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Abstract. The diurnal variability of sea surface temperature (SST) may play an important role for cloud organization above

the tropical ocean, with implications for precipitation extremes, storminess, and climate sensitivity. Recent cloud-resolving

simulations demonstrate how imposed diurnal SST oscillations can strongly, and delicately, impact mesoscale convective orga-

nization. In spite of this nuanced interaction, many idealized modeling studies of tropical convection either assume a constant,

homogeneous SST or, in case of a responsive sea surface, represent the upper ocean by a slab with fixed thickness. Here we5

show that slab ocean models with constant heat capacity fail to capture the wind-dependence of observed diurnal sea surface

warming. To alleviate this shortcoming, we present a simple, yet explicitly depth-resolved model of upper-ocean temperature

dynamics under atmospheric forcing. Our modular scheme describes turbulent mixing as diffusion with a wind-dependent dif-

fusivity, in addition to a bulk mixing term and heat fluxes entering as sources and sinks. Using observational data, we apply

Bayesian inference to calibrate the model. In contrast with a slab model, our model captures the exponential reduction of the10

diurnal warming amplitude with increasing wind speed. Further, our model performs comparably to a more elaborately param-

eterized diurnal warm layer model. Formulated as a single partial differential equation with three key tuning parameters, the

model is suitable as an interactive numerical boundary condition for idealized atmospheric simulations.

1 Introduction

The role of clouds in a changing climate remains an open question that challenges predictions of climate sensitivity, regional15

precipitation patterns and extreme weather events (Bony et al., 2015; Siebesma et al., 2020). Fundamental processes in cloud

dynamics remain insufficiently understood, particularly how convective clouds cluster and interact with their environment. This

knowledge gap calls for idealized modeling approaches simple enough to distill mechanisms, yet relatable to the real world.

In the tropics, clouds organize across a wide range of spatial and temporal scales (Moncrieff, 2010). Diurnally, thunder-

storms often cluster in mesoscale convective systems (MCSs), which are associated with extreme precipitation and the genesis20

of tropical cyclones (Tan et al., 2015; Schumacher and Rasmussen, 2020). Intraseasonally, variability is dominated by the
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Madden-Julian Oscillation (MJO), an eastward-propagating zone of strong deep convective activity (Madden and Julian, 1972;

Zhang, 2005). Although the MJO is known to couple to the large-scale circulation and impact weather around the globe, it

remains difficult to model (Jiang et al., 2020; DeMott et al., 2015).

Due to the multiscale interaction of tropical convection, small-scale processes may be key to understanding large-scale25

patterns (Slingo et al., 2003). Indeed, it is increasingly acknowledged that the diurnal variability of sea surface temperature

(SST) can play an important role for atmospheric dynamics (Li et al., 2001; Clayson and Chen, 2002; Bernie et al., 2008;

Bellenger et al., 2010; Haerter et al., 2020). Observations draw a clear link between strong diurnal SST oscillations and a

diurnal cycle of marine cumulus convection (Johnson et al., 1999). Furthermore, the diurnal cycle of SST, by enhancing air-sea

heat transfer, could help trigger the active phase of the MJO (Seo et al., 2014; Woolnough et al., 2007; Zhang, 2005; Zhao30

and Nasuno, 2020; Karlowska et al., 2023). Neglecting diurnal SST variations may lead to a bias on the order of 10Wm−2

in monthly-averaged surface heat fluxes (Weihs and Bourassa, 2014), and even stronger biases on shorter timescales. These

findings emphasize the relevance of resolving diurnal air-sea interactions when modeling convective organization.

However, many idealized modeling studies of tropical convection prescribe a constant SST in space and time. A popular mod-

eling framework is radiative-convective equilibrium (RCE), where constant solar forcing is balanced by outgoing longwave35

radiation above a constant, homogeneous SST (Tompkins and Craig, 1998). Under RCE, the moisture field is known to spon-

taneously self-organize into convective clusters separated by extended dry regions (Bretherton et al., 2005). This mechanism

termed convective self-aggregation has been associated with real-world features such as MCS formation. Yet, self-aggregation

is hampered in the realistic limit of fine horizontal model resolution, calling the realism of the mechanism into question (Yanase

et al., 2020). Recent studies, imposing a diurnal oscillation of SST, demonstrate the emergence of diurnal self-aggregation even40

at fine spatial resolution (Haerter et al., 2020; Jensen et al., 2022). Likewise, spatial variations in SST have been shown to im-

print themselves on the moisture field (Müller and Hohenegger, 2020; Shamekh et al., 2020b; Skyllingstad et al., 2019). Since

SST variability can substantially alter the spatio-temporal patterns of marine tropical convection, there is a need to incorporate

higher-fidelity SST representations when investigating convective processes.

Over the past years, the modeling community studying convective organization has largely addressed the issue of an interac-45

tive SST by coupling the atmosphere to a single-layer slab with fixed heat capacity, which absorbs and re-emits heat according

to parameterized surface fluxes (Hohenegger and Stevens, 2016; Shamekh et al., 2020a; Coppin and Bony, 2017; Tompkins

and Semie, 2021; Wing et al., 2017). These works report overall that a responsive SST slows down or even prevents the onset

of convective aggregation. However, in this paper we show that slab models are inadequate for producing realistic diurnal SST

warming: they fail to capture its wind-dependence by neglecting upper ocean mixing. Yet, by no means can wind be neglected50

even in strongly idealizes studies, given that cold pools, bringing gusty winds, are increasingly appreciated as an integral mech-

anism in convective self-organization (Tompkins, 2001; Böing, 2016; Haerter, 2019; Nissen and Haerter, 2021). To address

this inconsistency, we present a simplified 1D model that significantly improves the representation of diurnal SST variability

compared to a slab ocean while being adaptable and affordable for coupling to cloud-resolving atmospheric models.

SST plays a key role in governing the heat and moisture exchange between the atmosphere and ocean (Seo et al., 2023).55

Whereas observed diurnal amplitudes of surface temperature are typically largest over land, a diurnal cycle of SST is also
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common throughout the tropical ocean (Kawai and Wada, 2007). Under strong insolation and calm conditions, a diurnal warm

layer forms during the day, raising skin SST (measured directly at the surface) by up to 3-4K. Field studies have observed

extreme diurnal warming events of 5K or more, though these often lie in the extra-tropics or coastal regions (Gentemann

et al., 2008; Minnett, 2003; Ward, 2006). Importantly, the amplitude of diurnal warming is highly sensitive to wind speed,60

with observations suggesting an approximately exponential decay of diurnal warming with increasing wind speed (Gentemann

et al., 2003; Börner, 2021).

To first order, the diurnal warm layer results from a competition between insolation-driven thermal stratification and wind-

driven mixing. On a calm, clear day after sunrise, the incident solar radiation quickly heats up the upper ocean, creating

a stably stratified density profile. This stratification leads to suppressed vertical heat exchange, hence trapping further heat65

near the surface in a positive feedback which can produce strong surface warming. Later, in the early afternoon when the net

surface heat flux changes sign, surface cooling causes unstable density stratification and initiates vertical mixing, resulting in a

deepening of the diurnal warm layer. At night, convective mixing typically acts to “reset” the temperature profile. Furthermore,

wind stress induces turbulent mixing in the water column. Known as the cool skin effect, the molecular skin layer at the sea

surface is typically a few tenths of a degree colder than the water a millimeter deeper (Donlon et al., 2002; Wong and Minnett,70

2018).

Upper ocean heat transfer has been modeled on various levels of complexity over the last fifty years, ranging from fully

turbulence-resolving models to simplified bulk models and empirical models (Kawai and Wada, 2007). Turbulence-resolving

models make up the most realistic but also computationally expensive category (Kondo et al., 1979; Mellor and Yamada, 1982;

Large et al., 1994; Kantha and Clayson, 1994; Noh and Jin Kim, 1999; Stull and Kraus, 1987). Though such ocean models75

have been coupled to a weather forecasting model (Noh et al., 2011), they are arguably too costly and complex for the purpose

of idealized atmospheric simulations at high horizontal resolution. The simplest models, derived from empirical relations,

specialize on estimating the daily SST amplitude (Webster et al., 1996; Price et al., 1987; Kawai and Kawamura, 2002) or

its hourly evolution (Li et al., 2001; Zeng et al., 1999; Gentemann et al., 2003) based on averaged atmospheric data. These

models are not designed for the high temporal resolution of atmospheric large-eddy simulations (on the order of seconds), and80

sometimes not physics-informed.

Alternatively, simplified models based on boundary layer physics have been developed in the spirit of subdividing the wa-

ter column into layers described by bulk dynamical equations. A popular candidate, which we compare against here, is the

prognostic ZB05 scheme by Zeng and Beljaars (2005) with improvements by Takaya et al. (2010). It computes the sea skin

temperature from an integrated mixed layer equation combined with a cool skin scheme, assuming a power-law temperature85

profile. Other bulk models include the PWP model (Price et al., 1986) and its developments (Fairall et al., 1996, 2003; Gente-

mann et al., 2009; Schiller and Godfrey, 2005). Widely applied in weather and climate modeling (Brunke et al., 2008), such

models could offer a suitable balance between physical rigor and computational cost. Nonetheless, they do not necessarily cater

to the needs of idealized atmospheric modeling. First, some bulk models require unknown input about the oceanic background

state. Second, the integral descriptions of heat and momentum transfer are typically based on elaborate parameterizations,90

making the models less intuitive and difficult to tune in sensitivity experiments. Third, these models do not resolve the vertical
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temperature profile (apart from the parameterized profile in Gentemann et al. (2009)), limiting their use as an interface to

sub-surface processes that might be sensitive to diurnal warming, such as microbial ecosystems (Wurl et al., 2017).

