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Abstract. Upwelling regions are dynamic systems where relatively cold, nutrient- and CO2-rich waters reach to 

the surface from the deep. CO2 sink or source properties of these regions are dependent not only on the dissolved 20 

inorganic carbon content of the upwelled waters, but also on the efficiency of the biological carbon pump that 

provides constraint on the drawdown of pCO2 in the surface waters. The Benguela Upwelling System (BUS) is a 

major upwelling region with one of the most productive marine ecosystems today. However, contrasting signals 

reported on the variation in upwelling intensities based on, for instance, foraminiferal and radiolarian indices from 

this region over the last glacial cycle indicate that a complete understanding of (local) changes is currently lacking. 25 

To reconstruct changes in the CO2 history of the Northern Benguela upwelling region over the last 27 ka BP, we 

used a box core (64PE450-BC6) and piston core (64PE450-PC8) from the Walvis Ridge. Here, we apply various 

temperature and pCO2-proxies, representing both surface (U
Ḱ 

37, δ13C of alkenones) and intermediate 

depthsubsurface (Mg/Ca, B/Ca, S/Mg, δ11B in planktonic foraminiferal shells) processes. Reconstructed pCO2 

records suggest enhanced storage of carbon at depth during the Llast Gglacial Mmaximum. The offset between 30 

δ13C of planktonic (high δ13C) and benthic foraminifera (low δ13C) suggests an evidence of a more efficient 

biological carbon pump, potentially fuelled by remote and local iron supply through aeolian transport and 

dissolution in the shelf regions, effectively preventing release of the stored glacial CO2. 

1 Introduction 

Upwelling systems are crucial components in the global carbon cycle thanks to intense biogeochemical cycling 35 

and enhanced biological productivity (Turi et al., 2014). Upwelling zones return the cold, nutrient- and CO2-rich 

waters from depth to the surface which is also reflected in regional changes in surface water inorganic carbon 

chemistry. The connection between the deep and surface ocean thereby provides a potential mechanism linking 

changes in ocean circulation and chemistry with the atmosphere. Still, the shoaling of the thermocline and 

nutricline in these regions also favours phytoplankton growth to such a degree that these areas represent majority 40 

of the most productive regions of the ocean (Fig. 1 a). Thus, the leakage of CO2 from the depths to the atmosphere 

is negated by biological sequestration, simultaneously rendering its quantification a challenging undertaking. The 

surface waters of the upwelling system undergo an increase in the partial pressure of CO2 (pCO2) and decrease in 

pH due to upwelling of deep CO2-rich water. In turn, the enhanced primary productivity due to increased nutrients 

result in drawdown of pCO2 by converting CO2 into organic carbon, after which it may be returned to the deep 45 

ocean via the biological carbon pump (BCP; Volk and Hoffert, 1985; Longhurst and Glen Harrison, 1989; 

Ducklow et al., 2001; Turi et al., 2014; Hales et al., 2005; Muller-Karger et al., 2005). Ultimately, the net CO2 

flux from the ocean to the atmosphere is a function of the balance between upwelling strength (increase in CO2) 

and efficiency of the BCP (drawdown of CO2). On geological time scales this efficiency may have varied, 

potentially modulating glacial-interglacial cycling oflocal air-sea CO2 balance (Kohfeld et al., 2005; Kwon et al., 50 

2009; Parekh et al., 2006; Hain et al., 2014).  

 

The efficiency of the BCP determines how much of newly produced particulate organic carbon at the surface is 

transported to the deep (Volk and Hoffert, 1985; Hain et al., 2014). During primary production, nutrients are 

consumed (e.g., nitrate, phosphate; Redfield, 1958) from the surface ocean and dissolved inorganic carbon (DIC) 55 

is taken up in organic matter, which is also reflected by the enrichment in 13C of the surface DIC (Degens et al., 
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1968). This implies that we can use seawater carbon isotopes as proxy for the efficiency of the BCP. Seawater 

carbon isotopes can be reconstructed using the carbon isotopic composition (δ13C) in shells of carbonate 

producers, such as foraminifera. During high productivity periods the enhanced carbon uptake at the sea surface 

will enrich the shells of planktonic foraminifera in 13C. At the same time, the 13C-depleted carbon transported to 60 

the deep as organic matter will decrease the 13C content of the deep water DIC pool, resulting in low δ13C values 

in the benthic foraminifera shells (Fig. 1 b). Therefore, the difference between planktonic and benthic δ13C 

provides a measure for the efficiency of the BCP, where more divergent values indicate a more efficient BCP 

(Hilting et al., 2008). 

 65 

Reconstruction of inorganic carbon chemistry can be used to constrain past changes in CO2-flux between the 

ocean and atmosphere (Fig. 1 c). Reconstruction of the complete inorganic carbon system is based on at least two 

parameters of this system (pCO2, [CO3
2-], [HCO3

-], pH, [DIC] and total alkalinity), as well as on the knowledge 

of temperature and salinity (Zeebe and Wolf-Gladrow, 2001). Commonly used tracers for constraining parameters 

of the marine inorganic carbon chemistry are based on both organic (e.g., δ13C of alkenones; Pagani et al., 2002; 70 

Pagani, 2014; Popp et al., 1998; Laws et al., 1995) and inorganic (e.g., δ11B of foraminifera shells; Hemming and 

Hanson, 1992; Palmer and Pearson, 2003; Foster and Rae, 2016) proxy signal carriers, although these proxies 

rarely agree completely for upwelling regions (Seki et al., 2010; Palmer et al., 2010) or in general (Rae et al., 

2021).  

 75 

Here, we compare organic and inorganic proxies for temperature (U
Ḱ 

37, Mg/Ca) and the carbon system (alkenone-

δ13C, foraminiferal-δ11B) with reconstructed efficiency of the BCP in the Benguela upwelling area to unravel the 

potential role of such areas in the known changes in atmospheric pCO2 on glacial-interglacial time scales. Proxies 

for seawater carbon chemistry have specific inherent complications and their application require critical 

assumptions.  80 

 

For instance, pPrevious studies have observed discrepancy between alkenone based pCO2 reconstruction and ice 

core records (Palmer et al., 2010; Andersen et al., 1999; Zhang et al., 2013; Witkowski et al., 2020; Jasper et al., 

1994), which could be related to disequilibrium between sea surface and the atmosphere, especially at dynamic 

sites like upwelling regions. However, it may also be explained by the mechanismprocess of CO2 uptake in the 85 

algal cell, if passive diffusion is not the only way alkenone producers acquire CO2 in the cell, as suggested by the 

traditional framework of this proxy (Bidigare et al., 1997).. Alkenone-producers do use a carbon concentrating 

mechanism (CCM; Stoll et al., 2019; Reinfelder, 2011; Bolton and Stoll, 2013; Badger, 2021), which enables 

carbon acquisition in the cell through the active pumping of HCO3
- to the chloroplast during low pCO2 conditions. 

Also, pCO2 reconstructions based on alkenone 13C values are subject to uncertainties related to the so-called b 90 

factor, that expresses the effect of multiple parameters related to the physiology of the alkenone producers (Jasper 

et al., 1994; Rau et al., 1996; Popp et al., 1998). Application of the b factor for the reconstruction of pCO2 is much 

debated (e.g., Wilkes and Pearson, 2019) and an adaptation of CCM by the alkenone producers inevitably hampers 

the application of the proxy. However, there are examples of alkenone-based pCO2 reconstructions reliably 

reproducing glacial-interglacial pCO2 variability (Palmer et al., 2010; Jasper and Hayes, 1990; Bae et al., 2015), 95 

potentially related to specific local conditions. As the b value is best represented by a linear relationship to nutrient 
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availability (Bidigare et al., 1997), we here rely on the analysis of barium over calcium ratio (Ba/Ca) in planktonic 

foraminiferal shells that correlates with seawater Ba concentration, and hence is used as a proxy for seawater 

[PO4
3-] (Lea and Boyle, 1989; Lea and Boyle, 1990b, a; Hönisch et al., 2011) .  Therefore, we here also explore 

the recently suggested S/Mg ratio as a proxy for [CO3
2-]  as an additional constraint for past seawater carbon 100 

chemistry.  

 

We This study focuses on the Benguela Upwelling System (BUS) as it is one of the major upwelling regions, 

where strength of the upwelling and productivity changed over glacial/interglacial timescales. Whether upwelling 

intensity was stronger during glacial periods (Oberhänsli, 1991; Little et al., 1997; Kirst et al., 1999; Mollenhauer 105 

et al., 2003) or interglacial periods (Diester-Haass et al., 1992; Des Combes and Abelmann, 2007) is, however, 

still debated. Inconsistencies in the published body of work is possibly caused by seasonal differences between 

proxy signal carriers and/or major spatial (depth) related gradients, which is especially true for regions with strong 

CO2 flux dynamics. Exchange of CO2 between seawater and atmosphere at these regions may be constrained only 

by applying multiple proxies that comprise various living depth and seasonal preference. This at the same time 110 

allows comparing proxies and investigate (in)consistencies between different carbon system- and temperature 

proxies. 

 

 115 
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Figure 1: Cross sections of the Benguela Upwelling System depicting the characteristics of an upwelling 

region, where a) nutrient- and CO2-rich waters are upwelled to the surface, b) high productivity contributes 

to the drawdown of CO2 in the surface layers via the biological carbon pump, and c) the upwelling strength 

and efficiency of the biological carbon determines variations in the marine inorganic carbon chemistry, 

and hence CO2-flux.  120 

 

2 Oceanographic setting 

The BUS is one of the four major Eastern Boundary Upwelling Systems, it is located between 15° and 34° S along 

the coastline of Africa (Hill, 1998; Hart and Currie, 1960). This region bears the highest productivity today among 

the Eastern Boundary Upwelling Systems, fuelled by nutrients transported mainly from the higher latitudes. 125 

Advection of the cold and nutrient rich water is a persistent phenomenon throughout the year (Carr, 2001; Chavez 

and Messié, 2009) and the magnitude of the particulate organic carbon (POC) flux from the surface to the deep 

exceeds 20 gC m-2 yr-1 (Henson et al., 2011; Laws et al., 2000; Devries and Weber, 2017). 

