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Abstract. Drought poses increasing challenges to global food production. Knowledge about the influence of drought on crop 13 

development and the role of soil properties for crop drought severity is important in drought risk analysis and for mitigating 14 

drought impacts at the landscape level. Here, we tested if satellite images from Sentinel-2 could be used to assess the impacts 15 

of drought on crop development and the influence of soil properties on crop drought responses at the landscape scale, and what 16 

the responses were. As a case study, we assessed winter wheat growth on 13 fields belonging to commercial farmers in southern 17 

Sweden in a dry year (2018) and a year with normal weather conditions (2021). To track crop growth, green leaf area index 18 

(GLAI) was estimated from satellite imagery using a radiative transfer model. Proxies for winter wheat growth rate, peak 19 

GLAI, and the timing of peak GLAI were derived from the GLAI development at the single field level. We then compared the 20 

crop growth proxies between the two years, and related the year-to-year differences between fields to measured soil properties. 21 

We found lower estimated growth rates, lower peak GLAI and earlier peak GLAI in the dry year compared to the year with 22 

normal weather conditions. A higher peak GLAI in the dry year was related to a higher growth rate, and this was not shown in 23 

the year with normal precipitation. Differences in crop development between years were large for some fields but small for 24 

other fields, suggesting that soil properties play a role in crop response to drought. We found that fields with a higher plant 25 

available water capacity had a higher growth rate in the dry year and smaller relative differences in growth rate between the 26 

two years. This shows the importance of soils to mitigate drought conditions, which will likely become more relevant in an 27 

increasingly drier climate. Our case study demonstrates that satellite derived crop growth proxies can identify crop responses 28 

to drought events, and that satellite imagery can be used to discover impacts of soil properties on crop development at scales 29 

relevant to commercial farming.  30 

 31 

 32 

 33 
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1 Introduction  34 

Extreme weather events such as droughts have become more frequent and severe in recent years due to climate change, posing 35 

challenges to global food and feed production (IPCC 2022). Drought is one of the main climatic constraints limiting crop 36 

growth and crop productivity (Fahad et al. 2017; Matiu et al. 2017; Ru et al. 2023). Water is crucial for plant growth, and 37 

plants can respond to water limitation through different mechanisms, such as reducing water losses through transpiration by 38 

closing their stomata (Huang et al. 2020) or by reducing leaf area (Wasaya et al. 2023). In turn, the photosynthesis rate and 39 

thus carbon acquisition decrease. Plants may also accelerate their development to complete the plant life cycle before the 40 

occurrence of a severe water deficit (Abid et al. 2018; Seleiman et al. 2021). The impact of drought on crops is complex and 41 

depends on several factors including the plant species and variety, the developmental stage of plants, the timing, duration and 42 

severity of the drought (Gray and Brady 2016), as well as the properties of the soil (Bodner et al. 2015). 43 

The capacity of soil to sustain plant growth and crop productivity is affected by biological, chemical and physical soil 44 

properties, which collectively determine the soil conditions for plant growth (Stockdale et al. 2002). Soils that allow water to 45 

infiltrate and can store sufficient amounts of water to sustain plant growth can mitigate drought conditions (Rockström 2003; 46 

Bodner et al. 2015). Higher soil moisture may also benefit nutrient uptake during drought, while a water deficit could lead to 47 

a lack of nutrients in crops as nutrients are mainly transported into plants through water uptake (He and Dijkstra 2014). Plant 48 

roots must also be able to penetrate the soil to access water and nutrient resources, where a high penetration resistance, which 49 

increases under dry conditions, could impede root growth and resource accessibility (Bengough et al. 2011; Colombi et al. 50 

2018). Recent research also provides evidence that certain rhizosphere microbiomes might enhance plant growth during dry 51 

conditions (Rolli et al. 2015; Rubin et al. 2017; de Vries et al. 2020). Therefore, soil properties are of high importance to 52 

sustain crop growth during drought.  53 

Plant growth dynamics can be quantified with ecophysiological properties such as the green leaf area index (GLAI), which is 54 

the ratio of photosynthetically active leaf area to ground area (Watson 1947). Previous studies using field experiments 55 

demonstrated that the influence of soil properties and soil-borne stress on plant growth can be detected using GLAI. For 56 

example, positive relationships between GLAI and soil water content have been found (Chen et al. 2021), and GLAI at the 57 

heading stage of spring barley has been shown to decrease with a high degree of soil compaction (Lipiec et al. 1991). The 58 

growth rate estimated from GLAI has also been shown to be related to soil organic carbon and nitrogen contents (Hirooka et 59 

al. 2017). In addition, the GLAI may vary by crop species, scales and environmental factors (Kang et al. 2002; Kang et al. 60 