In this paper, we present an idealized model of diurnal sea surface warming that explicitly resolves temperature in the upper

few meters of the ocean while being conceptually simple and efficient. Derived from first principles as a modified heat equation,95

the model consists of a single partial differential equation controlled by three key parameters, taking insolation and atmospheric

conditions as forcing input. After describing the model (section 2), we use a Bayesian approach to calibrate and evaluate the

model based on cruise observations from the tropical Eastern Pacific (section 3). We compare the performance of our model

to both a typical slab model and the ZB05 scheme (section 4). Whereas slab models fail to describe diurnal SST variability,

our model accurately reproduces key features of diurnal warming, such as its wind dependence, near-surface heat trapping,100

and skin cooling. Our model performs comparably to the ZB05 scheme, which is more rigorously derived but does not resolve

temperature vertically. In section 4.4, we discuss the implications of our results for the atmospheric heat and moisture budget.

We believe that our modular scheme can be useful both as a wind-responsive ocean surface for cloud-resolving modeling and

as an interface to study further air-sea-biosphere interactions in an idealized setting.

2 Model description105

Our approach relies on the following basic assumptions. First, we assume that the oceanic, atmospherically-driven diurnal

temperature variability is constrained to within a few meters from the sea surface. We thus define the foundation depth zf at

which diurnal temperature changes become negligible. Conceptually, this partitions the water column into the diurnal layer

above zf and the foundation layer below. Second, we assume that we may separate the scales of diurnal warming from the

ocean’s slow internal temperature variability. The foundation layer may then be considered as an infinite heat reservoir with110

constant foundation temperature Tf . Third, we neglect any horizontal inhomogeneities and flows, allowing us to treat the

problem as one-dimensional. The goal is then to determine the evolution of the vertical temperature profile within the diurnal

layer, in response to a given time sequence of atmospheric forcing. A schematic sketch of the setup is depicted in Fig. 1.

2.1 Main equation

We consider the sea temperature T (z, t) as a function of time t≥ 0 and vertical coordinate z ∈ (zf ,0], where z = 0 defines the115

air-sea interface and z < 0 is below the surface. Given an initial profile T (z,0), foundation temperature Tf , and atmospheric

forcing F(t), we propose a single prognostic partial differential equation (PDE) for the time evolution of T ≡ T (z, t):

∂T

∂t
=

∂

∂z

(
κ(z, t)

∂T

∂z

)
︸ ︷︷ ︸

diffusion

−µ
T −Tf

z− zf︸ ︷︷ ︸
mixing

+
1

ρwcp

∂Q(z, t)

∂z︸ ︷︷ ︸
source/sink

. (1)

Here κ > 0 represents the (time- and depth-dependent) diffusivity, µ > 0 is a constant which we term mixing coefficient, and

the constants ρw and cp denote the density and specific heat capacity at constant pressure of sea water, respectively. Finally, Q
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Figure 1. Schematic of the simplified upper ocean model, illustrating the processes considered.

is the net vertical heat flux at depth z, defined positive downwards (into the ocean). Explicit expressions of these quantities in120

relation to the forcing F follow below.

The three terms on the right-hand side of equation (1) provide strongly idealized representations of different physical pro-

cesses. Motivated by the heat equation, the first term describes the vertical diffusion of heat due to turbulent eddies within the

diurnal layer. In addition, internal processes such as convection may cause additional vertical mixing of water masses between

the diurnal layer and the foundation layer. This is crudely incorporated by the second term, which relaxes T to the founda-125

tion temperature with relaxation time scale tµ = (z− zf )/µ. Here the depth dependence reflects the intuition that water near

the foundation depth will mix faster with foundation-layer water compared to water near the surface. Lastly, the third term

comprises all sources and sinks of heat, both at the air-sea interface and within the diurnal layer.

The foundation temperature T (zf , t) = Tf ∀t acts as a Dirichlet boundary condition at zf . At the air-sea interface (z = 0),

the sea temperature evolves according to the net surface heat flux Q0(t)≡Q(0, t) (see section 2.3), which closes the energy130

budget.

2.2 Wind-driven mixing and stratification

Wind stress at the sea surface induces shear instability, causing vertical turbulent heat transport in the upper ocean. This implies

that the diffusivity κ(z, t) in our model should depend on the wind speed u(t). Since the magnitude of wind stress on a water

surface is approximately proportional to the square of the wind speed (Smith, 1988; Edson et al., 2013), we propose to model135

the diffusivity κ as

κ(z, t) := κmol +κ0φ(z)

(
u(t)

u0

)2

, (2)

5



where κmol and κ0 are coefficients of molecular and (vertical) eddy diffusion, respectively. Typically, molecular heat conduction

is negligible (κmol ≪ κ0). Note the scaling of the eddy diffusion term with u2, which we non-dimensionalize by the reference

wind speed u0 = 1ms−1 simply to ensure that κ0 has units of diffusivity.

The vertical diffusivity profile φ(z) in Eq. (2) approximates how turbulent mixing varies with depth. Physically, thermal140

density stratification inhibits turbulent heat transfer, since vertical mixing of a stratified fluid is energetically unfavorable.

Additionally, the characteristic size of eddies decreases when approaching the air-sea boundary (Pope, 2000). Both effects

motivate suppressing the diffusivity near the surface, where stratification becomes largest during diurnal heating. For simplicity,

we limit our study to a time-independent linear profile,

φ(z) = 1+σ

(
z

zf
− 1

)
, (3)

parameterized by the surface suppressivity σ ∈ [0,1]. If σ > 0, then φ increases linearly with depth from φ(0) = 1−σ at the145

surface to φ(zf ) = 1 at the foundation depth.

It may seem counter-intuitive to decrease the diffusivity towards the surface when it is driven by surface winds. In this

idealized setup, however, the diffusion term simultaneously accounts for density stratification (in a time-averaged sense).

Furthermore, surface wind stress can accelerate the warm layer, leading to turbulence due to shear instability at its base (Hughes

et al., 2020). Alternative choices for the diffusivity profile are discussed in section 5 and the appendix.150

2.3 Air-sea interaction

In our model, the state of the atmosphere enters as the forcing F(t)≡ (Rsw,↓(t), u(t), Ta(t), qv(t)), comprising the down-

ward solar, or “shortwave”, irradiance Rsw,↓, horizontal wind speed u, air temperature Ta, and specific humidity qv . These

quantities refer to some reference height above the sea surface (usually 10m, where they are typically measured (Friehe and

Schmitt, 1976). The diurnal layer interacts with the atmosphere through the absorption and reflection of shortwave radiation,155

the absorption and emission of thermal (“longwave”) radiation, as well as sensible and latent heat exchange. While shortwave

radiation penetrates the sea surface and is absorbed at a range of depths, the other fluxes act within micrometers of the air-sea

interface (Wong and Minnett, 2018).

At the air-sea interface, the net surface heat flux Q0(t) entering the water body is given by

Q0(t) =Rsw(t)+Rlw(t)+Qs(t)+Ql(t) , (4)

where Rsw = (1−R)Rsw,↓ is the penetrating shortwave irradiance after subtracting from Rsw,↓ the fraction R that is reflected160

at the sea surface (see appendix). The net longwave radiative flux Rlw and sensible heat flux Qs can point into or out of the

ocean, whereas the latent heat flux Ql is always negative. We use standard bulk formulae to describe the surface heat fluxes
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(Friehe and Schmitt, 1976; DeCosmo et al., 1996; Wells and King-Hele, 1990; Large and Yeager, 2009),

Rlw(t) = σSB
(
Ta(t)

4 −T (0, t)4
)
, (5a)

Qs(t) = ρacp,aCsu(t)
(
Ta(t)−T (0, t)

)
, (5b)

Ql(t) = ρaClLvu(t)
(
qv(t)− qsat(T (0, t))

)
, (5c)

given in terms of the Stefan-Boltzmann constant σSB, the density and specific heat capacity of air, ρa and cp,a, respectively,

as well as the Stanton number Cs, Dalton number Cl, and latent heat of vaporization Lv . We approximate these coefficients165

by constants based on literature values (see table 1), which are roughly valid for wind speeds on the order of 1 to 10ms−1

and air-sea temperature differences around 1K, measured 10m above sea level (Wells and King-Hele, 1990). Note that Eq.

(5a) simply applies the Stefan-Boltzmann law for black body radiation. When coupled to an atmospheric model, the downward

longwave radiative flux can be taken from the atmospheric model output. Furthermore, the latent heat flux, Eq. (5c), involves

the saturation specific humidity qsat(T ). The temperature dependence of qsat obeys the Clausius-Clapeyron relation, which is170

approximated by the empirical formula

qsat(T )≈
611.2

ρarwT
exp

(
17.67(T − 273.15)

T − 29.65

)
, (6)

where rw denotes the gas constant of water vapor and T enters in units of kelvins (Alduchov and Eskridge, 1996).