 

The BUS is associated with the South Atlantic anticyclonic gyre which gives rise to upwelling on its’ southeastern 130 

flank where it meets the African continent (Peterson and Stramma, 1991). The low-pressure system over western 

South Africa causes a pressure gradient between the continent and the ocean and thereby strengthen the southerly 

wind stress off the coast of Angola and Namibia. The interplay between the equatorward trade winds, the Coriolis-

force, and the presence of the continental boundary lead to the offshore transport of surface waters. As such, this 

causes coastal upwelling of nutrient-rich South Atlantic Central Water (formed in the western South Atlantic; 135 

Stramma and England, 1999) and Antarctic Intermediate Water (AAIW). The upwelled waters are transported 

equatorward along the coast of Africa via the Benguela Current (BC) giving rise to high biological productivity. 

Filaments of high productive waters can be seen extending from the African continent (Fig. 2). Finally, the Walvis 

Ridge potentially plays a role in affecting local hydrography and hence the position of the upwelling (Peterson 

and Stramma, 1991).  140 

 

The BC with its two main branches, the Benguela Oceanic Current and the Benguela Coastal Current, is the major 

northward flowing component of the BUS which joins the poleward flowing Angola Current in the north 

(Stramma and England, 1999). This convergence zone is located between 15°S and 18°S and is known as the 

Angola-Benguela frontal zone. The upwelling zone is bounded by warm current systems, the Angola Current 145 

system in the north and the Agulhas Current system in the south (Shannon and Nelson, 1996; Shillington, 1998; 

Shannon and O’toole, 2003). Hence, the BC is composed of a mixture of waters originated not only from the mid-

latitude surface waters of the Central Southern Atlantic Ocean and the Southern Ocean but also from the Indian 

Ocean (Gordon, 1986; Lutjeharms and Valentine, 1987). This creates a north-to-south decrease in surface water 

temperature and salinity in the region (Santana-Casiano et al., 2009). Hydrographic changes in the region over 150 

glacial cycles have been related to changes in the transfer of Indian Ocean waters through Agulhas leakage 

variability (Knorr and Lohmann, 2003; Peeters et al., 2004; Scussolini and Peeters, 2013).  
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The BUS region is characterized by year-round upwelling but intensity varies over time due to the seasonal shift 

of the South Atlantic gyre. This results in stronger upwelling intensities in June-August compared to the rest of 155 

the year (Santana-Casiano et al., 2009; Kämpf and Chapman, 2016). The spatial and temporal dynamics of the 

BUS result in large variability in the associated CO2 flux. Predominantly, it acts as a CO2 source (Laruelle et al., 

2014; Brady et al., 2019; Roobaert et al., 2019), but this may be interrupted by periods during which it acts as a 

CO2 sink due to the high primary productivity (Gruber et al., 2009; Gregor and Monteiro, 2013).  

 160 

 

Figure 2: Map showing the location of sediment core 64PE450-BC6-PC8 and the dominant currents 

shaping the characteristics of the Benguela Upwelling System. The map is overlain with the distribution of 

surface water chlorophyll-a concentration of July 2023 obtained from Global Ocean Biogeochemistry 

Analysis and Forecast (E.U. Copernicus Marine Service Information; https://doi.org/10.48670/moi-00015). 165 
High chlorophyll-a concentrations indicate the high productivity and nutrient-rich upwelled waters of this 

region today. 

 

3 Materials and methods 

Samples were taken from box core 64PE450-BC6 and piston core 64PE450-PC8 retrieved from the south flank 170 

of the Walvis Ridge, both taken at the same location (approximately -20.29 S, 10.35 E) at a water depth of ~1375 

mbss. The box core consisted of 40.5941.5 cm of sediment, whereas the piston core collected 1453 cm (cut into 

https://doi.org/10.48670/moi-00015
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15 sections, of which we used dated the first 100 cm within this study). The top of the piston core was missing 

and, hence, we combined both theused the BC and to supplement the missing top of the PC to and obtain a near 

continuous record with a composite depth of 141.5 cm, which we here refer to as 64PE450-BC6-PC8. The 175 

composite record was sampled with a resolution varying between 2 and 5 cm to optimize coverage of the glacial-

interglacial transition. All samples were freeze-dried and subsequently split in sub-samples to obtain lipid 

biomarkers and foraminifera from the same core depth.  

3.1 Foraminiferal sample cleaning 

Due to their high abundance in upwelling regions as well as common use in paleoclimate reconstructions (e.g., 180 

Spero and Lea, 1996), we here selected specimens of Globigerina bulloides for the planktonic foraminifera-based 

records. Freeze-dried samples were washed over a 63 µm sieve, dried and further dry sieved to separate size 

fractions 150-315 µm and 315-425 µm. Specimens of G. bulloides were picked from the latter size fraction for 

analysis of oxygen and carbon isotopes, minimizing any potential impacts of ontogeny. However, as much more 

specimens were needed, the smaller size fraction was used for radiocarbon, element / calcium (El/Ca), and boron 185 

isotope analysis. The foraminifer’s size has been shown to affect boron isotopes of several planktonic foraminifera 

species (Hönisch and Hemming, 2004; Henehan et al., 2013; Henehan et al., 2016), and hence size fraction need 

to be minimized to avoid inducing uncertainties related to ontogenetic variability. The species investigated within 

those studies (T. sacculifer, G. ruber, O. universa) are all symbiont-bearing planktonic foraminifera that are 

affected by pH change in their microenvironments due to the symbionts’ physiological processes (i.e., respiration, 190 

photosynthesis). The degree of pH alteration is dependent on symbiont abundance/density, which is proportional 

to foraminiferal shell size. To avoid such impact on shell δ11B, we here used G. bulloides, which is a symbiont-

barren species.  To construct a benthic foraminiferal carbon isotope record, specimens of Cibicidoides 

wuellerstorfi were picked from the 315-425 µm size fraction. 

 195 

Foraminiferal samples were cleaned prior to the analysis of El/Ca ratios and stable isotopes, following an adapted 

protocol of Barker et al. (2003). This adapted protocol is as follows: for the analysis of the shells’ element 

concentrations in solution and the boron isotopic composition, specimens were carefully cracked using a scalpel 

to open up the chambers and release potential clay content from the inside. The samples were subsequently 

transferred to acid cleaned 1.5 mL vials (Treff) and rinsed three times with deionized water (Milli-Q), twice with 200 

methanol, followed by another thorough rinse with deionized water, using ultra-sonification for each rinsing step. 

To remove all organic material from the shells, samples were placed in a hot block and oxidized with NH4OH-

buffered 1% H2O2 solution for 45 minutes at 90 °C. To ensure complete removal or organic material, this step 

was repeated up to three times based on visual inspection. After the oxidative cleaning, the samples were 

transferred to new pre-cleaned vials (Treff) and leached with diluted acid (1 mM HNO3) followed by rinsing the 205 

samples three times with deionized water. Because the boron isotope analysis is very sensitive to contamination 

two additional leaching steps with 1% NH4OH were added followed by rinsing with deionized water before the 

acid leaching. Samples for El/Ca and δ11B analysis were finally dissolved in 500 µL 0.1 M ultra grade HNO3 and 

in 75-80 µL 0.5 M ultra grade HNO3, respectively. 

 210 
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Specimens taken for the analysis of El/Ca ratios with LA-Q-ICP-MS and for the measurement of δ18O and δ13C 

were cleaned following the same clay removal and oxidative cleaning step as described above but without cracking 

the shells before the cleaning steps.  

3.2 Radiocarbon analysis 

Radiocarbon analysis (14C/12C) on 50-100 specimens of well-preserved shells of G. bulloides were performed at 215 

Laboratory of Ion Beam Physics, ETH Zürich. The analysis of 14C/12C followed the protocol described in Wacker 

et al. (2013; 2014). Briefly, samples were measured with a gas ion source in a Mini Carbon Dating System 

(MICADAS; Synal et al., 2007) with an automated method for acid digestion of carbonates (Wacker et al., 2013). 

Samples were placed in 4.5 mL exetainers vials (Labco Limited®, UK) and purged with a flow of 60 mL min-1 of 

helium for 10 minutes and subsequently leached with 100 µL 0.02 M ultrapure HCl with an automated syringe to 220 

remove adsorbed contaminants. Analysis of the released CO2 from both the leachate and remaining sample 

provided confirmation for the near complete removal of contaminants. The released CO2 from the leachate was 

directly transported by helium to a zeolite trap and injected into the ion source for 14C/12C analysis. The remaining 

leached sample was acidified with 100 µL ultrapure H3PO4 (85%) and heated at 60 °C for a minimum of 1 hour. 

The released CO2 was then injected in the ion source for analysis (Wacker et al., 2014; Fahrni et al., 2013). The 225 

difference between the radiocarbon values of the leachate and leached samples were less than 5%. Radiocarbon 

determinations are given in the conventional radiocarbon ages and corrected for isotopic fractionation via 13C/12C 

isotope ratios. Calibration was performed using the Marine20 calibration curve (Heaton et al., 2020) with a local 

correction to the marine reservoir age (ΔR) of 146 ± 85 14C years (Dewar et al., 2012). These calculations were 

computed using the Bayesian age-depth model in the Bacon v2.3 package for the R statistical programming 230 

software (Blaauw and Christen, 2011). 