2016; Lawal et al. 2022), and there is still limited information about how soil properties affect crop GLAI development under 61 

extreme weather conditions, at scales relevant to commercial agriculture (i.e., at the landscape scale). Pot and field plot 62 

experiments are needed to understand single factors, but conducting research at larger scales is important to capture the 63 

heterogeneity of environmental factors in the landscape.  64 

Monitoring crop growth at the landscape scale can be done with satellite remote sensing, for example using the twin 65 

constellation of Sentinel-2A and 2B. The Sentinel-2 multispectral sensors have been shown to be suitable for estimating GLAI 66 
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for different crop species (Clevers et al. 2017; Revill et al. 2019; Dong et al. 2020; Ali et al. 2021). One promising way to 67 

interpret satellite data for ecophysiological traits is the use of radiative transfer models that describe the relationship between 68 

leaf and canopy traits and spectral properties of plants using physical principles (Jacquemoud et al. 1996; Myneni et al. 1997; 69 

Verhoef 1998). Thus, in contrast to the widely used vegetation indices, there is no need to establish empirical relationships 70 

between vegetation indices and crop traits (Atzberger et al. 2011). Those empirical relationships are usually not transferable 71 

in space and time, and hence not suitable for studies at the landscape scale. In addition, vegetation indices such as the widely 72 

used Normalized Difference Vegetation Index (NDVI) saturate at low biomass levels (Myneni and Williams 1994; Prabhakara 73 

et al. 2015), which is undesirable for a reliable and robust quantification of plant growth. The combination of satellite images 74 

and radiative transfer models allows estimating GLAI on a large scale. 75 

The use of satellite-derived GLAI for crop growth characterization and productivity has become common in recent years 76 

(Punalekar et al. 2018; Peng et al. 2019; Dong et al. 2020; He et al. 2021; Graf et al. 2023), and many remote sensing studies 77 

motivate their work by the potential of remote sensing to detect crop stress. Still, studies that a) demonstrate how extreme 78 

weather, such as drought, affects GLAI development, and b) provide the link to environmental variables, such as soil properties, 79 

to explain the observed differences remain scarce. Investigating if satellite images can be used to identify crop stress responses 80 

at the landscape scale, and if the importance of soil properties can be identified under drought stress at agricultural fields, could 81 

motivate the use of satellite images in crop monitoring at farm fields. In the present study, the aims were to: 82 

i) analyse winter wheat development in farm fields within a region in southern Sweden by quantifying GLAI based on 83 

Sentinel-2 data, 84 

ii) investigate if impact of drought on winter wheat growth can be identified using satellite images at the farm fields by 85 

comparing the GLAI development between a dry year (year 2018) and a year with normal weather conditions (year 2021), and  86 

iii) examine if differences in soil properties relate to differences between GLAI development across fields and between 87 

the two years. 88 

2 Materials and Methods  89 

2.1 Study area and meteorological data  90 

The study area was located in the south of Sweden at a latitude of approximately 58.5°, spanning 160 km from west to east 91 

(Fig. 1), and is characterized by a humid continental climate (Peel et al. 2007). Winter wheat is the major crop cultivated in 92 

Sweden in general and in the study area (Sjulgård et al. 2022). We included 13 fields in this study, belonging to commercial 93 

farmers. The fields were cultivated with winter wheat (Triticum aestivum L.) in both 2018 and 2021, and detailed soil data 94 

were available for all fields. All fields were managed conventionally and they were not irrigated. The farmers manage their 95 

fields according to best practices, but detailed information about crop and soil management practices was only available from 96 

some of the farmers. We therefore minimised the variation in management practises between years by selecting fields that 97 

were managed by the same farmer in 2018 and 2021, and with the same crop cultivated in both years. 98 
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 99 

