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Abstract. Conventional point estimate error statistics are not well-suited to describing spatial and temporal variation in the 

accuracy of spatially interpolated meteorological variables. This paper describes, applies, and evaluates a method for 

quantifying prediction uncertainty in spatially interpolated estimates of meteorological variables. The approach presented here, 10 

which we will refer to as DNK for “detrend, normal score, krige,” uses established methods from geostatistics and we apply 

them to interpolate data from ground-based weather stations. The method is validated using daily maximum near-surface air 

temperature (Tmax). Uncertainty is inherent in gridded meteorological data, but this fact is often overlooked when data 

products provide single-value point estimates without a quantitative description of prediction uncertainty. Uncertainty varies 

as a function of spatial factors, like distance to the nearest measurement location, and temporal factors, like seasonality in 15 

sample heterogeneity. DNK produces not only point estimates but predictive distributions for each location. Predictive 

distributions quantitatively describe uncertainty suitably for propagation into physical models that take meteorological 

variables as inputs. We validate the uncertainty quantification by comparing theoretical versus actual coverage of prediction 

intervals computed at locations where measurement data were held out from the estimation procedure. We find that, for most 

days, the predictive distributions accurately quantify uncertainty and that theoretical versus actual coverage levels of prediction 20 

intervals closely match one another. Even for days with the worst agreement, the predictive distributions meaningfully convey 

the relative certainty of predictions for different locations in space. After validating the methodology, we demonstrate how the 

magnitude of prediction uncertainty varies significantly in both space and time. Finally, we examine spatial correlation in 

predictive distributions by using conditional Gaussian simulation in place of kriging. We conclude that spatial correlation in 

Tmax errors is relatively small, and that less computationally expensive kriging-based methods will suffice for many 25 

applications. 

1 Introduction 

Interpolated meteorological data products are widely used in the geosciences, but relatively little attention is paid to the errors 

they contain. For example, when studying terrestrial fluxes of carbon, water, and energy over a large spatial domain (e.g., 

≥100 km2), it is necessary to work with gridded meteorological data. Ground-based weather stations may be sparse or only 30 

cover a small fraction of the study area so gridded estimates, rather than station measurements, of meteorological variables are 
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used by models of land surface processes (Zeng et al., 2020; Volk et al., 2024). In many gridded data products, the values are 

point estimates (i.e., a single number rather than a range or distribution). When given only gridded point estimates, data users 

do not know, and cannot propagate, the uncertainty in the meteorological inputs to their model. While users may refer to point 

estimate accuracy statistics for the data product, these statistics only capture errors at locations where measurements are 35 

available. For applications that are particularly sensitive to meteorological inputs, such as evapotranspiration modeling, 

uncertainty in gridded data can contribute significantly to downstream model errors (Doherty et al., 2022). While geostatistical 

uncertainty quantification is standard practice in other domains like mining (Rossi and Deutsch, 2014), oil and gas exploration 

(Pyrcz and Deutsch, 2014), and hydrogeology (Kitanidis, 1997), these methods are not used in the most popular near-surface 

meteorological data products. Understanding uncertainty in gridded meteorological data is necessary to evaluate the robustness 40 

of scientific findings, especially when designing and implementing public policy based on those findings (Morgan and 

Henrion, 1990). 

Existing gridded meteorological datasets fall into two main categories of methods: statistical interpolation methods, 

where there is no dynamic physical model, and data assimilation methods, which combine dynamic physical models with data-

driven adjustments. For North America, DayMET (Thornton et al., 1997; Thornton et al., 2021) and PRISM (Daly et al., 2008), 45 

which produce estimates of several meteorological variables on fine spatial grids (~1 km2), are widely used statistical 

interpolation products. A related product, NEX-GDM (Hashimoto et al., 2019), uses machine learning and a wide range of 

inputs to produce high resolution gridded meteorological values. Regarding uncertainty, Daly et al. (2008) describes a method 

for creating prediction intervals, but the resulting maps are not publicly distributed. Thornton et al. (2021) includes an extensive 

accuracy assessment using cross validation, but the methodology does not produce spatially resolved uncertainty estimates. A 50 

wide range of data assimilation products are available including regional products like RTMA (De Pondeca et al., 2011) 

CONUS404 (Rasmussen et al. 2023), and global ones like MERRA2 (Gelaro et al., 2017) and ERA5 (Hersbach et al., 2020; 

Bell et al., 2021). Some assimilation products, like ERA5, express uncertainty using an ensemble of model runs, where a 

greater magnitude of spread in the ensemble is taken to indicate greater uncertainty. However, the computational expense of 

large-scale climate simulations generally means that the resulting data products have relatively coarse spatial resolution (31 55 

km horizontal resolution for ERA5) and ensembles that are not large enough (tens of ensemble members) to characterize stable 

empirical distributions. In contrast, the approach described in this work is computationally efficient enough to be run at fine 

spatial resolution over large areas while also giving a robust description of the predictive distribution. 