3.3 Analysis of stable oxygen and carbon isotopes 

Pre-weighed 20-40 µg of the shells of G. bulloides were dissolved in orthophosphoric acid and analysed at 71 ℃ 

by a Kiel IV device coupled to a MAT 253 Isotope Ratio Mass Spectrometer (IRMS, Thermo Fischer Scientific®) 

at the NIOZ. Analyses were calibrated using standard bracketing (NBS-19) and the NIOZ house standard (NFHS-235 

1; Mezger et al., 2016) was used to monitor drift. Accuracy and precision for δ13C = 1.922 ± 0.05 ‰ and δ18O = 

-2.189 ± 0.11 ‰ were calculated across several analytical runs (± 1σ SD, n = 47). 

3.4 Analysis of foraminiferal Element/Calcium ratios 

Prior to the analysis of the samples in solution, a few planktonic foraminifera specimens were screened for 

preservation to minimize the possibility of diagenetic overprint affecting the geochemical signature of the shells. 240 

For this, the ratios of 23Na/43Ca, 24Mg/43Ca, 25Mg/43Ca, 27Al/43Ca, 55Mn/43Ca 88Sr/43Ca were simultaneously 

monitored during the ablation of single chambers of G. bulloides by Laser Ablation Quadrupole Inductively 

Coupled Plasma Mass Spectrometer (LA-Q-ICP-MS). Laser ablation data was acquired on 60-µm diameter spots 

with a repetition rate of 4 Hz and a laser energy density of ~1 J cm-2. The JCp (Porites sp. coral) nano-pellet was 

used to monitor instrumental drift and JCt (Tridacna gigas giant clam; Okai et al., 2004), MACS-3 and the NIOZ 245 

Foraminifera House Standard-2-Nano-Pellet (NFHS-2-NP; Boer et al., 2022) provided further quality control on 
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the measurement. NIST SRM610 was used as calibration standard. Data was evaluated both as profiles and shell 

averages. 

 

Approximately 40-50 specimens of G. bulloides were dissolved for solution analyses using a Sector-Field 250 

Inductively Coupled Plasma Mass Spectrometer (SF-ICP-MS, Thermo Fischer Scientific® Element-2). Applied 

cleaning procedure is based on Barker et al. (2003) as discussed above. A pre-scan of calcium concentrations 

([Ca2+]) was performed on an aliquot of 30 µL of the dissolved samples and based on that data subsequently all 

samples were diluted to match [Ca2+] (100 ppm) for element analyses. Isotopes of 11B, 25Mg, 138Ba were measured 

in low resolution and 32S in medium resolution to avoid interference. All samples were measured against 4 ratio 255 

calibration standards (De Villiers et al., 2002) and alternated with 0.1 M HNO3 in between samples to increase 

the efficiency of wash-out. All samples are drift-corrected using the NFHS-1 standard (Mezger et al., 2016) and 

three additional standards: NFHS-2 (Boer et al., 2022), JCp, and JCt (Okai et al., 2004), to evaluate accuracy and 

precision of the analytical runs. Uncertainty from the internal precision on the basis of short term stability is < 2 

% for both B, Mg, and Ba, and S. Samples were analysed in replicates yielding an uncertainty of < 3.25 µmol 260 

mol-1 for B, < 0.02 mmol mol-1 for Mg, and S, and < 0.14 µmol mol-1 for Ba.  

3.5 Micro-distillation and boron isotope analysis 

Approximately 150 specimens of G. bulloides were cleaned for the analysis of boron isotopes. Boron was 

separated from the calcium carbonate matrix via the micro-distillation technique (Gaillardet et al., 2001; Wang et 

al., 2010; Misra et al., 2014). 70 µL of the sample was placed on the lid of a Teflon® fin-legged conical beaker (5 265 

mL) and placed upside down on a hotplate at 100 ℃ for 20-24 hours. The fin-legged vials were wrapped in 

aluminium foil to provide a heat gradient for a more efficient separation of boron. Once the micro-distillation was 

complete, the vials were carefully removed from the hotplate while turning them over and subsequently left for 

cooling. Sample residue was removed with putting new lids on the beakers and each sample was diluted with 0.2 

M HF + 0.2 M HNO3 for a pre-scan of the boron concentration ([B]). Based on the results of the pre-scan, a final 270 

dilution was made to set [B] at 5 ppb for the analysis of δ11B. 

 

Analysis of the micro-distilled samples was performed at the NIOZ on a Neptune Plus Multi-Collector Inductively 

Coupled Mass Spectrometer (MC-ICP-MS, Thermo Fisher Scientific®) equipped with high performance 

extraction cones (Jet sample cone and ‘X’ skimmer cone) to maximize sensitivity for boron. Samples were injected 275 

using a Savillex® 50 µL min-1 C-flow nebulizer and Teflon® Scott type spray chamber. Beams of 10B and 11B were 

measured on L3 and H3 Faraday cups equipped with amplifiers using 1013Ω resistors (Misra et al., 2014; Lloyd 

et al., 2018). The instrument was tuned to obtain a stable sensitivity, typically 15-25 mV ppb-1 B. 

 

Solutions of 0.2 M HF + 0.2 M HNO3 were used for rinsing throughout the analytical run between analyses, and 280 

as matrix for each sample and standard. The analysis followed the approach of sample-standard bracketing using 

NIST 951 as reference standard. All samples and quality control standards were analysed in duplicates and thus 

here average values with ± 2σ standard deviations are reported. Samples with a replicate precision higher than ± 

0.6 ‰ (2σ) were excluded from this study. A coral standard (Chanakya and Misra, 2022) was treated with the 

complete carbonate cleaning and micro-distillation procedure for each analytical sequence and repeatedly 285 
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analysed to monitor long term precision (δ11B = 24.57 ± 0.65 ‰ 2σ, n = 64). Additionally, non-micro-distilled 

AE-121 standard was analysed within each run for quality control (δ11B = 19.48 ± 0.33 ‰ 2σ, n = 46).  

 

In addition to the coral standard, the initial test analysis to validate the boron purification method and instrumental 

accuracy and precision also included repeated measurements of seawater (Southern Ocean, δ11B = 39.72 ± 0.25 290 

‰ 2σ, n = 5) and a boron standard (AE-121) mixed with CaCO3 (trace metal basis, Acros Organics®) to mimic 

foraminiferal calcium concentrations (δ11B = 19.53 ± 0.25 ‰ 2σ, n = 18).  

 3.6 Estimating past salinity and foraminifera-based temperatures, pH, and pCO2 

Sea surface temperatures (SST) were calculated from foraminiferal Mg/Ca values using the species specific 

temperature calibration of Mashiotta et al. (1999),  295 

Mg/Ca = 0.47 (±0.03)0.107(±0.003)*SST,         (1) 

where propagated error was calculated based on 1 standard deviation of the duplicate analysis of Mg/Ca and the 

uncertainty derived from the calibration equation. Mg/Ca values of planktonic foraminifera are known to be 

affected by salinity changes as well (Gray et al., 2018; Dueñas-Bohórquez et al., 2009), however, a correction for 

this effect requires an independent estimate for salinity and a species-specific calibration. The same is true for the 300 

effect of pH (Gray et al., 2018; Gray and Evans, 2019). Moreover, as both effects are relatively minor and adding 

them would also introduce additional uncertainties, we here decided to refrain from correcting for salinity and/or 

pH when calculating past temperatures. 

 

For calculating past carbonate chemistry, salinity is an important parameter and it was estimated based on its 305 

conservative relationship with relative sea level change (Waelbroeck et al., 2002). Modern seawater salinity of 

the BUS (35.43 ± 0.30) was derived from the WOCE Global Data Version 3.0 (Schlitzer, 2000) based on the five 

closest datapoints to the location of core 64PE450-BC6-PC8. 

 

The measured δ11B values of G. bulloides were converted into pH (Hemming and Hanson, 1992) using Eq. (2):  310 

pH = pKB – log(-(δ11Bsw – δ11Bborate) / (δ11Bsw – α * δ11Bborate – ε)),     (2) 

where the equilibrium constant, pKB (Dickson, 1990), was calculated for each sample based on SST derived from 

the Mg/Ca values of G. bulloides and salinity based on sea level. The fractionation factor between B(OH)3 and 

B(OH)4
-, expressed here as α, is 1.0272 ± 0.0006, from which fractionation, ε, is derived as 27.2 ± 0.6 (Klochko 

et al., 2006). Boron isotopic composition of seawater, δ11Bsw is 39.61 ± 0.2 ‰, based on a large range of 315 

temperature, salinity and depth conditions (Foster et al., 2010), and the δ11B of borate was calculated from the 

measured δ11B of G. bulloides using the species- specific core-top calibration from Raitzsch et al. (2018). 

 

Uncertainty on the reconstructed pH value was determined for each sample through error propagation that 

considered the above described uncertainties of pKB, α, ε, δ11Bsw and the standard deviation (external uncertainty) 320 

based on duplicate or triplicate analysis of foraminiferal δ11B. 
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Concentrations of CO2 are based on pH and inorganic carbon chemistry calculations using the PyCO2SYS 

package (Humphreys et al., 2022) in Python version 3.11.2. Uncertainty is propagated for each computed carbon 

chemistry parameter as described in Humphreys et al. (2022).  325 

3.7 Lipid extraction and alkenone analyses  

Lipids were extracted from the freeze-dried and homogenized sediment samples using an accelerated solvent 

extractor (ASE® 350, DIONEX®) at the NIOZ. Samples were extracted with dichloromethane (DCM) and 

methanol (9:1, v/v) at 100 ℃ to obtain the total lipid content and subsequently dried under N2 gas at 35 ℃ in a 

Caliper TurboVap LV Evaporator. Samples were then redissolved in DCM and run through an Na2SO4 column to 330 

eliminate excess water. The extract was passed through an alumina (Al2O3) column and separated into apolar, 

ketone and polar fractions using a mixture of hexane : DCM (9:1, v/v), hexane : DCM (1:1, v/v), and DCM : 

methanol (1:1, v/v), respectively. All extracts were dried under N2 and the ketone fraction was further utilized to 

obtain the relative abundance and δ13C values of the long chain alkenones. 