We assume that the penetrating shortwave radiation Rsw is attenuated exponentially as it propagates downward through the

water column,

Q(z, t) =Rsw(t)exp

(
αz

cosϕ′(t)

)
for z < 0 , (7)

where α > 0 is the attenuation coefficient and ϕ′ denotes the refracted solar angle. It follows from the sun’s angle relative to175

the surface normal, ϕ ∈ [0,π/2), by Snell’s refraction law,

ϕ′(t) = arcsin

(
na

nw
sinϕ(t)

)
, (8)

where nw and na denote the refractive indices of sea water and air, respectively.

To summarize, our idealized model is controlled by three key parameters: (i) the eddy diffusivity κ0 governs the magnitude of

wind-driven turbulent heat diffusion; (ii) the mixing coefficient µ sets the time scale of relaxation to the foundation temperature;

and (iii) the attenuation coefficient α regulates how deep shortwave radiation penetrates. Realistic values of these parameters180

are estimated from observational evidence (section 3). We list all model constants and coefficients in Table 1.

2.4 Numerical implementation

To solve Eq. (1), we discretize the spatial coordinate z and numerically integrate the resulting system of ordinary differential

equations in time (see Appendix A and Börner (2024) for a software implementation in Python). Spatial derivatives are approx-

imated by second-order accurate finite differences on a non-uniform vertical grid. We set the foundation depth to zf =−10m,185
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Quantity Symbol Unit Value

Eddy diffusivity κ0 m2 s−1 1.34× 10−4 *

Mixing coefficient µ ms−1 2.85× 10−3 *

Attenuation coefficient α m−1 3.52 *

Surface suppressivity σ – 0.8

Foundation temperature Tf K 298.19 **

Foundation depth zf m −10

Molecular diffusivity (water) κmol m2 s−1 1× 10−7

Specific heat (water) cp JK−1 kg−1 3850

Specific heat (air) cp,a JK−1 kg−1 1005

Density (water) ρw kgm−3 1027

Density (air) ρa kgm−3 1.1

Refractive index (water) nw – 1.34

Refractive index (air) na – 1.00

Stanton number Cs – 1.3× 10−3

Dalton number Cl – 1.5× 10−3

Latent heat of vaporization L Jkg−1 2.5× 106

Stefan-Boltzmann const. σSB Wm−2K−4 5.67× 10−8

Gas constant (water vapor) rw JK−1 kg−1 461.51

Grid spacing at surface ∆z0 m 0.1

Number of vertical grid points N – 40

* determined from data via Bayesian inference, see table E1.

** corresponds to mean 3m water temperature of MOCE-5 data set
Table 1. Model constants and their default values used.

where diurnal temperature variability is mostly negligible (Kawai and Wada, 2007). The grid spacing is set to ∆z0 = 0.1m at

the sea surface and increases by a stretch factor ϵ≈ 1.04 with each consecutive grid point below, such that a total of N = 40

grid points cover the diurnal layer z ∈ (zf ,0] (excluding the boundary point at zf ). Specifically, the depth zn of the n-th grid

point is given by

zn =−∆z0

(
1− ϵn

1− ϵ

)
, n ∈ {0, . . . ,N} , (9)

with ϵ set such that zN = zf .190

We implement the time integration as an explicit Euler scheme, which is numerically stable if the chosen time step ∆t

satisfies the Courant-Friedrichs-Lewy (CFL) condition,

Ci := max
n

[
2
κ(zn, ti)∆ti
(∆zn)2

]
≤ 1 , n= 0,1,2, . . . ,N − 1 , (10)
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where n and i index the discrete space and time coordinates, respectively. Via the time-dependent diffusivity κ, the CFL

condition depends on time, specifically on the current wind speed. To minimize computational cost, we use an adaptive time

step ∆ti that maintains a maximal CFL number of Ci = 0.95 at each instant of time ti. Consequently, the time step ∆ti scales195

inversely with the square of the wind speed. We impose a cut-off wind speed umax = 10ms−1, causing any wind speed u > umax

to be replaced by umax when computing the diffusivity (eq. (2)). In the model simulations of this study, ∆ti ranged from 0.004

to 10 s with a median time step of 5-6s.

Comparing the explicit Euler scheme with analogous implementations of the fourth-order Runge-Kutta and implicit Euler

methods, we find that the explicit Euler scheme is fastest unless the implicit method is used at very large time step, in which200

case the solution lacks accuracy.

3 Model calibration and evaluation

Our model parameterizes diurnal warming in terms of three unknown constants: the diffusivity coefficient κ0, mixing coeffi-

cient µ, and attenuation coefficient α. In principle, their values depend on the ocean properties at a given time and location. In

this section, we first analyze how the parameters affect diurnal warming, and then use observational data to estimate realistic205

values via Bayesian inference. Finally, we evaluate the performance of the calibrated model against observations.

3.1 Parameter sensitivity under idealized forcing

As an initial step, we perform a sensitivity study where we force the model with idealized atmospheric pseudo-data representing

a calm and clear tropical day. Setting the foundation temperature to Tf = 300K, we let the air temperature Ta(t) oscillate

harmonically around Tf with a diurnal amplitude1 of ∆T = 2K. Similarly, we impose a harmonically oscillating horizontal210

wind speed with a mean of u= 2ms−1 and amplitude ∆u= 2ms−1, peaking at midnight (this choice generates favorable

conditions for diurnal warming and nighttime mixing). Such profiles read:

Ta(t) = Tf −
∆T

2
cos(2πt/t0) ; u(t) = u+

∆u

2
cos(2πt/t0) , (11)

where t is local sun time (with respect to midnight) and t0 = 1d. The solar irradiance is given by

Rsw,↓(t) =

−Rmax cos(2πt/t0) if cos(2πt/t0)< 0

0 otherwise,
(12)

where we set the peak insolation Rmax = 1000Wm−2. Lastly, we fix the specific humidity at a constant value of qv =

15gkg−1. Under these conditions, we may expect peak diurnal surface warming of around 2-3K (Minnett, 2003).215

Using the atmospheric pseudo-data described above, we now run two-day-long model simulations, consecutively varying

one model parameter of the set {κ0,µ,α} while fixing the other two at select default values (see Fig. 2). Increasing the eddy

1This amplitude is about twice the diurnal amplitude recorded in the observational dataset of this study, where the air temperature oscillates by around 1K

with the maximum in the afternoon.
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Figure 2. Model sensitivity under variation of the parameters κ0, µ, and α. In each sensitivity experiment, we force the model with two days

of idealized atmospheric data (see main text), successively varying one parameter while fixing the other two. The top panels depict simulated

surface warming ∆SST as a function of time for different values of the eddy diffusivity (left), mixing coefficient (center), and attenuation

coefficient (right). The bottom panels show corresponding vertical temperature profiles at 2 a.m. (dashed lines, shifted by −1K) and 2 p.m.

(solid lines) on the second day of simulation. Values of the varied parameter are given in the respective legend; fixed parameter values are

κ0 = 1× 10−4m2 s−1, µ= 1× 10−3ms−1, and α= 3m−1. Further model settings are detailed in table 1 (here Tf = 300K).

10



diffusivity κ0 enhances the heat transport within the diurnal layer, flattening the vertical temperature gradient, diminishing

surface warming and advancing the time of peak surface warming. A decrease in the mixing coefficient µ corresponds to a

slower removal of heat from the diurnal layer into the deeper ocean. This causes increased heat trapping in the upper ocean,220

hence stronger surface warming and a deeper warm layer. Particularly, for µ < 10−3ms−1, excess heat remains in the diurnal

layer throughout the night, accumulating heat on the next day. Setting µ to a sufficiently large value ensures that the temperature

profile can “reset” at night, as is often observed (Kawai and Wada, 2007). Finally, the attenuation coefficient α determines the

depth range in which solar radiation is absorbed. For α > 1m−1, more than 60% of radiation is absorbed within 1m of the

surface, leading to strong surface warming. Reducing α causes radiation to reach deeper, where it is more quickly transported225

into the foundation ocean via the mixing term.

In Fig. 2, the similarity in model response between the parameters κ0 and α suggests that they might play a similar dynamical

role. However, this is not the case. The two parameters control different aspects of the air-sea coupling. The eddy diffusivity κ0

determines the coupling to wind, whereas the attenuation coefficient α modulates the oceanic heat uptake due to solar radiation.

Correlations between model parameters are discussed below (section 3.3).230

3.2 Observational data

To infer realistic values for the parameter set {κ0,µ,α}, we now conduct a case study where we force the model with real

observational data and compare the modeled diurnal warming with the observed signal. Here we use cruise data (available

from Börner (2024)) from the Fifth Marine Optical Characterization Experiment (MOCE-5), conducted during October 1999

off the Mexican west coast (Minnett, 2003; Ward, 2006). The route led along the coast of the Baja California peninsula, both235

in the open Pacific Ocean and within the Gulf of California, thus including offshore as well as more coastal conditions (see

Fig. 3a).