Fig. 1. A map of Sweden with county borders showing the location of the study area (left), and a map displaying the locations of the 100 
13 fields (right). A small blue circle indicates the location of one field, and a larger blue circle indicates two fields close to each other.   101 

 102 

The centroid coordinates of the fields were used to obtain daily temperature and precipitation data for each field. 103 

Meteorological data were obtained from the “PTHBV database”, available from the Swedish Meteorological and Hydrological 104 

Institute (SMHI). Data include gridded and interpolated daily mean temperature and precipitation at a resolution of 4 km by 4 105 

km (SMHI 2023). The interpolation is based on 700 meteorological stations across Sweden and considers orographic effects 106 

(Berg et al. 2015). Differences in weather conditions between fields and years were assessed by the De Martonne Aridity Index 107 

(DMI; De Martonne 1926)), defined as: 108 

 109 

𝐷𝑀𝐼 =
𝑃𝑚

𝑇𝑚+10
   (1) 110 

 111 

where Pm is the monthly total precipitation (mm) and Tm is the monthly average temperature (°C). A higher DMI indicates 112 

wetter conditions, while a lower DMI indicates drier conditions. Weather conditions during the main winter wheat growing 113 

period (May to July) in 2018 and 2021 were contrasting: 2018 was unusually dry, while 2021 was “normal” (Fig. 2). The lack 114 

of precipitation has been referred to as the main reason for the large yield losses observed in 2018 (Bakke et al. 2020, Beillouin 115 

et al. 2020). In 2018, May was already unusually warm and dry in Sweden (SMHI 2018). Between May and July, the DMI 116 

was on average 1.2 mm °C-1 (SD = 0.06) per month in 2018, which was drier than the long-term average of 2.9 mm °C-1 (SD 117 
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= 0.19) for the same period. In 2021, the DMI was close to the long-term average with a monthly mean of 3.2 mm °C-1 (SD = 118 

0.16) in May to July. In both years, DMI was similar across fields. 119 

 120 

 121 

Fig. 2. Weather conditions in 2018 and 2021 at the locutions of the 13 fields. Locally estimated scatterplot smoothing curves plotting 122 
the average a) daily temperature and b) precipitation against calendar date for the 13 fields in 2018 and 2021. c) The average DMI 123 
(De Martonne Aridity Index) during the months May to July in 2018 and 2021, and the long-term mean May to July between 1991 124 
and 2020 with error bars indicating the standard deviation. 125 

 126 

2.2 GLAI derived from satellite data 127 

The twin constellations of the Sentinel-2A and B satellites have a revisit time of two days in the study area. Downloading and 128 

processing of Sentinel-2 data were performed using the open-source Python Earth Observation Data Analysis Library (EOdal, 129 

Graf et al. 2022). The Sentinel-2 scenes were obtained for the years 2018 and 2021 from Microsoft Planetary Computer. 20 m 130 

and 10 m bands were obtained, and the Sentinel-2 scenes and 20 m bands were resampled to 10 m using nearest-neighbour 131 

interpolation to generate equal spatial resolution. The Sentinel-2 scenes were cropped to only retain pixels within the 13 fields 132 

based on a shapefile containing the field boundaries. From the resampled scene classification layer, only pixels from the scene 133 
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classification layer class 4 (vegetation) and class 5 (bare soil) were kept to filter out pixels containing clouds, snow, shadow, 134 

and dark areas. Further filtering was performed to remove dates with a cloud cover of  ≥ 10% on a field-per-field basis. 135 

GLAI was derived from the radiative transfer model PROSAIL, following the approach described in Graf et al. (2023). A 136 

lookup table consisting of 50,000 spectra was generated by running PROSAIL in forward mode for each Sentinel-2 scene. We 137 

randomly generated combinations of leaf and canopy parameters according to a uniform or Gaussian distribution (Tab. S2; 138 

Graf et al. 2023; Wocher et al. 2020; Danner et al. 2021). View and illumination geometry were set to scene-specific values 139 

extracted from Sentinel-2 scene metadata. Building on the workflow of Graf et al. (2023), known empirical relationships 140 

between GLAI and chlorophyll a and b, and GLAI and the carotenoid content of leaves were used to increase the physiological 141 

plausibility of the input parameter combinations. For GLAI retrieval, we compared the Sentinel-2 pixel spectra with the 142 