 335 

Ketone fractions were dissolved in ethyl acetate and concentrations of alkenones were measured using a gas 

chromatograph with flame ionization detection (GC-FID, Agilent® 6890N) equipped with silica capillary column 

(CP-Sil 5 CB; 50 m x 0.32 mm, 0.12 μm film thickness). The temperature program of the GC-FID analyses used 

an initial temperature of 70 ℃ that increased with a rate of 20 ℃ min-1 to 200 ℃ followed instantly by heating at 

a rate of 3 ℃ min -1 until it reached 320 ℃ where it remained constant for 10 minutes. 340 

 

Based on the initial concentration measurement, samples were diluted with ethyl acetate to allow stable carbon 

isotope analysis using a gas-chromatography-isotope ratio-mass spectrometer (GC-IRMS, Thermo Fisher 

Scientific® Delta V Advantage Trace® 1310). The GC-IRMS was equipped with crossbond trifluoropropylmethyl 

polysiloxane columns (Rtx-200; 60m x 0.32, 0.5 μm film thickness) and helium as a carrier gas. Each sample was 345 

manually injected on the GC-IRMS. The starting temperature of the GC-IRMS was 70 ℃ which then increased 

with 18 ℃ min -1 until reaching 250 ℃. After reaching that temperature heating continued with 1.5 ℃ min -1 until 

320 ℃, where it was kept stable for 25 minutes. Samples were analyzed for carbon isotopes in duplicates and 

instrumental accuracy was monitored through measurement of the of B5 n-alkane mixture standard (provided by 

A. Schimmelmann, Indiana University) every day (i.e. after every 6-7 samples). The isolink II combustion reactor 350 

was oxidized for 10 minutes every day before the start of standard and sample analysis. Each analysis was 

followed by 2 minutes of seed oxidation to maintain the reactor oxygenated.  

3.8 Calculation of alkenone based temperatures and pCO2 

Alkenone-based sea surface temperatures were derived from ketone unsaturation index (U
K ́ 

37), where U
K ́ 

37 is 

defined as the relative abundance of di- and tri-unsaturated C37 methyl alkenones (Prahl and Wakeham, 1987):  355 

U
K ́ 

37  = C37:2 / (C37:3 + C37:2).          (3) 

Sea surface temperature was then calculated using the alkenone temperature calibration model developed for the 

Atlantic region (Conte et al., 2006).  
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Fractionation of stable carbon isotopes during photosynthesis (εp37:2) can be computed based on the difference 

between the carbon isotopic ratio of aqueous carbon dioxide (δ13CCO2) and the organic biomass (δ13Corg):  360 

εp37:2 = [(δ13CCO2 + 1000) / (δ13Corg +1000) – 1] x 1000.      (4) 

δ13CCO2 was derived from the carbon isotopes of planktonic foraminifera, G. bulloides (δ13Cp) corrected for the 

temperature dependent fractionation during calcite precipitation (Romanek et al., 1992) and the fractionation 

between dissolved and gaseous carbon dioxide (Mook et al., 1974). 

 365 

δ13Corg was calculated from the carbon isotopes of di-unsaturated alkenones (δ13C37:2) as  

δ13Corg = [(δ13C37:2 + 1000) */ (1 – Δδ13Corg + 1)] – 1000,       

 (5) 

where Δδ13Corg expresses the carbon isotopic difference between C37:2 and DIC, that has been defined between 3 

– 6 ‰ based on culture experiment (Riebesell et al., 2000; Schouten et al., 1998; Van Dongen et al., 2002). We 370 

here take the commonly applied value of 4.2 ‰ (Bijl et al., 2010; Pagani et al., 2005; Pagani et al., 2010; Pagani 

et al., 2011; Seki et al., 2010; Palmer et al., 2010). 

 

Based on εp37:2 , aqueous CO2 ([CO2]aq) can be reconstructed as followed (Hayes, 1993; Pagani et al., 2002):  

[CO2]aq = b / (εf - εp37:2),          (6) 375 

where εf  stands for the carbon isotopic fractionation associated with carbon fixation estimated as 25 ‰ (e.g., Popp 

et al., 1998). Parameter b expresses all physiological factors affecting total carbon isotope fractionation that 

includes cell shape and size, membrane permeability as well as the algae’s growth rate (Jasper et al., 1994; Rau 

et al., 1996; Popp et al., 1998; Conte et al., 1994; Riebesell et al., 2000). Earlier studies using phytane (Bice et al., 

2006; Damsté et al., 2008) and alkenone (Witkowski et al., 2018) to reconstruct pCO2 estimated b for a mean 380 

value of 165 - 170 ‰ kg µM-1. As growth rate and thereby nutrient availability have a large influence on the 

physiological factors and, accordingly, b values are highly correlated to [PO4
3-] (Bidigare et al., 1997), b can be 

best described at our core site by estimating past changes in [PO4
3-] (Pagani et al., 2005). Here, [PO4

3-] is estimated 

based on the barium over calcium ratio (Ba/Ca) ratio of planktonic foraminifera, G. bulloides (Lea and Boyle, 

1989; Lea and Boyle, 1990b, a; Martin and Lea, 1998; Lea and Boyle, 1991). We therefore constrain past changes 385 

in b as (Pagani et al., 2005): 

b = [118.52 x (Ba/Ca x [PO4
3-]modern / Ba/Camodern) + 81.4284.07].     

 (7) 

Average modern PO4
3- concentration ([PO4

3-]modern) in the BUS is 0.63 µmol kg-1 (obtained from GLODAPv2023; 

Lauvset et al., 2024; Olsen et al., 2016; Key et al., 2015) whereas the corresponding modern foraminiferal Ba/Ca 390 

value (Ba/Camodern) was analyzed here (19.08 µmol mol-1). Eq. (7) basically assumes a constant and proportional 

relation between Ba and [PO4
3-]. This seems reasonable for our purposes as surface water Ba concentration has 

been shown to be reflected proportionally in foraminiferal Ba/Ca (Lea and Boyle, 1991; Hönisch et al., 2011) and 

the cold nutrient rich surface waters are generally enriched in dissolved barium (e.g., Davis et al., 2020). 

 395 
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To calculate atmospheric pCO2 from aqueous concentrations of CO2, Henry’s law was applied using the 

temperature and salinity dependent solubility constant, K0.  

pCO2 = [CO2]aq / K0.          (8) 

Uncertainty propagation for the calculated pCO2 values was based on the errors derived from 1 standard deviation 

of duplicate analysis of δ13C of the extracted ketone fraction, δ13C of foraminifera and Ba/Ca values of 400 

foraminifera. The largest uncertainty in alkenone based pCO2 reconstructions originates from the estimated past 

[PO4
3-] and to incorporate potential variation in nutrient levels during the deglaciation, an additional uncertainty 

of 0.2 µmol kg-1 was assigned to the known modern values of [PO4
3-]. This uncertainty is based on the gradient 

measured today in upper 50 meters of the water column, which is more than the variability observed in surface 

water today, but also includes potential changes in the upwelled waters. 405 

4 Results 

4.1 Radiocarbon ages 

The calibrated mean radiocarbon ages generally increase with depth in both BC and PC cores used here. Sediment 

core 64PE450-BC6 comprises 41.540.59 cm, where the core-top sample was dated at 4.863 ± 0.284 ka BP, and 

an age of 9.551  ± 0.248 ka BP at 40 cm bsf (Fig. 3 a). This suggests an average sedimentation rate of about 0.01 410 

cm yr-1, with somewhat higher values (> 0.01 cm yr-1) at the top 12 cm. . Radiocarbon dates at the top of the box 

core (0-11 cm) indicate reversed ages (4.9 ka at 11 cm and 5.2 ka at 1 cm uncalibrated ages). This interval also 

corresponds to elevated Ca/Al, Ti/Al, and Si/Al ratios measured through X-Ray Fluorescence (XRF)-core-

scanning (Supplementary Fig. S1; Weltje and Tjallingii, 2008). The enrichment of elements commonly found in 

coarse fractions and heavy minerals is likely due to the removal of fine fraction material by winnowing, which 415 

may have also contributed to the loss of the last 4.8 ka BP in the sedimentary record. Alternatively, the upper 10 

cm bsf have constant ages due to bioturbation. Radiocarbon analyses from sediment core 64PE450-PC8 included 

6 samples of the upper 100 cm of sediment collected. The age-depth model for this core suggests 9.994 ± 2.042 

ka BP years at 5 cm bsf depth (Fig. 3 b) and indicates the presence of a disturbed core-top. , which is likely due 

to the loss of sediment at the top (common during piston coring). Low sedimentation rates (0.002 cm yr-1) 420 

characterize the top 10 cm bsf of this core which is approximately in line with the sedimentation rate at the deepest 

parts of box core 64PE450-BC6 (~0.006 cm yr-1). However, average sedimentation rate in 64PE450-PC8 is lower 

(0.004 cm yr-1) compared to the average values observed in the box core, which, in part, might also be due to 

compaction with increasing depth. The top 60 cm bsf of the core shows a steady increase in sedimentation rate 

(0.002 – 0.007 cm yr-1) and therefore the low average values may be attributed to a relatively abrupt decrease in 425 

sedimentation rate at 60 cm bsf in the core, which correspond to an age of 23.586 ± 0.410 ka BP. Between 60 and 

100 cm bsf depth sedimentation rates remain 0.001 – 0.002 cm yr-1.  

 

To align the box core and the piston core, lightness reflectance data (l*) was used here as an additional constraint 

to the radiocarbon dates (Supplementary Fig. S2). The detailed reflectance data (63 µm resolution) shows an 430 

overlap between the two cores. The top 4.24 cm of 64PE450-PC8 (i.e., the disturbed core-top) overlaps with 

approximately 30.14 cm of 64PE450-BC6 (i.e., from 10.45 to 40.59 cm bsf). This suggests severe compression 
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of the top of 64PE450-PC8, likely due to the piston coring, but the overlap can still be used to align the age model 

of the two cores. Due to the uncertainty related to sediment deposition at these depths and the low sedimentation 

ratebetween 60 and 100 cm bsf of the piston core, further analysis of this study focuses only on the 41.540.59 cm 435 

bsf of the core 64PE450-BC6 and upper 65.5 cm bsf of core 64PE450-PC8, which together comprise a near-

continuous time interval from ~5 to 27 ka BP .  

