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Abstract. Arctic sea ice thickness (SIT) remains one of the most crucial yet challenging parameters to estimate. Satellite data

generally presents temporal and spatial discontinuities, which constrain studies focusing on long-term evolution. Since 2011,

the combined satellite product CS2SMOS enables more accurate SIT retrievals that significantly decrease modelled SIT errors

during assimilation. Can we extrapolate the benefits of data assimilation to past periods lacking accurate SIT observations?

In this study, we train a machine learning (ML) algorithm to learn the systematic SIT errors between two simulations of the5

model TOPAZ4 over 2011-2022, one with CS2SMOS assimilation and another without any assimilation, to predict the SIT

error and extrapolate the SIT prior to 2011. The ML algorithm relies on SIT coming from the two versions of TOPAZ4, various

oceanographic variables, and atmospheric forcings from ERA5. Over the test period 2011-2013, the ML method outperforms

TOPAZ4 without CS2SMOS assimilation when compared to TOPAZ4 assimilating CS2SMOS. The root mean square error

of Arctic averaged SIT decreases from 0.42 to 0.28 meters and the bias from -0.18 to 0.01 meters. Also, despite the lack of10

observations available for assimilation in summer, our method still demonstrates a crucial improvement in SIT. Relative to

independent mooring data in the Central Arctic between 2001 and 2010, mean SIT bias reduces from -1.74 meters to -0.85

meters when using the ML algorithm. In the Beaufort Gyre, our method approaches the performance of a basic correction

algorithm. Ultimately, the ML-adjusted SIT reconstruction reveals an Arctic mean SIT of 1.61 meters in 1992 compared to

1.08 meters in 2022. This corresponds to a decline in total sea ice volume from 19 690 to 12 700 km3, with an associated trend15

of -3 153 km3 per decade. These changes are accompanied by a distinct shift in SIT distribution. Our innovative approach

proves its ability to correct a significant part of the primary biases of the model by combining data assimilation with machine

learning. Although this new reconstructed SIT dataset has not yet been assimilated into TOPAZ4, future work could enable the

correction to be further propagated to other sea ice and ocean variables.
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1 Introduction20

In this study, we investigate an original approach combining data assimilation and machine learning to correct past model

estimations of sea ice thickness using present observations. While ground truth observations offer unparalleled accuracy, they

lack global coverage, contrasting with remote sensing observations that, although global, are associated with large uncertainties

due to necessary assumptions for estimation. At present, the best estimation is commonly obtained by integrating remote

sensing observations into models to reduce their biases. However, this approach relies on the availability of observations and,25

as a result, cannot help retrieve historical sea ice thickness. Studies focusing on long-term evolution, particularly those oriented

toward climate research, demand extensive and accurate time series of sea ice thickness, given the essential role sea ice plays

as the interface between ocean and atmosphere.

Arctic sea ice acts as a multifaceted and vital interface between the ocean and the atmosphere, playing a major role in

regulating energy exchange, reflecting sunlight, and influencing local weather patterns. Sea ice significantly influences marine30

ecosystems, providing habitat and migration routes for diverse species (Kahru et al., 2011; Frainer et al., 2017). As sea ice

melts, it injects freshwater into the ocean, affecting salinity levels and exposing the ocean to the atmosphere. Moreover, as

Arctic sea ice extent is declining due to warming (Comiso et al., 2008), the Arctic is becoming more navigable, opening up

new opportunities for maritime transportation and resource exploration, but also raising concerns about environmental impacts

and sustainable management of the region’s fragile ecosystems (Aksenov et al., 2017). Notably, the thickness of Arctic sea35

ice stands as a major unknown quantity as thicker ice, usually older and deformed, resists better to melting and mechanical

stresses. Its variations are intricately tied to the heat and freshwater budget, the sea ice dynamics, and the ecosystem.

The current deficiency in a comprehensive and accurate climate record for sea ice thickness (SIT) is attributed to the sparse

availability of SIT observations and the relatively recent integration of satellite technology. Although SIT observations have

been taken in situ (Lindsay and Schweiger, 2015) and by no less than five satellites, they generally suffer from severe represen-40

tativity issues, high uncertainties (Zygmuntowska et al., 2014) and lack both the temporal and spatial continuity that long-term

climate studies need. Consequently, model reanalyses of Arctic SIT diverge substantially (Uotila et al., 2019) and lack cred-

ibility. An extended reconstruction of Arctic sea ice thickness, along with its uncertainty estimates, is essential to unlocking

investigations on the Arctic climate, including heat budgets (Trenberth et al., 2019), freshwater fluxes (Solomon et al., 2021)

and its ecosystem (Arrigo, 2014).45

Physical-based sea ice models (e.g. Hunke and Dukowicz, 1997) can simulate reasonable sea ice thickness, yet SIT biases

in numerical models remain significant, originating from various factors, including external components like atmospheric or

ocean fluxes and internal aspects intrinsic to the model itself. Intercomparisons of SIT between state-of-the-art models thus

exhibit large deviations from one model to another in terms of spatial distribution (Johnson et al., 2012; Uotila et al., 2019;

Watts et al., 2021). Similarly, large deviations are observed when comparing satellite products (Sallila et al., 2019) or diverse in50

situ datasets, mostly due to differences in spatial and temporal coverage (Lindsay and Schweiger, 2015; Labe et al., 2018), and

in data processing methods, such as retracking algorithms for satellite altimeters (e.g. Tilling et al., 2018; Landy et al., 2020).
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Figure 1. Chronological conception of our study. Development of the ML algorithm is based on 2011-2022. Prediction by the ML algorithm

is done from 2011 backward in time until 1992. CS2SMOS serves for the development of our ML algorithm, while mooring data and remote

sensing observations provide for the evaluation of its prediction.

Since 2010, the merged remote sensing product CS2SMOS provides continuous SIT every winter combining data from

SMOS and CryoSat-2 for thin and thick ice respectively (Ricker et al., 2017), yet longer time series are required to conduct

climate studies. Assimilating CS2SMOS data in the coupled ocean-sea-ice model TOPAZ corrects a low SIT bias of roughly55

16 cm, reducing average RMS errors from 53 to 38 cm and further to 20 cm in March (Xie et al., 2018; Xiu et al., 2021). Can

we extrapolate the benefits of data assimilation to past periods without SIT observations? Brajard et al. (2020) introduced a

method to combine data assimilation (DA) with machine learning (ML) to built a hybrid numerical model. The present study

is applying this approach to ’rewind’ a climate record.

Machine learning has advanced to a point where it can effectively address the high dimensionality, complexity, and nonlin-60

earity inherent in dynamical systems (Rolnick et al., 2022), especially when combined with DA (Cheng et al., 2023). Recent

investigations demonstrated the potential of machine learning for sea ice, focusing on various objectives such as parameter-

izing subgrid-scale dynamics (Finn et al., 2023), emulating sea ice melt ponds (Driscoll et al., 2023), or skillfully predicting

DA increments of sea ice concentration across all seasons (Gregory et al., 2023). In the present study, our assumption is that a

suitable compression of the variables at play (e.g. via Empirical Orthogonal Function, EOF) identifies the complex nonlinear65

relationships between physical variables, without altering them (Liu et al., 2023).

In the present investigation, we train a machine learning algorithm to learn the systematic SIT errors between two versions

of the model TOPAZ4 over 2011-2022, with (TOPAZ4-RA) and without CS2SMOS assimilation (TOPAZ4-FR). Then, we

use the algorithm to predict the SIT error and extend the SIT estimates to periods before 2011 (Fig. 1). For this work, the

training period (2014-2022) supports algorithm development and includes a validation period (20% of the training period, in70

chronological order without randomization) to optimize hyperparameters. The test period (2011-2013) enables us to verify our

algorithm performances with the data held specifically for this purpose. The evaluation period (1992-2010) allows us to assess

the ML-adjusted SIT, called TOPAZ4-ML, compared to independent datasets.