PROSAIL simulated spectra using the mean absolute error as a cost function. We then used the median of the 5000 (10%) best 143 

matching simulated spectra in terms of the smallest mean absolute error to derive a GLAI value per Sentinel-2 pixel. 144 

For each Sentinel-2 scene, an average value of GLAI was calculated per field. A smoothed curve was fitted to the GLAI time 145 

series by the locally estimated scatterplot smoothing method with a span of 0.3 (Fig. 3). The smoothed curve was also used to 146 

identify and remove outliers that were missed by the scene classification layer and the cloud filtering (Fig. S1). 147 

2.3 Crop growth curve parametrisation 148 

The air temperature sum (Tsum) at each field was assessed by adding up the daily mean temperatures exceeding a threshold 149 

value of 0 °C, where growth for winter wheat starts (Porter and Gawith 1999), from the 1st of January following: 150 

𝑇𝑠𝑢𝑚𝑈𝑀 = ∑ 𝑇𝑖 × 𝜎𝑖

𝑗

𝑖=1

 151 

𝜎𝑖 = {
0 𝑖𝑓 𝑇𝑖  ≤ 0 °C  
1 𝑖𝑓 𝑇𝑖 > 0 °C 

    (2) 152 

      153 

where Ti is the daily mean temperature and j is the number of days. From the GLAI development curve, characteristic properties 154 

were calculated to estimate crop growth rate, green biomass, and timing of heading stage for each field and year (Fig. 3). GLAI 155 

increases early in the season due to leaf production in the vegetative growth phase (Bhattacharya 2019). Growth rate during 156 

the vegetative growth phase was estimated from the slope of a linear plateau curve with an endpoint at the start of the upper 157 

plateau. The linear plateau model was fitted to the GLAI values with a start at a temperature sum of 200 °C (corresponding to 158 

the end of April) when GLAI started to increase around the beginning of stem elongation (Chen et al. 2009). The GLAI 159 

development curve is typically bell-shaped, with the peak GLAI observed around the heading stage for winter wheat (Feng et 160 

al. 2019). The timing of the peak GLAI was assessed from the corresponding temperature sum (Fig. 3). The peak GLAI 161 

indicates the maximum green biomass (Lambert et al. 2018; Skakun et al. 2019), and was assessed from the smoothed GLAI 162 

curve.  163 
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 164 

Fig. 3. Example from one of the fields showing the green leaf area index (GLAI) temporal development curve. We obtained proxies 165 
for the growth rate from the slope between a temperature sum of 200 °C until the start of the plateau (dashed red line), the peak 166 
GLAI from the maximum GLAI, and the timing of peak GLAI from the temperature sum at the peak GLAI. The raw GLAI values 167 
are shown by black dots and the smoothed GLAI is shown by the black curve.   168 

2.4 Soil sampling and analyses  169 

Soil sampling was conducted in June and in the beginning of July in 2021. Loose soil samples and undisturbed soil cores were 170 

collected from the topsoil at five locations in each field. Sampling locations within each field were arranged in a quincunx, 171 

with one point in the middle of the field and the others at least a few metres from the field borders. Loose soil samples were 172 

taken with a shovel from 0-20 cm depth. The five samples taken in each field were pooled into a plastic bag and the resulting 173 

composite sample was air-dried. Five undisturbed soil cores (5 cm in height, 7.2 cm inner diameter) were collected at a depth 174 

of 10 cm in each field. The soil core samples were wrapped airtight and stored at 4 °C until further processing.  175 

Soil organic matter content was determined by loss of ignition from the loose soil samples. Cation exchange capacity was 176 

analysed using an inductively coupled plasma–optical emission spectrometer (ICP-OES) to obtain the base cations in the soil 177 

samples. The base cations and acidity titration were used to calculate the cation exchange capacity at pH 7. Soil water content 178 

at the permanent wilting point (-1500 kPa) was determined with pressure plate extractors. Soil water content at field capacity 179 

was assessed by equilibrating the soil cores to -10 kPa (i.e., field capacity; Krueger and Ochsner (2024)) on ceramic plates 180 

(ecoTec, Bonn). Plant available water capacity was obtained by calculating the difference in gravimetric soil water content 181 

between field capacity and the permanent wilting point. Dry soil bulk density was determined on the undisturbed soil core 182 

samples by drying the samples at 105 °C for 48 h. Soil texture including clay (< 0.002 mm) content was determined from the 183 

loose soil samples by sedimentation (‘pipette’ method). 184 
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2.5 Statistical analyses 185 