 

Figure 3: Age-depth model of a) 64PE450-BC6 (box core) and b) 64PE450-PC8 (piston core) based on 

radiocarbon dates, where blue diamonds indicate the sampling depth for 14C analysis. The calibration of 440 
radiocarbon ages and the figure was generated using the Bacon v2.3 package for the R statistical 

programming software (Blaauw and Christen, 2011). Calibration was performed using the Marine20 

calibration curve (Heaton et al., 2020) with a local carbon reservoir correction (ΔR) of 146 ± 85 14C years 

(Dewar et al., 2012). Red dashed lines show mean values of the best fitted model and grey dashed lines 

indicate 95% confidence interval. Note, that both panel a) and b) show the complete sediment records 445 
acquired by the box corer and piston corer, respectively, but due to the disturbed core-top and potential 

hiatus in the piston core as indicated in panel b), only  the topthe interval from 4.25 to 65.5 cm of 64PE450-

PC8 was utilized used for temperature and carbon system reconstruction in this study.  

 

4.2 Stable isotopes  450 

Carbon isotope values of the planktonic foraminifer, G. bulloides, vary between -1.4 ‰ and 0.6 ‰ (VPDB). The 

glacial part of the record is marked by relatively high δ13C values with a maximum of 0.6 ‰ at 23.3 ka BP. After 

that, there is a rapid decrease to a minimum value of -1.1 ‰ at 22 ka BP, then it stabilizes around -0.8 ‰ until 18 

ka BP (Fig. 4 a). The δ13C values of the benthic foraminifer, C. wuellerstorfi, although measured at somewhat 

lower resolution, range between 0.5 ‰ and 1.0 ‰. It appears that there is a continuous increase in benthic δ 13C 455 

from 27 ka BP until the most recent sample (Fig. 4 a).  

 

The δ18O values of G. bulloides range from 0.0 ‰ (VPDB) to 3.2 ‰ with the most depleted values at ~8 ka BP 

(Fig. 4 b). During the glacial, δ18O values decreased from the highest values at 23.6 ka BP (peak glacial), showing 

rapid changes during the deglaciation, subsequently decreasing again gradually before reaching a plateau at about 460 
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10 ka BP. During the Holocene these values stayed relatively stable and varied only between 0.0 ‰ and 0.6 ‰ 

(VPDB). The trend differs from the lower resolution benthic record of δ18O measured on C. wuellerstorfi (Fig. 4 

b). The benthic foraminiferal δ18O values are consistently higher compared to the G. bulloides values, which is in 

line with lower bottom water temperatures. This difference, however, appears smaller during the end glacial than 

during the Holocene. 465 

 

 

Figure 4: a) δ13C and b) δ18O values of planktonic (G. bulloides) and benthic (C. wuellerstorfi) foraminifera 

plotted with the age model. Red triangles indicate the ages tied with radiocarbon dates.  

 470 

The boron isotopic composition of the planktonic foraminifer, G. bulloides, ranges between 15.1 and 17.0 ‰ 

(relative to NIST 951) with larger variations during the last 6-5 ka BP (Fig. 5 a). The lowest δ11B values were 

observed at 5.4 ka BP, whereas δ11B values reach a maximum at 13.5 ka BP. Prior to this maximum value, δ11B 

values show an increasing trend from 27.8 to 13.5 ka BP (Fig. 5 a). 

 475 

The carbon isotopic composition of the alkenones shows its heaviest value (-22.4 ‰) at 19.6 ka BP. After this 

peak, δ13C values reach a minimum (-23.4 ‰) at 15.9 ka, then increasing again towards the most recent values (-

22.7 to -22.9 ‰; Fig. 5 b).  

4.3 Element/Ca ratios in the planktonic foraminifer, G. bulloides 

Mg/Ca reaches maximum values of 2.85 and 2.81 mmol mol-1 at 16.9 and 6.7 ka BP, respectively (Fig. 5 fc). 480 

Substantially lower values characterise the interval between 16.9 and 6.7 ka BP, when Mg/Ca ranges between 
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2.46 and 2.69 mmol mol-1. The lowest values (2.30-2.40 mmol mol-1) were found at 4.9-5.4 ka BP and 21.3-27.8 

ka BP.  

 

 485 

The general trend in foraminiferal Ba/Ca shows an increase from glacial to recent (Fig. 5 d). The general trend in 

foraminiferal B/Ca values shows an increase from glacial to recent (Fig. 5 c). The highest B/Ca value (52 μmol 

mol-1) is observed in the top of the record and the lowest value (35 μmol mol-1) at 22.8 ka BP. Somewhat higher 

variability is observed between 22.8 and 15.2 ka BP, with B/Ca values ranging between 35 and 48 μmol mol-1. 

 490 

S/Ca values show a trend opposite to that observed for B/Ca. While S/Ca shows a maximum (1.33 mmol mol-1) 

at 18.6 ka BP, it decreases to 0.93 mmol mol-1 at 5.1 ka (Fig. 5 d). Overall the record shows a gradual change in 

foraminiferal S/Ca, without much scatter. 

 

The oldest part of the record shows relatively stable Ba/Ca values at around 6 μmol mol-1. During the last 15 ka 495 

BP, however, more variability is observed for Ba/Ca (Fig. 5 e). The here observed trends are not resembling the 

trends observed for either B/Ca or S/Ca. However, the overall increasing trend from 27 ka BP to present day 

Ba/Ca values somewhat coincides with the trend in B/Ca.The highest Ba/Ca value (19.1 µmol mol-1) is observed 

in the top of the record and the lowest values, 4.02 and 3.94 µmol mol-1 at 17.6 and 27.8 ka BP, respectively.  

 500 

Mg/Ca reaches maximum values of 2.85 and 2.81 mmol mol-1 at 16.9 and 6.7 ka BP, respectively (Fig. 5 f). 

Substantially lower values characterise the interval between 16.9 and 6.7 ka BP, when Mg/Ca ranges between 

2.46 and 2.69 mmol mol-1. The lowest values (2.30-2.40 mmol mol-1) were found at 4.9-5.4 ka BP and 21.3-27.8 

ka BP.  

 505 
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Figure 5: Measured a) foraminiferal δ11B, b) alkenone δ13C, and foraminiferal element concentrations: c) 

Mg/Ca,B/Ca, d) S/Ca, e) Ba/Ca , f) Mg/Ca plotted over the past 27 ka BP at the Benguela Upwelling System. 

Error bars show ± 1σ standard deviation. When error bars areis not shown, the error of the duplicate 510 
measurement is smaller than the symbol.  

 

4.4 U
Ḱ 

37 sea surface temperatures  
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The alkenone based U
Ḱ

37 record shows continues increase throughout the deglaciation (Supplementary Fig. S13). 

The lowest value (0.56) was measured at 27 ka BP which increases to 0.58 until 26.3 ka BP. The interval of 22.0 515 

- 19.6 ka BP records again low U
Ḱ 

37 values, which then follows a steady increase until 9.6 ka BP. During the early 

Holocene U
Ḱ 

37 values stabilize around 0.7 until 6.8 ka BP when values slightly start to decrease reaching 0.67 in 

the uppermost part of the record.  

5 Discussion 

5.1 Local temperatures over the LGM, last deglaciation, and Holocene  520 

The proxy-based temperature reconstructions indicate most of the well-knownresemble to the Southern 

Hemisphere climate responses based on the gradual temperature increase from 23 ka BP onwards (e.g., Petit et 

al., 1999; Suggate and Almond, 2005; Clark et al., 2009). However, comparing these reconstructions with both 

Northern (NGRIP; North Greenland Ice Core Project Members, 2004) and Southern Hemisphere events, such as 

found within the δ18O ice core record from EPICA-Dome C (EPICA-Dome C; EDC; Jouzel et al., 2007) records, 525 

it is evident that individual climate events show similarities also to the trends observed in the Northern Hemisphere 

(Fig. 6). This suggests that the location of 64PE450-BC6-PC8 was affected by both Northern and Southern 

Hemisphere climatic changes.  for the last 27 ka BP (Fig. 6). 

 

 530 

The U
Ḱ 

37 based sea surface temperature reconstruction shows low temperatures (18.2 – 18.5 °C) between 23.6 and 

18.6 ka BP (Fig. 6 a) corresponding toindicating the last glacial maximum (LGM; e.g., Clark et al., 2009; Hughes 

et al., 2013) within this record. Oxygen isotopes from the shells of G. bulloides show more enriched values during 

the same period and hence indicate low sea surface temperatures, in agreement with U
Ḱ 

37, however, with 

significantly more scatter in δ18O values (1.5 – 3.2 ‰). Foraminiferal δ18O values not only depend on temperature, 535 

but also on the stable oxygen isotopic signature of the water and hence salinity. Meltwater is transported to large 

distances with the AAIW, that will result in larger regional impact in the upwelling zone than in the global ocean. 

Therefore, shifts in e.g. sea ice extension or river runoff, might also have impacted local seawater δ18O and hence 

foraminiferal oxygen isotopes. Similarly, multiple studies suggested an overall reduced Agulhas leakage during 

the LGM compared to deglacial levels (Pether, 1994; Flores et al., 1999; Rau et al., 2002; Peeters et al., 2004; 540 

Charles and Morley, 1988; Wefer et al., 1996; Franzese et al., 2006), and changes therein could also have resulted 

in enhanced δ18O variability during the LGM. 