Section 2 describes various datasets and the model TOPAZ4. Section 3 further explains the method used to combine DA

and ML. Section 4 presents the results and evaluation of the ML algorithm, as well as an assessment of the extended SIT time75

series with independent datasets, and highlights unprecedented outcomes from this brand-new product. Section 5 discusses the

limitations and uncertainties of this investigation.
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2 Datasets

2.1 CS2SMOS

The CS2SMOS sea ice thickness (SIT) product (Ricker et al., 2017) combines measurements from two satellite missions:80

CryoSat-2 (CS2) and Soil Moisture and Ocean Salinity (SMOS). CryoSat-2 (Wingham et al., 2006) utilizes radar altimetry

to measure the height of the ice surface above the water level, which is converted to sea ice thickness assuming hydrostatic

equilibrium. SMOS (Kaleschke et al., 2012) measures microwave emissions at 1.4 GHz, allowing to derive sea ice thickness

in thin ice. The combination of CS2 and SMOS better handles their individual deficiencies in accurately resolving thin (<~1m)

and thick (>~1m) sea ice floes, respectively. This advanced merged product provides the first accurate representation of the true85

sea ice thickness distribution, with such temporal continuity and spatial coverage. Due to challenges in differentiating between

sea ice leads and surface melt ponds during the melting season, the observation period is limited to October through April,

starting in 2010. The average uncertainty is typically around 0.50m, with CS2 uncertainties ranging from 0.1 to 1m and SMOS

uncertainties inferior to 1.1m in thin ice (Ricker et al., 2017). The novel year-round processing of CS2 by Landy et al. (2022)

was not considered here due to artefacts in the transitions from summer to winter.90

2.2 TOPAZ4

TOPAZ is a regional coupled ocean-sea-ice data assimilation system successfully implemented into the Arctic Ocean opera-

tional forecast, and version 4 is described in Sakov et al. (2012) and Xie et al. (2017). It is built on the HYCOM ocean model

(Bleck, 2002), coupled with a single-thickness-category sea ice model based on elastic-viscous-plastic (EVP) rheology (Hunke

and Dukowicz, 1997) and rudimentary thermodynamics (Drange and Simonsen, 1996). The data assimilation is based on a95

deterministic formulation of the ensemble Kalman filter (DEnKF, detailed in Sakov and Oke, 2008), using 100 dynamical

members to assimilate various ocean and sea ice observations (see Xie et al., 2018, 2023). Historically, the system has used the

atmospheric forcing fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) to drive the model. To

generate real-time forecasts, the system is forced by the operational weather forecast products. But for a long-time model run,

such as obtaining the Arctic reanalysis, we use the latest ECMWF atmosphere reanalysis product version 5 (ERA5, Hersbach100

et al., 2020).

Rather than learning from the winter-only satellite observations, which would not provide any information in the summer

season, two model runs have been produced: without and with assimilation, covering the years 1992-2022. Both of them are

forced by ERA5 and provide daily outputs on regular grids with a spatial resolution of 10 km. In this study, the raw ver-

sion of TOPAZ4, without assimilation, is hereafter called free run or TOPAZ4-FR. For TOPAZ4 with assimilation, called105

TOPAZ4-RA, we assimilated Sea Level Anomalies (SLA, https://doi.org/10.48670/moi-00146), Sea Surface Temperatures

(SST, https://doi.org/10.48670/moi-00169), in situ profiles of temperature and salinity (https://doi.org/10.17882/46219 and

https://doi.org/10.48670/00036), Sea Surface Salinity (SSS, Version 3.1 from the Barcelona Expert Center), sea ice concen-

trations (SIC, https://doi.org/10.48670/moi-00136) and sea ice drift (SID) from the Ocean and Sea Ice Satellite Application

Facility (OSISAF), and Sea Ice Thickness (SIT, https://doi.org/10.48670/moi-00126) from CS2SMOS (see Ricker et al., 2017).110
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The assimilation is performed weekly and SIT assimilation is only carried out from October to April after 2011. All the ob-

servations except for SSS and SID are downloaded from the Copernicus Marine Environment Monitoring Service (CMEMS).

Since 2004, the Ice-Tethered Profilers (ITP) can provide more density-layered profiles under sea ice and provide rare informa-

tion for measuring polar marine environments. However, its appearance in the TOPAZ4 system within a limited representative

ensemble brings considerable interference to the SIT update, especially in the summer absence of SIT observation. To over-115

come this nonphysical response of sea ice updating to ITP, TOPAZ4-RA implements some specific changes that have been

made posterior to Xie et al. (2017). In each assimilation cycle, the final optimization of the model state consists of two steps.

First, all ocean variables are updated as before. In the second step, the sea ice variables are updated but switching off the

covariance contributions from the in situ profiles. As a preprocessing step, if the sea ice concentration in TOPAZ4 free run falls

below 15%, we interpret this as the absence of sea ice (SIC = 0 and SIT = 0) in TOPAZ4-RA. This step ensures consistent sea120

ice extent across the two TOPAZ4 runs, allowing the ML algorithm to concentrate solely on adjusting the SIT.

2.3 ERA5

In this study, the atmospheric fields from the latest ECMWF Reanalysis ERA5 (Hersbach et al., 2020) are used as predictors

for our ML algorithm. They bring valuable information about environmental conditions that improve the bias prediction. The

following variables are used at the surface level: air temperature, mean sea-level pressure, total precipitation, and wind speed125

East-West and North-South. Daily averaged fields at the horizontal resolution of 31 km are projected onto the TOPAZ4 grid.

Finally, they are processed following the methodology outlined in section 3.

2.4 Sea ice age

The observed mean sea ice age (Korosov et al., 2018) is used as a predictor, which we consider more precise than a modeled

one. In this product, the advection scheme predicts the subsequent creation or loss of new ice by taking into account the130

observed divergence or convergence, freezing, or melting of sea ice. Sea ice concentration and daily gridded drift products

from the OSISAF are used by the algorithm. The primary benefit of the new technique lies in its capacity to produce unique

ice age fractions for every pixel in the output result, providing the ice age’s frequency distribution which allows us to obtain

the mean, median, or weighted average. This feature should aid the machine learning model, as the sea ice age is a proxy of

thickness; older ice has undergone more growth, freezing, and compression processes (Liu et al., 2020).135

2.5 Validation data: Mooring data

In situ observations have been gathered to evaluate our ML-adjusted daily SIT at different times and places in the Arctic.

Upward Looking Sonars (ULS) are the most statistically robust instruments deployed in the Arctic for measuring the sea ice

draft from underneath the drifting ice pack (Krishfield and Proshutinsky, 2006). In contrast, observations from floe-tethered

Lagrangian buoys only measure the thickness of a specific sea ice floe to which they are attached. The sea ice thickness from140

ULS can be derived assuming the hydrostatic equilibrium. In this work, SIT is computed by multiplying the sea ice draft by a
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factor of 1.12, which corresponds approximately to the ratio of mean seawater density and sea ice density (Sumata et al., 2023;

Johnson et al., 2012; Bourke and Paquette, 1989). A more precise conversion from sea ice draft to thickness is possible by using

appropriate snow and ice densities (Nab et al., 2024). The datasets listed in Table 1 are used during the validation period prior to

2011. They have been collected by the Beaufort Gyre Exploration Project (BGEP, https://www2.whoi.edu/site/beaufortgyre/),145

and the North Pole Environmental Observatory (NPEO, http://psc.apl.washington.edu/northpole/). Their locations are exhibited

in Supplements Fig. S1. We apply a 7-day running mean to smooth the mooring data, ensuring a more consistent comparison.

