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Abstract. The modern state of the mantle and its evolution on geological timescales is of widespread importance for the Earth

sciences. For instance, it is generally agreed that mantle flow is manifest in topographic and drainage network evolution, glacio-

eustasy and in the distribution of sediments. There now exists a variety of theoretical approaches to predict histories of mantle

convection and its impact on surface deflections. A general goal is to make use of observed deflections to identify Earth-like

simulations and constrain the history of mantle convection. Several important insights into the role of radial and non-radial5

viscosity variations, gravitation, and the importance of shallow structure already exist. Here we seek to bring those insights

into a single framework to elucidate the relative importance of popular modelling choices on predicted instantaneous vertical

surface deflections. We start by comparing results from numeric and analytic approaches to solving the equations of motion

that are ostensibly parameterized to be as-similar-as-possible. Deflections predicted by such numeric and analytic models

can vary by ∼10%, the difference increases to ∼ 25% when viscosity is temperature-dependent. Including self-gravitation10

and gravitational potential of the deflected surface are relatively small sources of discrepancy. However, spherical harmonic

correlations between model predictions decrease dramatically with the excision of shallow structure to increasing depths, and

when radial viscosity structure is modified. The results emphasize sensitivity of instantaneous surface deflections to density

and viscosity anomalies in the upper mantle. They reinforce the view that a detailed understanding of lithospheric structure is

crucial for relating mantle convective history to observations of vertical motions at Earth’s surface.15

1 Introduction

Mantle convection plays a crucial role in Earth’s evolution (e.g., Hager and Clayton, 1989; Parsons and Daly, 1983; Pekeris,

1935). It is well understood, for instance, that flow in the mantle is fundamental in the transfer of heat and chemicals from the

deep Earth to the surface, in driving horizontal and vertical lithospheric motions (thus tectonic processes), and in magnetism

via interactions with the core (e.g., Biggin et al., 2012; Davies et al., 2023; Foley and Fischer, 2017; Hoggard et al., 2016a;20

Holdt et al., 2022; Pekeris, 1935). In turn, many processes operating at or close to Earth’s surface are impacted, including
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glacio-eustasy, magmatism, climate, sediment routing, natural resource distribution, drainage network evolution, and develop-

ment of biodiversity (e.g., Bahadori et al., 2022; Ball et al., 2021; Braun, 2010; Chang and Liu, 2021; Hazzard et al., 2022;

O’Malley et al., 2021; Salles et al., 2017; Stanley et al., 2021). Clearly, understanding the physical and chemical evolution

of the mantle has broad implications. An important goal is to determine contributions to surface processes from the modern25

mantle and its history during, say, the last 100 million years.

Residual oceanic age-depth measurements, potential field data, seismic tomographic models and melting histories of young

mafic rocks are providing increasingly coherent observational insights into the modern and recent state of the mantle (e.g., Ball

et al., 2022; Davies et al., 2023; Fichtner et al., 2009, 2013; Fichtner and Villaseñor, 2015; French and Romanowicz, 2015;30

Hoggard et al., 2016a; Holdt et al., 2022; Kaula, 1963; Lekić and Fischer, 2014; Priestley and McKenzie, 2013; Richards et al.,

2023). Stratigraphic and geomorphic observations as well as magmatic histories provide clues about the history of mantle

convection on geologic timescales (e.g., Al-Hajri et al., 2009; Czarnota et al., 2013; Flament et al., 2015; Fernandes et al.,

2019; Fernandes and Roberts, 2021; Galloway et al., 2011; Gunnell and Burke, 2008; Gurnis et al., 2000; Hoggard et al., 2021;

Lambeck et al., 1998; Morris et al., 2020; O’Malley et al., 2021; Stanley et al., 2021). Despite these advances, observations35

providing information about the history of mantle convection are sparse in places, especially within continental interiors and

back through geologic time (see e.g., Hoggard et al., 2021). Moreover, disentangling contributions from crustal, lithospheric

and sub-lithospheric processes to surface deflections remains challenging and controversial (see e.g., Hoggard et al., 2021;

Wang et al., 2022).

40

Theoretical approaches that retrodict histories of mantle convection can, in principle, be used to fill in spatio-temporal gaps

in the observational record and disentangle contributions to surface observables from different geologic processes (e.g., Baum-

gardner, 1985; Bunge and Baumgardner, 1995; Davies et al., 2013; Flament et al., 2015; Ghelichkhan et al., 2021; Hager et al.,

1985; Moucha and Forte, 2011; Steinberger and Antretter, 2006). Increasingly realistic geodynamic simulations can incor-

porate, for instance, plate motions, gravitation and deflection of gravitational potential fields, complex rheologies, viscosity45

laws that can include temperature, pressure, composition, grain size and strain rate dependence, and assimilation of seismic

tomographic information into flow solutions—resulting in a diverse array of retrodicted flow histories. Mineralogical phase

changes, compressibility, different surface and core-mantle boundary slip conditions (e.g., no-slip, free-slip), chemical and

thermal buoyancy, and plate motion constraints on mantle structure can also generate diverse predictions of mantle convection

and resultant surface deflections (e.g., Baumgardner, 1985; Bunge et al., 2002, 2003; Corrieu et al., 1995; Crameri et al., 2012;50

Dannberg et al., 2017; Flament et al., 2014; Forte, 2007; Ghosh and Holt, 2012; Glišović and Forte, 2016; Hager and Clayton,

1989; Heister et al., 2017; Liu and Gurnis, 2008; Panasyuk et al., 1996; Ribe, 2007; Ricard, 2007; Tackley et al., 1993; Zhong

et al., 2008; Zhou et al., 2018; Liu and King, 2019a).

Aside from the fundamental choice of governing equations and parameterizations underpinning simulations, mathematical55

and computational approaches to solve the equations of motion generate different predictions of surface deflections. These

2



approaches sit within two broad families: numeric simulations (e.g., ASPECT, CitcomS, TERRA; Bangerth et al., 2023;

Baumgardner, 1985; Zhong et al., 2000), and propagator-matrix-based, quasi-analytic techniques, that can be solved in two or

three dimensions, and importantly for our purposes, spherically and spectrally (e.g., Colli et al., 2016; Hager and O’Connell,

1979; Parsons and Daly, 1983).60

A challenge then is to establish whether observed surface deflections can be used to discriminate between theoretical predic-

tions of mantle convection, and, in turn, identify models that generate realistic and testable retrodictions. In this study we are

principally concerned with establishing similarities and sensitivities of predicted instantaneous vertical surface deflections. We

focus on vertical motions for two reasons. First, inventories of measurements of uplift and subsidence—on timescales of man-65

tle convection—now exist for most continents and could be compared to predictions from global simulations in future work

(e.g., Fernandes and Roberts, 2021; Fernandes et al., 2024, and references therein). Secondly, many geodynamic simulations

incorporate horizontal motions of the lithosphere, which limits their use as a comparator.

From an observational perspective, it would be useful to establish rules-of-thumb that quantify sensitivity of surface deflec-70

tions to choices made when predicting them. Many such rules are already well known from analytic and numeric solutions

of the equations of motion (e.g., Colli et al., 2016; Hager and O’Connell, 1979; Holdt et al., 2022; Lees et al., 2020; Parsons

and Daly, 1983). For instance, a suite of benchmark studies exist that compare predictions from numeric mantle convection

simulations with analytic solutions (see e.g., Bauer et al., 2019; Kramer et al., 2021; Zhong et al., 2008, and references therein).

Those papers tend to focus on establishing the fidelity of numeric models. In contrast, our goals are to, first, understand how75

calculated deflections are impacted by the choice of methodology used to solve the equations of motion and, secondly, to

establish sensitivities to popular assumptions incorporated into simulations. We want to know the extent to which an improved

fit between predictions and observations reflects a more Earth-like density and viscosity structure versus modelling choices.

Our thesis is that performing all tests in a self-consistent framework, as we do in this study, provides a straightforward way

to collate insights into the sensitivities of predicted surface deflections and to simplify the comparison of predictions from80

different suites of models.

We start by exploring the consequences of solving the equations of motion numerically, using the TERRA software, and

analytically, using Ghelichkhan et al. (2021)’s propagator matrix algorithms (see Figure 1 & Supporting Information). We

make use of the flexibility of numeric approaches by incorporating a variety of assumptions and parameterizations that are85

not amenable to analytic attack (e.g., temperature-dependent viscosity). All numeric simulations presented in this paper were

driven by the plate motion history of Merdith et al. (2021, see Figures 1g–h and S1). The models have a resolution of 60 km at

their surface (see Supporting Information for details of model setup and execution). We note that they do not directly assimilate

information about the mantle from tomographic models. Ensuring that numeric simulations are accurate and stable means that

computational burden is often considerable and hence systematic exploration of parameter space remains challenging. In con-90

trast, analytic approaches can yield calculated surface deflections that are (mathematically) accurate, whilst including features
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such as radial gravitation, with much less computational cost. Consequently, we make use of propagator matrix techniques

to explore parameter space, examine benchmarks, and reproduce results. We establish the sensitivity of solutions to different

parameterizations and approaches to solving the equations of motion.

95

There are at least two important considerations when solving the equations of motion analytically. First, solutions are only

known to exist in the spherical harmonic domain for fluid bodies with radial viscosity (i.e., toroidal variations in viscosity can-

not be included). Second, generating solutions in the spherical harmonic domain places practical limits on spatial resolution of

solutions. Consider that the number of spherical harmonic coefficients per degree = 2l+1, where l is degree, so for a given

maximum degree L, there are (L+1)2 coefficients in total. For instance, when L= 50 there are 2,601 coefficients for each100

model. Consider also that spatial resolution increases approximately with the reciprocal of l (see Section 2.4). Incorporating

all of the output from the numeric models (60 km at the surface) would require L≈ 880, with 776,161 coefficients, which

is computationally challenging. Furthermore, observational constraints on mantle-related surface deflection are unlikely to be

finer than the flexural wavelength of the overlying lithosphere, l ≈ 50 (e.g., Holdt et al., 2022). With these limitations in mind,

we compared surface deflections predicted using different approaches at the same resolution up to l = 50 (see Supporting In-105

formation and Section 2.5).