 

Our record shows a rapid warming following the onset of deglaciation from ~17.8 ka BP observed in both the 

alkenone- based SST reconstruction and δ18O values of G. bulloides (Fig. 6 d). The last glacial termination 545 

(approximately 18 ka BP) resulted in the extensive release of meltwater on the Northern Hemisphere, weakening 

Atlantic Meridional Overturning Circulation (AMOC; Mcmanus et al., 2004; Rahmstorf, 2002; Denton et al., 

2010; Hodell et al., 2017; Pöppelmeier et al., 2023). This, in turn changed global heat distribution and hence the 

cooling in the North Atlantic region known as the Heinrich Stadial 1I (e.g., Bond et al., 1993; Cacho et al., 1999; 
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Mcmanus et al., 1994), which was accompanied by a warming in the Southern Hemisphere (e.g., Calvo et al., 550 

2007; Wang et al., 2013). 

 

Following the Heinrich Stadial Ithe rapid warming, further, more gradual temperature increase during the 

deglaciation is evident from the U
Ḱ 

37 temperatures, while only a slight decrease in δ18O values is observed between 

14.6 and 13.0 ka BP. TDuring the sameh time interval the e Antarctic Cold Reversal (ACR) during the Bølling-555 

Allerød Northern Hemisphere warming (e.g., Pedro et al., 2016; Blunier et al., 1997) is known to cause, resulted 

in  either no change (Lamy et al., 2007) or a slight decrease in SST (Vandergoes et al., 2008). Moreover, hereHere, 

the data resolution does not allow assigning trends in temperature change to this event, and we observed only 

minor changes between the trends in alkenone (increasing trend) and the foraminiferal Mg/Ca based SST 

(decreasing trend; Fig. 6 b) and the δ18O (decreasing trend) signal. Offsets likely reflect differences in either 560 

seasonality between coccolithophores and G. bulloides (Leduc et al., 2010), or differences in water depth where 

the signals were recorded. Hence, minor differences between the records could be due to a shift in productive 

season and or a shift in depth habitat. Because offsets are only minor (< 4.4 ℃) unravelling these signals is highly 

speculative. 

 565 

At approximately 12.7 ka BP, we see a slight increase in both U
Ḱ 

37 and δ18O based temperatures, which is in line 

with the general Southern Hemisphere temperature record (Rühlemann et al., 1999; Kaplan et al., 2010; Panmei 

et al., 2017; Blunier and Brook, 2001). The Younger Dryas (Alley, 2000 and references therein) started around 

this time with another meltwater discharge into the North Atlantic, weakening overturning circulation, and leading 

to simultaneous warming in the Southern Hemisphere (Broecker, 1998; Stocker, 1998).  570 

 

The most recent part of the record, the early Holocene, shows a cooling trend following the 8.2 ka BP event known 

from the Northern Hemisphere . Although represented by only one datapoint in our record, the observed warming 

at around 8 ka BP (here and in Ljung et al., 2008) could be a local signal due assigned to the well-known cooling 

in the Northern Hemisphere in line with the AMOC slow down during this event (Barber et al., 1999; Matero et 575 

al., 2017). 

 

The SST reconstruction based on foraminiferal Mg/Ca values is generally in line with the U
Ḱ 

37 and δ18O record, 

confirming overall trends. Absolute values, however, differ, which is likely due to depth differences between the 

proxy signal carriers. Alkenone-based temperature reconstruction agrees with reported SSTs from the upper 50 m 580 

of the Northern Benguela (Santana-Casiano et al., 2009), while the foraminifer based temperature (Mg/Ca) 

corresponds to the values observed somewhat deeper (100-150 m, GLODAPv2023; Lauvset et al., 2024; 

Supplementary Fig. S4). Vertical dispersion of G. bulloides may be large, but this suggested living habitat 

corresponds well with previously reported living depths for this species (Tapia et al., 2022; Lessa et al., 2020; 

Rebotim et al., 2017). Whereas the LGM and the deglaciation are clearly visible in Mg/Ca, U
Ḱ 

37, and the δ18O 585 

records, during the Holocene the Mg/Ca temperature record clearly deviates from the other two. The offset 

between U
Ḱ 

37 and foraminiferal Mg/Ca values during the LGM is about 3.0 °C, and this gradually increases to 5.6 

°C during the early Holocene. This implies that foraminiferal Mg/Ca values are affected by other factors than SST 

alone. Partial dissolution of foraminiferal shells at depth may also affect Mg/Ca values and thereby reconstructed 
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temperatures through the preferential loss of Mg2+ (Dekens et al., 2002; Regenberg et al., 2006). However, impact 590 

of dissolution is probably minor only as the water depth at site 64PE450-PC8-BC6 is less than 1.4 km and G. 

bulloides is reported to be less sensitive to dissolution compared to other surface dwellers (Mekik et al., 2007). 

Whereas Mg/Ca values may also be affected by early diagenesis (Hover et al., 2001; Kozdon et al., 2013; Ni et 

al., 2020; Panieri et al., 2017; Sexton et al., 2006; Stainbank et al., 2020), El/Ca ratios in the shell’s profile obtained 

through laser ablation did not show any evidence for such diagenetic effects . 595 

 

Nevertheless, the trends observed in the different proxies seem to accurately represent  the deglacial climate 

patternsthe changes known for the Southern Hemisphere, albeit that foraminiferal Mg/Ca based temperatures may 

be affected by some changes in depth habitat or seasonality of G. bulloides. 

 600 
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Figure 6: Reconstructed sea surface temperatures (SST) based on a) the alkenone unsaturation index, U
Ḱ 

37, and b) foraminiferal Mg/Ca, c) δ13C analysed in benthic (C. wuellerstorfi) and planktonic (G. bulloides) 

foraminifera with corrected values, and d) δ18O of benthic (C. wuellerstorfi) and planktonic (G. bulloides) 605 
foraminifera, and e) δ18O ice core record from EPICA-Dome C (EDC; Jouzel et al., 2007) and North 

Greenland Ice Core Project (NGRIP; North Greenland Ice Core Project Members, 2004) shown for the 

past 27 ka BP. Corrected δ13C values of G. bulloides marked with green diamonds in panel c) are based on 

temperature (derived from Mg/Ca ratios; Bemis et al., 2000) and [CO3
2-] values (derived from pH and TA; 

Bijma et al., 1999), and arrows indicate the direction of the correction. Modern day SST at core site 610 
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64PE450-BC6-PC8 is approximately 20.7 ℃ (GLODAPv2023; Lauvset et al., 2024; Santana-Casiano et al., 

2009). Grey shaded areas mark climate events as labelled on the uppermost panel. Blue shaded area in 

panelMajor climate events (YD: Younger Dryas; B-A: Bølling-Allerød interval; HS1: Heinrich Stadial 1) 

are marked above the top panel as reference. Horizontal error bars in panel a) show the age uncertainty 

based on 95 % confidence interval of the calibrated age. Blue shaded area in panel b) indicates the error 615 
propagated from temperature calibration uncertainty and ± 1σ standard deviation of the duplicate 

measurement of the samples. Analysis of the stable isotopes (panel c and d) provided an error smaller than 

the symbols shown on the figure. Arrows in panel c) indicate the direction of the correction on the 

planktonic foraminiferal δ13C.  

 620 

5.2 Biological carbon pump 

Comparing benthic (C. wuellerstorfi) and planktonic (G. bulloides) trends in δ13C shows they have similar values 

during the last glacial and higher δ13C values for the benthic than for the planktonic foraminifera during the 

interglacial. This is in contrast to what one would expect if BCP determined the foraminiferal carbon isotope 

signatures (Hain et al., 2014; Hilting et al., 2008). Generally, DIC in surface waters is enriched in 13C as the BCP 625 

results in preferential export of 12C rich organic matter to the deeper water masses, where it is released through 

remineralization. The efficiency and strength of the BCP is known to be affected by multiple processes, such as 

the formation, sinking, and interaction of aggregates with other minerals (Fowler and Knauer, 1986; Alldredge 

and Silver, 1988; Armstrong et al., 2001; Francois et al., 2002; Klaas and Archer, 2002; De La Rocha and Passow, 

2007; Turner, 2015), and the efficiency is generally reflected by the offset in 13C between the surface and deep 630 

water (Δδ13C). However, species specific offsets from equilibrium values between seawater DIC δ13C and 

foraminiferal carbonate δ13C can challenge interpretation of the Δδ13C and are likely responsible for the here 

observed lower δ13C values of G. bulloides compared to C. wuellerstorfi. 

 

Application of foraminiferal δ13C as a proxy for BCP efficiency requires a direct relation with the δ13C of DIC. 635 

Benthic foraminiferal δ13C values, and in particular δ13C values of the epifaunal C. wuellerstorfi, are generally 

considered faithful recorders of the δ13C values of DIC, with carbonate δ13C values being close to equilibrium 

(Thomas and Shackleton, 1996; Hilting et al., 2008). The stable carbon isotopic composition of DIC today is 

approximately 0.5 – 0.7 ‰ at a depth of 1.3 km along the latitude 20° S (Kroopnick, 1980; Kroopnick, 1985; 

Sarnthein et al., 1994; Curry and Oppo, 2005; Schmittner et al., 2013) which agrees well with the value inferred 640 

from C. wuellerstorfi in the uppermost sample (6.0 ka BP) of core 64PE450-BC6-PC8. 