In this paper we present and analyze a statistical method to produce spatially and temporally resolved uncertainty 

quantification and apply it to the interpolation of daily maximum near-surface air temperature (Tmax). We will refer to the 60 

approach for estimation and uncertainty quantification as DNK for “detrend, normal score, krige.” The basic approach of DNK 

is well-established in geostatistics, appearing in textbooks such as Olea (1999), Goovaerts (1997), and others. While kriging 

and related spatial regression methods have previously been used for meteorological data interpolation, they have only been 

used to produce gridded point estimates. As we will explain, the “detrend” and “normal score” steps in DNK enable us to 

compute theoretically correct predictive distributions at each prediction location. A central component on this work is to test 65 
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the validity of predictive distributions generated using DNK and, as such, their utility for uncertainty quantification. 

Uncertainty is not intrinsic to macro-scale physical phenomenon but rather is a property of the combination of data and a model 

(Goovaerts, 1997), which means that there is not an objective “correct” predictive distribution for a given unknown value. 

However, we can assess the validity of a collection of predictive distributions, in aggregate, by testing the rate at which true 

measurement data fall within prediction intervals relative to those intervals’ theoretical coverage. If the validity of predictive 70 

distributions can be established, then DNK can accurately quantify uncertainty in gridded meteorological data. 

2 Methods 

2.1 Input Data 

This study uses two sets of input data: daily maximum air temperature at 2m (Tmax) and elevation. Tmax data are provided 

by Thornton et al. (2022) for stations in the Global Historical Climatology Network (GHCN) (Menne et al., 2012), a database 75 

of measurement data from ground-based weather stations across the world. The GHCNd (daily) data are processed as described 

in Thornton et al. (2021) to correct for temperature sensor biases and inconsistencies in time of observation. Figure 1 shows 

the spatial distribution of weather stations across the study area. The number of weather stations within the California state 

boundary ranges between 524 and 542 stations depending on the day of year. Data from stations within the state boundaries 

are used as ground truth for validation. Data from stations outside the study area contribute to predictions at locations near the 80 

boundary but these stations are not, themselves, used as validation locations. Elevation data are sourced from a digital elevation 

model (DEM) with 90 m resolution for the western United States (Hanser, 2008). The DEM is clipped to the boundaries of the 

study area and then resampled using mean resampling to a grid with 1 km2 grid cells. 

 
Figure 1: Study area and locations of weather stations. Black lines mark the bounds of the study area (the state of California). Blue dots 85 
mark the locations of GHCN weather stations that were active in 2022. The number of weather stations used on each day varies depending 

on the availability of data. Weather stations outside the study area were not used as prediction locations but were used in estimation for grid 

cells near the study area boundaries. 
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2.2 Estimation Methods for Spatial Interpolation 

The primary estimation method we consider is Ordinary Kriging (OK) (see e.g., Goovaerts, 1997; Olea, 1999; Anderes, 2012), 90 

which gives analytical solutions for both a point estimate and the variance of a predictive distribution. For a random field that 

is (1) covariance stationary and (2) Gaussian, the OK prediction mean and variance completely characterize the predictive 

distribution. In general, spatially distributed Tmax data satisfy neither assumption, so data transformations must be applied 

(and later reverted) to remove spatial trends and induce normality. These transformations are described in Sect. 2.3 Data 

Transformations. Under assumptions of stationarity and normality, OK is equivalent to Gaussian process regression with a 95 

constant unknown mean. We apply OK locally at each prediction location using measurement data within a 100 km radius of 

the location in the estimation. Figure 2G-H shows an example of the gridded estimates produced by OK from the point 

measurement data shown in Fig. 2E-F. 