Most of the tests in this paper compare surface deflections calculated using the entirety of the model domains (i.e., from CMB

to Earth’s surface). This approach simplifies like-for-like comparisons of model predictions and comparisons to increasingly

complex scenarios. Since the central focus of this work is merely on quantifying contrasts in predicted instantaneous surface110

deflections that arise from choices made when simulating mantle convection, we wish, here, to avoid post hoc modifications

(e.g. lithospheric flexure and crustal isostasy). We stress that the amplitudes of calculated deflections will then not necessarily

reflect amplitudes of true dynamic topography estimated from independent observations of, for example, oceanic age-depth

residuals. In subsequent tests we examine the consequences of simply removing shallow structure, a widely used approach for

estimating dynamic support from simulations (see e.g., Flament et al., 2013; Wang et al., 2022).115

With this framework in place we generate, compare and contrast predicted surface deflections. The first suite of tests are pur-

posefully simple, e.g., incompressible, constant gravitational acceleration (no self-gravitation or radial variation in gravitation)

and have radial viscosity independent of temperature. Results are compared to estimates of sub-plate support from oceanic

age-depth residuals with a view to quantifying corrections necessary to convert predicted instantaneous surface deflections into120

estimates of sub-plate support. We then systematically examine the impact of incorporating radial variations in gravitational ac-

celeration, contribution to flow from deflection of the gravitational potential field, removal of shallow density structure, choice

of surface and CMB slip conditions, inclusion of temperature-dependent viscosity, and amplification or reduction of viscosity

and density anomalies in the upper and lower mantle (Section 4; Tables 2–3). A closed-loop modelling strategy is explored

in which predicted surface deflections from these relatively complex models are compared to results from simpler reference125
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models. Finally, a methodology for assessing effective contributions to surface topography from mantle anomalies is presented.

2 Numeric and Analytic Calculations of Surface Deflection

2.1 Equations Governing Predicted Mantle Convection

Theoretical predictions of surface displacements from mantle convection arise from the application of physical laws that take130

the form of conservation equations for mass, momentum and energy (see, e.g., Hager and O’Connell, 1981; Parsons and Daly,

1983). Here, we solve those equations across a 3D spherical domain using the finite element code TERRA (Baumgardner,

1985; Bunge and Baumgardner, 1995, etc.). Under this formulation, theoretical convection in an incompressible fluid can be

expressed by the following three dimensionless equations (e.g., Baumgardner, 1985; Davies et al., 2013; McKenzie et al., 1974;

Parsons and Daly, 1983). First, the continuity condition for conservation of mass,135

∇ ·u= 0, (1)

where u is the fluid velocity vector. Since the Prandtl number is likely to always be extremely large in this system—mantle

viscosity is expected to be many orders of magnitude larger than the product of density and thermal diffusivity—inertial terms

can be neglected (e.g., Parsons and Daly, 1983). Second, the equation of motion,

∇σ =−ρ′g, (2)140

where

ρ′ =−αρ0(T −Tref). (3)

σ is the 3× 3 stress tensor where the (radial) hydrostatic component balancing the reference density structure has been sub-

tracted, ρ′ is the density difference due to temperature, α is the coefficient of thermal expansion, T is temperature, Tref is a

radially varying reference temperature structure, which has a constant value in the mid-mantle and joins to a cold thermal145

boundary layer near the surface and a hot one at the CMB, reaching the surface, Ts, and core mantle boundary, TCMB temper-

atures at the respective boundaries, and g is gravitational acceleration acting radially (see Table 1). This stress tensor σij is

decomposed into deviatoric and lithostatic components:

σij = τij − pδij , (4)
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where τij is the deviatoric stress tensor, p is dynamic pressure and δij is the Kronecker delta function. The deviatoric stress150

tensor and the strain-rate tensor, ϵ̇ij , are related by:

τij = 2ηϵ̇ij = η

(
∂ui

∂xj
+

∂uj

∂xi

)
, (5)

where η is viscosity, and ∂/∂xi is the spatial partial derivative. By combining equations 2, 4 and 5 we solve the equation of

motion:

∂(ηϵij)

∂xj
− ∂p

∂xi
=−ρ′gδir, (6)155

where g is the scalar value of g and δir is the Kronecker delta selecting the radial direction r.

We first examine predictions from models in which viscosity varies only with depth, i.e., η = η0× ηr, where η0 is reference

viscosity (see Table 1), and ηr is a scaling factor dependent only on radius, plotted with model results as appropriate throughout

this manuscript. We then include temperature dependence of viscosity, i.e., η = η0 × ηr × ηT , where160

ηT = exp(z′ − 2T ′). (7)

Dimensionless depth, z′ = z/d, where d= zsurface −zCMB = 2890 km, and dimensionless temperature T ′ = (T −Ts)/(TCMB −
Ts), where TCMB −Ts = 2700 K.

Finally, the heat transport equation is solved to ensure conservation of energy:165

∂T

∂t
+u · ∇T = κ∇2T +

H

Cp
, (8)

where κ is thermal diffusivity, H is internal heat generation and Cp is specific heat capacity. See Table 1 for parameter

values and units. Heat generation within the mantle depends on the distribution of radiogenic isotopes (e.g., Ricard, 2015).

Concentrations of such elements can be tracked in TERRA, using particles, varying as a consequence of flow and melting (see,

e.g., Panton et al., 2023; van Heck et al., 2016, for full explanation). The bulk composition field, C, which varies between170

0 and 1, is also tracked on particles and calculated for each of the finite elements in the model. The end-members represent

completely depleted/harzburgitic material (C = 0), and fully enriched/basaltic material (C = 1). As a result, radiogenic heat

production across the whole mantle volume varies, being ≈ 24 TW (5.8×10−12 W kg−1) at 1.2 Ga, and ∼ 18 TW (4.5×10−12

W kg−1) by 0 Ma. Simulations are initialized such that the average mantle composition is C = 0.20 (Panton et al., 2023), and

composition obeys the conservation equation:175

∂C

∂t
=−∇ · (Cu). (9)
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2.2 Numerical Modelling Strategy

The Stokes equations described above are solved by the finite element method on a series of stacked spherical shells composed

of nodes based on a subdivision of a regular icosahedron, with an identical geometry for each shell when projected onto the

CMB (see, e.g., Figure 1 of Baumgardner, 1985). The radial spacing of consecutive shells is 45 km, which is the same as the180

mean horizontal spacing of the elements across the entire model domain. The stacking of identically partitioned shells leads to

a finer mean horizontal resolution of ≈ 33 km at the CMB, and a coarser resolution of ≈ 60 km at the surface. The surfaces of

the uppermost elements in the shallowest shell lie at zero depth. To enable estimates of stress from these models to be directly

compared with analytical solutions obtained from Green’s functions across layer boundaries, the predicted values of deviatoric

stress were calculated using the calculated velocities from the nearest shells using the interpolating linear shape functions of185

the underlying finite elements, while the dynamic pressure is calculated directly at the surface.

Each numerical model presented in this paper has two computational stages: ‘spin-up’, which is used to initialize the model,

and the geologically more realistic ‘main’ stage, from which we generate predictions of surface deflections. The spin-up stage

includes 2.2 billion years of model run-time. It has the following conditions imposed to avoid sharp velocity and temperature190

gradients, and sudden reorganization of mantle flow when the main model starts. First, a free-slip condition is imposed at the

surface, such that horizontal velocities are free to vary. The radial (‘vertical’) component of the mantle flow velocity at the sur-

face, ur, is set to be zero. While the radial velocity boundary condition is of the Dirichlet type, the horizontal free-slip boundary

condition has no tangential restriction imposed on the flow velocity but rather on the tangential deviatoric stresses acting on

the boundary (τrθ, τrϕ where r,θ and ϕ are the radial and two tangential directions, respectively), which are zero. Second, an195

initial, random white noise temperature field generated with power across spherical harmonic degrees 1-19, is inserted. Mean

mantle temperature is initially 2000 K. Mantle convection arises naturally over the first two billion years of model run-time. A

horizontal surface velocity condition is then applied to the surface for 200 Ma. These velocities are set to be equal to those at

1 Ga extracted from the reconstructions of Merdith et al. (2021). ur remains zero at the surface. The resultant mantle structure

is used as the initial condition for the main model.200

The main model routine predicts flow from 1 Ga to the present-day. It includes an isothermal condition imposed at the sur-

face, Ts = 300 K. Horizontal plate-slip, applied in 1 Ma long stages, is prescribed using the plate reconstructions of Merdith

et al. (2021); ur is still zero. Consequently, stirring by plate drift and slab sinking play a role in driving mantle flow in these

models. An isothermal condition is also imposed at the core-mantle boundary such that TCMB = 3000 K. A free-slip horizontal205

velocity boundary condition is imposed there. The radial boundary condition is ur = 0. Horizontal components of slip are

allowed to naturally emerge and evolve subject to lowermost mantle flow. Plume behavior is not artificially suppressed or

instigated.
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To ensure numerical stability and computational accuracy in these simulations, the reference viscosity, η0, is set to 4× 1021210

Pa s. This value is probably an order of magnitude greater than the viscosity of the actual upper mantle (e.g., Forte, 2007;

Ghelichkhan et al., 2021; Mitrovica and Forte, 2004, and references therein). Consequently, flow velocities in the simulations

are likely to be significantly slower than in actuality. An obvious cause for concern is that using actual (comparatively fast)

plate velocities as surface boundary conditions atop a relatively slowly convecting ‘mantle’ is likely to induce unrealistic flow.

To address this issue, imposed plate velocities are scaled such that the root-mean squared (RMS) values of the actual applied215

velocities (≈ 5 cm yr−1 unscaled) match RMS values of surface velocities (≈ 2.5 cm yr−1) calculated during the spin-up

phase (before plate velocities are imposed on the model) when the model mantle is convecting naturally and not being driven

by surface velocities. The applied surface plate velocities are therefore scaled by a factor of 0.5 (i.e., 2.5/5) in the simulations

examined in this study. To ensure that volumetric fluxes through ridges and subduction zones are realistic, simulation run times

are increased by a factor of 2; i.e., the 1 Myr long plate stages are run for twice their elapsed time (2 Myr), but at half the speed.220

All times stated throughout the rest of this manuscript refer to times re-scaled for real-world comparison; i.e., the actual age of

the respective plate stage.