 

Stable carbon isotopic values from planktonic foraminifera have been shown to be generally lower with respect 

to the equilibrium values of DIC (Kahn, 1979; Kahn and Williams, 1981; Oppo and Fairbanks, 1989; Spero, 

1992), indicating a strong biological impact (i.e. the vital effect; e.g., Spero, 1992; De Nooijer et al., 2014; Erez, 645 

2003). For instance, symbiont-bearing species such as O. universa and T. sacculifer show offsets in δ13C as much 

as 1.8 and 1.4 ‰ respectively, depending on irradiance level (Spero, 1992; Spero and Lea, 1993). Although G. 

bulloides lacks algal symbionts (Hemleben et al., 1989) it has been shown to deviate even more from the ambient 

seawater δ13C values (Kahn and Williams, 1981; Spero and Lea, 1996). Several factors likely add together to the 

observed offset, such as carbon chemistry ([CO3
2-]; 0.3-1.0 ‰; Spero et al., 1997; Bijma et al., 1999), temperature, 650 
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(2.4-2.6 ‰; Bemis et al., 2000) and respiration (Zeebe et al., 1999). More recently, Bird et al. (2017) suggested 

that also bacterial symbiosis may partly explain the observed offset for δ13C in G. bulloides. While symbiont 

photosynthesis contributes to elevating foraminiferal δ13C due to preferential 12C removal, geochemical signature 

of G. bulloides is more likely to be controlled by the respiration of photoautotrophic cyanobacteria that produces 

depleted CO2 and hence, decreases shell δ13C values (Bird et al., 2017). Irrespective of the process involved, a 655 

substantial correction has to be applied to the δ13C values of G. bulloides to approach the heavier seawater DIC 

δ13C values. Increasing temperature (Bemis et al., 2000) and [CO3
2-] (Bijma et al., 1999) will also increase the 

offset between δ13C values of G. bulloides and seawater [DIC] suggesting that larger corrections are required 

during the Holocene than during the last glacial. Still, when the corrections for changes in temperature and [CO3
2-

] are applied, trends remain the same, showing the highest δ13C values of planktonic foraminifera during the LGM 660 

(Supplementary Fig. S53). Hence, despite the uncertainties in interpreting the absolute planktonic δ13C values, the 

trend in Δδ13C should still provide a measure for changes in the efficiency of the BCP. We here applied a constant 

equilibrium offset of 2.4 %a combined correction for both temperature  (Fig. 6 c) which is the average correction 

required based on temperature variation in our record (Bemis et al., 2000) and [CO3
2-] (Bijma et al., 1999), derived 

from foraminiferal Mg/Ca and δ11B, respectively (Fig. 6 c). This The value is close to the offset of the δ13C value 665 

of the core-top sample with the modern δ13C values of the DIC is approximately 2.4 ‰ (Kroopnick, 1985), which 

agrees with the applied corrections based on temperature and [CO3
2-] in the most recent samples (2.4 – 2.8 ‰; 

4.9-5.4 ka BP). . 

 

Offsets between the δ13C of the planktonic and benthic foraminifera reflect differences in the BCP, but potentially 670 

also changes in the dominant water mass at the cores’ locations. Intermediate depths of the South Atlantic are 

dominated today by the Antarctic Intermediate Water and this likely remained the major water mass over the last 

glacial cycle (Pahnke et al., 2008; Howe et al., 2016; Gu et al., 2017). However, it is unclear whether the depth 

range of the AAIW increased (Muratli et al., 2010) or decreased (Ronge et al., 2015; Li et al., 2021) during the 

LGM compared to present day. In the western Atlantic, δ13C values of benthic foraminifera suggest persistence 675 

of AAIW water masses at the depth of our core site (e.g., Curry and Oppo, 2005). As our values correspond to 

those found by Curry and Oppo (2005) we suggest also here a sustained influence of southern water masses, with 

the δ13C value of DIC in the AAIW during the LGM remaining relatively similar to present day. The analysed 

δ13C values of benthic foraminifera from the LGM in this study show on average values that are 0.2 ‰ lower 

values than those during the Holocene.(Curry and Oppo, 2005) 680 

 

Variations in the stable carbon isotopic composition of surface seawater DIC are attributed to the changes in 

biological activity and air-sea exchange (Lynch-Stieglitz et al., 1995). While enhanced biological activity will 

result in an increase of δ13C values of DIC, more intense air-sea exchange will contribute to a decrease. In 

upwelling regions, the upwelled light carbon may still result in a net decrease in δ13C values despite the enhanced 685 

biological activity. The analysed δ13C values of benthic foraminifera from the LGM in this study show on average 

values that are 0.2 ‰ lower values than those during the Holocene. This glacial-interglacial difference is 0.1 ‰ 

higher than what was observed in the western South Atlantic (Curry and Oppo, 2005), which could be caused by 

a change in the δ13C of the source waters during the glacial. Still, an offset of 0.1 ‰ due to the less efficient air-

sea CO2 exchange does not affect the final conclusions. 690 

Formatted: Subscript

Formatted: Superscript



25 
 

 

Summarizing the observed impacts, assuming a more or less stable presence of AAIW at intermediate depth and 

after correcting for offsets, a larger difference between planktonic and benthic foraminiferal δ13C values during 

the LGM compared to the Holocene is evident (Fig. 6 c; and Supplementary Fig. S53), suggesting a more efficient 

BCP.  695 

5.3 pCO2 record of the BUS over the last 27 ka BP 

Although δ11B in foraminifera shells and δ13C of alkenones are the most commonly applied methods to reconstruct 

pCO2, these proxies are only very rarely compared in the same record. Since these proxies are recording different 

components of the speciation of carbon in seawater and have different biases, they not necessarily have to show 

similar results. Here, we observe only a modest change in pH (8.08-8.23, derived from foraminiferal δ11B) during 700 

the last deglaciation, whereas pCO2 values show a change from 180 to 280 ppm (derived from δ13C of alkenones) 

(Fig. 7). 

 

Minor variability in pH was reported previously by Raitzsch et al. (2018) for the Walvis Ridge for the same time 

interval, although reconstructed pH values were slightly higher (0.10-0.14 pH units). Although only minor, the 705 

offset is in line with the core studied here being closer to the upwelling area, as the major upwelling area extends 

only about 200 km out of the coast today (Lutjeharms and Meeuwis, 1987; Lutjeharms and Stockton, 1987). With 

lowest pH values in the core of the upwelling area and values increasing towards the open ocean, the trend in the 

offset between the two areas is minor but in the right direction. 

 710 

Using pH and total alkalinity, pCO2 can be calculated, suggesting higher pCO2 compared to the known 

atmospheric values over the past 27 ka BP (Fig. 7; Petit et al., 1999). Calculated pCO2 based on the foraminiferal 

δ11B only match seawater equilibrium values at 13.5 and 8.2 ka BP, corresponding to two major climate events 

(the Bølling-Allerød event and the 8.2 ka BP cooling event, respectively), which is likely. Whereas the Bølling-

Allerød event correspondrelateds to the maximum changes in AMOC intensity. Whereas the Bølling-Allerød 715 

event marks an AMOC amplification, the 8.2 ka BP event is generally assumed to be associated to a reduced 

AMOC was reduced around 8.2 ka BP due to the meltwater input in the North Atlantic (Matero et al., 2017; Barber 

et al., 1999; Pedro et al., 2016; Blunier et al., 1997). However, the calculated pCO2 values are associated with 

considerable uncertainty for a large part related to total alkalinity being ill-constrained. Using estimates of total 

alkalinity based on relative sea level change is debated (e.g., De La Vega et al., 2023) as this does not account for 720 

all changes in alkalinity on glacial-interglacial timescales. Because total alkalinity calculated based on the relative 

sea level change during the last deglaciation results in only a small (less than 10 ppm) offset, we here used constant 

alkalinity (2349 ± 11 µmol kg-1, GLODAPv2023; Lauvset et al., 2024) in combination with boron isotope-based 

pH to determine pCO2. The trends observed here are not affected by the alkalinity values used. 

 725 

The seawater pCO2 reconstruction based on the δ13C of alkenones follows past atmospheric pCO2 known from 

the Vostok ice core record remarkably well (Petit et al., 1999). This suggests that over the interval studied here, 

this remained more or less in equilibrium with the atmosphere with regard to CO2 and did not act as an appreciable 

source or sink. An offset is observed (about 65 ppm) during the Holocene, between 11 and 7 ka BP, when 
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alkenone-based reconstruction suggests somewhat lower pCO2 values compared to the ice core record, although 730 

this difference falls well within the uncertainty of the proxy. This could indicate a temporary transition of the area 

to a CO2 sink as the seawater becomes undersaturated with respect to CO2. 

 

The good agreement between alkenone-based and ice core pCO2 records suggests that previously recognized 

complications in applying this proxy may not be relevant at this particular setting. Adaptation of CCM by the 735 

alkenone producers can hamper the use of the proxy under low pCO2 conditions (Badger, 2021). However, the 

mechanisms that may control CCM in the alkenone producers are not fully constrained (e.g., Reinfelder, 2011), 

and effectiveness of the CCM may differ between species (e.g., Goudet et al., 2020; Heureux et al., 2017). As the 

reconstruction of pCO2 values based on alkenone δ13C provided a reasonable record here and in another upwelling 

region (Palmer et al., 2010), application of this proxy in upwelling sites may be able to rely on the classical concept 740 

of Previous studies have observed discrepancy between alkenone based pCO2 reconstruction and ice core records 

(Palmer et al., 2010; Andersen et al., 1999; Zhang et al., 2013; Witkowski et al., 2020; Jasper et al., 1994) , which 

could be related to disequilibrium between sea surface and the atmosphere, especially at dynamic sites like 

upwelling regions. However, it may also be explained by the mechanism of CO2 uptake in the algal cell. Current 

application of the alkenone pCO2-proxy assumes the passive diffusion of CO2 (Bidigare et al., 1997; Laws et al., 745 

1995). Additional uncertainty in the alkenone-based pCO2 reconstruction may derive from the estimation of the b 

factor. . However, much evidence indicates that alkenone-producers adapted a carbon concentrating mechanism 

(CCM; Stoll et al., 2019; Reinfelder, 2011; Bolton and Stoll, 2013; Badger, 2021), which enables carbon 

acquisition in the cell through the active pumping of HCO3
- to the chloroplast during low pCO2 conditions. While 

such mechanism inevitably hampers the application of the pCO2-proxy, efficiency of the CCM is potentially also 750 

affected by local conditions which may result in alkenone based pCO2 reconstructions at some sites still being 

able to reproduce glacial atmospheric values . Furthermore, it has been shown that CCM’s may induce their own 

isotopic fractionation . 