In addition to OK, we also demonstrate spatial uncertainty quantification using conditional Gaussian simulation 

(CGS). Samples generated by CGS are equally probable “realizations” of the underlying random field that produced the 100 

measurement data. Under assumptions (1) and (2), local predictive distributions (i.e., the marginal predictive distribution at a 

given grid cell) generated by CGS are equivalent to the distribution defined by the kriging variance (Goovaerts, 2001). 

However, CGS produces realizations that are spatially coherent with respect to the model of spatial covariance (see Sect. 2.4 

Variography), whereas gridded estimates produced by OK do not. As such, CGS can be used to express “spatial uncertainty,” 

or spatial correlation in errors, as described by the joint predictive distribution over multiple grid cells. CGS is performed using 105 

a method based on a decomposition of the conditional distribution covariance matrix, commonly referred to in geostatistics 

literature as the “LU method” of CGS (Alabert, 1987). Both OK and CGS are performed using the GeoStats.jl library 

(Hoffimann, 2018). 

 
Figure 2: Illustration of data processing steps. Each column corresponds to a step in the processing and estimation pipeline. The top row 110 
shows point (panels A, C, E) and gridded (panels G, I, K) data values. The bottom row shows histograms of the data at each processing step. 

Panels A-B show the measured Tmax values. Panels C-D show the Tmax values after spatial trends have been estimated and subtracted. 

Panels E-F show the detrended Tmax data after the normal score transform has been applied. Panels G-H show gridded estimates produced 
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by OK in the detrended and Gaussian space. Panels I-J show gridded estimates after reverting the normal score transform using quantile 

information from the distributions in panels C-D. Panels K-L show the final gridded estimates after re-adding spatial trends. 115 

2.3 Pre- and Post-Estimation Data Transformations 

There are two transformations that are applied to the Tmax data prior to estimation, and then reverted after, in the DNK 

procedure. The first attempts to model and then remove local trends (“detrend”) to bring the data closer to stationarity. The 

second transforms the data to be approximately Gaussian by applying a “normal score transformation.” These transformations 

enable us to utilize properties of the multivariate Gaussian to derive predictive distributions (see e.g., Olea 1999). After 120 

estimation (interpolation) is performed in the de-trended and Gaussian space, the transformations are reverted to bring the data 

back to their original non-Gaussian and nonstationary distribution. We describe some practical challenges related to these 

transformations in the Discussion. 

The first transformation models and then subtracts local spatial trends. The purpose of trend modeling is to identify 

and remove variation at coarse spatial scales that would otherwise make the data nonstationary. We use the term “trend” to 125 

refer both to large scale variation in longitude-latitude space and variation due to change in elevation (lapse rate). While some 

prior approaches assume a fixed lapse rate (Hart et al., 2008), we follow DayMET (Thornton et al., 1997; Thornton et al. 2021) 

and PRISM (Daly et al., 2008) in allowing lapse rate to vary in space. Local trends are estimated by regressing Tmax values 

on spatial coordinates and elevation for all weather stations within a 100 km search radius of a given station (including the 

station itself). The residual at the station is saved as the detrended Tmax. The detrended station-level Tmax values are shown 130 

in Fig. 2B-C. A similar procedure is applied to “add back” the trend after estimation: the trend parameters are estimated at 

locations centered on each grid cell, again using data from weather stations within 100 km. The cell-wise trend value is 

calculated using the regression parameter estimates and the corresponding coordinates of the cell and elevation from a digital 

elevation model. The gridded estimates with the trend added back is shown in Fig. 2K-L. 

The second transformation, a “normal score transformation,” transforms the data to be approximately Gaussian. This 135 

is done by mapping quantiles of the empirical distribution of detrended Tmax values to the corresponding quantiles of a 

standard normal distribution. The transformed station-level data are shown in Fig. 2C-D. The quantile information from the 

original empirical distribution is saved so that the normal score transformation can be reverted after estimation. The gridded 

estimates, after reverting the normal score transform, are shown in Fig. 2I-J. This transformation is implemented in 

TableTransforms.jl. 140 

2.4 Variography 

Both OK and CGS rely on a model of spatial covariance to produce gridded Tmax estimates and prediction uncertainty. 

Traditionally in geostatistics, spatial variation is represented using a semi-variogram, which is a function that describes the 

decrease in correlation between two locations as the distance between them increases (see e.g., Olea, 1999; Goovaerts, 1997). 
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In this study, variography is performed using functions from the GeoStats.jl library (Hoffimann, 2018). We model the 145 

theoretical semi-variogram using the pentaspherical function: 

 

𝛾(ℎ) = (𝑠 − 𝑛) *+
15
8 /

ℎ
𝑟1 −

5
4/
ℎ
𝑟1

!