For the reference case (Model 1), these conditions lead to the density distributions shown in Figure S1. Surface layer density

anomalies occur only as a result of predicted compositional variation, since the surface temperature, Ts, is constant globally.225

This model represents the first of two reference numerical models examined in this contribution. It has the radial viscosity

structure shown in Figure 2c. Later, we investigate a second numerical model incorporating temperature-dependent viscosity

(Equation 7). We describe numeric and analytic approaches that use output from these models to calculate instantaneous surface

deflections. Both approaches make use of spherical harmonics.

Table 1. Summary of Model Parameters.

Parameter Symbol Value Units

Surface temperature Ts 300 K

Core-mantle boundary temperature TCMB 3000 K

Internal heating rate H See text. W kg−1

Thermal expansivity α 2.5× 10−5 K−1

Thermal conductivity K 4 W m−1K−1

Thermal diffusivity κ 8.08 ×10−7 m2s−1

Specific heat capacity Cp 1100 J kg−1K−1

Reference viscosity η0 4× 1021 Pa s

Reference density ρ0 4500 kg m−3

Overlying fluid density ρw 1 or 1030 kg m−3

230
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2.3 Deflections Calculated Using Radial Stresses from Numeric Simulations

Following Parsons and Daly (1983), surface deformation is estimated from numeric simulations of mantle convection by

making use of the requirement that normal stress is continuous across the upper boundary of the solid Earth (see also McKenzie,

1977; Ricard, 2015). In other words, radial stresses generated by the solid Earth are required to be balanced by stresses

generated by the overlying (oceanic or atmospheric) fluid. There are three contributions to normal stress at this boundary from235

the mantle: hydrostatic stress that would exist even in the absence of convection, dynamic stress arising from convection, and

viscous stress which opposes fluid motion (see Section 2.1). To satisfy the continuity condition, these stresses must be balanced

by those generated by the water (or air) column atop this boundary. If the pressure from the overlying column is hydrostatic,

the resultant condition is

ρwgsh= ρmgsh+σrr, (10)240

where σrr incorporates deviatoric viscous stresses generated by mantle convection and dynamic pressure (σrr = τrr − p), ob-

tained by solving Equation 2. In practice, since values for this term are obtained by subtracting radial lithostatic stress from the

total stress, values of σrr integrate to zero globally. gs is gravitational acceleration at Earth’s surface, ρm is the mean density

for the surficial layer, and ρw is the density of the overlying fluid (see Table 1). Note that we do not impose additional oceanic

plate cooling, e.g., due to hydrothermal circulation at ridges. Cooling and subsequent subsidence, as well as passive return flow245

at ridges, arise naturally from solution of the governing equations laid out in Section 2.1.

Surface deflection arising in response to predicted convective flow, h, is approximated by rearranging Equation 10,

h≈− σrr

(ρm − ρw)gs
. (11)

250

Deflections are estimated from radial stresses at times of interest (e.g., the present-day) by re-running one time-step of the

TERRA model. During that time-step, a free-slip boundary condition, for which analytic approximations for surface deflection

exist, is imposed instead of the plate-slip condition prescribed during the main model run routine (see Section 2.5; Ricard,

2015). The numeric models themselves apply a quasi-rigid condition at the surface, whereby flow is driven by estimates of255

real plate velocities (from Merdith et al., 2021), and so the surface layers behave as a series of rigid, laterally mobile plates

rather than a single rigid shell. We assess the accuracy of modifying boundary conditions in this way by converting calculated

deflections into the spherical harmonic domain and comparing them to predictions generated using the analytic propagator

matrix approach. The consistent boundary flux (CBF) method provides an alternative means to accurately calculate normal

stresses (Zhong et al., 1993). Previous benchmarking with TERRA has shown mean errors of a few percent or less for surface260

deflection predictions at low harmonic degrees, l ≤ 16 (Davies et al., 2013).
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2.4 Calculated Surface Deflections in the Spherical Harmonic Domain

Transforming stress, or surface deflections, calculated using numeric approaches into the frequency domain provides straight-

forward means of comparing results to analytic solutions and of quantifying spectral power, i.e., the magnitude of contribution265

to the total signal from different wavelengths. Since the models that we investigate are global in scope, we do so using spherical

harmonics.

Any real, square-integrable function over the surface of the Earth can be described as a function of longitude θ and latitude

ϕ by a linear combination of spherical harmonics of degree l and order m,270

f(θ,ϕ) =

L∑
l=1

l∑
m=−l

flmYlm(θ,ϕ). (12)

The spherical harmonic functions Ylm are the natural orthogonal set of basis functions on the sphere, and flm are the spher-

ical harmonic coefficients. The spherical harmonic coefficients, flm, are calculated following the regularized least-squares

methodology described in Hoggard et al. (2016a). The power at each degree, l, in the resultant interpolating function is given

by275

Pl =

l∑
m=−l

f2
lm. (13)

As an example, Figure 2d shows spherical harmonic expansion of the surface stress field predicted by Model 1 at 0 Ma

(cf. Figure 2a). We call this result Model 1b, and the original, full-resolution numerical result is referred to as Model 1a. The

fidelity of the spherical harmonic expansion is demonstrated by the similarity of the maps and histograms shown in panels a–b

and d–e of Figure 2.280

Using the total power per degree convention, Hoggard et al. (2016a) derived a rule-of-thumb for estimating the power

spectrum of dynamic topography (see their Supporting Information), PDT
l , using Kaula (1963)’s approximation for the long-

wavelength gravity field of Earth as a function of l:

PDT
l ≈

(
GM

ZR2

)2(
2

l
− 3

l2
+

1

l4

)
, (14)285

where G is the gravitational constant, M = 5.97×1024 kg is the mass of the Earth, R≈ 6370 km is Earth’s radius. The value of

admittance, Z, between gravity and topography varies as a function of viscosity, as well as the depth and wavelength of inter-

nal density anomalies because of the depth- and degree-dependence of their respective sensitivity kernels (see e.g. Colli et al.,

2016, and references therein). However, in the upper mantle, which contributes most to surface deflections, the topography and

gravity kernels are approximately proportional to one another across all but the lowest spherical harmonic degrees, even when290
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this layer is assumed to be of relatively low viscosity (see e.g. Colli et al., 2016, their Figure 2). This behavior can explain

why Hoggard et al. (2016a) found that assuming an average value of Z = 12 mGal km−1 provides a reasonable approximation

of observed residual topographic trends, thus we make use of that value in the remainder of the paper. Finally, it is useful to

note that Jeans (1923) related spherical harmonic degree to wavelength λ, which at Earth’s surface can be approximated via

λ≈ 2πR/
√
l(l+1).295

2.5 Surface Deflections Calculated Analytically

The second methodology used to calculate surface deflection in response to mantle convection is the analytic propagator matrix

technique (e.g., Craig and McKenzie, 1987; Gantmacher, 1959; Ghelichkhan et al., 2021; Parsons and Daly, 1983; Richards

and Hager, 1984). The approach we take stems from the work of Hager and O’Connell (1981) who used Green’s functions to300

solve the equations of motion in the spherical harmonic domain. Those solutions are used to generate sensitivity kernels that

straightforwardly relate, for example, density or temperature anomalies in the mantle to surface deflections. The kernels are

generated in the frequency domain, and constructed such that surface deflection sensitivity to mantle (e.g., density) anomalies

is calculated as a function of depth (or radius) and wavenumber. A global spherical harmonic implementation introduced by

Hager et al. (1985) has been extended to include compressibility, the effect of warping of the gravitational potential by subsur-305

face density distributions, and radial gravity variations calculated using radial mean density values (Corrieu et al., 1995; Forte

and Peltier, 1991; Hager and O’Connell, 1981; Richards and Hager, 1984; Thoraval et al., 1994).

In this study, following Ghelichkhan et al. (2021), surface deflection for each spherical harmonic coefficient, hlm, is calcu-

lated in the spectral domain such that310

hlm =
1

(ρm − ρw)

R∫
RCMB

Alδρlm(r) · dr. (15)

Products of the sensitivity kernel, Al, and density anomalies, δρlm, of spherical harmonic degree, l, and order, m, are integrated

with respect to radius, r, between the core-mantle boundary and Earth’s surface radii, RCMB and R, respectively. The sensitivity

kernel is given by

Al =−
(

η0
RgR

)(
u1 +

ρw
ρ0

u3

)
, (16)315

where un(r) represents a set of poloidal variables, which are posed for solution of the set of simultaneous equations by matrix

manipulation, such that

u(r) =
[
y1η0 y2η0Λ (y3 + ρ̄(r)y5)r y4rΛ y5rρ0Λ y6r

2ρ0

]T
, (17)
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where Λ =
√
l(l+1), and y1 to y6 represent the spherical harmonic coefficients of radial velocity vr, lateral velocity vθ,ϕ,

radial stress σrr, lateral stress σrθ,ϕ, gravitational potential V , and gravitational potential gradient ∂V/∂r, respectively (Hager320

and Clayton, 1989; Panasyuk et al., 1996). ρ̄ is the layer mean (l = 0) density. The kernel Al includes both u1 and u3, two

terms in the matrix solution to the governing equations that affect surface topography. They directly exert stress on the surface

boundary (u1), and change the gravitational potential at the surface (u3). The functional forms of calculated sensitivity kernels

depend on chosen radial viscosity profiles and boundary conditions (e.g., free-slip or no-slip; Parsons and Daly, 1983).

3 Spatial and Spectral Comparison of Model Predictions325

To quantify impacts of modelling assumptions and approaches used to solve the equations of motion we compare calculated

surface deflections using the following metrics.