The research vessel Melville was equipped with an infrared radiometer of type M-AERI (Marine-Atmospheric Emitted

Radiance Interferometer, Minnett et al. 2001). This instrument provides precise measurements of sea skin temperature by

detecting infrared radiation emitted from within micrometers of the ocean surface. Using skin SST for calibration, rather than240

bulk SST measured at up to 1m depth, is crucial when modeling air-sea interactions because the atmosphere senses only the sea

skin. Additionally, solar irradiance Rsw,↓, wind speed u, air temperature Ta, and water temperature at 3m depth were recorded

at time intervals of approximately 10 to 12 minutes (see Fig. 3). Unfortunately, the data set does not contain air humidity. We

therefore assume a constant specific humidity of qv = 15gkg−1 throughout the time series, which may be considered typical

for the tropical ocean.245

Throughout the following analysis, following Minnett (2003), we define diurnal warming ∆SST as the temperature differ-

ence between the sea skin (that is, the water directly at the surface) and a reference depth d,

∆SST(t) := T (0, t)−T (d,t) ,

where d=−3m for the present data set and T (0, t) is given by the radiometric SST measurements. Diurnal warming events

exceeding 1 ◦C are observed on several days, with ∆SST reaching up to 5°C on Oct 13 (Fig. 3c; see also Ward (2006)). The250
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Figure 3. Observational data set used in this study. a) Travel route of the MOCE-5 cruise in the Pacific Ocean and Gulf of California, colored

by the day since departure near San Diego, USA. b) Diurnal warming ∆SST by location, as recorded during the cruise (data points with

higher ∆SST are enlarged). c) Time series of observed diurnal warming, ∆SST, showing the individual data points. Gray shaded intervals

indicate the training data used for Bayesian inference. Panels d) and e) display the time series of radiometric skin SST (blue), air temperature

(red), horizontal wind speed (green), and downward shortwave irradiance (orange). Note that we omit data recorded after Oct 16 due to

extended temporal gaps in the data set.

data set also includes days without any substantial diurnal warming, such as on Oct 2 and Oct 9. These days correlate with

relatively high wind speeds, while the strong warming events in the second week, such as on Oct 10, 13, and 14, coincide with

low winds especially during midday. Note that the time series includes diurnal warming events at different locations (Fig. 3b)

and covers a wide range of SST values from 290 to 305K (Fig. 3d). Horizontal wind speeds (corrected for the ship’s motion)

did not exceed 10ms−1; downward solar irradiance peaked at around 800 to 900Wm−2 each day.255

While the MOCE-5 cruise data has a temporal resolution of around 10 minutes, our model requires a time step on the order

of seconds to meet the CFL condition (eq. (10)). This necessitates interpolating the atmospheric data between data points; we

apply linear interpolation with a wind-adaptive time step as described in section 2.4.
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3.3 Bayesian parameter estimation

The MOCE-5 observations allow us to estimate the free parameters of our model using Bayesian inference. Given the data260

D, the conditional probability P (Θ|D) that a certain value of the parameter set Θ= {κ0,µ,α} represents the “true” model

follows from Bayes’ rule,

P (Θ|D)∝ P (D|Θ)P (Θ) , (13)

that is, the posterior distribution P (Θ|D) is proportional to the product of the likelihood P (D|Θ) and the prior distribution

P (Θ). The likelihood quantifies how well the model with given parameter settings Θ describes the observed data, while the265

prior distribution encapsulates previous knowledge of suitable parameter ranges (Gelman et al., 2013).

To estimate the posterior distribution, we first partition the data time series into a six-day training set and an about eight-

day validation set (see gray shading in Fig. 3c). The training data are used to evaluate the likelihood function L(Θ)≡
P (D|Θ), which is computed in the following way. For given Θ, the model is run using the time series of the variables

D = {Rsw,↓,u,Ta, qv} as atmospheric forcing. We set the foundation temperature Tf to the mean observed sea temperature at270

3m depth, Tf = 298.19K, and shift the air temperature Ta according to the current deviation of the 3m-temperature from its

mean Tf . This maintains the observed air-sea temperature contrast at all times. Then, we compare the modeled time series of

diurnal warming, ∆SSTmodel, to the observed diurnal warming signal ∆SSTobs in order to compute the likelihood,

L(Θ)∝ exp

−
∑
j

(
∆SSTmodel

j (Θ)−∆SSTobs
j

)2
Σ2

j

 . (14)

Here the index j runs through all data points (over time) in the training set, and Σj denotes a weight (see appendix).275

Approximating the posterior distribution in parameter space is achieved via Markov chain Monte Carlo (MCMC) sampling

using the emcee package in Python (Foreman-Mackey et al., 2013), based on an affine-invariant algorithm proposed by

Goodman and Weare (2010). Further information on the Bayesian inference procedure and choice of prior is provided in the

appendix.

After convergence, the sampled posterior distribution shows a single peak in each parameter direction, indicating a well-280

defined optimal value for each parameter (Fig. 4). From the projected distributions, we compute the maximum, median, and

mean value as parameter estimates (tab. E1). The maximum value, or maximum a posteriori (MAP) estimate, corresponds to

the most likely parameter value and will be used for the subsequent analysis.

The two-dimensional projections of the posterior distribution (Fig. 4) indicate possible correlations between the three pa-

rameters. In particular, a positive correlation between κ0 and α is visible. However, part of the correlation likely reflects the285

fact that the solar irradiance (modulated by α) and wind speed (modulated by κ0) are themselves negatively correlated in the

training data (not shown).
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Figure 4. Posterior distribution of the parameter set {κ0,µ,α}, as obtained from Bayesian MCMC sampling. Plots on the upper diagonal

are 1D projections of the parameter space, showing for each parameter the prior (orange) and sampled posterior (black) distribution (vertical

axis not to scale). Blue lines indicate the MAP values (table E1). The 2D projections of parameter space depict scatter points and smoothed

iso-contours of the posterior. Plotted using corner.py (Foreman-Mackey, 2016).
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3.4 Model performance against observations

After estimating the parameters κ0, µ, and α via Bayesian inference, we now evaluate the performance of the calibrated model

against the full observational data set, using the settings given in table 1. We force the model with the observed 16-day time290

series of solar irradiance, wind speed, and air temperature, interpolated in time to match the CFL condition (Eq. (10)). As in

the previous section, we set the foundation temperature to the observed mean Tf = 298.19K and adjust the air temperature

time series accordingly.

Fig. 5 illustrates the results of this simulation in comparison with the observed diurnal warming. Similar to the observations,

the model produces a wide range of diurnal warming amplitudes from 0.2K on day 9 to almost 4K on day 13, which coincides295

with the maximal observed diurnal warming of 4.9K (Fig. 5a). Modeled diurnal warming peaks align in time with the obser-

vations. On days 6 and 7, the model overestimates ∆SST by more than 1K (see section 5). The variation in diurnal warming

amplitudes links closely to wind speed (Fig. 7b). To some extent, the model captures skin cooling at night, where ∆SST drops

below 0K in agreement with the observations (e.g. on the nights of days 3-4, 6-7, 9-10, and 12-13, see Fig. 5a). Overall, the

reduction of ∆SST due to skin cooling is less by about 0.07K in the model than in observations.300

For the whole time series, the modeled and observed ∆SST are correlated with a Pearson correlation coefficient of 0.74 (Fig.

6b). Considering only the training data, the correlation coefficient is 0.82, whereas the value for all data points outside of the

training data is 0.67. This evidences that our model has predictive skill in situations which the model has not been calibrated

to. In particular, the model predicts both the absence of diurnal warming on day 9 and the strong consecutive warming event

on day 10 (Fig. 5a). The model performance is further discussed in comparison with other models (sections 4 and 5).305

3.5 Depth-resolved temperature profile

Rather than simulating diurnal warming only at the surface, our model provides the vertical temperature profile within the

upper 10m of the ocean (Figs. 5b, c). In agreement with observations, heat trapping under calm and clear conditions occurs

in the uppermost meter (Soloviev and Lukas, 1997; Ward, 2006; Gentemann et al., 2009). Following peak warming, the model

exhibits a deepening of the warm layer between noon and sunset, as seen in Price et al. (1986) and Soloviev and Lukas (1997).310

Analyzing the temporal evolution of the temperature profile on days 13 and 14 reveals the close connection to the wind

(Fig. 5b), with increased winds causing a fast diffusion of the warm layer on day 13 after noon and overall weaker temperature

gradients on day 14. Night-time skin cooling is visible as a slightly negative near-surface temperature gradient between around

22.00h and 06.00h (Fig. 5c). The fact that the model produces qualitatively realistic temperature profiles, even though its

parameters were merely calibrated with respect to the temperature difference between the surface and a reference depth,315

supports the physical basis of the conceptual model.
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Figure 5. Simulation results for the calibrated model, forced with the observational data set. a) Modeled (red) and observed (blue) time

series of diurnal warming. Grey shaded intervals indicate the training data used for calibration. The subpanel below depicts wind speed

(green, smoothed) for reference. b) Modeled sea temperature ∆T = T −Tf as a function of depth and time, shown for day 13, 00.00h to day

15, 00.00h (local sun time). The green line indicates wind speed. c) Modeled vertical temperature profiles on day 13 (black) and 14 (orange),

plotted at intervals of two hours (shifted by 0.5K per hour). The scale bar indicates a temperature difference of 1K along the x-axis.