Then we choose the nearest grid point to each mooring site and extract daily SIT values from the model at those locations.

Table 1. Mooring data used in this study. Beaufort Gyre Exploration Project is abbreviated as BGEP, North Pole Environmental Observatory

as NPEO. ULS stands for Upward Looking Sonars.

Name Sensor Location Number of buoy Frequency of measure Years Length Accuracy of ice draft

BGEP ULS Beaufort Gyre 4 2-second 2003-2011 3 to 7 years ± 5/10 cm

NPEO ULS North Pole 1 5 to 10-minute 2001-2010 9 years ± 5 cm for level ice

2.6 Validation data: Remote sensing

ICESat-1 (Ice, Cloud, and land Elevation Satellite) emerged as a pioneering instrument for the assessment of sea ice thickness,150

specifically designed for polar regions (Schutz et al., 2005). Despite its innovative approach, the Geoscience Laser Altimeter

System (GLAS) encountered dysfunction that forced it to operate only for one-month periods out of every three to six months

to extend the time series of measurements. It operated from January 2003 to October 2009, resulting in 15 campaigns in the

Arctic. The process of converting the retrieved freeboard and the snow cover climatologies is further explained in Kwok and

Cunningham (2008), allowing ICESat-1 to provide mean SIT for each campaign at a spatial resolution of 25 km x 25 km. The155

satellite orbital configuration causes a data gap at latitudes north of 86◦ N, which is filled through interpolation (Yi and Zwally,

2009).

Envisat, the European Space Agency’s (ESA) satellite launched in 2002, has played a crucial role in advancing our un-

derstanding of Earth’s polar regions. The dataset (Hendricks et al., 2018) provides sea ice thickness derived from the Radar

Altimeter-2 instrument, developed by the ESA Climate Change Initiative (CCI) project. It provides monthly gridded sea ice160

thickness data for the freezing period (October-March) from 2002 to 2012. The spatial resolution is 25 km x 25 km in the

Arctic, with the pole hole north of 81.5◦ N.

Previous studies utilizing these satellites drew the following conclusions. Envisat, with its sensor’s coarse resolution (~2 km

footprint), primarily samples larger and thicker sea ice (Paul et al., 2018; Tilling et al., 2019), whereas ICESat-1’s sensor has a

much finer footprint (~170 m), enabling more detailed measurements. In comparison to airborne and ULS data, ICESat-1 SIT165

was consistently less than that of CryoSat-2 by ~50 cm (Kim et al., 2020).
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3 Method for Sea Ice Thickness Adjustment

Our adjustment method is applied as a post-processing operation on the TOPAZ4 free run, dependent on the state of the sea

ice but also the external forcing variables. The approach is based on the Empirical Orthogonal Functions (EOF) decompo-

sition, to reduce the dimensionality of our problem. This data compression enables us to apply a substantial adjustment that170

requires minimal computational resources and remains unaffected by static geographic features, such as the coastlines. During

the training period (2014-2022), we compute the Empirical Orthogonal Functions (EOF, spatial component of the statistical

patterns) and associated Principal Components (PC, temporal evolution of the statistical patterns) of the SIT biases. Applying

the method outside of the training period assumes that this EOF decomposition is stable back in time. Consequently, the EOFs

of the SIT biases are assumed invariant, while the target variables to predict are the PCs of SIT biases back in time (Fig. 2). The175

increments from data assimilation give the best estimates of SIT biases, and we learn to emulate these increments, similarly to

what is done in e.g., Brajard et al. (2020); Gregory et al. (2023). Using the increments rather than the innovations means that the

algorithm can be used with irregular observations while the data assimilation takes care of their interpolation. Likewise, each

input feature (listed in Tab. 2) is decomposed independently using either eight EOFs (sea ice thickness and age) or four EOFs

(all other variables). At first, 14 a priori relevant features are used as inputs, and then an arbitrary threshold on the variable im-180

portance enables an adequate selection of the best-suited variables. The input features are provided to the algorithm at different

time lags (in days): t-30, t-7, t0, t+7, t+30. Considering that using eight components for the EOF decomposition of the SIT

bias yields satisfactory results (Supplements Fig. S2), the subsequent results will exclusively focus on this configuration.

Long Short-Term Memory (LSTM) is a recurrent neural network designed to model chronological sequences and store

information on a long time range (Hochreiter and Schmidhuber, 1997). LSTM estimates the current prediction using data from185

its own prior prediction and enables the propagation of the bias backward in time like a nonlinear type of autoregressive process.

A unique model is developed for every single PC, as each depends on different input variables and time lag. The architecture

is composed of three backward-prediction LSTM layers alternated by dropout layers, which prevent overfitting by randomly

deactivating neural connections during training. The hyperparameters such as the number of components of the inputs, the input

variables, and their time lags can change between models, while the overall architecture remains the same. Details regarding190

the differences between each model can be found in Tab. 2. Since certain PCs proved more challenging to predict than others,

a comprehensive analysis of PC prediction is provided in appendix A to better understand the performances of each model.

Throughout this investigation, we discovered that the input variables have a much greater impact on the prediction than the ML

architecture.

The uncertainty associated with the nonlinear estimation is computed by introducing random walk processes to perturb the195

inputs of the LSTM. Multiple perturbation instances are employed to compute the ML-adjusted SIT, and the standard deviation

of the resulting ensemble of SIT predictions is used as uncertainty estimate. It is important to note that this uncertainty solely

characterizes the sensitivity of the algorithm to its inputs, and does not encompass the uncertainty associated with the training

process of the ML algorithm. The final uncertainty is computed using 50 members, with a random walk perturbation of the

inputs set at 100% of the original values scaled between -1 and 1.200
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Table 2. List of variables used as inputs of the machine learning algorithm. A crossed cell indicates that the variable is used for the corre-

sponding PC. The lower part of the table displays the parameters used to train each model.

Variable Source PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Sea ice thickness

TOPAZ4 Free run

x x x x x x x

Sea ice concentration x x x x x x x

Snow depth on top of sea ice x x x x x x x x

Sea surface height above geoid x x x x x x x x

Sea ice drift x velocity x x x x x x x x

Sea ice drift y velocity x x x x x x x x

Sea ice age Korosov et al. (2018) x x x x x x x x

Air temperature at 2 meters

ERA5

x x x x x x x x

Mean sea level pressure x x x x x x x

10m wind U x x x x x x x

10m wind V x x x x x x

Total precipitation x x x x x

Surface net Solar Radiation x x x x x x

Surface net Thermal Radiation x x x x x x x

Number of input features 12 13 14 14 12 13 9 13

Number of epochs 100 40 60 70 50 60 100 100

To predict SIT biases in the past, our method is the following. We project the values of each input variable onto its principal

components. As a result, we obtain a time series of each principal component for each variable. Then, the ML algorithm

predicts the PCs of the SIT bias, and thus SIT biases can be retrieved by inverting the EOF projection. Lastly, TOPAZ4-ML

SIT is reconstructed by adding SIT biases to TOPAZ4-FR. For a comprehensive assessment, we evaluate the total sea ice

volume as the product of sea ice thickness with concentration and the area of each grid cell.205

We introduce a trivial bias correction as a baseline to evaluate the efficiency of our ML adjustment. Monthly biases between

TOPAZ4-RA and TOPAZ4-FR are averaged from 2014 to 2022. The daily baseline SIT, called TOPAZ4-BL, is then obtained

by adding the monthly biases to the SIT from TOPAZ4-FR at each grid point for the corresponding month. Considering that

TOPAZ4 generally has too thin SIT in areas of thick ice, even this simple baseline a priori constitutes a solid benchmark.
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Figure 2. Illustration of LSTM prediction for one component of the EOF decomposition. The PCs of oceanographic and atmospheric features

are used as inputs (blue boxes) to predict one PC of the SIT bias (red box), while the EOFs are not used as predictors (in brackets). Multiple

variables var are used as input features at different times t and t plus/minus time lag n (because the LSTM can use input features backward

or forward in time).