3.1 Euclidean Comparisons of Amplitudes

First, we calculate root-mean-squared difference, χ, between predicted surface deflections in the spatial domain,

χ=

√√√√ 1

N

N∑
n=1

wϕ (ha
n −hb

n)
2
, (18)330

where ha
n and hb

n are predicted surface deflections from the two models being compared. N = number of points in the 1× 1◦

gridded maps being compared (e.g., Figure 3b; N = 65341). The prefactor wϕ is proportional to cosϕ, where ϕ is latitude, and

is included to correct biases in cell size with latitude; mean wϕ = 1. This metric is closely associated with the mean vertical

distance (L2-norm distance) between predicted and reference surfaces, i.e., ∆h̄= 1/N
∑N

n=1wϕ|ha
n −hb

n|. These metrics are

sensitive to differences in amplitudes and locations of surface deflections.335

3.2 Spectral Correlation Coefficients

Secondly, to aid comparisons of surface deflections as a function of scale they are converted into the frequency domain using

spherical harmonics. The degree-correlation spectrum, rl, is calculated using pyshtools v4.10 (Wieczorek and Meschede,

2018), such that

rl =
Sf1f2√

Sf1f1 ·Sf2f2
(19)340

where f1 and f2 are the spherical harmonic coefficients of the two estimates of surface deflection being compared. They vary

as a function of order, m, and degree, l; f = fm
l . Sfafb is the cross spectrum of the two functions fa and fb. We note that

−1≤ rl ≤ 1, and we calculate the mean value, rl = 1/L
∑L

l=1 rl, where L is total number of degrees. Thirdly, the correlation

of the entirety of both functions can be estimated following Forte et al. (2015), such that

r =

∑
f∗
1 f2√∑

f∗
1 f1

√∑
f∗
2 f2

, where
∑

=

+l∑
m=−l

, (20)345
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where ∗ indicates complex conjugation (see also Becker and Boschi, 2002; O’Connell, 1971). This metric is not sensitive to

the amplitudes of surface deflections.

3.3 Comparing Calculated Power Spectra

Finally, differences in power spectra between between predicted and independent surface deflections are calculated such that350

χp =

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

K
l

)2
+

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

H
l

)2
, (21)

where L is the number of spherical harmonic degrees being considered. Pl =
∑

f2
lm is the total power per degree of predicted

surface deflections, where
∑

=
∑l

m=−l. P
K
l and PH

l are total power per degree estimated independently from Kaula’s law or

residual oceanic age-depth measurements, respectively (Equation 14; Hoggard et al., 2016b; Holdt et al., 2022). Once power

spectra are calculated it is straightforward to compare their spectral slopes, which can be used to assess whether broad patterns355

of surface deflections are similar even if their amplitudes are not.

4 Model Parameterizations

The models examined in this paper are summarized in Table 2. In terms of assumptions tested there are two families of mod-

els, those with viscosity independent of temperature (Models 1–10), and those with temperature-dependent viscosity (Models

11–20). We note that Models 12-20 incorporate mean radial viscosity from the numeric Model 11a in which viscosity depends360

on temperature.

The two approaches used to solve the equations of motion are annotated ‘numeric’ and ‘analytic’ in Table 2, which refers to

solutions from the TERRA and propagator matrix code, respectively. ‘Numeric’ results are generated by the direct conversion

of TERRA-predicted surface stress to surface deflection as described in Section 2.3. To calculate ‘analytic’ surface deflections,365

density and viscosity outputs from TERRA were first converted to respective spherical harmonic or radially-averaged repre-

sentations, which were then used as input for the propagator matrix code (Section 2.5). Results annotated ‘mixed’ in Table

2 are the ‘numeric’ surface deflections calculated using the output from TERRA fit using spherical harmonics (thus aiding

comparison to the ‘analytic’ solutions; Section 2.4). We compare predicted deflections that arise from flow across entire model

domains, i.e., from the CMB to the surface. Parameterizations of these models and resultant surface deflections are discussed370

in the following sections, with summary statistics given in Table 3.
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Table 2. Summary of mantle convection simulations. Column labeled ‘Method’ indicates surface deflections calculated using either ‘Nu-

meric’ (i.e., from surface normal stresses calculated using TERRA) or ‘Analytic’ (i.e., propagator matrix) approaches; ‘Mixed’ indicates

spherical harmonic fitting of surface stresses calculated using numeric code, enabling comparison with solutions to propagator matrix code.

η(r) indicates models with radial viscosity (e.g. independent of temperature; Models 1–10). η(r,T ) indicates models with temperature-

dependent (therefore laterally varying) viscosity (Models 11–20); note that analytic Models 12–20 incorporate radial viscosity calculated

using mean radial viscosity from Model 11a. †indicates with respect to Model 12. See Table 2, Section 4 and figures referred to in column 5

for details.

Model Method Viscosity Parameterizations Figures

1a Numeric η(r) Unfiltered numeric model 1g-h, 2a-c, S1-2

1b Mixed η(r) Spherical harmonic fit to 1a 2d–i

2 Analytic η(r) Propagator matrix solutions 3, S3

3 Analytic η(r) Radial gravitation, g(r) 4a-c, S4

4 Analytic η(r) Gravitational potential terms 4d-e, S5

5 Analytic η(r) Removing upper 50 km of mantle 5a-b, S7a-d

6 Analytic η(r) Removing upper 100 km of mantle 5c-d, S7e-h

7 Analytic η(r) Removing upper 200 km of mantle 5e-f, S7i-l

8 Analytic η(r) No-slip surface, free CMB 6a-d

9 Analytic η(r) Free surface, no-slip CMB 6e-h

10 Analytic η(r) No-slip surface, no-slip CMB 6i-l

11a Numeric η(r,T ) Unfiltered numeric model S8-S10, S12a-c

11b Mixed η(r,T ) Spherical harmonic fit to 11a 7, S8-10, S12d-g

12 Analytic η(r) Mean radial η(r,T ) from Model 11a 7, S11, S12h-k

13 Analytic η(r) Decrease† radial upper mantle η 8a-b, S13a-d

14 Analytic η(r) Increase† radial upper mantle η 8c-d, S13e-h

15 Analytic η(r) Increase† radial upper mantle η 8e-f, S13i-l

16 Analytic η(r) Constant radial η 8g-h, S13m-p

17 Analytic η(r) Upper mantle densities ×2† 8i, S14a-c

18 Analytic η(r) Upper mantle densities ×1/2† 8j, S14d-f

19 Analytic η(r) Lower mantle densities ×2† 8k, S14g-i

20 Analytic η(r) Lower mantle densities ×1/2† 8l, S14j-l
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4.1 Models with Viscosity Independent of Temperature

4.1.1 Reference Models

Models 1 and 2 are the simplest explored in this paper. They were designed to be as similar as possible, with a view to quanti-375

fying differences and similarities arising solely from the choice of numeric or analytic methodology used to solve equations of

motion and to calculate surface deflections. Model 1 was parameterized with the radial viscosity structure shown in Figure 2c.

Radial viscosity used in other geodynamic studies are shown alongside for comparison (Ghelichkhan et al., 2021; Mitrovica

and Forte, 2004; Steinberger and Calderwood, 2006). Surface densities at 0 Ma are shown in Figures 1 & S1. Mean uppermost

density, ρm, at 0 Ma used to convert radial stresses into surface deflections (Equation 11) is 4578 kg m−3. Note that this model380

is incompressible, hence the reference density, ρ0 (Table 1), for the entire domain must approximate the average density of the

whole mantle, which results in densities close to the surface tending to be larger than in actuality. Water-loading is assumed

(ρw = 1030 kg m−3). Figure 2d shows spherical harmonic expansion of the surface stress field predicted by Model 1 at 0 Ma

(cf. Figure 2a). We call this result Model 1b. The original, full-resolution, numerical result is referred to as Model 1a.

385

Model 2 is the analytic model parameterized to be as similar as possible to Model 1. Its sensitivity kernel, generated assuming

water loading, free-slip surface and CMB boundary conditions, and the radial viscosity profile shown in Figure 2c, is shown in

Figure 3a. Values of the other parameters used to generate these kernels are stated in Table 1. Similar to many previous studies,

the kernel indicates that surface deflections will be especially sensitive (across all degrees incorporated, l ≤ 50) to density

anomalies in the upper mantle (Parsons and Daly, 1983; Hager and Clayton, 1989; Ghelichkhan et al., 2021; Colli et al., 2016).390

Models 1 and 2 are used as points of reference for other more complex models explored in the remainder of this paper.

4.1.2 Gravitation

We start by incorporating more complex parameterizations of gravitation. The analytic Model 3 was parameterized in the same

way as Model 2 with the addition of radial gravitation (following Hager and Clayton, 1989; Panasyuk et al., 1996, see Equation

16). The solid curve in Figure 4b shows the radial gravity function used to calculate surface deflections. It was generated using395

the density distribution produced by (the numerical) Model 1a (see Figure S1) by calculating

g(r) =
4πG

r2

 r∫
RCMB

ρ̄(r′)r′
2 dr′

+Fcore, (22)

where ρ̄(r) is layer mean density and Fcore is a factor chosen to account for core mass, and such that g = 9.8 m s−2 at the

surface. This formulation is derived from Gauss’s law assuming spherically symmetric density, combined with Newton’s law

of universal gravitation (Turcotte and Schubert, 2002).400
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The analytic Model 4 incorporates stress perturbations induced by deflections of the gravitational potential field. This model

assumes g = 10 m s−2 everywhere, even within the deflected surface layer, as was the case for Models 1–2. Following Hager

and Clayton (1989) and Panasyuk et al. (1996), when solving for surface deflection using propagator matrices, the effect on

flow of perturbation of gravitational potential is included via the u3 term in Equation 17 (see also Ribe, 2007; Ricard, 2015).405

Sensitivity kernels for Models 3 and 4 are shown in Figure S6. TERRA simulations do not include this component in flow

calculations (see Section 2.1).

4.1.3 Discarding Shallow Structure

The uppermost few hundred kilometers of geodynamic simulations are often not included in predictions of dynamic topography

(see e.g. Flament et al., 2013; Flament, 2019; Davies et al., 2019, and references therein). To quantify the impact of discarding410

shallow structure on our calculations, we examine differences in calculated surface deflections in the spatial and spherical

harmonic domains. We present three tests, resulting in Models 5, 6 and 7, where structure shallower than 50, 100 and 200 km

is removed from Model 2.