+
3
8 /
ℎ
𝑟1

"

5 ∙ 1($,&)(ℎ) + 1[&,))(ℎ)7 + 𝑛 ∙ 1($,))(ℎ) 

( 1 ) 

where the variable ℎ  is the lag distance and 𝑠 , 𝑛 , and 𝑟  are parameters estimated to fit the empirical semi-variogram 150 

representing the sill (value of 𝛾 as ℎ	 → ∞), nugget (value of 𝛾 as ℎ	 → 0), and range (roughly the value of ℎ where 𝛾 “levels 

off”), respectively. 1(*,+)(ℎ) is an indicator function that is 1 if 𝑙 < ℎ < 𝑢 and 0 otherwise. At shorter lag distances, the 

pentaspherical model produces semi-variances between that of exponential and spherical models, which have been used 

previously to interpolate near-surface air temperature (Menafoglio et al., 2013; Hudson and Wackernagel, 1994). While the 

Tmax data also seem to reasonably support the use of the exponential model, we found that fitting the pentaspherical model 155 

was more numerically stable given the spatial sparsity of the weather station data. The theoretical model is fit to the empirical 

semi-variogram by minimizing the sum of squared errors with equal weight given to each lag bin. Model fitting is performed 

using the detrended and normal scored data (i.e., the data in Figure 2E-F). 

2.5 Validation of Predictive Distributions 

We implement a validation scheme that evaluates the accuracy of the predictive distributions in quantifying prediction 160 

uncertainty. Uncertainty is not intrinsic to the physical phenomenon and, as such, there is not an objective “correct” predictive 

distribution. However, a collection of “valid” predictive distributions should produce statistics that reflect appropriate levels 

of confidence in aggregate. 

To assess the validity of local predictive distributions, we use a strategy based on prediction intervals described by 

Deutsch (1997). For each day of year, we perform leave-one-out (LOO) cross-validation with each weather station. The 165 

measurement at the left-out station is not used in trend modeling, variography, or estimation. Predictions are made for the point 

at the center of the grid cell containing the weather station that will be used for validation. Estimates of the multiples of 0.5 

percentiles are produced for each predictive distribution, from which centered prediction intervals are calculated with 𝑝% 

coverage for 𝑝 ∈ {1, 2, … , 99}. For each 𝑝% prediction interval, let 𝑝*,- = (1 − 𝑝)/2 and 𝑝+.. = (1 + 𝑝)/2 be the lower and 

upper bound of the theoretical prediction interval. Then for 𝑇𝑚𝑎𝑥/, the measured Tmax at weather station 𝑖, define an indicator 170 

function: 

 

𝜉(𝑇𝑚𝑎𝑥/ 	; 𝑝) = P
1, if	𝑇𝑚𝑎𝑥/ ∈ (𝑝*,- , 𝑝+..)

0, otherwise  

( 2 ) 
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 175 

Then for each 𝑝% prediction interval, we compute an average over all 𝑛 stations as 𝜉(𝑝)ZZZZZZ = 	 0
1
	∑ 𝜉(𝑇𝑚𝑎𝑥/ 	; 𝑝)1

/20 . For exactly 

valid predictive distributions, 𝜉(𝑝)ZZZZZZ = 𝑝  for any 𝑝.  To summarize the errors, we calculate the mean bias error as 
0
33
∑ 𝜉(𝑝)ZZZZZZ − 𝑝33
.20  and the mean absolute error (MAE) as 0

33
∑ ]𝜉(𝑝)ZZZZZZ − 𝑝]33
.20 . The MAE weights errors from being too confident 

and too conservative equally. The bias indicates whether the predictive distributions are too confident (negative) or too 

conservative (positive) on average. 180 

 
Figure 3: Prediction intervals versus measured Tmax. The lower bounds (blue) and upper bounds (red) of prediction intervals with coverage 

𝑝 ∈ {5, 10,… , 95} for a single prediction location are shown. (Validation statistics are computed using 𝑝 ∈ {1, 2,… , 99}, but we show fewer 

intervals here for legibility.)  Intervals that contain the measured Tmax (black dashed line) are drawn as solid lines and the intervals that do 

not are drawn as partially transparent. The dotted black line shows a kernel density estimate of the predictive distribution. 185 