4 Results210

After a brief analysis of the SIT biases of TOPAZ4, the sections below follow the standard steps of ML applications, first

testing the algorithm on omitted data (2011-2013) and then predicting SIT biases outside of the training and testing windows,

extending in our case the SIT data into the past (1992-2010).

4.1 Features of the SIT bias in TOPAZ4 on 2011-2022

Between 2011 and 2022, the mean Arctic sea ice thickness (SIT) within the ice edge (sea ice concentration (SIC) above 15%)215

ranges between 0.6 and 2 meters (Fig. 3 top) for the 2 versions of TOPAZ4 used in this study. Both SIT simulations show

a yearly cycle that is consistent with available observations. When assimilating CS2SMOS, TOPAZ4-RA SIT gets closer to

the observations (Fig. 3 top) and the spatial distribution improves drastically. The bias (Fig. 3 bottom) varies from year to

year and shows extreme peaks (mostly negative) often at the end of summer, as SIT errors accumulate in the absence of SIT

data for assimilation. The three most recent years (2020-2022) show lower SIT bias compared to earlier years, both against220

TOPAZ4-RA and in CS2SMOS datasets. The recent decline of SIT is less pronounced in the free running model, where the ice

is already thin.

A systematic bias of SIT can be noted all year round (Fig. 4): TOPAZ4-FR shows too thin ice in all areas of thick ice: the

central Arctic, close to the north of Greenland and the Fram Strait, while it depicts too thick sea ice in the Beaufort Gyre and the

Canadian Archipelago. The magnitude of this error fluctuates slightly with the seasons but remains a systematic feature. The225

underestimation of thick ice is widespread among other models (Johnson et al., 2012; Uotila et al., 2019) and can be explained

by too strong ice drift along the north of Greenland, advecting the multiyear ice westwards into the Beaufort Gyre, whereas

observations show a dense and stable area of multiyear ice to the north of Greenland. The complex geography of the Arctic
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Figure 3. Top) Daily sea ice thickness (m) averaged over the Arctic within the ice edge. TOPAZ4-RA, TOPAZ4-FR, and the CS2SMOS

merged-satellites product are displayed. Bottom) Bias of sea ice thickness (m) computed as follows: TOPAZ4-FR - TOPAZ4-RA.The

freezing periods from October to April are highlighted with a grey background.

region, notably in the Beaufort Gyre, is prone to sea ice entrapment either because ocean currents or winds are inaccurate or

due to deficiencies of the sea ice rheology.230

4.2 Evaluation of the ML performance on 2011-2013

After training the algorithm, we apply it to the period 2011-2022 and evaluate its performance on the test dataset from 2011

to 2013, which was excluded from the calculation of the EOFs and therefore from the training. Due to the high temporal auto-

correlation of SIT data over short time scales (±1 month), we chose two contiguous periods for the test and training datasets,

rather than using the method of random shuffling, to minimize dependencies between them. Hereupon the SIT predicted by235

our algorithm will be called TOPAZ4-ML for the sake of brevity. Our models predict the PC for each EOF (further analyzed in

Appendix A), which are then converted to SIT following the methodology presented in section 3. Within this section, we will

exclusively focus our evaluation on sea ice thickness.

As dimensionality reduction leads to an ineluctable loss of information due to truncation, the EOF decomposition introduced

an inherent error into our SIT retrieval. The EOF error (Fig. 5 middle) represents a lower bound that even optimal ML perfor-240

mance cannot mitigate. The highest RMSE values (0.5 m) are obtained in the marginal seas, particularly in the East Greenland

Sea, Beaufort Gyre, and Laptev Sea regions. Conversely, the error obtained by the baseline (Fig. 5 right) is considered as our

upper bound, being a trivial bias correction. In contrast with the lower bound, the RMSE values are much higher (up to 1.5 m)

from the Fram Strait to the whole Central Arctic as well as the Canadian Archipelago, areas where the free run is most biased.

The baseline RMSEs are however small in the marginal seas where sea ice is thin. The ML-adjusted error reveals patterns more245
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Figure 4. Seasonal bias of SIT (m) averaged over the test period (2011-2013), between left column) TOPAZ4-FR and TOPAZ4-RA, and

middle column) TOPAZ-BL and TOPAZ4-RA, and right column) TOPAZ4-ML and TOPAZ4-RA. The blue colour indicates that the

TOPAZ4 reanalysis SIT is thicker. The freezing period (top row) extends from October to April, while the melting season (bottom row)

spans from May to September.

similar to the EOF error (Fig. 5 left). This can be interpreted as the residual error being predominantly influenced by the trunca-

tion of the EOF rather than the ML error. The ML-adjusted RMSE increases by 0.2 m compared to the EOF truncation RMSE,

mostly visible in the Central Arctic, as well as the Beaufort Gyre. On average, the mean RMSEs of 0.24 m (ML-adjusted),

0.21 m (EOF), and 0.31 m (baseline) attest that the ML algorithm is more accurate than the baseline, with a performance close

to the optimal EOF capability. Despite the large RMSE observed in the Central Arctic, the baseline manages to provide an250

acceptable correction on average.

Similar behaviors have been noted for other error indicators, such as the bias and the correlation (not shown). This demon-

strates that our methodology can reconstruct the SIT with a relatively small error induced by the ML algorithm itself and that

the correction goes beyond a trivial monthly bias adjustment.

Over the test period, TOPAZ4-ML SIT is in strong concordance with TOPAZ4-RA SIT (Fig. 6), while still showing dis-255

cernible differences, specifically during the melting period of 2011 and the end of the growth period of 2013. The temporal

evolution of the mean SIT for all methods, including TOPAZ4-RA used as our reference, is shown for the entire training period

in Fig. 6. These time series show the artefacts related to the experimental setup throughout the summer, mostly due to the lack
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Figure 5. RMSE of SIT bias (m) over the test period (2011-2013) of left) ML-adjusted error, middle) EOF error, right) baseline error against

the SIT bias between TOPAZ4-FR and TOPAZ4-RA.

of sea ice thickness assimilation. As anticipated, the ML algorithm closely aligns with TOPAZ4-RA during the training period,

although the degree of agreement varies from year to year during the test period, supporting the assumption that the latter260

is largely independent of the training period. The baseline presents more substantial differences, mostly during the melting

period as well as in the later years of thinner ice. In particular, a secondary peak of SIT stands out at the beginning of each

melting period, occasionally thicker than the winter maximum. This eye-catching feature is also observed simultaneously in

TOPAZ4-FR, albeit to a lesser extent, as a statistical artefact of computing the average thickness: the thin ice melts first and

the surviving thick ice causes the average to increase where the ice is still present. It will be further addressed in section 5.265

The baseline however agrees robustly with TOPAZ4-RA during the growth season. This indicates that the spatially averaged

SIT bias repeats identically every year during the freezing season and could be improved by tuning a model parameter like the

thickness of new ice (Wang et al., 2010) or more preferably by upgrading to a more advanced thermodynamical model.