4.1.4 Changing Boundary Conditions

Up to now, we have only considered instantaneous analytic and numeric solutions for surface deflection where both the sur-415

face and CMB have free-slip conditions imposed (i.e., vertical component of flow velocity ur = 0, horizontal components are

allowed to freely vary). No gradient/Neumann constraint (e.g., on ∂u/∂z) is imposed. This condition is generally deemed

appropriate for the surface of the convecting mantle, and CMB, since at both boundaries, cohesion within convecting mantle is

thought to be much stronger than adhesion to the boundary. Analytic solutions for sensitivity kernels for propagator matrices

also exist for no-slip Dirichlet boundary conditions, where horizontal components of u= 0, which may be more appropriate420

when the Earth’s lithosphere is implicitly included in mantle convection models, as is the case here (Parsons and Daly, 1983;

Thoraval and Richards, 1997). Therefore, we test the effect of changing the surface boundary condition to no-slip on predicted

surface deflections (Model 8). Although there is little reason to believe the adhesion of the CMB would be strong, for complete-

ness, we test scenarios in which no- and free-slip conditions are assumed for the CMB and the surface, respectively (Model 9),

and both have no-slip conditions (Model 10).425

4.2 Models with Temperature-Dependent Viscosity

We investigate the impact of including the temperature dependence of viscosity, η(r,T ), on predicted global mantle flow in

numeric models, and on subsequent estimates of surface deflection. We do so by first generating the numeric Model 11, which

is identical to Model 1 in terms of all boundary conditions, initialization, and physical parameters, except for the fact that

viscosity depends on temperature in the manner described by Equation 7. In this model, ρm at 0 Ma is 4579 kg m−3, which is430

very similar to Model 1 (i.e. when viscosity is independent of temperature; Section 4.1.1).
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The radial distribution of viscosity, but not its absolute value, plays a crucial role in determining sensitivity of instantaneous

solutions for surface deflections to density (and thermal) anomalies in the mantle (e.g., Parsons and Daly, 1983; Hager, 1984).

Consequently, to assess sensitivity of surface deflections to arbitrary changes to radial viscosity, η(r), we performed a suite of435

analytic tests. Since the analytic approaches require viscosity to only vary as a function of radius, we first test the impact of

inserting layer-mean viscosity from the present-day 3D temperature-dependent viscosity structure predicted by numeric Model

11 (Figure S8). This parameterization is used to generate (the analytic) Model 12. The sensitivity kernel for Model 12 is shown

in Figure S11a.

440

We stress that the analytic solutions for instantaneous surface deflection for Models 3–10 (with adjusted parameters and

boundary conditions) were simply compared with Model 2; no new numeric models were generated using TERRA. In con-

trast, the additional tests examined here correspond to a new TERRA model (Model 11) in which temperature dependence of

viscosity affects mantle flow across the entire run time.

445

The sensitivity of surface deflections to arbitrary modification of upper and lower mantle viscosity and densities were then

examined. Mean upper and lower mantle (radial) temperature-dependent viscosity was decreased or increased by an order

of magnitude from that used to generate Model 12 (see solid black curve in Figure 8). The resultant impact on calculated

surface deflections (Models 13–16) was quantified by comparison with results generated using reference Model 12 (Figure

S11). Figures 8i–l and S14 show the amplitudes of density anomalies in the upper and lower mantle that were systematically450

increased or decreased to generate Models 17–20. Similar to the tests shown in Figures 8a–h and S13, densities are amplified

relative to Model 12. Radial viscosity is constant for each of these tests (black curve in Figure 8a; i.e., same as that used to

generate Model 12).

5 Results

5.1 Models with Viscosity Independent of Temperature455

5.1.1 Reference Models: Comparing Numeric and Analytic Solutions

We first compare solutions generated from numeric Model 1a, with its spherical harmonic representation (Model 1b), and ana-

lytic Model 2, which were designed to be as similar as possible. Figure 1g–h shows calculated densities that arise in Model 1a

at 0 and 100 Ma (see Figure S1 for extended results). The history of plate motions used to drive these models is also indicated

on these figures. The resultant normal stresses, σrr, calculated at the surface of Model 1, and associated statistics are shown in460

Figure 2a–b. By convention, positive stresses imply compression and hence downward surface deflection, which could be man-

ifest as lithospheric drawdown, i.e., subsidence. Prominent regions of positive stress anomalies in this model include locations

atop imposed collision zones, where subduction naturally results, e.g., along the Pacific margin of South America. Negative

stresses imply dilation and hence positive lithospheric support (i.e., surface uplift). Figure 2a shows dilatational stresses be-
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neath Southern Africa, for example, and along mid-oceanic ridges in the Indian and Atlantic Oceans.465

Surface stresses calculated by fitting radial stresses from Model 1a with a global spherical harmonic interpolation up to

maximum degree l = 50, i.e., minimum wavelength of ≈ 800 km, is shown in Figure 2d–e. The resultant power spectrum in

terms of total power at each degree is shown in Figure 2f. Aside from the lack of structure at degree 0, amplitudes decrease

steadily with increasing degree (i.e., decreasing wavelength) and can be approximated by red noise. The spherical harmonic470

representation of deflections calculated by converting stress using Equation 11, assuming water loading, are shown in Fig-

ures 2g and S2. A comparison of calculated power spectra, expected surface deflection from Kaula’s rule (Equation 14), and

spectra generated from observed residual ocean age-depth measurements is also included in Figures 2 and S2 (Kaula, 1963;

Hoggard et al., 2016a; Holdt et al., 2022). For completeness, surface deflections calculated assuming air loading are shown in

Figure S2f-j.475

Surface deflections predicted by Model 2 and its associated sensitivity kernel are shown in Figure 3a-b. An expanded set

of results including sensitivity kernels for water and air loading, and histograms of deflection and associate power spectra are

included in Figure S3.

480

Deflections predicted from these numeric and analytic models are visually similar (cf. Figures 2g & 3b). Absolute differences

in amplitudes are greatest close to subduction zones (e.g., in South America and Asia; Figure 3c). The differences are broadly

normally distributed and centred on 0 (Figure 3d). The spherical harmonic correlation between these models is high (close to

1 for all degrees; cf. Forte, 2007, Figure 3e). The ratios between surface deflection values in these predictions indicate that

analytic solutions tend to be damped compared to numeric solutions. This result is emphasized by the histogram shown in485

Figure 3g. Multiplying amplitudes of deflections from the propagator matrix solutions by a factor of 1.1 brings them in-line

with the numeric solutions. These results indicate that the propagator matrix approach dampens solutions by ≈ 10%. We note

that power spectral slopes between Model 1b and 2 are similar (cf. Figures 2i and S3d). These and all other results are discussed

in Section 6.

5.1.2 Incorporating Self-Gravitation and Gravitational Potential of the Deflected Surface490

Differences in deflections predicted by Model 2, which assumes constant g = 10 m s−2 across all radii, and Model 3, which

incorporates self-consistent radial gravity profiles, are shown in Figure 4a and 4c. Deviations in predicted instantaneous de-

flections are ∼ 10% of maximum amplitudes predicted by Model 2 (see Table 3). Note that, for the viscosity structure used in

these models, changing g in this way impacts sensitivity kernels most at low degrees l ≲ 10 in the mid-mantle (see Figures 2c,

3a and S6).495

We suggest that the broadly hemispherical differences in calculated deflections arise from three contributing factors. First,

deviations in g between the two models are greatest in the mid-mantle, which, secondly, results in subtly different sensitivity
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kernels (see Figure S6). In general, surface deflection sensitivity to mid-mantle structure is highest at low degrees (l =1–3), and

is almost negligible at higher degrees compared to contributions from the near-surface. Thus it seems likely that differences500

between these kernels would be manifest in low-degree (e.g. hemispherical) differences in surface deflections. Third, in the

final timestep, which is used to calculate deflections, there occurs a greater proportion of negative and positive deflections in

the northern and southern hemispheres, respectively.

We note that incorporating radially varying gravitation into numeric simulations, which is not trivial, might materially impact505

calculated mantle flow fields and hence predictions of surface deflections (see e.g., Zhong et al., 2008; Liu and King, 2019a).

As expected, induced differences in surface displacement predictions are much lower in magnitude when gravitational

potential of the deflected surface is included compared to when radial gravitation is incorporated (cf. Figure 4a and 4d).

We note that they are of the same order of magnitude as the geoid height anomalies predicted by these models. The mean510

Euclidean distance between the two predicted surfaces in Models 2 and 4 is only ∼110 m (compared to maximum amplitudes

> 8 km), and the spherical harmonic correlation is very high across all degrees (see Table 3). Similar to the results for Model 3,

the differences are concentrated at low spherical harmonic degree l. We stress that this test investigates the effect of the u3 term

on instantaneous solution for surface deflection (Equation 5). It cannot be ruled out from this test that inclusion of the effect

of gravitational potential field perturbation would result in greater differences across the entire model run time of a numeric515

model, although it is unlikely (Zhong et al., 2008).

5.1.3 Excising Shallow Structure

As expected from examination of surface deflection sensitivity kernels (e.g., Figure 3a), removal of shallow structure (Models

4–6) results in significantly reduced amplitudes of surface deflections (Figure 5). Doing so results in amplitudes of power

spectra that more closely align with independent estimates (Figure 5b, f, j). The reduction in differences is largely due to the520

fact that the reference Model 2 has surface deflections that are much larger than independent estimates of dynamic topographic

power across all degrees. We note that power spectral slopes for predicted surface deflection from Model 2 are close to those

generated from Kaula’s rule, and observed oceanic residual depths (Figures 2i, S2 and S3). Removing shallow structure steep-

ens spectral slopes (i.e., reduces power at high degrees) beyond those expected from theoretical considerations (Kaula’s rule) or

observed from oceanic residual depths, akin to results from other work that excised shallow structure (e.g., Flament et al., 2013;525

Moucha et al., 2008; Steinberger, 2007). This result is emphasized by calculated spectral coherence, r, between deflections

with and without shallow structure removed (cf. Figure 5b, d, f). While degree 1 and 2 structure remains coherent, coherence

across degrees ≳ 20 decreases from ∼ 0.9 to as low as 0.5, which are the largest discrepancies between any models examined

in this study (Figure S7).
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5.1.4 Adjusting Boundary Conditions530

Figure 6a, e and i show predicted sensitivity kernels as a function of depth and degree, for no-slip/free-slip, free-slip/no-slip

and no-slip/no-slip boundaries respectively, where the first condition is the surface slip condition, and the second the CMB slip

condition. Differences to the sensitivity kernel for Model 2 (free-slip/free-slip; Figure 3a) are shown in panels b, f and j. Those

panels, and panels c, g and k, demonstrate that when the surface boundary condition is ‘no-slip’, there is decreased sensitivity

to short wavelength shallow structure, and increased sensitivity to long-wavelength (low degree) structure across all depths.535

Figure 6d, h and l reveal that induced misfit in the spatial domain is impacted to a greater degree than in tests of gravitation

(Models 3 & 4), but not necessarily more severely than for removal of, say the upper 200 km of density structure from surface

deflection calculations. Spectral correlation with Model 2 is most severely impacted when both surface and CMB boundaries

are no-slip, which is probably physically unrealistic (Model 7; see Table 3; Section 4.1.4).