GLAI development responses to drought were analysed by comparing differences in crop growth proxies (i.e., growth rate, 186 

peak GLAI, and the timing of peak) between the dry year (2018) and the year with normal weather conditions (2021). A two-187 

tailed t-test was applied to determine whether there was a significant difference in growth rate, peak GLAI, and the timing of 188 

the peak GLAI between the two years. Spearman correlation was used to assess relationships between soil properties. Multiple 189 

linear regression was used to assess relationships between the crop growth proxies while accounting for the average monthly 190 

DMI (May – July) of the corresponding year. To relate soil properties to differences in growth rate, peak GLAI, and the timing 191 

of the peak GLAI between years, the relative difference of crop growth proxies (∆GP) between the years 2018 and 2021 was 192 

calculated as: 193 

 194 

∆𝐺𝑃 =
𝐺𝑃2021 − 𝐺𝑃2018

𝐺𝑃2018

× 100%                  (3) 195 

 196 

where GP is a crop growth proxy (i.e, growth rate, peak GLAI or the timing of the peak GLAI) for year 2018 and 2021.  197 

A variance decomposition method proposed by Zuber and Strimmer (2011), called Correlation-Adjusted coRelation (CAR) 198 

scores, was used to determine the relative importance of the soil properties for the growth rate, peak GLAI, and the timing of 199 

the peak GLAI in each year (i.e., for 2021 and 2018), and for the relative difference of the crop growth proxies between the 200 

years. CAR scores provide a criterion for variable ranking in linear regression based on the Mahalanobis-decorrelation of 201 

covariates (Zuber and Strimmer 2011). The direction of the relationships and p-values were obtained from univariate linear 202 

regressions between the crop growth proxies and the soil properties for each year, and for the relative difference of crop growth 203 

proxies between 2021 and 2018, respectively. Statistical analyses were carried out in R version 4.2.1 (R Core Team 2022), 204 

and CAR scores were calculated from the R package “relaimpo” (Groemping and Lehrkamp 2023) and the linear mixed models 205 

using the “lme4” package (Bates et al. 2015).  206 

3 Results 207 

3.1 Growth patterns across years  208 

Differences in crop development between years varied across fields, where certain fields showed a large difference in growth 209 

rate, peak GLAI and the timing of the peak GLAI between years, while others had only small differences (Fig. 4, Fig. S2). For 210 

growth rate and peak GLAI, four fields had an increase from 2018 to 2021 of less than 10%, while some fields had a difference 211 

of 50-59%. The difference between years in the timing of the peak GLAI was lower in comparison, with four fields having an 212 

increase <10% and three fields a decrease <10%, while the maximum difference was 30-39% (Fig. 4, Fig. S2). 213 
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 214 

Fig. 4. Examples of temporal evolution of GLAI during 2018 (dry year) and 2021 (year with normal weather conditions) for two 215 
different fields with a) a large difference between the years and b) a small difference between the years. c) Number of fields by the 216 
percentage difference in crop growth proxies (i.e., peak GLAI, growth rate, and temperature sum at peak GLAI) between the years 217 
2018 (dry year) and 2021 (year with normal weather conditions).  218 

 219 

Growth rate was lower in the dry year (2018) than in the year with normal weather conditions (2021; Fig. 5), indicating reduced 220 

crop growth in response to drought. The growth rate during the reproductive period was on average 19% lower in the dry year 221 

(2018) than in the year 2021 with close to normal weather conditions, and we found a significant effect of the year on growth 222 

rate (p < 0.001; Fig. 5a). The peak GLAI was in general lower during the dry compared to the year with normal weather 223 

conditions (p < 0.001; Fig. 5c), with an average difference of 28% between the two years. The timing of peak GLAI occurred 224 

significantly earlier, i.e. at a lower temperature sum, during the dry year, with the peak GLAI around a temperature sum of 225 

775 °C in the dry year and 881 °C in the year with normal weather conditions (p = 0.015; Fig. 5d).  226 