The application of the ML algorithm results in a drastic bias reduction, outperforming the baseline. Over the test period, the

mean bias between TOPAZ4-FR and TOPAZ4-RA is -10.0 cm. The year-round bias reduces to 1.4 cm after ML adjustment,270

with a seasonal modulation of 2.5 cm (October-April), and 0.4 cm (May-September) (Fig. 4 right column). Regarding the

baseline, the averaged remaining bias is 4.9 cm and the seasonal values are the following: 3.6 cm (October-April), and 6.2

cm (May-September) (Fig. 4 middle column). Although the baseline constitutes a clear improvement during the test period,

particularly during the winter season, the errors remain large in some areas (Fig. 5).

4.3 Application of the ML adjustment on 1992-2010275

Since the ML algorithm performed well during the test period, it is further extrapolated to predict SIT biases before both the

CryoSat-2 and SMOS missions were launched in 2011. As suggested by Lam et al. (2023), a greater performance is anticipated

when training on the whole dataset, so in this section, we retrained the ML algorithm taking into account all years starting in
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Figure 6. Daily SIT (m) averaged over the Arctic for SIC>15%. SIT for TOPAZ4-RA (considered as our truth), TOPAZ4-FR, TOPAZ4-ML,

and TOPAZ4-BL are shown. A vertical line in 2014 separates the test (2011-2013) from the training sets (2014-2022). The freezing periods

from October to April are highlighted with a grey background.

2011, without adjusting any parameters. Undeniably, three additional cycles of growth and melt are valuable information,

especially considering that our full dataset only spans 12 years.280

In the following section, we use several validation datasets (described in section 2) as a series of indicators to assess the

reliability of our sea ice thickness estimations. Unfortunately, the absence of a universal ground truth for sea ice thickness

makes validation challenging. By presenting diverse sources of SIT, we aim to provide a comprehensive view of the legitimacy

of our correction. Given the strengths and limitations of each product, we recommend readers to be mindful of differences in

sea ice thickness related to various observation types, including measurement methods, processing techniques, and associated285

uncertainties, as well as any potential inconsistencies between products.

4.3.1 Validation with independent datasets

Our first step is to assess the performance of our prediction against in situ datasets during the first decade of prediction (2000-

2010). In the central Arctic, TOPAZ4-ML demonstrates the closest alignment with mooring data (NPEO) compared with the

baseline and the free run. In contrast, in the Beaufort Gyre, TOPAZ4-ML fails to provide the closest estimation to mooring290

data (BGEP), as detailed in table 3.

We will further analyze the discrepancies by focusing on the representative case of the mooring A from BGEP (Fig. 7),

situated within the Beaufort Gyre. While it shows a clear enhancement over the melting season when contrasting the TOPAZ4-

FR with TOPAZ4-ML SIT, the freezing season reveals a less consistent agreement, indicating weaker performance. Overall

on buoy BGEP A, TOPAZ4-BL exhibits the best performance based on all statistical indicators, followed by TOPAZ4-ML295

and then TOPAZ4-FR. Baseline SIT always underestimates SIT at the onset of the melting season, potentially specific to
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Figure 7. Daily SIT (m) for buoy BGEP A, TOPAZ freerun, baseline, and ML-adjusted. The standard deviation of SIT for ULS BGEP A is

displayed in grey.

the Beaufort Gyre region as it is the only area where the free run systematically overestimates SIT. The SIT data from the

buoy exhibit considerable variability, particularly towards the end of 2006 and the transition between 2007 and 2008. This

variability might be attributed to the specific climatic conditions during those years, notably 2007, which marked a record-

setting ice retreat characterized by the flushing of old and thick sea ice and we do not expect a coarse resolution model like300

TOPAZ4 to render this level of variability.

The mooring is occasionally in open water while the free run still has ice covering it. Since both the baseline and the ML

algorithms are not trained to reduce ice edge discrepancies, their performance is poor during these periods. On the positive

side, the time series does not indicate that the adjustment methods degrade further back in time so the extrapolation is yielding

reasonable values.305

The improvement of the ML compared to the baseline is less striking than in the test period, mostly because assessing

one specific location over a brief time period may not provide sufficient representativity to distinguish between these two

adjustment methods. Additionally, the Beaufort Gyre displays different error patterns compared to the central Arctic, which

might explain why the ML algorithm reduces bias more efficiently in the central region than in the Beaufort Gyre when

compared to buoys. While exploring various ML configurations (e.g., different input features and numbers of epochs), an310

earlier experiment determined that TOPAZ4-ML achieved the closest agreement with mooring data compared to the TOPAZ4-

BL and TOPAZ4-FR in the Beaufort Gyre across all seasons. Ultimately, we selected the current ML configuration, which

displayed the best performance during the test period, without relying on past observations for calibration. Future versions of

this dataset could consider incorporating such calibration techniques to potentially improve results.
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A qualitative comparison between remote sensing data and TOPAZ4-ML (Fig. 8) exhibits a close agreement in SIT and315

spatial distribution patterns, indicating that our reconstruction effectively behaves as a coherent correction when applied in the

past. To compare these products, monthly values averaged over October between 2003 and 2007 are considered for TOPAZ4,

Envisat and PIOMAS (Schweiger et al., 2014, described in section 4.3.2), while ICESat-1 campaigns do not precisely align

with calendar months. TOPAZ4-ML enhances the SIT gradient from Greenland to the North Pole, addressing the well-known

issue of a flattened gradient of sea ice thickness as one moves away from the northern coast of Greenland, which can be320

seen in TOPAZ4-BL/FR and PIOMAS. TOPAZ4-ML and remote sensing show similar patterns within the Beaufort Gyre

and Canadian Archipelagos, whereas TOPAZ4-BL displays comparable correction but with insufficient intensity. Considering

Envisat SIT, we observe significantly less young and thin sea ice around the periphery of the Central Arctic when compared

to other datasets. As a consequence, Envisat shows high SIT (> 2m) in March (Supplements Fig. S3) near the sea ice edge

in the Barents Sea, a scenario considered unrealistic and consistent with past reports of Envisat’s tendency to overestimate325

SIT compared to other datasets (Paul et al., 2018; Tilling et al., 2019). Additionally, while PIOMAS SIT appears to be lower

than ICESat-1 and Envisat along the coasts of Siberian and Alaska, it is generally consistent with satellite observations in the

Central Arctic along 80◦ N.

4.3.2 Comparison with other datasets

This section compares SIT time series from 1992 to 2022 with three pertinent datasets: one widespread model reconstruction330

(PIOMAS, Schweiger et al., 2014) and two satellite datasets using altimeters (Bocquet et al., 2023) and passive micro-waves

(Soriot et al., 2024), which are two completely different remote sensing principles. PIOMAS (Pan-Arctic Ice-Ocean Modeling

and Assimilation System) is a coupled sea ice-ocean model that assimilates several observations to improve SIT, including SIC

from passive microwave satellites, sea surface temperature and sea ice velocity. Bocquet et al. (2023) provide SIT estimations

from the European Remote-Sensing Satellite (ESR-1), ESR-2, Envisat and Cryosat-2 satellites and ensure consistency over335

all altimeters using a neural-network-based method. Soriot et al. (2024) estimate SIT using a neural network based on 18

and 36 GHz brightness temperatures, measured by the Special Sensor Microwave / Imagers (SSM/I) and the Special Sensor

Microwave Imager Sounder (SSMIS) sensors. The two satellite products have different Polar holes, so all data above 81.5◦ N

have been removed for consistent coverage, meaning that the results described in this section mostly apply to first-year ice. This

section does not intend to identify the most accurate SIT or to explain the differences between datasets. Rather, our objective340

is to provide a clear comparison of how our TOPAZ4-ML SIT performs relative to other relevant datasets.