3 Results 

We first present the validation of local uncertainty quantification using the predictive distributions from OK. Figure 4 shows 

the average accuracy of the predictive distributions using the LOO validation scheme described in in Sect. 2.5. Figure 4A 

shows the mean absolute error (MAE) in terms of the predicted versus actual proportion of Tmax values that fall within a given 

prediction interval. For example, an MAE of 0.01 indicates that for a 𝑝% prediction interval, the true value fell within that 190 

interval (𝑝 ± 1)% of the time. The largest MAE of 0.046 occurs on DOY 96. The median MAE is 0.013 and 84% of days had 

an MAE less than 0.02. Fig. 4B shows the average bias for each day. For example, a bias of -0.01 indicates that for a 𝑝	% 

prediction interval, the true value fell within that prediction interval (𝑝	 − 	1)% of the time. Positive bias indicates that the 

prediction intervals are too conservative on average, and negative bias indicates that the prediction intervals are too confident 

on average. The largest positive bias of +0.046 occurred on DOY 96 and the largest negative bias of -0.040 occurred on DOY 195 
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343. The median bias was -0.002. There are temporal patterns with the bias metrics errors of similar sign and magnitude 

persisting for periods ranging from a few days to multiple weeks. 

 
Figure 4: Predictive distribution quantitative validation statistics. Validity is assessed by comparing the theoretical coverage versus actual 

rate that measurement data fall within prediction intervals. The calculation uses an indicator function 𝜉 described in Eq. (1). Panel A shows 200 

the mean absolute error (MAE) for each day of year, calculated as !
""
∑ .𝜉(𝑝)111111 − 𝑝.""
#$! . Panel B shows the mean bias error for each day of 

year, !
""
∑ 𝜉(𝑝)111111 − 𝑝""
#$! . A positive bias indicates that predictive distributions were too conservative on average and negative bias indicates 

they were too confident on average. 

 

Figure 5 shows validation results for three individual days. In addition to showing the day with the median MAE, we 205 

highlight the two days with the most significant errors in the sample to give a sense of the “worst case” accuracy in uncertainty 

quantification. Values in the x-direction correspond to theoretical prediction intervals centered on the median. Values in the 

y-direction are the actual proportion of true Tmax values that fall within the given theoretical interval. For example, a point at 

(0.25, 0.3) would mean that 30% of true values fell within the corresponding 25% prediction intervals. Figure 5A shows results 

for DOY 77, which had the median MAE of 0.013. For DOY 77, the actual proportions closely track the theoretical prediction 210 

intervals with the largest error occurring at the 29% intervals, which contained 26.4% of the true values. Figures 5B and 5C 

show the same information for DOY 96 and 343, which are the days with largest positive and negative biases of +0.046 and -

0.040, respectively. The largest error for DOY 96 occurs at the 59% prediction intervals, which contained 67.3% of true Tmax 

values. The largest error for DOY 343 occurs at the 49% prediction intervals, which contained 41.6% of true Tmax values. 
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 215 
Figure 5: Theoretical versus actual coverage of prediction intervals. X-axes correspond to the coverage of the theoretical prediction interval 

and Y-axes correspond to the proportion of values that actually fell within the intervals. Panel A shows results for DOY 77, which had the 

median MAE of all the days in the sample. Panels B and C shows DOY 96 and 343, which had the largest positive and negative biases, 

respectively. 

 220 

When applying our method across a full spatial domain, we observe that local predictive distributions vary in space 

and time. Figure 6 shows predicted Tmax and uncertainty statistics (spread of predictive distributions) for four different days, 

where each row corresponds to a day. The days are approximately equally spaced and cover different seasons, including the 

first days of January (Fig. 6A-6C), April (Fig. 6D-6F), July (Fig. 6G-6I), and October (Fig. 6J-6L). The first column (Fig. 6A, 