   227 
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 228 

Fig. 5. Crop growth proxies obtained from the temporal evolution of green leaf area index (GLAI) in the dry year (2018) and the 229 
year with normal weather conditions (2021); a) growth rate, b) peak GLAI, and c) temperature sum at peak GLAI. Data show yearly 230 
average (black dots), median, upper and lower quartiles (box), and minimum and maximum values (whiskers). P-values from the t-231 
test are displayed for the differences between the years (number of fields, n=13). 232 

 233 

Relationships among the different crop growth proxies showed a positive relationship between growth rate and peak GLAI in 234 

the dry year (year 2018), while the relationship was not significant during the year with normal weather conditions. The timing 235 

of the peak GLAI had no significant relationship to growth rate or peak GLAI for either years (Tab. S3).  236 

3.2 Relationships between soil properties and crop development 237 

On average across the 13 fields, plant available water capacity was 0.23 m3 m-3 bulk density was 1.5 g cm-3, cation exchange 238 

capacity was 16 cmol kg-1, soil organic matter content was 3.6%, and clay content was 31% (Tab. S1). Some soil properties 239 

were related to each other, with positive correlations between soil organic matter content and cation exchange capacity, and 240 

between clay content and cation exchange capacity (p < 0.05; Fig. S4). Negative relationships were found between clay content 241 

and bulk density, and between clay content and plant available water capacity (p < 0.05; Fig. S4).  242 

Soil properties explained together 15%, 54% and 27% of the variations across fields in growth rate, peak GLAI, and timing of 243 

peak GLAI, respectively, in the year with normal weather conditions (year 2021). However, none of the soil properties was 244 

significantly related to growth rate, peak GLAI or timing of the peak GLAI in 2021 (Fig. 6a). In the dry year (year 2018), soil 245 

properties explained together 44%, 40% and 55% of the variation in growth rate, peak GLAI and timing of peak GLAI, 246 

respectively. Plant available water capacity was significantly related to crop growth rate in 2018, with a positive association 247 
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of increased crop growth with higher plant available water capacity (p < 0.05). In addition, plant available water capacity 248 

explained 21% of the variation in growth rate across fields in the dry year. There were no significant relationships between the 249 

other soil properties and growth rate, peak GLAI or timing of peak GLAI in 2018 (Fig. 6b). Plant available water capacity was 250 

the most important soil property in explaining the relative difference between the year with normal weather conditions (2021) 251 

and the dry year (2018). The relative difference in growth rate between the years was negatively related to plant available 252 

water capacity (p < 0.05), and plant-available water capacity explained 30% of the variation in the difference in growth rates 253 

between the years. 254 

 255 

 256 
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Fig. 6. Explained variation in growth rate, peak GLAI and temperature sum at peak GLAI, calculated from correlation-adjusted 257 
corelation (CAR) scores, by the soil properties clay content, soil organic matter content (SOM), bulk density, cation exchange 258 
capacity (CEC) and plant available water capacity (PAWC) in a) a year with normal weather conditions (year 2021), b) a dry year 259 
(year 2018), and c) the relative difference between the years 2021 and 2018. The p-values and the positive or negative relationships 260 
between each soil property and crop growth proxy were obtained from univariate linear regressions. The rings are 10%, 20%, 30% 261 
and 40% explained variation, starting from the smallest, and the last ring is the outside border of the plot area. 262 

4 Discussion 263 

4.1 The impact of drought on crop development 264 

In the present study, we used satellite images to assess winter wheat development in farm fields by quantifying GLAI based 265 

on Sentinel-2 data. We investigated whether the impact of drought on GLAI development and relationships between soil 266 

properties and GLAI development during drought could be identified by using satellite images. The early growing season in 267 

2018 was exceptionally dry and warm (Fig. 2), resulting in reduced winter wheat development compared to 2021 (Fig. 5) that 268 

had close to long-term average weather conditions. Previous research has shown negative effects of drought on crop yield at 269 

the landscape and country scale (Zipper et al. 2016; Ray et al. 2018; Sjulgård et al. 2023), and lower growth rate and lower 270 

peak GLAI during water-limited conditions have been found in field trials in which GLAI was measured at the canopy (Meinke 271 

et al. 1997; Boedhram et al. 2001). The lower crop growth rate and the earlier GLAI peak during drought that we observed in 272 

our study demonstrate that Sentinel-2 derived estimates of crop growth proxies can be used to detect drought responses in crop 273 

development at the landscape scale. 274 

The dry conditions early in the growing season in year 2018 resulted in lower peak GLAI compared to the year with normal 275 

weather conditions (Fig. 5). Peak GLAI is a proxy of the maximum green biomass (Lambert et al. 2018; Skakun et al. 2019), 276 

and reduced wheat biomass during drought has been shown in earlier studies (Villegas et al. 2001; Zhang et al. 2018). 277 