5.2 Adjusting Viscosity and Density Anomaly Amplitudes540

5.2.1 Temperature-Dependent Viscosity

Slices through the three-dimensional viscosity and density structure of Model 11, which incorporated temperature-dependent

viscosity, are shown in Figure 1a, c and e. Density anomalies in the models parameterized with temperature-dependent viscos-

ity are more localized (‘sharper’) than in the models with viscosity independent of temperature (e.g., Model 1; see Figures 7

& S8–S10). This result is unsurprising since temperature-dependent viscosity provides stronger mechanical contrasts between545

cooler subducting regions and surrounding asthenosphere (cf. Figure 1g–h & S9; Zhong et al., 2000). Nonetheless, power

spectra of calculated surface deflections are very similar (cf. Figure S10j & 2i). This result emphasizes the relatively small

impact incorporating temperature-dependent viscosity has on surface deflections compared to, say, excising shallow structure.

Calculated power spectra from the analytic Model 12, which was generated using layer-mean (radial) viscosity from Model550

11a, reinforces this view (cf. Figure S3a-d & Figure S11a-d). Similar to the results obtained for models without temperature-

dependent viscosity (Figure 3), deflections calculated analytically are damped relative to numeric solutions (see Figure 7f). The

best fit amplification factor to align propagator matrix and numeric solutions is 1.24 (24%). The effect is greater than that seen

when comparing Models 1b and 2 because of increased short wavelength structure in Model 11 (see also Zhong et al., 2000).

Nonetheless, spherical harmonic correlations, rl, are > 0.75 for all degrees examined (l ≤ 50), and > 0.85 for most degrees.555

Cell-to-cell differences in surface deflections are broadly normally distributed and centred on zero (Figure 7d).

A summary of comparisons between models with and without temperature-dependent viscosity is shown in Figure S12. Dis-

crepancies in cell-to-cell deflections are broadly normally distributed and centred on zero, clustering along the 1:1 relationship

with maximum χ= 1.51 for unfiltered (numeric) models (Figure S12b-c; see Table 3). Unsurprisingly, spherical harmonic560

fits and analytic results have tighter normal distributions and lower χ values. Correlation coefficients are > 0.75 for nearly all

degrees in all comparisons.
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5.2.2 Sensitivity to Upper/Lower Mantle Viscosity and Density Anomalies

In order to explore the consequences of modified viscosity and density on calculated deflections we also systematically in-

creased and decreased contrasts in the upper and lower mantle (Models 13–20) with respect to Model 12. Figure 8 summarizes565

the results, which include decreasing upper mantle viscosity by an order of magnitude and show the impact of using increas-

ingly simple radial viscosity in analytic calculations. Calculated sensitivity kernels for the adjusted viscosity profiles demon-

strate that decreasing upper mantle viscosity reduces sensitivity of surface deflections to long-wavelength density structure,

especially in the lower mantle (Figures S13 & 8d, f, h). Models 13–16 have broad similarities with the reference Model 12

even when η(r) is drastically varied: average χ misfit = 0.17–0.38 km, and rl > 0.97 across all degrees. These results empha-570

size that the viscosity adjustments we examined exert a relatively minor control on the amplitudes of instantaneous surface

deflection (Table 3, see, e.g., Ghosh et al., 2010; Moucha et al., 2007; Lu et al., 2020). Of course changes in viscosity might

impact the history of mantle convection and thus surface deflections.

In contrast, increasing (Model 17) or decreasing (Model 18) upper mantle densities is much more impactful on amplitudes575

of calculated surface deflections (see Figure 8i–l, and S14). For instance, increasing or decreasing upper mantle densities by

a factor of two (relative to Model 12) results in χ values of 0.97 and 0.48, respectively. Modifying lower mantle densities has

a much smaller impact on amplitudes of deflection (Models 18 & 19). Spherical harmonic correlation between models is ap-

proximately as good as for the radial viscosity tests (Models 13–16), which is to be expected since we do not vary locations of

density anomalies here, only their amplitudes, and rl is insensitive to amplitudes of the two results being compared. Significant580

is the fact that mean vertical differences between Models 17–20 and 12 (i.e., χ and ∆h̄) are higher than those calculated for

Models 13–16 (in which viscosity is varied; see Table 3).

These results emphasize the relative sensitivity of instantaneous surface deflections to upper mantle density anomalies com-

pared to, say, radial viscosity or lower mantle densities. Even quite large uncertainties in lower mantle density anomalies have585

relatively little impact on instantaneous surface deflections. These results reinforce the view that accounting for shallow (e.g.,

lithospheric and asthenospheric) densities is crucial when estimating surface deflection, and dynamic topography, from mantle

convection simulations (e.g., Colli et al., 2016; Flament et al., 2013; Holdt et al., 2022; Wang et al., 2022).

6 Discussion590

6.1 Similarities of Analytic and Numeric Solutions

In this paper we compare numeric and analytic predictions of instantaneous surface deflections generated by mantle convection

simulations. First, we simply compared predictions from numeric and analytic approaches parameterized to be as similar as

possible. In this test, the models were purposefully simple: viscosity is radial, models are incompressible, and they do not
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Table 3. Inter-model comparison of predicted surface deflections. Models being compared are summarized in Table 2. Metrics: root-

mean-squared difference (χ, km), mean Euclidean (L2-norm) difference in predicted deflection (∆h̄, km), and mean spherical harmonic

correlation between models (r̄l). Standard deviation of rl distribution across degrees (sr) is also stated: note that rl ≤ 1. All spherical

harmonic representations of output from numeric code and generated by the propagator matrix code are expanded up to maximum degree, l

= 50. See body text, figures referred to in column 6, and Table 2 for details.

Models χ ∆h̄ r̄l sr Figures

1b & 2 0.95 0.69 0.97 0.02 3

2 & 3 0.57 0.47 0.99 4× 10−4 4

2 & 4 0.13 0.11 0.99 2× 10−5 4

2 & 5 0.67 0.48 0.93 0.04 5a-b

2 & 6 1.03 0.74 0.87 0.06 5c-d

2 & 7 1.57 1.12 0.63 0.15 5e-f

2 & 8 1.26 1.04 0.99 1× 10−3 6a-d

2 & 9 1.09 0.97 0.99 0.04 6e-h

2 & 10 1.00 0.74 0.96 0.28 6i-l

1a & 11a 1.51 1.04 — — S12a-c

1b & 11b 1.44 0.98 0.79 0.26 S12d-g

11b & 12 1.20 0.80 0.95 0.02 7

2 & 12 0.92 0.64 0.85 0.27 S12h-k

12 & 13 0.31 0.20 0.99 9× 10−3 8a-b, S13a-d

12 & 14 0.17 0.10 0.99 3× 10−3 8c-d, S13e-h

12 & 15 0.32 0.20 0.98 0.01 8e-f, S13i-l

12 & 16 0.38 0.23 0.98 0.01 8g-h, S13m-p

12 & 17 0.97 0.64 0.98 7× 10−3 8i, S14a-c

12 & 18 0.48 0.32 0.98 6× 10−3 8j, S14d-f

12 & 19 0.43 0.29 0.99 3× 10−3 8k, S14g-i

12 & 20 0.22 0.14 0.99 1× 10−3 8l, S14j-l
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include self-gravitation, or radial variation in g. Numeric solutions were transformed into the frequency (spherical harmonic)595

domain so that they could be compared with analytic solutions, and so that power spectra could be directly compared at appro-

priate scales. The results show that, for as-similar-as-possible parameterizations, amplitudes of analytic solutions are ≈ 10%

lower than numeric solutions (Figure 3). If the numeric model incorporates temperature-dependent viscosity, this discrepancy

increases to 25% (Figure 7). We interpret these results in two ways. First, once armed with viscosity and density fields, numeric

and analytic approaches broadly yield similar estimates of surface deflections. Second, the relatively damped analytic solutions600

are a consequence of smoothing steps in the propagator matrix approach.

The smoothness of analytic solutions, and subsequent damping of topographic amplitudes, is perhaps surprising, given the

fact that they are being compared with numeric models expanded into the spherical harmonic domain to the same maximum de-

gree, l = 50. However, the surface stresses used to generate Model 1a have full horizontal resolution (≈ 45 km) across depths,605

and only the surface layer is smoothed by spherical harmonic fitting, to generate Model 1b. Therefore, Model 1b inherently

contains some contribution from degrees ≥ 50, in the sense that finer-resolution density structure at depth could affect longer-

wavelength flow nearer the surface. In contrast, to generate the analytic solution (Model 2), the density structure of each layer

of the model is smoothed, by expansion to maximum l = 50, before integration of their contributions to surface deflection. The

analytic solution would provide a better match to stress estimates from numeric models if such estimates were calculated using610

density structure smoothed to the same maximum l across all depths, which is currently challenging (see Section 1).

Nonetheless, the similarity of results indicates that the relatively low-cost propagator matrix approach can be used to explore

consequences of including additional model complexity. A systematic sweep of parameters, including radial gravitation (Fig-

ure 4a-c) and gravitational potential field effects (Figure 4d-e) indicates that their effects on surface deflection are relatively615

modest. A useful rule of thumb is that self-gravitation perturbs instantaneous surface deflections by O(1–10)% when compared

to models with constant gravitational acceleration, and even less difference is observed at high degree (e.g., Ricard, 2015, their

Section 7.02.2.5.2). Incorporating the effect of deflections of gravitational potential field on flow has a modest impact on am-

plitudes of surface deflections at degrees 1–2, but overall it contributes even less than radial variation in g to surface deflections

across the scales of interest. We note that incorporating full 3-D self-gravitation into numeric simulations is challenging (see620

e.g. Zhong et al., 2008; Liu and King, 2019b). Nonetheless, establishing its impact on the flow field over time, and resultant

impact on surface deflections, would be useful.

