400 m 

(Rebotim et al., 2017), which can affect the calculated pCO2 gradients. Still, G. bulloides represents a larger 
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average depth than the alkenone-based record, and hence, carbon system conditions that are closer to those of the 

upwelled intermediate waters, i.e., the AAIW in the BUS.  755 

 

 

Figure 8: Schematic comparison of interglacial and glacial pCO2 values. Red arrows mark average 

interglacial (left) and glacial (right) values calculated from the alkenone- and planktonic foraminifera- (pH 

and total alkalinity) based proxies in this study.  760 

 

Studies using foraminifera-based proxies suggested more intense upwelling during glacial times (Oberhänsli, 

1991; Little et al., 1997), but at the same time radiolarian-based upwelling proxies indicate reduced upwelling 

(Des Combes and Abelmann, 2007). Due to its location and the influence of water masses both from the north 

and the south, cells of the BUS are characterized by different environmental conditions (e.g., temperature and 765 

nutrients; Emeis et al., 2018). During the LGM, cold source waters likely impacted the northern cells of the BUS 

more than its central and southern parts (Des Combes and Abelmann, 2007) affirming complexity of this 

upwelling system. While we may conclude that upwelling intensities were different from one cell to another, 

potentially also impacted by the offshore transition of the modern strong upwelling cells (e.g., Mollenhauer et al., 

2002), increased cold water input does not necessarily correlate with stronger upwelling (Des Combes and 770 

Abelmann, 2007), potentially explaining conflicting interpretations based on different proxies.  

 

Atmospheric pCO2 was significantly reduced during the LGM, hence the presence of an increased amount of CO2 

at subsurface depths implies either enhanced upwelling or that the upwelled waters were richer in CO2 or both. 

Lower atmospheric CO2 during the glacial is likely explained by multiple processes. The larger extent of sea ice 775 

over the glacial Southern Ocean prevented CO2 escaping from seawater in an area today acting as a major CO2 

exchange region (Stephens and Keeling, 2000), whereas enhanced iron fertilization likely contributed to more 

efficient utilization and transport of carbon and nutrients to the deep (Martin, 1990; Martínez-García et al., 2014). 

Aeolian transport and dissolution in the shelf regions might have provided important sources of iron at that time 

(Martin, 1990; Tian et al., 2023), which would locally influence air-sea carbon balance, still with minimum impact 780 

on global atmospheric pCO2 due to adjacent regions where excess carbon can be utilized. Also locally at the BUS, 
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aeolian transport presumably increased due to the intensified trade winds (Stuut et al., 2002), although a more 

humid climate may (Stuut et al., 2002; Cockcroft et al., 1987) or may not (Shi et al., 1998; Partridge et al., 1999) 

have prevailed in southwest Africa during the LGM. Therefore it remains speculative whether stronger winds may 

have provided sufficient iron for phytoplankton growth locally, or potentially excess iron input in the sub-785 

Antarctic region provided a source for additional mid-depth CO2 storage (Martínez-García et al., 2014). Still, 

more efficient biological carbon pump, as indicated by the offset between the planktonic and benthic foraminiferal 

carbon isotope records (Fig. 6 c), suggest that an increased supply of carbon in the upwelling areas from 

intermediate depths to the surface, may have been effectively counterbalanced. 

 790 

Based on comparing pCO2 proxies, with G. bulloides recording primarily the upwelled waters and alkenones the 

surface waters, we see evidence for enhanced storage of carbon at depth during the glacial. The resulting mid-

depth high CO2 waters provide also at that time the source for upwelled waters in the BUS, which could have 

resulted in the local release of (part of the) stored CO2 if not prevented by an efficient biological carbon pump. 

Increased biological pump acted as an effective cap on the stored carbon and hence contributed to preventing the 795 

release of mid-depth CO2 during the glacial.  

7 Conclusions 

Carbon system proxies were applied to demonstrate changes in inorganic carbon chemistry of the Northern 

Benguela Upwelling System over the last 27 kyrs. Temperature reconstructions based on both organic and 

inorganic proxies indicate that the BUS may be associated with climatic changes observed both in the Northern 800 

and Southern Hemisphere. While surface values of pCO2 reconstructed from δ13C of alkenones generally track 

atmospheric pCO2, the foraminifera-based reconstruction suggests minor variation in pCO2 in the subsurface since 

the Last Glacial Maximum until present. Hence, the increased gradient of pCO2 between the surface waters and 

depth observed for the last glacial period provides evidence for enhanced storage of carbon in the Antarctic 

Intermediate Waters. Outgassing of CO2, however, could be effectively prevented by the biological carbon pump 805 

as also indicated by the offset in the δ13C of planktonic and benthic foraminifera.  
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