March and October trends (Fig. 9) are considered as proxies for the evolution of the seasonal maximum and minimum

amount of sea ice thickness averaged over the Arctic. March has been used as it is the latest month available before the melting

season in Soriot et al. (2024).

Decreasing trends align relatively well across datasets in March (-0.21, -0.13, -0.10, -0.19 m per decade for TOPAZ4-ML,345

PIOMAS, Bocquet23 and Soriot24, respectively), while October trends show more pronounced discrepancies (-0.22, -0.26,

-0.11, -0.36 m per decade). In October, Soriot24 has the strongest trend (-0.36 m per decade) compared to model-based SIT

(TOPAZ4-ML and PIOMAS), while the trend in Bocquet23 is the weakest (-0.11 m per decade).
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Figure 8. Sea ice thickness (meters) for TOPAZ4-ML, ICESat-1, Envisat, TOPAZ4-FR, TOPAZ4-BL and PIOMAS averaged over October

2003-2007. ICESat-1 observation period varies, extending into November depending on the year.

This distinct behaviour between model-based (TOPAZ4-ML and PIOMAS) and observation-based SIT (Bocquet23 and So-

riot24) also appears in the mean values. For instance, Bocquet23’s mean October SIT values are remarkably high after 2014350

compared to other datasets (around 1.2 m while others are between 30 and 90 cm). Furthermore, the October SIT mean is con-

sistently lower for model-based estimates throughout the entire time series. In October, SIT values exhibit greater interannual

variability within individual datasets compared to March, and the differences between datasets are also more pronounced.

This intercomparison shows that all datasets demonstrate realistic SIT values. This section highlights the differences in SIT

among datasets and emphasizes the importance of having diverse products derived from varying primary data and methodolo-355

gies, given the absence of ground truth.
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Table 3. Sea Ice Thickness bias in meters, RMSE and Pearson correlation coefficient (R) between SIT from TOPAZ4-ML (ML), TOPAZ4-

BL (BL) and TOPAZ4-FR (FR) and in situ datasets. The highest score is highlighted in bold.

Buoy Freezing Melting All time

ML BL FR ML BL FR ML BL FR

Bias BGEP A -0.33 -0.13 0.19 0.03 -0.19 0.23 -0.15 -0.16 0.21

BGEP B -0.29 -0.03 0.10 -0.13 -0.09 0.05 -0.21 -0.06 0.07

BGEP C -0.54 -0.19 -0.11 -0.29 -0.19 -0.16 -0.42 -0.19 -0.14

BGEP D -0.33 -0.12 0.07 0.31 0.04 0.28 -0.01 -0.04 0.17

NPEO -0.78 -0.84 -1.77 -0.93 -0.99 -1.72 -0.85 -0.92 -1.74

RMSE BGEP A 0.67 0.50 0.55 0.53 0.49 0.60 0.60 0.49 0.58

BGEP B 0.53 0.34 0.39 0.55 0.50 0.56 0.54 0.42 0.48

BGEP C 0.75 0.44 0.45 0.70 0.55 0.58 0.73 0.49 0.51

BGEP D 0.73 0.58 0.60 0.91 0.72 0.93 0.82 0.65 0.76

NPEO 1.11 1.18 1.95 1.25 1.29 1.91 1.18 1.24 1.93

R BGEP A 0.53 0.71 0.67 0.80 0.85 0.76 0.67 0.78 0.72

BGEP B 0.80 0.89 0.88 0.88 0.90 0.92 0.84 0.90 0.90

BGEP C 0.63 0.83 0.82 0.60 0.82 0.83 0.61 0.82 0.83

BGEP D -0.01 0.42 0.28 0.35 0.59 0.20 0.17 0.51 0.24

NPEO 0.77 0.75 0.75 0.63 0.64 0.63 0.70 0.70 0.69

4.3.3 Interpretation of the reconstructed data

The first section has validated the reconstructed SIT, while the second positioned it within the context of other relevant products.

Here, we will evaluate the consistency of TOPAZ4-ML SIT over the whole Arctic, for which there are no observations available.

This section will quantify various trends and changes identified with this new dataset over time.360

The May (October) mean sea ice thickness in 1992 is estimated at 2.16 meters (1.08 meters), while in 2022, it has shrunk

down to 1.54 meters (0.57 meters). In total volume, this corresponds respectively to 26 605 km3 (12 575 km3) and 18 804 km3

(6 258 km3), with linear trends of -3 274 km3 per decade (-3 002 km3 per decade). The year-round trend is -3 153 km3 per

decade according to our reconstruction, while the PIOMAS model reconstruction estimates a slightly steeper trend of -3 583

km3 per decade.365

We observe a significant downward trend in the mean SIT from 2002 to 2012, surrounded by two periods without distinct

trends (Fig. 10 bottom). Our ML-adjusted SIT respects this behaviour qualitatively and does not introduce unrealistic trends

by extrapolation.
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Figure 9. Monthly mean sea ice thickness over the Arctic (latitudes <81.5◦ N) for March and October from 1992 to 2022. The displayed

datasets include TOPAZ4-ML (this study), PIOMAS, Bocquet et al. (2023), and Soriot et al. (2024). Trends are shown for the entire time

period.

Sumata et al. (2023) show how the distribution of SIT exiting the Arctic through the Fram Strait changed throughout the past

two decades as observed from moored upward-looking sonars. They reveal a bimodal distribution and a regime shift following370

the sea ice minimum of Summer 2007. Since the Transpolar Drift brings sea ice from large stretches of the Arctic into the Fram

Strait, the representativeness of these moorings is higher than in most other locations. Some delay should however be expected

due to the advection time to the Fram Strait, which can take from months to a couple of years depending on the origin of the

ice.

The yearly cycles of the main modes of SIT look generally continuous in TOPAZ4-ML (see Fig. 10 top), except for a few375

occasional discontinuities. So the combination of DA and ML did not seem to cause much distortions of the physical signals.

TOPAZ4-ML SIT distribution of the whole Arctic also exhibits a more gradual transition from a bimodal distribution (before

2007) during the growth period to an unimodal distribution (after 2007) as depicted in Fig. 10 top. Prior to the 2007 minimum,

a significant portion of the ice is thicker than 2 meters. However, after 2008, only thinner sea ice is observable year-round. At

the end of the melting period in the years before 2007, when most of the first year ice has melted, the median sea ice thickness380

falls within the 1 to 2-meter range. In contrast, after 2007, the median sea ice thickness is almost consistently below 1 meter.
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Figure 10. Top) Distribution of daily TOPAZ4-ML SIT (m) from 1992 to 2022. Bins of 0.1m are used and the color bar is a log scale.

Bottom) Daily SIT (m) averaged over the Arctic for SIC>15% for the same period. The ML algorithm has been retrained including 2011-

2013, as indicated by the vertical line in 2011. The dot-dashed vertical black line marks September 2007. The freezing periods from October

to April are highlighted with a grey background.