4 Comparison with other models

Our model (hereafter referred to as DiuSST) is intended for use as an interactive SST boundary in idealized atmospheric

simulations. This calls for a comparison with existing models that could be selected for this purpose. First, we consider a slab

ocean model of the type previously used in atmospheric convection studies (Hohenegger and Stevens, 2016; Shamekh et al.,320

2020a; Coppin and Bony, 2017; Tompkins and Semie, 2021). Second, we test the prognostic scheme by Zeng and Beljaars

(2005), which has been widely applied in weather and climate modeling but, to the best of our knowledge, not been employed

by the idealized convection community. Finally, we compare all models against the observations of the MOCE-5 data set and

discuss their effect on air-sea heat exchange.
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4.1 Slab model325

We use a single-layer slab with temperature dynamics described by

Ṫ (t) =
Q0(t)−S

ρwcph
− ξ1T (t)− ξ2

t∫
0

T (t′)dt′ , (15)

where T denotes the slab temperature relative to Tf , h is the slab thickness, S represents a constant heat sink, and the net

surface heat flux Q0 is given by eq. (4). The constants ρw, cp, and Tf are listed in table 1. In addition to the heat sink S,

we include two correction terms that are sometimes added to control the slab temperature: a linear relaxation and an integral

correction to prevent temperature drift. Their strengths are tuned via the parameters ξ1 and ξ2, respectively. Here t > 0 and330

t= 0 is the time of the initial condition.

To compare this slab model with our model, we calibrate the parameter set Θslab = {h,S,ξ1, ξ2} using Bayesian inference,

taking the same data and settings as when calibrating our model (see section 3.3). In the case of the slab, diurnal warming

∆SST directly corresponds to the slab temperature anomaly T . The resulting parameter estimates are given in table E1. The

Bayesian MCMC sampling converges to S = 92Wm−2, a realistic approximation of net oceanic heat uptake in the tropics.335

Simulation results are discussed together with the other models (section 4.3).

4.2 ZB05 model

The ZB05 model by Zeng and Beljaars (2005) consists of two components: a bulk equation describing the temperature evolution

in the diurnal warm layer of depth d, and a skin layer equation representing the cool skin effect, that is, cooling due to surface

heat fluxes within the upper millimeter of the ocean (Wong and Minnett, 2018; Fairall et al., 1996). The sea skin temperature

relative to the foundation temperature Td is thus given by the sum of warm layer heating ∆T and skin cooling δT ,

∆SST(t) = ∆T (t)+ δT (t) .

In order to integrate over the warm layer, the model assumes a power-law temperature profile, parameterized by an empirical

shape parameter ν = 0.3. The integrated equation reads (Eq. (11) in Zeng and Beljaars (2005)):

d(∆T )

dt
=

Q0 −R(−d)

dρwcpν/(ν+1)
− (ν+1)ku∗∆T

dϕt(d/L)
, (16)340

where ∆T = T−δ −Td denotes the temperature difference between the skin layer depth δ and the reference depth d= 3m, Q0

is the net surface heat flux (Eq. (4)), R(−d) is the downward-penetrating shortwave radiation at depth d, and k = 0.4 is the

von Karman constant. Furthermore, u∗ represents the friction velocity which we compute in terms of the wind speed u and

drag coefficient CD = 1.3× 10−3 according to u∗ =
√

ρaCDu2/ρw (Trenberth et al., 1989; Kara et al., 2007). The stability

function ϕt is derived from Monin-Obukhov similarity theory and depends on the Monin-Obukhov length L. Here we use the345

refined formulation of Takaya et al. (2010) for ϕt.

In describing the cool skin layer we follow the scheme by Fairall et al. (1996, 2003), as implemented by the NOAA Physical

Sciences Laboratory (2023). The evolution of the skin layer thickness δ and skin layer temperature difference Td are computed
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based on each other in an iterative fashion. The reason why we do not directly use Eq. (6) in Zeng and Beljaars (2005) to

determine δ is that this equation differs from the referenced version in Fairall et al. (1996) and leads to numerical instabilities.350

4.3 Comparison of model performance

Overall, we find that both our DiuSST model and the ZB05 model give a similar, adequate performance when tested on the

MOCE-5 dataset (Figs. 6, 7, 8). On the contrary, the slab model fails to describe the observed diurnal SST variability, even

though it has been optimized on the training set of this data.

Specifically, the slab model is unable to capture the wind-dependent variation in diurnal warming amplitudes (Fig. 6a). The355

slab simulation exhibits a rather invariant diurnal amplitude of just above ∆SST = 1K, largely independent of wind speed

(Fig. 7b). The poor agreement between the slab and the observations manifests itself in the relatively low Pearson correlation

coefficient of 0.50 and a standard mean error of 0.36K (over the whole data set). In comparison, the DiuSST and ZB05 models

yield a Pearson correlation of 0.74 and 0.72, respectively, each deviating from the observations by around 0.29K on average.

Even more than DiuSST, the ZB05 model overpredicts diurnal warming on days 6 and 7 (Fig. B1). ZB05 exhibits more high-360

frequency variability during diurnal warming events compared to DiuSST, which we attribute to the more sensitive skin layer

model explicitly included in ZB05. Night-time skin cooling is overall stronger in ZB05 relative to DiuSST, agreeing better with

observations during the second half of the time series (days 9-16) but exaggerating skin cooling during the first, windier half

(days 1-7, see Fig. B1). While capturing some of the observed night-time dynamics of ∆SST, the Slab tends to produce excess

skin cooling especially during strong winds.365

Fig. 7b) highlights the improved wind dependence of ∆SST in DiuSST compared to the Slab model. Similar to observations

and ZB05, our model exhibits a roughly exponential decay of peak diurnal warming with increasing wind speed. To provide a

more quantitative analysis, we bin each diurnal warming time series by wind speed, selecting a bin size of 0.5ms−1. For each

bin, we calculate hourly averages of ∆SST as a function of local sun time and take the maximum of these hourly averages as

an estimate of the mean diurnal warming amplitude for the given wind speed (Fig. 8). Based on exponential fits, ∆SST as a370

function of wind speed decays with a scaling constant of roughly 2ms−1 for the observations, DiuSST and ZB05 models (Tab.

2). In the case of the Slab, the exponent is almost 30ms−1, confirming the weak wind sensitivity of the diurnal amplitude. The

expected diurnal warming amplitude under calm conditions, approximated by the intercept of the fit at u= 0, is underestimated

(overestimated) by DiuSST (ZB05) by about 0.5K each. The Slab diurnal warming amplitude is significantly too low.

4.4 Air-sea heat fluxes375

The diurnal evolution of SST impacts the atmosphere by regulating the heat, moisture and momentum transfer at the air-sea

interface. Over the course of the observational data interval (October 1-16), we compute the net surface heat flux Qnet(t) =

Rlw(t)+Ql(t)+Qs(t) (excluding shortwave radiation) for each model simulation (Fig. 6b, Qnet < 0 corresponds to net heat

export from ocean to atmosphere). In addition, we compute Qnet(t) for the given atmospheric forcing under the assumption

that SST is fixed at T (0, t) = Tf for all t.380
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Figure 6. Comparison of the calibrated DiuSST, ZB05, and Slab models. a) Time series of diurnal warming ∆SST as modeled by DiuSST

(red), ZB05 (dark blue) and the slab (orange) for a select time interval. Points (light blue) indicate the observations. b) Net surface heat loss to

the atmosphere, Qnet =Rlw +Ql +Qs (excluding shortwave radiation), for the model (red) and slab (orange). c) Difference in Qnet between

our model and the slab (black) as well as our model and a fixed SST at Tf (gray). d) Correlations between the modeled and observed ∆SST

for our model (top) as well as ZB05 and the slab (bottom). The Pearson correlation coefficients (Corr.) are given. In the top panel, circles

(crosses) mark training (validation) data points.

Data intercept y0 (K) exponent a (ms−1)

Observations 4.59 1.98

DiuSST 4.12 2.08

ZB05 5.04 1.74

Slab 1.04 29.63

Fit function: ∆SST(u) = y0 exp(−u/a)

Table 2. Exponential fits of the wind dependence of diurnal warming (see Fig. 8).
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Figure 7. Diurnal warming in the observations and simulations with the DiuSST, ZB05, and Slab models (from left to right), showing all

data points of the 16-day time series. a) ∆SST as a function of local sun time, colored by wind speed. b) ∆SST as a function of wind speed,

colored by local sun time.

The oceanic heat loss to the atmosphere can differ by up to around 50Wm−2 between DiuSST and the Slab (Fig. 6c). Qnet is

more negative for DiuSST when it produces a larger sea skin temperature compared to the Slab, and vice versa. During strong

diurnal warming events, the difference ∆Qnet is even larger when comparing DiuSST to a fixed SST, exceeding 50Wm−2 on

Oct 13. We conclude that using a fixed SST as an oceanic boundary condition leads to biases in surface heat fluxes particularly

during strong diurnal warming events, whereas using a slab model causes biases under strong insolation both in windy and385

calm conditions. Between DiuSST and ZB05, differences in the net surface heat flux are relatively small and mainly due to

differences in the magnitude of skin cooling.