According to Villegas et al. (2001), the decrease in biomass during drought was mainly due to a lower growth rate. Similarly, 278 

we found a positive relationship between crop growth rate and peak GLAI in the dry year, but not in the year with normal 279 

weather conditions (Tab. S3). The positive relationship in the dry year suggests that a faster growth is important to obtain 280 

higher maximum biomass and in turn higher yield during dry conditions, and the non-significant relationship during the year 281 

with normal weather conditions suggests that growth rate is not as critical for biomass accumulation during normal weather 282 

conditions. Using farm fields, earlier research has shown that leaf area (He et al. 2020; Sun et al. 2024) and peak GLAI 283 

(Lambert et al. 2018, Yamamoto et al. 2023) can be related to crop yield. For the fields with yield data available in this study 284 

(six fields) together with additional 23 farm fields in the same region, there was a strong correlation between higher peak GLAI 285 

and higher winter wheat yield in year 2021 shown in Sjulgård (2024). The peak GLAI was reached earlier, i.e., at a lower 286 

temperature sum, during the dry year. Since the peak GLAI has been associated with heading growth stage (Feng et al. 2019), 287 

this might indicate a shift in phenology during dry conditions. Some studies have shown that plants develop faster during 288 

drought to reach flowering earlier and complete the life cycle before severe water shortage occurs (Abid et al. 2018; Seleiman 289 

et al. 2021). However, we did not find a significant relationship between the timing of peak GLAI and growth rate or peak 290 
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GLAI in our data, which would imply that the timing of the heading growth stage did not influence the overall crop performance 291 

(Tab. S3).  292 

4.2. The influence of soil properties on crop development 293 

We found that differences in crop development between the two years varied across fields. When comparing 2018 and 2021, 294 

we identified a large difference of up to 50-59% in growth rate and peak GLAI for certain fields and up to 30-30% in the 295 

timing of peak GLAI, while there was a smaller difference for other fields (Fig. 4, Fig. S2). As weather conditions across all 296 

fields within a specific year were similar (Fig. 2c), the varying crop responses to drought stress among fields imply that 297 

additional factors than the weather must have had an impact on crop development. Here, we show that soil properties influenced 298 

the crop growth proxies. In 2018, a positive relationship between plant available water capacity and growth rate demonstrates 299 

the importance of sufficient soil water retention to sustain crop growth during drought (Fig. 6). Fields with lower plant available 300 

water capacity had a larger relative difference in growth rate between the dry and normal year. Earlier studies have shown that 301 

soil water retention is crucial for crop performance during drought (Wang et al. 2009; Huang et al. 2020). Accordingly, the 302 

performance of crops grown on soils with high plant available water capacity has been found less affected by changes in 303 

rainfall compared to crops grown on soils with low plant available water capacity (Wang et al. 2017). The relevance of plant 304 

available water capacity on crop growth during drought identified in our study demonstrates that the influence of soil properties 305 

on crop development can be detected during drought stress at the landscape scale by using Sentinel-2 derived GLAI. 306 

Other soil properties assessed in this study were not correlated with estimates of growth rate, peak GLAI or timing of peak 307 

GLAI in 2018, and none of the soil properties was significantly related to the crop growth proxies in 2021 (Fig. 6). Clay content 308 

only explained a small part of the variation in crop growth proxies, but influenced other soil properties such as cation exchange 309 

capacity, bulk density, and plant available water capacity (Fig. S4). Cation exchange capacity only explained a low part of the 310 

variation in crop growth proxies. All fields were above the recommended cation exchange capacity for crop production of 10 311 

cmol kg-1 (Tab. S1) (Chowdhury et al. 2021), implying that cation exchange capacity was not a limiting factor for crop 312 

development. Our findings that bulk density had no direct relationship with the crop growth proxies may seem to contradict 313 

the study of Lipiec et al. (1991), who found decreasing GLAI at the heading stage of spring barley with increasing degree of 314 

soil compaction. However, in our fields, bulk density was not critically high, with an average bulk density of 1.5 g cm-3 (Tab. 315 