Moreover, the distribution of the thickest sea ice (depicted in green on Fig. 10 top) is notably diminished when comparing

the periods before 2007 (4-5 meters) and after 2007 (3-4 meters). The area-average SIT (Fig. 10 bottom) is broadly similar

between TOPAZ4-RA and TOPAZ4-ML, all lying consistently about 20 cm above TOPAZ4-FR throughout the whole time

series. Compared to TOPAZ4-ML, PIOMAS indicates an earlier onset of the melting period while exhibiting similar average385

of SIT throughout the time series, except for the period after 2020 (Supplements Fig. S4). Contrary to sea ice extent time series,

the record minima of SIT are somewhat less spectacular, indicating that significant ridging may occur during years of lowest

ice cover (Regan et al., 2022), piling up sea ice vertically rather than horizontally. The years 2011 and 2012 are clear minima

of the SIT in all datasets, in agreement with the PIOMAS model. The disagreements between the free run and other datasets

are more important in the later years, as the free run indicates minimum years between 2017 and 2021, while TOPAZ4-RA and390

TOPAZ4-ML datasets rather point to 2021 and 2022 as mimimum SIT years. Surprisingly, the summer 2007 does not stick out

in the area-averaged SIT time series as the regime shift seems to spread over a few years. In the Discussion section, we will

compare various trends reported in the literature.
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5 Discussion

The novelty of the present study lies in the combination of ML and DA to adjust sea ice thickness backward in time over a long395

period, longer than the training period. Since 1990, the sea ice thickness distribution in the Arctic has shifted drastically towards

thinner sea ice (Sumata et al., 2023; Lindsay and Schweiger, 2015) as documented by both satellite and in situ data. With our

adjusted dataset (TOPAZ4-ML), the mean sea ice thickness in May (October) 1992 is 2.16 meters (1.08 m), while in 2022, it

is 1.54 m (0.57 m), resulting in a decrease of 29% (47%). Using independent data in the Arctic Basin, Lindsay and Schweiger

(2015) found that the annual mean SIT over the period 2000–2012 has declined from 2.12 to 1.41 m (34%), while September400

thickness has declined from 1.41 to 0.71 m (50%). When including all the marginal seas until the 15% isoline of concentration,

we find that the annual SIT is generally lower but the trends are compatible, reducing from 1.51 m in 2000 to 1.01 m in 2012

(33%), while September thickness declined from 1.42 m to 0.81 m (43%). In our estimation, the annual mean sea ice thickness

is lower compared to Lindsay and Schweiger (2015), primarily due to differences in the area considered. These disparities

diminish in September as the residual sea ice shrinks toward the Central Arctic. Kwok (2018) reported losses of 2 870 km3405

per decade in winter (Feb-March) for 15 years of satellite record (2004-2018) from the non-overlapping ICESat and CryoSat-2

periods. For the same period, the TOPAZ4-ML data indicates losses of 2 941 km3 per decade (Fig. B1), which falls well within

the uncertainties caused by the lack of snow depths data (Zygmuntowska et al., 2014). PIOMAS, another data assimilative

model, shows trends of -2.7 and 3.2 ± 1 x103 km3 per decade for April and September, respectively, from 1979 to 2018

(Johannessen et al., 2020)[Fig. 5.24.]. In comparison, over the period 1992-2022, PIOMAS indicates –3.0 and -3.8 ± 1 x103410

km3 per decade while TOPAZ4-ML shows trends of -3 120 and -2 960 km3 per decade for April and September, respectively.

Although the two datasets align well for April, a notable discrepancy emerges in September, with PIOMAS indicating a more

pronounced downward trend. Drawing from the range of available data, the ML-adjusted trends correspond closely with those

documented in the existing literature. Although TOPAZ4-FR and TOPAZ4-ML differ significantly in the total amounts of SIT,

their respective trends are close.415

By training our algorithm over the latest decade to predict the past, we assumed the following: the EOFs obtained from

the SIT bias between 2011-2022 are representative of the statistical behavior of the errors made by the model over a longer

time period, including a dramatic regime shift. To probe the robustness of this assumption, we extracted the EOFs over two

subperiods of our dataset: the training period with and without the test period. We only found differences in the least important

components (from the 6th and further) while showing similar patterns overall (Supplements Fig. S5). The time series of the420

differences only shows unstructured noise.

Moreover, since we lack summer SIT observations, we assess the differences in SIT between two versions of TOPAZ (with

and without assimilation) and not the SIT directly, so the data assimilation residuals may also have caused some loss of signal

for the ML. However, the ML algorithm can adjust the thickness even of the thickest sea ice (>6 meters) with less than 20% of

error (Fig. C1), which explains its performance in an earlier period dominated by multi-year ice.425

Our approach based on EOF decomposition enables a drastic reduction of dimensions, leading to fewer parameters in the

ML algorithm, thus reducing the costs required to train and apply the algorithm. This method is fast to implement and execute
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(around 1 hour on a personal laptop), requiring minimal computational resources. Given its effectiveness, it demonstrates a

strong ability to correct a large part of the biases. In comparison, approaches relying on more intricate 2D neural network layers

produced comparable outcomes but at a higher cost (at least 12 hours to train), and in a more complex setup. Additionally, it is430

possible that with higher dimensional features, the training set would be too small, increasing the risk of overfitting.

Multiple ML models (LSTM, Convolutional Neural Network, Dense, eXtreme Gradient Boosting, and Random Forest) were

tested, yielding small local variations, but without visible advantages in overall performances between models. The decision

to select the LSTM was thus driven by its robust time series prediction capabilities and its slightly better results. Throughout

this study, the ML architecture (i.e. number of layers and hyperparameters) only played a minor role in achieving the optimal435

prediction; instead, the prediction accuracy is considerably dependent on the input variables, i.e. the choice of variables and

associated time lags.

Three distinct sources of errors are identified when predicting SIT before 2011: ML reconstruction error, errors in the free run

of TOPAZ4, and errors induced by regime shifts in sea ice conditions. Since the two latter are out of reach, we can only provide

uncertainty estimates related to the ML method itself. Note that the uncertainty obtained here only characterizes the sensitivity440

of the algorithm to its inputs (details in section 3). The areas exhibiting the highest uncertainty encompass the Fram Strait, the

Canadian Archipelagos, and the Beaufort Gyre, and with a lower degree of uncertainty the East Siberian Sea (Supplements Fig.

S6). Upon examining the temporal evolution of uncertainty (Supplements Fig. S7), it appears that uncertainty diminishes during

both the growth and melt phases of sea ice, likely attributable to the strong sea ice thickness seasonal cycle. Moreover, higher

uncertainty is noticed during the peak of winter and summer seasons, when sea ice thickness is less affected by predominant445

freezing or melting, potentially leading to divergence among individual members.

Despite the baseline yielding good average results, the trivial bias correction displays strong regional biases and mediocre

performance during outlier years. In addition, we expect the performance of the baseline to decrease even further as we ex-

trapolate back in time. Indeed, the correction of the baseline is applied once and solely relies on the patterns of mean bias

observed during 2014-2022 with no ability to accommodate different environmental conditions. On the contrary, our ML ad-450

justment method proves more adaptable when predicting back in time since it takes into account the past state of environmental

variables and the variable relative importance of each component (as independent errors identified by the EOF decomposition).

A distinct feature appears in the SIT averaged (Fig. 3) at the onset of the melting season: a second peak, brief compared

to the first, occurs shortly after the SIT maximum. It is observed almost yearly in TOPAZ4-FR while only twice (2017 and

2020) in TOPAZ4-RA. The phenomenon can be explained as follows: the relatively thin sea ice melts first, decreasing the area455

faster than the thickness, thus increasing the average SIT as a case of "survivor bias". This survivor bias may intensify in cases

of erroneously thinner sea ice in the Central Arctic. Such instances can arise from either thinner sea ice in the Central Arctic

(TOPAZ4-BL) or misplaced thick sea ice in the Beaufort Gyre (TOPAZ4-FR). To prevent this artefact, many studies prefer to

use the total volume or a geographic restriction to an area of perennial ice in the Central Arctic.