6.2 Importance of Viscosity and Shallow Density Anomalies for Isolating Dynamic Support

Figure 8 demonstrates that even quite large (order of magnitude) variations in viscosity do not have much impact on instan-

taneous surface deflections when compared to, say, modified upper mantle density anomalies, which appears to agree with625

the results of Davies et al. (2019) (see also Flament, 2019; Steinberger et al., 2019). Assuming no-slip boundary conditions

at Earth’s surface may be appropriate for driving near-surface (lithospheric) flow throughout the main model run time, but it

less clear whether no- or free-slip boundary conditions are most appropriate for calculating instantaneous dynamic topography
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(see, e.g., Forte and Peltier, 1994; Thoraval and Richards, 1997). Nonetheless, all calculated sensitivity kernels in this study

indicate that shallow density anomalies make significant contributions to surface topography regardless of viscosity profile or630

boundary conditions chosen (e.g., Figure 3a; see also Colli et al., 2016; Parsons and Daly, 1983).

It is well known that disentangling contributions to Earth’s surface topography from mantle convection, lithospheric isostasy

and flexure is important but not trivial (see, e.g., Davies et al., 2019; Cao and Liu, 2021; Fernandes and Roberts, 2021; Hoggard

et al., 2021; Steinberger, 2016; Stephenson et al., 2021; Zhou and Liu, 2019; Wang et al., 2022). Previous studies simulating635

mantle convection have addressed this issue by discarding density anomalies in radial shells shallower than specified depths

before calculating surface stresses (e.g., Spasojevic and Gurnis, 2012; Flament et al., 2013; Molnar et al., 2015). Similarly, an-

alytic approaches have isolated contributions from the convecting mantle by only incorporating information from deep shells

(e.g., Colli et al., 2018). This method has the advantage of effectively removing the effect of lithospheric cooling through

time from surface deflection estimates. It also avoids the need to incorporate, say, realistic crustal or depleted lithospheric lay-640

ers within the viscous flow parameterization. However, uncertain oceanic and continental lithospheric thicknesses mean that

choosing appropriate cut-off depths is not simple.

Out of all the tests performed in this study, removing shallow structure resulted in the largest impact on predicted surface

deflections. It modifies amplitudes of deflections, locations of uplift and subsidence, and degrees over which they are resolved,645

and hence modifies power spectral scalings (Table 3, Figure 5). Making quantitative predictions of dynamic topography from

such an approach is fraught for at least two reasons. First, if the chosen depth is shallower than the lithosphere-asthenosphere

boundary in places, plate and sub-plate contributions to topography will be entangled. Second, discarding deeper layers to

ensure that all plate contribution is definitely avoided means that some contributions from asthenospheric flow will be missed.

Thus, such a step is unlikely to be desirable if mantle flow models are to be used to understand, say, lithospheric vertical650

motions, or vice versa (see e.g., Figure 3a; Davies et al., 2019; Hoggard et al., 2016a). Given the calculated sensitivity kernels,

excising layers in the upper few 100 km is likely to result in predictions of surface deflections that are especially inaccurate at

short wavelengths, i.e., high spherical harmonic degree. An alternative approach, which may be fruitful future work, is removal

of structure based on appropriately calibrated plate models, or globally averaged age-dependent density trends (e.g., Richards

et al., 2020, 2023).655

6.3 Assessing ‘Effective’ Contributions to Instantaneous Deflections

The results emphasize the importance of considering sensitivities of instantaneous vertical surface deflections to the location

and scale of flow in the mantle. Taking inspiration from Hager and O’Connell (1981) and Parsons and Daly (1983), we calculate

the net contributions from density anomaly structure to deflections, as a function of radius, latitude and longitude across all

spherical harmonic degrees considered (i.e., l = 1 to 50). Contributions to deflections from densities at particular radii r, across660

all spherical harmonic degrees and orders, for each latitude and longitude, (θ,ϕ), are calculated such that

24



he(θ,ϕ,r) =

L∑
l=1

m=l∑
m=−l

[Ylm(θ,ϕ) · δρlm(r) ·Al(r) ·∆r] , (23)

where ∆r is the radial width of the spherical shell included in the calculation (≈ 45 km for all shells from the surface to the

CMB; see Supporting Information) and Ylm are spherical harmonic coefficients. Mean density anomalies, δρlm, within each

shell at each latitude and longitude, and sensitivities Al at the top of each shell are used to calculate he (see Section 2.5).665

Contributions at specific locations to surface deflections as a function of latitude and longitude, and spherical shell depth are

shown in Figure 9 for Model 12, for 1≤ l ≤ 50. Results for lower maximum degrees are shown in Supporting Information.

Figure 9a-d show slices through effective density in the upper (at 45, 135, 360 km) and lower mantle (1445 km). A 180◦

cross-section showing effective densities from the core-mantle-boundary to the surface beneath the Pacific to the Indian Ocean

encompassing South America and southern Africa (the same transect as shown in Figure 1) is shown in 9e. This figure again670

emphasizes the contribution of density anomalies in the upper mantle to surface deflections, and the risks associated with

discarding shallow structure when predicting dynamic topography.

6.4 Summary and Future Work

Encouragingly, although instantaneous surface deflections predicted by numeric and analytic solutions to the mantle convection

equations of motion are sensitive to specific parameterizations, broadly coherent patterns emerge in similarly parameterized675

models. Calculated deflections are shown to be relatively insensitive to the methodologies used to solve the equations of mo-

tion. For instance, choosing to solve the equations of motion analytically or numerically changes calculated deflections by

< 25%, even when temperature-dependent viscosity is included throughout the duration of a simulation. Incorporation of grav-

itational potential of deflected surfaces, self-gravitation and viscosity anomalies each generate subtly different instantaneous

surface deflections at the present day.680

In contrast, removal of shallow structure produces much larger discrepancies between predicted deflections. For instance,

surface deflections calculated using the entire modelling domain (core-mantle boundary to surface) have spectral slopes consis-

tent with those of oceanic age-depth residuals, however amplitudes are over-predicted by 1–2 orders of magnitude. In contrast,

by not including the shallowest 200 km, calculated power spectra more closely match observed amplitudes, especially at spher-685

ical harmonic degrees > 10 (Figure 5). However, the spectral slopes of predicted deflections are redder than for the oceanic

residuals, which implies that a different approach to removing the contribution of lithospheric structure is required.

An obvious next step for accurately predicting modern dynamic support from mantle convection simulations is to incorpo-

rate accurate information about lithospheric structure from, for instance, tomographic models (e.g., Priestley and McKenzie,690

2013; Richards et al., 2020). Another useful next step is to establish sensitivity of surface deflections to time-dependent param-

eters that impact predicted flow histories, including plate motions. The results in this paper indicate that comparing predicted
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and observed surface deflections, combined with knowledge of lithospheric structure, could be used to identify optimal models.

Finally, the body of geologic and geomorphologic observations that could be used to test predicted histories of surface695

deflections from mantle convection simulations has grown substantially in the last decade (e.g., uplift and subsidence histories;

Section 1; see, e.g., Hoggard et al., 2021, and references therein). A suite of other geologic and geophysical observables are

also predicted by, or can be derived from, such simulations (e.g., mantle temperatures, heat flux, geoid, seismic velocities,

true polar wander). Using them alongside histories of surface deflections to identify optimal simulations is an obvious avenue

for future work (e.g., Ball et al., 2021; Lau et al., 2017; Panton et al., 2023; Richards et al., 2023). Using such data and the700

methodologies explored in this paper may be a fruitful way of identifying optimal simulations from the considerable inventory

that already exists.

7 Conclusions

This study is concerned with quantifying sensitivities and uncertainties of Earth’s surface deflections that arise in simulations of

mantle convection. Calculated sensitivities of instantaneous deflection of Earth’s surface to mantle density structure emphasize705

the importance of accurate mapping of the upper mantle. Surface deflections are somewhat sensitive to the distribution of

viscosity throughout the mantle, but especially to the locations and scales of density anomalies in the upper mantle. The

largest discrepancies between predicted deflections seen in this study are generated when upper mantle structure is excised

or altered. Doing so changes both the amplitude and distribution of calculated deflections, modifying their power spectral

slopes. These results emphasize the importance of incorporating accurate models of lithospheric structure into calculation710

of sub-plate support of topography, and also the need to accurately determine plate contributions to topography. In contrast,

the choice of methodology to estimate surface deflections—analytic or numeric—or boundary conditions are relatively small

sources of uncertainty. Similarly, assumed gravitational profiles and temperature dependence of viscosity are relatively minor

contributors to uncertainty given reasonable, Earth-like, parameterizations. Nonetheless, these parameterizations may impact

surface deflections through their role in determining how upper mantle flow evolves through geologic time. A fruitful next715

step could be to use the approaches developed in this paper, in combination with careful isolation of plate cooling signatures

from surface deflection predictions, to test mantle convection simulations using the existing and growing body of geologic,

geomorphologic and geophysical observations.

Code availability. The propagator matrix code is archived on Zenodo with doi:10.5281/zenodo.12696774, it has a CC BY 4.0 license. Radial

stresses, spherical harmonic coefficients for density fields, full density fields and viscosity profiles generated using the TERRA mantle720

convection simulation code are archived on Zenodo with doi:10.5281/zenodo.12704925. The TERRA version and system architecture used

are as follows: branch = Volatiles/branch, commit number = 4c3ce53, system architecture = HPE Cray EX, 128 cores, 64 x dual AMP EPYC

7742 64-core. TERRA is a Fortran code, built with G-Fortran. The origin of the TERRA predates now widely accepted software licensing
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procedures, it cannot now be made open source. Nonetheless, the TERRA development team welcomes collaboration and advises interested

parties to contact J. H. Davies (DaviesJH2@cardiff.ac.uk) or H.-P. Bunge (bunge@lmu.de).725
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Figure 1. Examples of mantle densities and viscosity used to calculate stresses and surface deflections numerically and analytically.