S1). We found no relationships between crop growth rate, peak GLAI or timing of peak GLAI and soil organic matter content. 316 

Earlier studies have shown positive effects of soil organic matter content on soil fertility (Lal 2009; Fageria 2012; Oldfield et 317 

al. 2019) and on crop productivity during drought (Kane et al. 2021; Mahmood et al. 2023), however, negative effects of soil 318 

organic matter content on crop yields have also been found in Sweden (Kirchmann et al. 2020). 319 

4.3 Limitations and motivations 320 

In our study, soil sampling was conducted in 2021 only. With soil properties changing over time, this may introduce uncertainty 321 

in the relationships between soil properties and crop development that we established for year 2018. However, a number of 322 
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studies has shown only small year-to-year changes in soil organic carbon content (Krauss et al. 2020), water content at field 323 

capacity (Alam et al. 2014) and bulk density (Alam et al. 2014; Alnaimy et al. 2020) within given soil management systems. 324 

The small differences between years suggests that the soil properties probably are rather similar between the years 2021 and 325 

2018 within the same fields included in this study. In addition to soil properties and weather conditions, crop development is 326 

influenced by soil and crop management practices such as fertilization (Agenbag and Maree 1991; Shankar et al. 2021), tillage 327 

(Agenbag and Maree 1991; Abagandura et al. 2017), sowing date and crop variety selection (Ihsan et al. 2016; Minoli et al. 328 

2022). Earlier studies have shown differences in leaf area index between farming systems, with higher leaf area index in 329 

conventional in comparison to organic systems (Petcu et al. 2011; Pużyńska et al. 2021). In this study, all fields selected were 330 

conventionally managed to reduce these differences. Additional information about the winter wheat varieties, sowing date and 331 

fertilization levels were not available from all farmers. However, winter wheat is sown within a short time window around the 332 

middle of September in the study region (Andersson 1983; SCB 1993). A change of a few days in sowing date of winter wheat 333 

has been shown to have limited influence on crop yield (Ding et al. 2016), and would therefore not substantially influence our 334 

findings. According to Stenberg et al. (2005), the average inorganic fertilizer used for winter wheat cultivation is 160 N kg ha-335 

1 (SD = 19) in Östergötland and 170 N kg ha-1 (SD = 27) in Västra Götaland, respectively, based on extensive data collection 336 

between 2000 and 2003. This shows that the fertilization levels between the two counties that covered our study region are 337 

similar and that the variation between years is in general low.  338 

The varying soil and crop management practices among fields, and the different availability of baseline data (e.g. soil 339 

management and input history) is one of the challenges with on-farm research, but such studies are essential to evaluate the 340 

use of satellite data in the context of commercial farms (Doole et al. 2023). Our results show that satellite derived GLAI can 341 

be used to identify environmental stress response on plants, and this could help farmers to monitor crops and to identify when 342 

stresses occur. The influence of soil properties on crop response during drought demonstrates the importance of accounting 343 

for soil properties when evaluating the impact of drought on crops. 344 

5 Conclusion 345 

The impact of drought on winter wheat development was shown by comparing Sentinel-2 derived GLAI development during 346 

a dry year (2018) and a year with normal weather conditions (2021) across 13 fields belonging to commercial farm fields in 347 

southern Sweden. We observed lower crop growth rate, lower peak GLAI and earlier peak GLAI during the dry year compared 348 

to the year with normal weather conditions. Our data revealed the importance of a faster crop growth to obtain more biomass 349 

during dry conditions, while the growth rate was less crucial for crop performance during the year with normal weather 350 

conditions. Differences in crop development between the years demonstrate that stress related crop response to changing 351 

environmental conditions can be detected by monitoring crops using satellite images at the landscape level, and this could be 352 

useful for farmers to monitor their crops and identify when the plants are stressed. In addition, we found that plant available 353 

water capacity was important for crop growth rate during the dry year. This suggests that satellite imagery can be used to 354 
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discover soil impacts on crop development at scales relevant to commercial farming. The inclusion of soil properties in satellite 355 

images analyses could further improve the accuracy of the prediction of drought stress on crops. 356 
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