6D, 6G, and 6J) shows the median of the predictive distribution for each 1 km2 grid cell. The second column (Fig. 6B, 6E, 6H, 225 

and 6K) shows the magnitude of the 50% prediction interval of each predictive distribution (the 75th percentile minus the 25th 

percentile). The third column (Fig. 6C, 6F, 6I, and 6L) shows the magnitude of the 90% prediction interval of each predictive 

distribution (the 95th percentile minus the 5th percentile). Each column uses a single common color gradient (the gradients do 

not vary between rows). The Tmax prediction uncertainty varies in both space and time. Spatial patterns in prediction 

uncertainty are strongly influenced, though not exclusively determined, by the spatial density of weather stations near the 230 

prediction location. Prediction uncertainty also increases when the variance in Tmax at nearby stations is greater (the nearby 

stations have “lower agreement” with one another). Comparing the uncertainty maps in time (between rows), the magnitude, 

spatial patterns, and magnitude of variation in prediction uncertainty all vary. Spatial patterns also differ based on the type of 

the prediction interval. The 90% prediction intervals (rightmost column) appear to be controlled primarily by the local spatial 

density of measurements, with the locations of weather stations standing out as local minima. The patterns in the 50% 235 

prediction intervals (center column) are more complex and dependent on local agreement between stations. The fact that many 

of the locations with the largest uncertainties are near the Pacific coast suggest that the trend model is failing to capture local 

Tmax trends, where cooling from the ocean confounds the usual negative correlation between temperature and elevation. Using 

a more sophisticated approach to trend modeling may improve accuracy and reduce uncertainty at these locations (see the 

Discussion for more on this topic). 240 
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Figure 6: Tmax and prediction uncertainty maps for four different days. Each row shows results for a different day. The days are DOY 1 

(panels A-C), DOY 91 (panels D-F), DOY 182 (panels G-I), and DOY 274 (panels J-L) from 2022. The first column (panels A, D, G, J) 

shows the median of the Tmax predictive distribution at each grid cell. The second column (panels B, E, H, K) shows the magnitude of the 

50% prediction interval for each grid cell. The third column (panels C, F, I, L) shows the magnitude of the 90% prediction interval for each 245 
grid cell. 
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In addition to local (cell-wise marginal) uncertainty, we can represent spatial uncertainty using CGS to sample from 

the joint predictive distribution over multiple grid cells. Figure 7 shows the predictive distributions for grid cells containing 

two weather stations, IDs USC00043747 (“station 1”) and USW00053119 (“station 2”), near Hanford, California. The centers 

of the grid cells containing the stations are 1.4 km apart. The red lines show kernel density estimates of the joint and marginal 250 

predictive distributions generated using CGS. The blue lines show the same predictive distributions generated using OK, where 

the “joint distribution” is generated by sampling independently from the marginal distributions. While the OK samples show 

no correlation between locations (by construction), the samples produced by CGS show a correlation of approximately 0.5 

between predictions at the two locations. This reveals the fact that errors in predictions and nearby locations are likely to be 

correlated with one another. The marginal distributions generated using OK and CGS are virtually identical at each of the two 255 

locations (Fig. 7A and 7C). This is because the predictive distribution generated by OK is correct in a marginal sense, even 

though kriging maps have too little variance (are “too smooth”) relative to the distribution of measurement data and the 

theoretical true underlying random field. Reproducing the model of spatial covariance and accounting for spatial correlation 

in errors (uncertainty) requires sampling from the joint predictive distribution using CGS. 

 260 
Figure 7: Joint and marginal predictive distributions using OK versus CGS. Predictive distributions were generated for two nearby grid cells 

that contain weather stations. Panels A and C show the marginal (local) predictive distributions at the two locations and panel B shows the 

joint (spatial) predictive distribution. The predictive distributions from OK are in blue and the distributions generated by CGS are in red. 

The two estimation methods produce the same marginal distributions, but the joint distributions are different. The distribution from CGS 

reflects the spatial correlation in predictions between the two locations. 265 
 

The impact of spatial correlation in predictive distributions is observable but minimal for Tmax at the two stations 

from the previous example. Figure 8 shows histograms of predictive distributions for Tmax estimates at Station 1 when 

conditioned on different information about Tmax at Station 2. Measurements from both stations are held out from the 
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estimation procedure. The dotted black line is the Tmax measured at Station 1.  The blue histogram is the unconditional 270 

marginal distribution for the grid cell containing Station 1. The orange and green histograms show empirical conditional 

distributions at Station 1 given that the error at Station 2 is less that 2 degrees (“conditional 2”) and less than 1 degree 