(a) Great-circle slice (180°) through full-resolution, present-day, density ρ, predicted by numeric model TERRA with temperature dependent

viscosity (Model 11a; see Table 2 and body text); see globe to left for location. White circles = 20° intervals; filled black circle indicates

orientation of cross section; dashed line = 660 km depth contour; dotted line = 1038 km depth contour, at which depth ρ is plotted on globe;

white-black curve = numeric prediction of surface normal stress σrr from Model 11a. (b) As (a) but slice is through spherical harmonic

expansion of density structure, to maximum degree l = 50 (λ≈ 792 km; Model 11b); black-white curve = surface deflection h, calculated

using (analytic) propagator matrix approach (Model 12). (c) As (a) but for slice through full-resolution viscosity structure of numeric model.

(d) As (c) but for mean (radial) viscosity structure, used along with the density structure shown in (b) to generate analytic solution for surface

deflection shown by black-white curve atop (b). (e–f) As (c–d) but viscosity is expressed as a percentage anomaly with respect to the layer

(radial) mean. (g–h) Predicted densities at 270 km depth at 0 and 100 Ma from numeric model with viscosity independent of temperature

(Model 1a). Extended results are shown in Figure S1. Plate motions and paleo-coastlines are from Merdith et al. (2021).
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Figure 2. Surface stresses and deflections from numeric simulation of mantle convection with spherical harmonic expansion up to

degree 50. (a) Predicted present-day surface radial stress, σrr (Model 1a). (b) Histogram of values shown in (a). (c) Black line = radial

viscosity, η, structure used to drive Model 1a and thus produce grid shown in panel (a). Gray dashed lines = alternative viscosity profiles of

(from darkest to lightest) Mitrovica and Forte (2004), Steinberger and Calderwood (2006), and µ1, µ2 from Ghelichkhan et al. (2021). (d)

Model 1b: Spherical harmonic fit to Model 1a (panel a) up to maximum degree l = 50 (minimum wavelength λ ≈ 792 km). (e) Histogram

of values shown in panel (d). (f) Power spectrum—total power per degree—of stress field shown in panel (d). (g) Spherical harmonic fit

to surface deflections (Model 1b; up to degree l = 50). (h) Histogram of values shown in panel (g). (i) Black curve = power spectrum of

calculated water-loaded surface deflections (panel g); gray line and band = expected dynamic topography from Kaula’s rule using admittance

Z = 12±3 mGal km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for water-loaded residual topography (from Holdt et

al., 2022) via analytic solution of special case of Equation 15. χp = root-mean-squared difference between calculated (black) and independent

(orange & grey) surface deflection power (see Equation 20). All histograms are weighted by latitude to correct to equal-area. Figure S2 shows

extended results including air-loaded deflections.
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Figure 3. Comparisons of numeric (Model 1b) and analytic (Model 2) estimation of surface deflections from models with identical

parameterization. (a) Surface deflection sensitivity kernel Al as a function of spherical harmonic degree, l, and depth (Model 2). (b)

Propagator matrix (analytic) solution for water-loaded surface deflection calculated using sensitivity kernel shown in panel (a). Figure S3

shows extended results including power spectra and air-loaded deflections. (c) Difference, ∆h, of surface deflections in Models 1b and 2. (d)

Histogram of difference values shown in (c). (e) Spectral correlation coefficient, rl, between Models 1b and 2; Equation 20. (f) Comparison

of predicted surface deflections; χ= root-mean-squared difference between predictions (Equation 18); gray dashed line = 1:1 ratio. (g) Black

bars = histogram of ratios between analytic:numeric solutions for surface deflection as in (f). Gray dashed line = 1 (i.e., identical values).

Gray bars = as black bars, but for propagator matrix solution amplitudes scaled up by optimal factor to fit numeric solution (=10%). All

histograms are weighted by latitude to correct to equal-area.
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Figure 4. Impact of self-gravitation (a–c) and gravitational potential of deflected surfaces (d–e) on surface deflections calculated an-

alytically. In these tests surface deflections from models with different gravity parameterizations are compared to predictions from Model 2.

(a) Difference between water-loaded surface deflections, ∆h, calculated using the propagator matrix technique incorporating self-gravitation

(Model 3; black curve in panel b) and g = 10 m s−2 (dashed line in panel b; Model 2). (c) Histogram of values in panel (a). (d–e) Differences

in surface deflection from models with (Model 4) and without (Model 2) stress perturbations induced by gravitational potential of the de-

flected surface. All histograms are weighted by latitude to correct to equal-area, they show the full extent of the results. Figures S4–S5 show

extended results including maps of calculated surface deflections.
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Figure 5. Effect of removing shallow structure on surface deflections calculated analytically. Surface deflections in models with shallow

structure removed are compared to those predicted by Model 2. (a) Black line = Power spectra of predicted water-loaded surface deflection

from propagator matrix solution for Model 2 (Figure 3b), but with effect of upper 50 km of density anomaly structure ignored in calculation

(Model 5). Gray line and band = expected dynamic topography from Kaula’s rule using admittance Z = 12± 3 mGal km−1 (Kaula, 1963).

Orange dashed line = expected power spectrum for water-loaded residual topography from Holdt et al. (2022), via analytic solution of special

case of Equation 15. χp = root-mean-squared difference between calculated (black) and independent (orange & grey) surface deflection

power (see Equation 20). (b) Spectral correlation coefficient, rl, of surface deflections in Models 5 and 2 (see Equation 19). Inset χ =

root-mean-squared difference in surface deflections of Models 5 and 2 (see Equation 18). (c–d) and (e–f) as (a–b) but for depth cut-offs of

100 (Model 6) and 200 km (Model 7), respectively. Figure S7 show extended results including maps of calculated surface deflections and

differences with Model 2.

Figure 6. Impact of free- and no-slip surface and core-mantle boundary boundary conditions on surface deflections. This figure

shows comparisons of surface deflections from models with different assumed boundary conditions and Model 2. (a) Water-loaded surface

deflection sensitivity kernel Al, for Model 8, which has a no-slip surface boundary condition, but otherwise is parameterized the same as

Model 2. l = spherical harmonic degree. (b) Sensitivity kernel of Model 8 minus sensitivity kernel of Model 2. Note, positive difference

implies reduced sensitivity compared to Model 2, and vice versa, since Al is negative. (c) Predicted water-loaded surface deflection for

Model 8. (d) Difference between surface deflection predictions, ∆h, for Model 8 and Model 2. (e–h) as (a–d) but for Model 9: free-slip

surface boundary, no-slip CMB. (i–l) as (a–d) but for Model 10: no-slip surface and CMB boundaries.
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Figure 7. Comparison of surface deflections calculated numerically (Model 11b) and analytically (Model 12) using results from

simulation with temperature dependent viscosity. (a) Model 11b: Spherical harmonic expansion of predicted present-day water-loaded

surface deflection converted from stress output from numeric model TERRA (Model 11a), to maximum degree l = 50. (b) Model 12: As (a)

but for prediction made using propagator matrix method. (c) Difference, ∆h, between Models 11b and 12 (panels a and b). (d) Histogram

of difference values shown in (c), weighted by latitude to correct to equal-area. (e) Spectral correlation coefficient, rl, between predictions

shown in panels (a) and (b); Equation 20. (f) Numeric (Model 11b) versus analytic (Model 12) predictions of surface deflection; χ= root-

mean-squared difference between predictions, Equation 18; gray dashed line = 1:1 ratio. (g) Histogram of ratios between analytic:numeric

solutions for surface deflection as in (f), weighted by latitude. Gray dashed line = 1 (i.e., identical values). Gray bars = as black bars, but for

propagator matrix solution amplitudes scaled up by optimal factor to fit numeric solution (24%).
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Figure 8. Sensitivity of calculated analytic surface deflection to adjusted radial viscosity (a–h) and density anomalies (i–l). This figure

shows comparisons of surface deflections calculated in models with modified viscosity and density to the results from Model 12 (see Table 1).

(a) Black curve = unadjusted prediction of present-day radial mean viscosity from Model 11; red line = adjusted radial profile with viscosity

decreased by a factor of 10 between depths of ∼ 300–500 km (Model 13); gray dashed lines = viscosity profiles used in other studies (see

Figure 2). (b) Sensitivity kernel for the viscosity profile indicated by the red curve in panel a; l = spherical harmonic degree. Value of root-

mean-squared difference, χ, between calculated surface deflections for unadjusted and adjusted viscosity is stated (see Equation 7). (c–h)

Results from testing alternative radial viscosity (Models 14–16). Figure S13 shows extended results including maps of surface deflections

and their differences. (i-l) Density anomalies (red line) adjusted by directly scaling spherical harmonic coefficients (l > 0) up or down by a

factor of 2 (Models 17 & 19: panels e & g) or 1
2

(Models 18 & 20: f & h). Viscosity structure applied in each case is same as that used to

generate Figure 7b. Sensitivity kernels for surface deflections are not shown since they are invariant with respect to density anomalies, ∆ρ,

depending only on viscosity structure. Figure S14 shows extended results including maps of surface deflections and their differences.
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Figure 9. Effective density; contributions from density anomalies to surface deflection. (a–d) Maps of net contribution to present-day

water-loaded surface deflection calculated using propagator matrix approach (Model 12; see body text for details). Depth slices, z, at 45,

135, 360 and 1445 km depth incorporating all spherical harmonic degrees l and orders m, up to l = 50. (e) Great-circle slice (180°) showing

contributions to surface deflection; globe to right shows transect location and calculated surface deflection (Model 12). White circles =

20° intervals; note filled black circle for orientation; dashed line = 660 km depth contour. (f) White-black curve = total surface deflection

along transect shown atop globe in panel (e); abscissa aligned with panel g; orange dashed line = same but for maximum l = 10 (see

Supporting Information Figure S18); red dashed curve = surface deflection from Model 2. (g) Cartesian version of panel (e); ordinate aligned

with panel (h). (h) Grey dashed curve = mean absolute value of density anomalies in Model 12—see top axis for values. Black curve =

global mean amplitude (modulus) of contribution from density structure in Model 12 to total surface deflection h, across all l and m; orange

line = same but for maximum l = 10; red dashed line = results for Model 2 (see Section 6.3). See Figures S15–S19 for extended results,

demonstrating sensitivity of surface deflections to maximum spherical harmonic degree.
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