 

Also, pCO2 reconstructions based on alkenones 13C values are subject to uncertainties related to the b factor. The 755 

b value expresses the effect of multiple parameters related to the physiology of the alkenone producers (Jasper et 

al., 1994; Rau et al., 1996; Popp et al., 1998), which is best represented by a linear relationship to nutrient 

availability (Bidigare et al., 1997). Often modern, constant, [PO4
32-] is assumed to estimate the b factor for 

reconstructing pCO2 (Pagani et al., 1999; Zhang et al., 2013; Pagani et al., 2005; Witkowski et al., 2020), or. 

Aassuming that the membrane permeability has not changed significantly, one can correct for growth rate effects 760 

of the alkenone producers (Zhang et al., 2019; Zhang et al., 2020). Here, Wwe here relied on the analysis ofused 

foraminiferal  Ba/Ca, which  in planktonic foraminiferal shells as a proxy for seawater [PO4
3-]. Ba/Ca is suggested 

to reflect nutrient ([PO4
3-]) variations  but does not vary with temperature, salinity or carbon chemistry parameters 

(Lea and Spero, 1994; Hönisch et al., 2011) unlike other suggested nutrient proxies such as Cd/Ca (Oppo and 

Rosenthal, 1994; Allen et al., 2016) and Zn/Ca (Van Dijk et al., 2017). Thus, using this approach represents an 765 

efficient way to tackle address some of the uncertainties originating frorm local conditions. While uncertainties 

described for the above mentioned factors may impact minor changes in the pCO2 record, observed trends on 

glacial-interglacial timescales can be still interpreted.  
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Uncertainties in the different factors affecting pCO2 estimates urge to develop additional independent carbon 770 

system parameter proxies that can supplement the δ11B-pH proxy. Among the six variables, the most commonly 

tackled parameter is [CO3
2-] using element / calcium ratios (El/Ca) such as B/Ca  and more recently suggested 

S/Ca  and S/Mg . Alternative foraminifera based pCO2 reconstructions using core top calibrations for B/Ca  and 

S/Mg  are discussed in the Supplementary Material (Supplementary Text S1). Before unravelling differences in 

local carbon uptake and/or outgassing over glacial-interglacial cycles, it is important to decide which foraminifer-775 

based proxy records best reflects local carbon speciation. Although using B/Ca (Supplementary Fig. S4) and S/Mg 

(Supplementary Fig. S5) bring alkenone and boron-based pCO2 reconstructions closer together, inherent error 

propagation also renders the records more difficult to differentiate. Hence, although we note the necessity and 

possibilities to improve B-isotope based pCO2 reconstructions, we here base our down-core foraminifera-based 

pCO2 reconstruction on using boron isotopes only. 780 
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Figure 7: Reconstruction of a) pH based on δ11B of G. bulloides, and b) pCO2 based on δ11B of G. bulloides 

combined with a constant total alkalinity value of 2349 ± 11.07 µmol kg-1 (dark blues diamonds) and δ13C 785 
of alkenones (red diamonds). Modern day pCO2 value of the AAIW is approximately 326 ppm (Lauvset et 

al., 2024; Salt et al., 2015). Blues dashed line shows the Vostok ice core record of pCO2 (Petit et al., 1999). 

Light green and red shaded area represent propagated error for the foraminifera and alkenone based 

reconstructions, respectively. See further details on uncertainty propagation in the text.  

 790 

5.4 Change in the efficiency of BCP and CO2 disequilibrium 

Most obvious from comparing the alkenone and foraminifera based pCO2 reconstruction is the difference in 

amplitude of change on a glacial-interglacial time scale. Whereas the alkenone based reconstruction closely 

mimics atmospheric changes, the foraminifera-based reconstruction shows a constant pCO2. Because the G. 

bulloides are proliferating during the upwelling season, they likely primarily reflect the somewhat deeper 795 

upwelled water compared to alkenones which are formed e.g., by the surface dwelling coccolithophorids. This 

implies more intense drawdown and recycling of CO2 from the surface layers to the intermediate waters. The 

water upwelled in the BUS is AAIW and hence a relative increase in pCO2 in the upwelled waters implies 

enhanced CO2 storage in these waters. 

 800 
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Lower atmospheric CO2 during the glacial is likely explained by multiple processes. The larger extent of sea ice 

over the glacial Southern Ocean prevented CO2 escaping from seawater in an area today acting as a major CO2 

exchange region (Stephens and Keeling, 2000), whereas enhanced iron fertilization likely contributed to more 

efficient utilization and transport of carbon and nutrients to the deep (Martin, 1990; Martínez-García et al., 2014). 

Aeolian transport and dissolution in the shelf regions might have provided important sources of iron at that time 805 

(Martin, 1990; Tian et al., 2023), which . would locally influence air-sea carbon balance, still with minimum 

impact on global atmospheric pCO2 due to adjacent regions where excess carbon can be utilized. Also locally at 

the BUS, aeolian transport presumably increased due to the intensified trade winds (Stuut et al., 2002), although 

a more humid climate may (Stuut et al., 2002; Cockcroft et al., 1987) or may not (Shi et al., 1998; Partridge et al., 

1999) have prevailed in southwest Africa during the LGM. Although stronger winds may have provided sufficient 810 

iron for phytoplankton growth locally, excess iron input in the sub-Antarctic region most likely provided a much 

larger source for additional mid-depth CO2 storage (Martínez-García et al., 2014). A more efficient biological 

carbon pump, as indicated by the offset between the planktonic and benthic foraminiferal carbon isotope records, 

suggest that an increased supply of carbon in the upwelling areas from intermediate depths to the surface, may 

have been effectively counterbalanced. 815 

 

Concentrations of CO2 in the intermediate subsurface waters show on average comparable values during the 

Holocene and LGM, and hence imply a difference in the pCO2 gradients (ΔpCO2 = pCO2(intermediatesubsurface) - 

pCO2(surface)) between the surface and subsurface (and intermediate) waters (Fig. 8). Note that G. bulloides may 

migrate between approximately 50 to 400 m, which can affect the calculated pCO2 gradients. Still, G. bulloides 820 

represents a larger average depth than the alkenone-based record, and hence, carbon system conditions that are 

closer to those of the upwelled intermediate waters. Interglacial difference between alkenone and foraminifera-

based reconstruction shows ΔpCO2 value of about 642 ± 290 ppm, while during glacial times this difference 

increases to approximately 104 94 ± 290 ppm. Atmospheric pCO2 was significantly reduced during the LGM, 

hence the presence of an increased amount of CO2 at intermediate subsurface depths implies either enhanced 825 

upwelling or that the upwelled waters were richer in CO2 or both. Foraminifera-based proxies indicate more 

intense upwelling during glacial times (Oberhänsli, 1991; Little et al., 1997), but at the same time radiolarian 

based upwelling proxies suggest reduced upwelling (Des Combes and Abelmann, 2007). Due to its location and 

the influence of water masses both from the north and the south, cells of the BUS are characterized by different 

environmental conditions (e.g., temperature and nutrients)(e.g., temperature and nutrients; Emeis et al., 2018). 830 

During the LGM, cold source waters likely impacted the northern cells of the BUS more than its central and 

southern parts (Des Combes and Abelmann, 2007) affirming complexity of this upwelling system. While we may 

conclude that upwelling intensities were different from one cell to another, potentially also impacted by the 

offshore transition of the modern strong upwelling cells (e.g., Mollenhauer et al., 2002), increased cold water 

input does not necessarily correlate with stronger upwelling (Des Combes and Abelmann, 2007), potentially 835 

explaining conflicting interpretations.  
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Figure 8: Schematic comparison of interglacial and glacial pCO2 values. Red arrows mark average 840 
interglacial and glacial values calculated from the alkenone and planktonic foraminifera (pH and total 

alkalinity) based proxies of this study.  

 

Based on comparing pCO2 proxies, with G. bulloides recording primarily the upwelled waters and alkenones the 

surface waters, we see evidence for enhanced storage of carbon at depth during the glacial. This is in line with the 845 

reconstructed high productivity on the basis of elevated iron input in the high nutrient, low chlorophyll (HNLC) 

areas at that time in the sub-Antarctic region (Martínez-García et al., 2014). The resulting mid depth high CO2 

waters provide also at that time the source for upwelled waters in the BUS, which could have resulted in the local 

release of (part of the) stored CO2 if not prevented by an efficient biological carbon pump. If iron input was 

enhanced also locally (Stuut et al., 2002), this could increase the biological pump, which then acted as an effective 850 

cap on the stored carbon. Both remote and local enhanced iron supplies hence contributed to lowering 

atmosphericpreventing the release of mid-depth pCO2 during the glacial.  
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6 Conclusions 

Carbon system proxies were applied to demonstrate changes in inorganic carbon chemistry of the Northern 

Benguela Upwelling System over the last 27 ka BP. Temperature reconstructions based on both organic and 855 

inorganic proxies indicate that the BUS is generallymay be associated to climatic changes observed both in the 

Northern and Southern Hemisphere. While surface values of pCO2 reconstructed from δ13C of alkenones follow 

atmospheric changes of pCO2 remarkably well, the foraminifera-based reconstructions suggests minor variation 

in pCO2 at intermediate depthin the subsurface since the Llast Gglacial Mmaximum until present. Hence, the 

increased gradient of pCO2 between the surface waters and depth observed for the last glacial period provide 860 

evidence for enhanced storage of carbon in the Antarctic Intermediate Waters. Outgassing of CO2, however, could 

be effectively prevented by the biological carbon pump as also indicated by the offset in the δ13C of planktonic 

and benthic foraminifera.  
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