5 Discussion

This study aims at contributing a diurnal warm layer model that offers a simple improvement over slab ocean models previously

used in idealized atmosphere-ocean studies. Upper ocean heat transfer involves complex processes from wave breaking and390

Langmuir circulations to biological productivity (Edson et al., 2007; Noh et al., 2004). To first order, however, the diurnal

variability of SST is governed by the competing effects of solar absorption and wind-driven turbulent mixing. This permits our

reductionist modeling approach, which approximates the temperature dynamics in the diurnal warm layer mainly as a function
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Figure 8. Wind dependence of the amplitude of diurnal warming, comparing the observations against the predictions by the DiuSST, ZB05,

and Slab models (see figure legend). The data points represent the mean diurnal warming amplitude (see main text). Solid lines indicate

least-squares exponential fits, with parameters given in tab. 2. Wind speeds above 6.5ms−1 are not shown due to a small number of raw data

points.

of wind speed and insolation. For detailed realism of diurnal warm layer dynamics, more comprehensive models (as listed in

the introduction) will be appropriate.395

5.1 Model limitations and extensions

Due to its one-dimensional setup, DiuSST neglects horizontal flows and heat exchange. Furthermore, turbulence is dissipated

instantaneously, i.e. there is no memory of momentum due to the wind stress history. These restrictions could explain the poor

performance of DiuSST (and ZB05, likewise) on days 6 and 7, when the amplitude of diurnal warming is overestimated by

more than 1K (Fig. 5a). Despite strong insolation and low winds before noon on these days, observed diurnal warming does400

not exceed 1K. This suggests the presence of enhanced turbulent vertical mixing not captured by the models, possibly due

to non-local effects such as horizontal currents or rough seas, either advected from a windy region or remnant from a windy

episode preceding the observations.

For simplicity, DiuSST represents stratification in the diurnal warm layer only in a time-averaged sense via the diffusivity

profile φ(z) which suppresses turbulent diffusion near the surface. In reality, upper-ocean water column stability depends on the405

interplay between time- and depth-dependent density gradients and turbulence dissipation (Hughes et al., 2020). Instead of the

highly simplified linear profile given in eq. (3), a nonlinear, dynamic diffusivity profile could incorporate the nature of upper

ocean turbulence more realistically. For instance, a state-dependent profile, φ= φ(z,T (z, t)), could reflect the temperature

dependence of stratification. We discuss alternative diffusivity profiles in D.
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The mixing term controlled by µ ensures that the diurnal layer temperature relaxes back to the foundation temperature,410

resetting the temperature profile at night. Combined with the diffusion term, it can only serve as a crude account of the complex

mixing processes in the upper ocean (Hughes et al., 2020), such as convective overturning or internal waves. However, the

contribution from this term is typically small compared to the other terms, particularly near the surface. In some cases, it may

be realistic to further decrease µ to allow for multi-day warming events (Jia et al., 2023).

With a vertical resolution set to 10 cm at the surface, our numerical implementation is too coarse to explicitly resolve the415

cool skin layer, which forms within millimeters from the air-sea interface. Nonetheless, the model still captures skin cooling at

night, indicated by slightly negative values of ∆SST, in agreement with the observations (Fig. 5). In fact, the model considers

the cool skin effect in a coarse-grained sense, averaging heat fluxes over the upper 10 cm of the water column. Of course, the

grid resolution could be increased, albeit at the cost of a smaller integration time step to maintain numerical stability.

For future refinement, further dynamical processes could be built into DiuSST via the three key modular terms. A time-420

dependent diffusivity profile would allow to parameterize the effect of precipitation, which we presently neglect in the model.

Rain freshwater pools can either enhance heat trapping or mixing, depending on the competing effects of salinity and temper-

ature (Webster et al., 1996; Bellenger et al., 2017; Witte et al., 2023). As another example, a dynamic attenuation coefficient

α(t) would allow to account for changes in the seawater optical properties, e.g. due to microbial activity (Wurl et al., 2017).

5.2 Data-driven parameter estimation425

While the parameters {κ0,α,µ} are fixed in our model, they generally depend on oceanic conditions that may vary in space

and time. A major benefit of Bayesian inference is that the model parameters can readily be re-calibrated to additional data of

interest.

The MOCE-5 cruise data used here cover measurements across approximately ten degrees latitude and longitude, both in

the open Pacific Ocean and in coastal waters of the Gulf of California, where dynamical and optical properties of sea water430

are likely to have differed. The observed foundation temperature varied by several Kelvin during the cruise, whereas in the

model we fix Tf to the observed mean. Thus, spatial heterogeneity of water properties probably constitutes a main error source

between model and observations. For example, on day 13, the modeled maximum of diurnal warming is about 1K below the

observed value of ∆SST ≈ 4.9K. This difference may be attributed to spatial variations of optical water properties affecting

the attenuation coefficient α. The cruise vessel’s location on day 13 near the Midriff Islands is known for high phytoplankton435

concentrations, which enhances the absorption of shortwave radiation (Álvarez Borrego, 2012). Indeed, we can accurately

model the maximum of ∆SST on day 13 by increasing α, but this reduces the model performance across the time series

overall.

At the same time, the heterogeneity of the training data presents a benefit, as it reduces the risk of overfitting and promises

a more generally applicable calibration. Even with constant parameters obtained from Bayesian inference, our model captures440

the observed variability of ∆SST despite the heterogeneity of the MOCE-5 dataset. For idealized atmospheric modeling, we

argue that one is usually interested in average sea properties for conditions of interest, or a parameter sensitivity experiment.

While the present calibration could be specific to the background conditions of the study region, the model formulation itself

22



is not. The parameter posterior distribution reported here can be used directly as a prior distribution for a re-calibration based

on relevant additional data.445

To validate the vertical profiles generated by DiuSST, depth-resolved observations are needed. Incorporating information at

depth in the calibration can further constrain the parameter estimates, help resolve apparent parameter correlations, and inform

the choice of diffusivity profile φ. However, the vertical temperature profiles measured during the MOCE-5 cruise (Ward,

2006) are subject to various other influences besides diurnal warming (Gentemann et al., 2009), and currently not publicly

available. Validating the profiles is thus left for future work.450

5.3 Inaptitude of slab ocean

In contrast to the DiuSST and ZB05 models, the Slab model fails to capture the observed diurnal warming dynamics, including

the wind dependence of ∆SST. This is because the evolution of slab temperature depends on wind speed only via the latent

and sensible surface heat flux, whereas wind strongly influences vertical heat transport via the diffusion term in DiuSST or

via the stability function in ZB05. In other words, the wind dependence of upper-ocean turbulence controls the effective heat455

capacity of the upper ocean, but the slab’s heat capacity is fixed by the slab thickness h. This issue also pertains to ocean

models with a surface layer of a meter thickness or more, which may reproduce a mean diurnal cycle but not the full range of

diurnal variability (Voldoire et al., 2022).

One might argue that the slab exhibits too little variability because the parameter ξ1, the inverse timescale of temperature

relaxation, is set too large. Indeed, decreasing ξ1 allows for stronger diurnal warming but also leads to excessive nighttime460

cooling and a slow temperature decline in the afternoon, thus worsening the agreement with the observations overall (see Fig.

F1). In fact, the shape of the diurnal warming curve produced by a slab with small corrector coefficients ξ1 and ξ2 resembles

the diurnal temperature evolution observed at around 1m depth, e.g., by moored buoys (Börner, 2021). This highlights that

slab oceans mimic bulk SST rather than skin SST. Also other models of the diurnal SST cycle are sometimes calibrated with

respect to bulk SST. However, skin SST is the relevant quantity for atmospheric studies, since the atmosphere only senses the465

temperature of the sea skin.

5.4 Interactive diurnal SST in atmospheric simulations

As a more realistic alternative to a slab model, the DiuSST and ZB05 models can be coupled to high-resolution cloud-resolving

atmospheric models, e.g. to study how air-sea interactions impact atmospheric convection in idealized setups.

The ZB05 model appeals with its rigorous derivation from Monin-Obukhov similarity theory, condensed into one integrated470

bulk equation for the warm layer plus the cool skin layer scheme. This makes it computationally fast, though calculating

the skin layer depth δ involves an implicit equation that requires iterative solving (see Eqs. (5) and (6) in Zeng and Beljaars

(2005)). The empirical shape parameter ν of the vertical temperature profile could serve as a tuning parameter in sensitivity

experiments. While ZB05 matches fairly well with the observations used in this study, its performance has varied in other

comparative studies (Bellenger and Duvel, 2009; Jia et al., 2023). Running DiuSST requires integrating a discretized PDE,475

making it slightly slower than ZB05 in the Python scripts implemented here (Börner, 2024) but not significantly – especially
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relative to the cost of a coupled atmospheric component. Compared to ZB05 or similar existing diurnal warm layer schemes,

modelers may find DiuSST easier to tune, interpret and adapt to their purposes due to the conceptually simple modular structure.

The fact that DiuSST resolves the vertical temperature profile opens up opportunities to study, for example, how biological

upper-ocean processes interact with weather and climate across the air-sea interface.480

Recently, we implemented our upper ocean model as an interactive sea surface boundary condition in the System for Atmo-

spheric Modeling (SAM) model (Khairoutdinov and Randall, 2003). At each horizontal grid point of the atmospheric model,

the surface boundary condition is independently updated at each time step by numerically integrating eq. (A1) to the next time

step, based on the local atmospheric forcing F . This produces a responsive, spatially heterogeneous sea surface whose temper-

ature feeds back into the atmospheric boundary layer. According to first tests, the difference in computation time between this485

setup and a coupled slab ocean is unnoticeable.