Comparing TOPAZ4 to in situ datasets is challenging, primarily due to representation errors. Knowing the "true" sea ice460

thickness remains a major issue for evaluation, particularly when considering historical data from older satellite missions such

as ICESat-1 and Envisat. This issue becomes more pronounced as we delve further into the past. Large uncertainties linked to
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in situ observations and model ultimately lead to differences in SIT and difficulties in evaluating our product. Adding to this

point, the limited availability of global datasets over extended periods in the Arctic restricts the scope of possible comparisons.

One notable advantage of our methodology is its capacity to bridge data gaps when mooring observations are unavailable.465

6 Conclusions

In this investigation, we demonstrated that machine learning (ML) can be combined with data assimilation (DA) to predict

sea ice thickness (SIT) errors backwards in time to 1992, using the ice-ocean model TOPAZ4 and atmospheric variables from

the reanalysis ERA5. The SIT biases are the results of accumulated increments from the assimilation of sea ice thickness data

from CS2SMOS every 7 days between 2011 and 2022 during the ice growth period (October-May). Then, we reduced the470

dimensionality of the DA increments using Empirical Orthogonal Functions (EOF). The LSTM learned to predict SIT biases

using as inputs Principal Components (PC) of various sea ice, ocean, and atmospheric variables. This study demonstrates that

our PC-based approach is effective in providing a major sea ice thickness adjustment.

Our approach significantly reduced sea ice thickness biases throughout the test period (2011-2013) from a low year-round

bias of -10.0 to 1.4 centimeters. Significant improvements are noted during the melting period, likely attributable to substan-475

tial errors in TOPAZ4 with assimilation, as sea ice thickness data assimilation is unavailable during summer. Applying our

algorithm before 2011, the evaluation with independent mooring data indicates improvement in the central Arctic compared

to TOPAZ4 free run, while results in the Beaufort Gyre show poorer agreement. However, the scarcity of in situ datasets and

the often limited continuity of observations restrict the comparison to only a few locations. Remote sensing data from Envisat

and ICESat-1 were primarily utilized for qualitative assessment due to their inherent high uncertainties and temporal-spatial480

discontinuities. Our approach demonstrates a general improvement in SIT despite the challenge of selecting a reliable "truth"

for validation.

Furthermore, this prolonged time series brings new insights into various aspects of SIT, including distribution, spatial pat-

terns, and changes through time. The estimated May (October) mean sea ice thickness in 1992 was 2.16 meters (1.08 meters),

whereas it was 1.54 meters (0.57 meters) in 2022, resulting in a 29% (47%) decline. This amounts to a decrease in total sea485

ice volume from 19 690 to 12 700 km3, with a corresponding trend of -3 153 km3 per decade, corroborating previous model

estimates. A decrease of the thickest sea ice is observed throughout the years, with the proportion of sea ice thicker than 2.5

meters going from 28% in 1992 to 7% in 2022. In the ML-adjusted data, the transition in 2007 is however less abrupt than

deduced from moored observations from the Fram Strait.

The ML-adjustment technique can be implemented for other variables, as long as equivalent resources are available: two490

model runs with and without assimilation of the target variable and some auxiliary data related to the target variable but in

complex ways. Further work is required to compare our SIT time series with the novel year-round processing of CS2 (Landy

et al., 2022), especially regarding the summer sea ice thickness. The ML-adjustment method was originally introduced in the

framework of an iterative method combining DA and ML techniques (Brajard et al., 2020). In a subsequent investigation, a
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second iteration of DA using the reconstructed SIT and its uncertainty will be performed with TOPAZ4, improving the initial495

conditions of SIT of the latter decade.

Code availability. The code is available at https://github.com/LeoEdel/tardis-ml-paper1.

Data availability. Our ML-adjusted SIT dataset (TOPAZ4-ML) is available at https://zenodo.org/records/11191854 (doi: 10.5281/zenodo.11191853)

and can be visualized at https://av.tib.eu/media/68161 (doi: https://doi.org/10.5446/68161). Additionally, this dataset is included in the

sea ice thickness inter-comparison exercise (Sin’XS, https://sinxs.noveltis.fr). The following datasets are used as inputs or for evalua-500

tion. ERA5 data are available at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. TOPAZ4b reanalysis data are available

at https://doi.org/10.48670/moi-00007. SID used in TOPAZ4b reanalysis is available at 10.15770/EUM_SAF_OSI_NRT_2007. CS2SMOS

data are available at ftp://ftp.awi.de/sea_ice/product/cryosat2_smos/v204/. ICESat-1 data are available at https://nsidc.org/data/nsidc-0393/

versions/1. Envisat data are available at https://catalogue.ceda.ac.uk/uuid/f4c34f4f0f1d4d0da06d771f6972f180. ULS BGEP data are avail-

able at https://www2.whoi.edu/site/beaufortgyre/data/mooring-data/. ULS NPEO data are available at https://arcticdata.io/catalog/view/doi:505

10.5065/D6P84921.

Appendix A: Principal Component prediction

For a deeper understanding of our method, the original values predicted by our algorithm are displayed (Fig. A1) and com-

mented on in this section. The corresponding EOFs are plotted in Supplements Fig. S8. The quality of the final sea ice thickness

reconstruction relies on the accuracy of predicting each component. A large error in one PC may be observed in the resulting510

SIT. PCs showing a yearly cycle (such as #1 and #2) show better predictability than the more irregular PCs (#4 and #7). The

prediction of the ML shows a slight smoothing of the signal. It is beneficial in the sense that the ML is not trying to update SIT

every week like DA does, thus avoiding a noisy reconstruction. We notice some difficulties in the prediction of the test period:

major differences (#7), and light offsets (#1, 4, 8). While PCs #2, #3, #5, #6 show a more consistent and reliable prediction.

Appendix B: Sea Ice Volume515

Sea ice volumes (Fig. B1) are obtained by multiplying the sea ice thickness by the area in each grid cell and by the sea

ice concentration. It is then summed over the whole model domain. It is insensitive to high SIT values in areas of low ice

concentrations and therefore a more convenient quantity than the average SIT to compare between models, although it is not as

easily obtained from observations. For a clearer view of the decadal difference in sea ice thickness, refer to Supplements Fig.

S9.520
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Appendix C: Capability of the adjustment method as function of sea ice thickness

To evaluate our method performance across various sea ice thicknesses, we analyze the bias obtained from our method with

the true bias as a function of the SIT (Fig. C1). Over the test period, our ML algorithm overestimates the adjustment (SIT

bias difference is positive) for sea ice thickness between 3 and 5 m and underestimates the adjustment (SIT bias difference is

negative) for thickness above 6m.525
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Figure A1. Time series of principal component (PC) for each component in this study. TOPAZ4-RA (considered as truth) and TOPAZ4-ML

predicted values are presented. A vertical line in 2014 indicates the separation of the test period from the training period.
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Figure B1. Total sea ice volume (1000 km3) for the entire Arctic domain from 1992 to 2022. The monthly average in May (October) is

indicated in blue (red). Trends are depicted for the entire period in dotted lines. It should be noted that the TOPAZ domain excludes the

Pacific Seas south of the Bering Strait.
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Figure C1. Top) Difference of bias correction between the ML prediction and the true bias correction as a function of the sea ice thickness

from TOPAZ4-FR over the test period (2011-2013). The true bias correction is obtained from TOPAZ4-RA - TOPAZ4-FR. Bins of 10 cm are

used to average the differences (blue) and their standard deviation (grey). The two oblique lines represent 20% of sea ice thickness for each

bin. Positive values indicate that the ML algorithm predicts an excessively high adjustment of sea ice thickness compared to the correction

applied by the CS2SMOS data assimilation in TOPAZ4. Bottom) Number of pixels collected in each bin as a function of sea ice thickness

estimated by TOPAZ4-FR. Grey stars indicate bins with less than 50 pixels.
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