(“conditional 1”), respectively. These empirical distributions are generated by filtering the simulation ensemble. Conditioning 

the predictive distribution reduces the standard deviation from 2.0 C in the unconditional distribution to 1.7 C and 1.6 C for 

conditional 2 and conditional 1, respectively. If the mean of the predictive distribution is taken as a point estimate, the error 275 

for the unconditional distribution is +0.24 C. The error is reduced to -0.04 for conditional 2 but then increases (in magnitude) 

to -0.15 for conditional 1. The spread of the predictive distribution is reduced when conditioning on information about a nearby 

location, but the reduction is relatively small. The small reduction is because the semi-variogram model has a large nugget, 

meaning that there will still be nonnegligible prediction variance (uncertainty) after conditioning on nearby data. The large 

nugget estimate may be partly an artifact of the semi-variogram estimation process, given that there are relatively few pairs of 280 

weather stations within 1-10 km of one another. However, there does appear to be significant “real” variance in measured 

Tmax values even at short spatial scales. For example, the two stations used in this example are 1.4 km apart and at nearly 

identical elevation but have an average difference in Tmax of nearly 1.5 C in 2022. This difference may be explained by site-

specific effects, such as different land cover below the weather stations, rather than physical variation that would persist under 

idealized homogenous conditions. 285 

 
Figure 8: Marginal predictive distributions without and with additional spatial information. Three empirical predictive distributions at 

Station 1 (S1) are shown including the unconditional (blue) and two distributions conditioned on predictive accuracy at the nearby Station 2 

(S2). Conditioning is performed by filtering the ensemble and leaving only realizations where the prediction at S2 was within 2 C (orange) 

or within 1 C (green) of the measured value. Conditioning on additional spatial information reduces the spread of the marginal predictive 290 
distribution, but by a relatively small amount. 
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4. Discussion and Conclusion 

This work presents and validates an approach to quantifying spatially and temporally resolved prediction uncertainty in 

interpolated meteorological data products. In the quantitative validation study, the DNK method produced highly accurate 

uncertainty quantification. Even in the least accurate cases, the predictive distributions are qualitatively informative and are 295 

still sufficiently accurate to be useful for many applications. Accuracy assessment of point estimates is useful, but 

fundamentally cannot describe prediction uncertainty at times and locations where measurement data are unavailable. In this 

application, we have measurements at hundreds of weather stations and predict Tmax values at hundreds of thousands of grid 

cells, some of which are nearly 100 km from the nearest measurement. This means that the number of locations where we can 

assess prediction uncertainty using actual measurement data is vanishingly small compared to the number of locations where 300 

we do not have measurements. We show that the magnitude of prediction uncertainty varies significantly in space and in time, 

and that using average error statistics will overestimate prediction uncertainty in some cases and dramatically underestimate it 

in others. 

The DNK methodology described in this paper could be applied to a wide range of applications due to its generality 

and relatively low computational cost. The main application area motivating this work was modeling of land surface fluxes of 305 

water and carbon, given that rates of evapotranspiration (Volk et al., 2024) and primary production (Zeng et al., 2020) are 

particularly sensitive to near-surface meteorological conditions. However, gridded meteorological data are used to make 

predictions and draw conclusions about many other phenomena including crop yield (Lobell et al., 2015), vegetation phenology 

(White et al., 1997), economic productivity (Burke et al., 2015), human conflict (Hsiang et al., 2013), and others. Using gridded 

predictive distributions rather than point estimates can help ensure the robustness of scientific conclusions given uncertainty 310 

in model inputs. The decision to use cell-wise marginal (OK) or full joint (CGS) predictive distributions depends on various 

factors including the size of grid cells, the distances between locations being compared, and sensitivity of the analysis to spatial 

correlation in prediction errors (e.g., for causal inference). Users of gridded meteorological data products can propagate 

uncertainty through their analysis by running models multiple times using either random samples or a preset collection of 

quantiles from the distribution. This approach does not require any additional modeling choices or assumptions because the 315 

relevant information about uncertainty in the model inputs is expressed by the predictive distributions. Also, computationally 

expensive models may use the gridded variable uncertainty to prioritize sensitivity analyses and reduce the total number of 

model runs required.  

Producing a predictive distribution using DNK, rather than a single point estimate, requires only marginally more 

computation. The main computation required in OK is solving for the kriging weights 𝜆4 , which requires solving a (𝑆 +320 

1) × (𝑆 + 1) system of linear questions for 𝑆 stations. The prediction mean 𝜇56 and variance 𝜎567  are both functions of the 𝑆 

station data and the weights  𝜆4 . Drawing samples from the predictive distribution only requires drawing samples from 

Normal(𝜇56 , 𝜎567 ) and then, for each sample, applying the reverse normal score transformation and adding back the trend. 