The influence of our model on the spatio-temporal patterns of convection is subject of future research. As a global kilometer-

scale simulation study by Shevchenko et al. (2023) suggests, diurnal warm layers can have a significant impact on the atmo-

sphere locally where diurnal warming is strong; yet their role for the large-scale tropical cloud field and convective organization

remains unclear.490

6 Conclusions

This paper presents a simple, one-dimensional prognostic model of diurnal sea surface temperature variability in the tropical

ocean, described by Eq. (1) and formulated as a numerical scheme in Eq. (A1). Written as a single partial differential equation,

the model describes upper ocean heat transfer through three idealized terms, controlled by three tuning parameters: an eddy

diffusivity κ0, a bulk mixing rate µ and an attenuation coefficient α. κ0 controls the strength of wind-driven turbulent heat495

transport, µ determines the relaxation rate towards the foundation temperature and α specifies how deeply solar radiation

penetrates into the ocean.

First, we used Bayesian inference to estimate the values of these parameters based on an observational data set recorded on

the MOCE-5 cruise in the Eastern Pacific. Then, we compared the performance of our model with two other models of diurnal

SST dynamics: a slab ocean model, as previously used to mimic a responsive sea surface in atmospheric simulations, and the500

diurnal warm layer scheme ZB05 (Zeng and Beljaars, 2005).

Our results show that slab models with fixed heat capacity cannot capture diurnal SST variability realistically. Instead, our

model reproduces an exponential dependence of the diurnal warming amplitude on wind speed, in accordance with observations

and similar to ZB05. By introducing a diffusion term that scales with surface wind stress, we propose a simple solution that

offers significantly improved results compared to a slab model and parameterizes the basic features of upper ocean turbulence505

in a physically interpretable way. Enhancing the model in the future, e.g. by refining the diffusivity profile to include effects of

precipitation, is facilitated by the concise modular code. To confirm the model’s validity for diverse conditions, the Bayesian

approach offers a natural way to update the parameter estimates based on additional data.
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Due to its numerical and conceptual simplicity, we envision the model presented in this study to serve as a generic interactive

boundary condition for oceans in idealized cloud-resolving simulations of the atmosphere. This will enable a wind-responsive510

SST field that evolves under and feeds back into the atmospheric fluid dynamics. Given the multiscale interaction between

the diurnal cycle and large-scale patterns of tropical convection, it becomes increasingly clear that we must consider diurnal

warm layer dynamics to better understand the mechanisms of marine cloud organization. Our work thus hopes to contribute to

bridging the gap between idealized studies of convective aggregation and real-world process understanding.

Code and data availability. A documented Python implementation of the models (DiuSST, ZB05 and Slab), the MOCE-5 observational515

dataset, as well as a tutorial for running the code are available under the DOI 10.5281/zenodo.13363481 at https://github.com/

reykboerner/diusst (Börner, 2024).

Video supplement. A video presentation introducing the model is available at https://www.youtube.com/watch?v=KdOWF_fzRLE.

Appendix A: DiuSST model – Discretized model equation

The discretized form of eq. (1), using an explicit Euler scheme in time and finite differences on a non-uniform grid in space,520

reads

T i+1
n −T i

n

∆ti
= κ(zn, ti)

(T i
n+1 − 2T i

n +T i
n−1

)
·

(
dn

dz
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)2

+
T i
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2
· d

2n

dz2
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[
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2
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zn
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T i
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+
1

ρwcp

[(
Qi
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]
, (for n= 0, . . . ,N − 1) , (A1)

where n is the depth index and i the time index (nomenclature as in the main text, see also table 1). Here κ(z, t) is given by eq.

(2); its derivative by z is computed analytically. The derivatives dn/dz and d2n/dz2,

dn

dz
=

[
lnϵ ·

(
∆z0
1− ϵ

+ z

)]−1

;
d2n

dz2
=

[
− lnϵ ·

(
∆z0
1− ϵ

+ z

)2
]−1

, (A2)

map the finite differences onto the non-uniform grid spacing, where the stretch factor ϵ > 1 solves the equation ϵ(∆z0,N) =

1+
(
1− ϵN

)
∆z0/zf (see also eq. (9)). At the foundation depth, the Dirichlet boundary condition is T i

N = Tf for all i. At525

the surface (n= 0), we require a choice on dealing with the free boundary. We introduce a dummy grid point (n=−1) at

z−1 =∆z0, at which we set the temperature to T i
−1 = T i

0 for all i (essentially assuming that the temperature gradient vanishes

25
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Figure B1. Comparison of observed diurnal warming ∆SST (light blue) against the predictions of the calibrated DiuSST (red dashed), ZB05

(dark blue), and calibrated Slab (orange dash-dotted) models, showing the full 16-day time series recorded on the MOCE-5 cruise.

at the air-sea interface). The surface heat flux (at n= 0) is given by

Qi
0 :=Rsw(ti)+Rlw(ti)+Qs(ti)+Ql(ti) . (A3)

For n > 0, the heat flux Qi
n ≡Q(zn, ti) is given by eq. (7). Using a forward difference for Qi

n ensures that the integrated heat

flux over the domain corresponds to the total heat uptake within the diurnal layer. Note that the diffusion part of eq. (1) involves530

two terms in eq. (A1) owing to the chain rule of differentiation.

Appendix B: Model comparison over full MOCE5 time series

Simulation results over the whole time interval of the MOCE-5 observations are shown in Fig. B1 for all models. DiuSST

and ZB05 produce similar results, with ZB05 occasionally overshooting the observations by more than 1K around diurnal

warming peaks, e.g. on days 6, 10 and 14. DiuSST produces a more accurate nighttime skin temperature throughout the windy535

first half of the timeseries (days 2-8), whereas ZB05 yields better nighttime skin temperatures during the second half of the

timeseries. The slab produces a constant diurnal warming amplitude throughout, overestimating ∆SST on windy days and

underestimating it on calm days.
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Figure C1. Difference in simulated ∆SST of the DiuSST model without reflection and refraction vs. the original DiuSST model, for the

parameters given in Tab. 1 and forcing with MOCE-5 data.

Appendix C: Surface reflection of solar radiation in DiuSST

Based on Fresnel’s equations, assuming unpolarized light, the reflected fraction R of irradiance incident on the (flat and540

smooth) air-sea interface is given by R= (R⊥ +R∥)/2, where the contributions from the two polarization directions read

R⊥ =

na cosϕ−nw

√
1− ( na

nw
sinϕ)2

na cosϕ+nw

√
1− ( na

nw
sinϕ)2

2

(C1)

R∥ =

na

√
1− ( na

nw
sinϕ)2 −nw cosϕ

na

√
1− ( na

nw
sinϕ)2 +nw cosϕ

2

. (C2)

Here ϕ is the solar angle with respect to the surface normal; na and nw denote the refractive index of air and water, respectively

(see table 1). Thus, we approximate the transmitted solar irradiance Rsw entering the water body as

Rsw(t) =
(
1−R(ϕ(t)

)
Rsw,↓(t) , (C3)

where Rsw,↓ is the downward shortwave irradiance above the sea surface.

When neglecting surface reflection and the effect of surface refraction on the absorption of downward shortwave radiation,545

the simulated ∆SST (under the same parameter settings) can be larger by up to 0.2K for the MOCE-5 case study (Fig. C1).

However, note that if we would have calibrated the model without reflection and refraction, this difference would likely be

compensated by adjusting the parameters.
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Appendix D: Alternative diffusivity profiles

In the main text, we introduce a highly idealized linear diffusivity profile φ(z) (eq. (3), called LIN hereafter). Here we briefly550

discuss two alternatives that have been investigated in the course of this study. Consider the profile

φ(z, t) =
1−S(t)σ exp(z/λ)

1−S(t)σ exp(zf/λ)
, (D1)

given in terms of the suppressivity σ ∈ [0,1], the trapping depth λ > 0, and the (time-dependent) stability function S.

First, set S(t) = 1 for all t, giving a time-independent exponential profile (EXP). If σ > 0, then φ decreases exponentially

towards the sea surface, where φ(0) = 1−σ. The parameter λ, setting the curvature of the profile, determines the depth scale

at which the diffusivity is suppressed. In the limit λ→∞, we obtain the linear profile in eq. (3).555

Second, we investigate a state-dependent stability function (STAB) that depends on the vertical temperature gradient ∆Tλ(t) :=

T (0, t)−T (λ,t), given by

S(t) =

min
(
1,∆Tλ(t)/Tstrat

)
if ∆Tλ(t)> 0

0 otherwise,
(D2)

where Tstrat is a reference temperature at which thermal stratification dominates over turbulent mixing. The physical rationale

behind this is that density stratification due to near-surface heat trapping locally enhances water column stability, inhibiting

vertical diffusion. As soon as the sea skin temperature cools again with respect to the temperature at depth λ, diffusivity560

increases, mimicking enhanced afternoon mixing due to an unstable temperature profile.

Comparing simulations with the LIN and EXP profiles, we find that EXP performs slightly better than LIN for the ob-

servational data set considered in this study, particularly with regards to night-time skin cooling (Fig. D1). Though arguably

more realistic than LIN and EXP, the STAB profile does not necessarily perform better because it kills the coarse-grained skin

cooling effect in our model. Comparing the effect of EXP and STAB on the vertical temperature profile (Fig. D2), we see that565

STAB counteracts near-surface temperature inversions, creating a mixed warm layer of near-constant temperature that better

matches observations Soloviev and Lukas (1997). However, STAB would have to be combined with a skin layer scheme as in

ZB05 in order to capture the sea skin temperature in the presence of skin cooling. Due to the overall similarity of modeled SST

warming between the LIN, EXP, and STAB versions, we choose to present the simplest option, LIN, in the main text.

Appendix E: Bayesian inference570

Consider a model M(Θ) controlled by the parameter set Θ. Given the data D, the probability that a certain value of Θ

represents the truth follows from Bayes’ rule,

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
. (E1)

Here P (A|B) denotes the conditional probability of A given B. On the right-hand side, P (D|Θ) is the likelihood of observing

the data under the assumption that Θ represents the true model. The prior probability P (Θ) quantifies our knowledge of the

28



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time (day of October 1999)

2
1
0
1
2
3
4
5
6

SS
T 

wa
rm

in
g 

(K
)

Data
LIN
EXP
STAB

Figure D1. Comparison of modeled diurnal warming ∆SST between different diffusivity profiles φ discussed in D and the main text. LIN

(solid red line) corresponds to the linear profile (eq. (3)) used throughout the main text. EXP (dash-dotted blue) and STAB (dashed orange)

show results for the corresponding versions of φ described in D. For each case, the model parameters κ0, µ, and α are calibrated specifically

via Bayesian inference. All other model settings are kept constant, as given in table 1.

parameter set before observing the data. Lastly, the denominator states the probability of the data being true, which is indepen-575

dent of the choice of model and merely adds a normalization factor. Hence the posterior probability P (Θ|D) is proportional

to the product of the likelihood times the prior probability.

In practice, inferring the posterior distribution P (Θ|D) of the parameters Θ from the data D involves three steps: 1) construct

the prior distribution P (Θ) in parameter space based on previous knowledge or belief; 2) define a suitable likelihood function

L(Θ)≡ P (D|Θ); and 3) compute the (un-normalized) posterior distribution by evaluating the product L(Θ)P (Θ).580

E1 Choice of prior

Our sensitivity study under idealized forcing (section 3.1) provides orientation on physical ranges of the parameters {κ0, µ, α}
of the DiuSST model. In the literature, common values of oceanic turbulent vertical diffusivity are on the order of κ∼
10−4m2 s−1, varying with location and depth Denman and Gargett (1983). Stating a physical value for the attenuation co-

efficient α is difficult since, in reality, attenuation of shortwave radiation depends strongly on wavelength and the biochemical585

composition of the seawater. Empirical values for the diffusive attenuation coefficient of photosynthetically active radiation

range from ∼ 10−2m−1 to 10m−1 Son and Wang (2015). However, we note that the model parameters are conceptual, partic-

ularly the mixing coefficient µ, such that they do not necessarily represent directly observable physical quantities.
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Figure D2. Comparison of vertical temperature profiles, produced by the model, with diffusivity profile EXP (dark blue) and STAB (orange).

The top panel shows the vertical profile every two hours, shifted by 1K per hour along the horizontal axis. The bottom panels show the

temperature difference ∆T with respect to the foundation temperature as a function of depth and time for the EXP model (left) and STAB

model (right).

Reflecting our limited knowledge, we impose uniform prior distributions for the parameters κ0 and α but constrain their

range to κ ∈ [0, 5× 10−4 ] m2 s−1 and α ∈ [0.05, 10] m−1. The parameter µ requires more subtle treatment because it acts590

mainly near the foundation depth, whereas the likelihood function evaluates temperature differences near the surface (see

below). Fig. 2 indicates that excess heat remains in the interior of the diurnal layer if µ falls below ∼ 1×10−4ms−1. Based on

this insight, we define a normally distributed prior for µ with mean 6× 10−3ms−1 and standard deviation 1.5× 10−3 ms−1.

Thus the three-dimensional prior distribution P (Θ) is uniform and bounded along the κ0 and α directions but Gaussian with

respect to µ.595

Note that the posterior distribution with respect to µ differs clearly from the prior distribution, confirming that the data added

information on the parameter µ (Fig. 4).
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E2 Defining the likelihood function

Our training data D consists of a six-day subset of the diurnal warming time series from the MOCE-5 cruise, as indicated by

the gray shading in Fig. 3. Specifically, we select days 2-4 and 13-15 of October 1999 as training data, while all other days from600

1 to 16 October make up the validation data. By this choice, the training data contains warming events of different amplitudes,

covering the observed range from a few tenths of a Kelvin up to 5K. Moreover, the two sub-intervals composing D correspond

to different geographical regions (open Pacific vs. Gulf of California), presumably featuring differing environmental conditions.

This ensures that the resulting parameter estimates will be valid for a broader range of conditions.

We choose a likelihood function that decays exponentially with the weighted square error between model and data,605

L ∝ exp

−
∑
j

(
∆SSTM(tj)−∆SSTD(tj)

)2
Σ2

j

 , (E2)

where the index j runs through all data points in D and ∆SSTM (∆SSTD) denotes the modeled (observed) diurnal warming at

the corresponding time of observation. Specifically, ∆SSTM(tj) = T (0, tj)−T (zd, tj), with zd being the depth of the vertical

grid point closest to the observational reference depth d=−3m. Furthermore, the standard error Σj determining the relative

weight of the j-th data point is defined as

Σj = 2ϵj(1+ vj/vmax) , (E3)

where ϵj denotes the uncertainty of the 3m temperature measurement, as stated in the data set; vj is the current boat speed and610

vmax is the maximum boat speed throughout the data set. This choice reflects a reduced confidence in measurements taken while

the ship was moving rapidly. Indeed, the MOCE-5 time series features several short, isolated warming spikes of around 1-2°C

during nighttime hours, which cannot be explained by atmospheric forcing but could have been caused by the boat’s movement.

Since the ship mainly moved at night while often remaining at fixed locations during the day, Σj emphasizes daylight data.

E3 Computing the posterior distribution615

To approximate the posterior distribution, we perform Markov chain Monte Carlo (MCMC) sampling using the emcee package

in Python Foreman-Mackey et al. (2013). It is based on the affine-invariant GW10 algorithm proposed by Goodman and Weare

2010. The algorithm explores the parameter space with multiple interdependent walkers whose moves efficiently deal with

correlations, yielding fast convergence.

At each step of the Markov chain, the likelihood function, Eq. (E2), is evaluated for each walker at its respective position620

Θ in parameter space. Each evaluation requires simulating the model for the duration of the training data, which makes the

sampling computationally expensive. For each of 24 walkers we generate 4000 steps, initialized at the value {κ0,µ,α}=
{10−4m2 s−1, 6× 10−3ms−1, 4m−1}. Finding an auto-correlation length of around 50 steps (along the Markov chain), this

gives around 80 independent samples.

We summarize the resulting parameter estimates in Tab. E1, listing common statistical estimators as obtained from the poste-625

rior distribution of the DiuSST (Fig. 4) and Slab (Fig. E1) models, respectively. Bayesian inference for the Slab model was per-
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formed in analogy to the DiuSST model but in a four-dimensional parameter space {h,S,ξ1, ξ2} and with the slab temperature

anomaly representing ∆SSTM in the likelihood function. The run was initialized at values {h,S,ξ1, ξ2}= {1,100,10−4,10−9}
with uniform priors for h, ξ1, ξ2 and a Gaussian prior for S with mean 100Wm−2 and standard deviation 10Wm−2.

Model Parameter MAP Mean Median

DiuSST κ0 (m2 s−1) 1.34× 10−4 1.41× 10−4 1.40× 10−4

µ (ms−1) 2.85× 10−3 3.00× 10−3 2.96× 10−3

α (m−1) 3.52 3.83 3.70

Slab h (m) 1.20 1.20 1.20

S (Wm−2) 92.67 93.86 93.94

ξ1 1.19× 10−4 1.20× 10−4 1.18× 10−4

ξ2 3.1× 10−11 5.3× 10−11 3.7× 10−11

Table E1. Parameter estimates obtained from the sampled posterior distribution.

Appendix F: Slab model parameter sensitivity630

As mentioned in the main text, the Bayesian optimization procedure applied to the Slab model acts mainly by ramping up

the relaxation parameter ξ1, which constrains diurnal warming to 1K. Larger diurnal amplitudes are achieved by reducing ξ1

(see Fig. F1). However, in that case the slab also cools excessively at night, and the diurnal warming peak shifts into the late

afternoon, with a slow temperature decrease after peak warming.
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Figure E1. Posterior distribution for the parameters of the slab model, obtained from Bayesian MCMC sampling. Compare with Fig. 4,

which shows the results for the DiuSST model.
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Figure F1. Performance of the slab model as a function of its control parameter ξ1. The solid red (Model) and blue (Slab A) lines show

simulations of our calibrated model and the slab model, respectively, with parameter values given in table E1. The orange curve (Slab B)

shows a slab simulation with h= 1.1m, S = 70Wm−2, ξ1 = 1× 10−7 and ξ2 = 0. Note that for Slab B, ξ1 is three orders of magnitude

smaller compared to Slab A.
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