Computing the joint conditional distribution and sampling using CGS is more computationally expensive, as it requires solving 
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the system of kriging equations as well as factorizing a 𝐶 × 𝐶 matrix, where 𝐶 is the number of prediction grid cells and 𝐶 ≫325 

𝑆. There exist more computationally scalable methods for conditional Gaussian simulation (Gómez-Hernández and Journel, 

1993; Gutjahr et al., 1997; Gómez-Hernández and Srivastava, 2021) that we do not discuss here. However, as we show in this 

paper, the spatial correlation in Tmax errors is weak at multi-kilometer scales and using CGS for this purpose has less practical 

benefit relative to the additional computation cost. 

Users of this methodology should be aware of some practical limitations. First, we reiterate that there is no objectively 330 

correct Tmax predictive distribution for a given location. Uncertainty is a property of the measurement data and modeling 

decisions, and making different modeling decisions will produce different predictive distributions. Different modeling 

decisions could lead to larger or smaller errors in point estimates on average, but still produce predictive distributions that are 

valid (i.e., where true values fall in prediction intervals at the prescribed rate). In addition, even large samples from predictive 

distributions will necessarily suffer from deficiencies inherent in the data-generating process. Covariance stationarity and 335 

multi-Gaussianity are strong assumptions that are relied upon for the validity of the predictive distributions, and the 

transformations made to satisfy these assumptions are imperfect. The normal score transformation requires estimating an 

empirical distribution from the weather station data. Given that we generally wish to draw samples larger than the size of the 

measurement data, reverting the normal score transformation necessarily requires interpolation and extrapolation of that 

distribution (see Goovaerts (1997) for a detailed discussion). In practice, this can produce artifacts like clusters of similar 340 

values, particularly near under-sampled edges of the distribution. Regarding stationarity, trend modeling can also strongly 

influence predictive distributions. Like uncertainty itself, a “spatial trend” is not an objectively observable phenomenon. 

Reliably estimating spatial trends can be difficult when measurement data are sparse or when other physical phenomena, like 

cooling or warming due to coastal proximity, confound the basic estimation procedure. Limitations in trend modeling 

contributed to our use of OK (locally constant unknown mean) rather than Simple Kriging (SK) (locally constant known mean), 345 

despite the latter being theoretically justifiable for detrended data. Results using OK versus SK were very similar, with OK 

performing marginally better likely due to coarse scale variation that was still present after modeling and subtracting spatial 

trends. 

There are many potential avenues for future work building on the methods and results described in this paper. One 

important area for further study is the analyzing the effects of trend estimation on characteristics and robustness of predictive 350 

distributions. For a covariance stationary and multi-Gaussian random field, predictive distributions will be valid over a 

sufficiently large sample. This indicates that invalid predictive distributions are driven primarily by the transformations we 

apply (and revert) to make the data stationary and Gaussian. Relatedly, it would be useful to find ways of incorporating 

additional physical information not explained by a large-scale spatial trend. The strength of data products like NEX-GDM and 

PRISM come from the use of additional physical information (e.g., coastal proximity, slope, aspect) in predictions. It is not 355 

immediately clear how this information could be incorporated into the underlying mathematical model from which our 

predictive distributions are derived, but doing so could produce more precise estimates accompanied by valid predictive 

distributions. Lastly, the DNK method should be tested for interpolation of meteorological variables other than Tmax. The 
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methodology seems likely to transfer to certain variables like daily minimum air temperature and humidity, but it is not a given 

that all variables can be approached the same way.  360 

Going forward, it will be valuable to not only produce the “best available” gridded meteorological data products, but 

also to produce spatially and temporally resolved uncertainty quantification. Considering uncertainty in model inputs is 

important for drawing robust scientific conclusions. It is also important for guiding the design and implementation of science-

informed policies. Given uncertain information, conclusions about the “best” policy option may differ when using a 

deterministic versus probabilistic benefit-cost analysis (Morgan and Henrion, 1990). Similarly, there may be asymmetric 365 

consequences for over- or underestimation of a given model input. In this scenario, using a predictive distribution rather than 

a point estimate allows policymakers to quantitatively assess tradeoffs between maximizing expected outcomes and 

minimizing risk. More broadly, accounting for uncertainty in scientific models is necessary not only for designing informed 

policies, but for building and maintaining trust in science-informed policymaking. 
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