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Abstract. The study evaluated a new model of a Plair SA air flow cytometer, Rapid-E+, and assessed its suitability for airborne
pollen monitoring within operational networks. Key features of the new model are compared with the previous one, Rapid-E.
A machine learning algorithm is constructed and evaluated for (i) classification of reference pollen types in laboratory
conditions and (ii) monitoring in real-life field campaigns. The second goal of the study was to evaluate the device usability
in forthcoming monitoring networks, which would require similarity and reproducibility of the measurement signal across
devices. We employed three devices and analysed (dis-)similarities of their measurements in laboratory conditions. The lab
evaluation showed similar recognition performance as that of Rapid-E, but field measurements in conditions when several
pollen types are present in the air simultaneously, showed a notably lower agreement of Rapid-E+ with manual Hirst-type
observations than those of the older model. An exception was the total-pollen measurements. Comparison across the Rapid-
E+ devices revealed noticeable differences in fluorescence measurements between the three devices tested. As a result,
application of the recognition algorithm trained on the data of one device to another one led to large errors. The study confirmed
the potential of the fluorescence measurements for discrimination between different pollen classes, but each instrument needed
to be trained individually to achieve acceptable skills. A large uncertainty of fluorescence measurements and their variability

between different devices need to be addressed to improve the device usability.

1 Introduction

A recently published special issue “Bioaerosol Research: Methods, Challenges, and Perspectives” provided an extensive
overview of developments in monitoring of primary biological aerosol particles, emphasising the interest in real-time automatic
measurements (Huffman et al., 2019). In the past 10 years, several devices were released to the market claiming to be able to
detect and quantify atmospheric concentrations of various bioaerosols (i.e. pollen and fungal spores) (Buters et al., 2022). An
extensive international intercomparison of automatic bioaerosol monitors with reference measurements (EN 16968, 2019) was
organised within the framework of the EUMETNET AutoPollen Programme and the ADOPT COST Action in 2021. It
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indicated that three automatic instruments, with an appropriate identification algorithm, are capable of identification of the
main types of airborne pollen present in the atmosphere of Munich during the campaign: Hund BAA-500, Swisens Poleno
(Mars and Jupiter models), and Plair Rapid-E (Maya-Manzano et al., 2023). They also showed high reliability, which made
them potentially suitable for continuous pollen monitoring within operational networks of automatic aerobiological stations.
The campaign has also raised some concerns regarding the device calibration and inter-calibration, to be addressed in follow-
up studies and campaigns.

The aim of this study is to evaluate a new model of Plair air flow cytometers, Rapid-E+, and assess its suitability for operational
automatic measurements of airborne pollen and fungal spores within forthcoming monitoring networks. We performed a series
of laboratory experiments and evaluated the device performance in real-life field conditions by comparing their measurements
with the standard manual method. In addition to testing the recognition performance of certain bioaerosols, we have analysed
to what extent different devices are compatible with each other and thus allow for a common classification algorithm trained

with data collected with one (or a few) device(s) and applied across the network.

2 Material and methods

2.1 Rapid-E+ flow cytometer at a glance: pros- and cons- of the new model

In this study, we are focussing on the air flow cytometer Rapid-E+ from Plair SA (http://www.plair.ch), which is a new model
stemming from the PA-300 (Crouzy et al., 2016) and Rapid-E (Sauliene et al., 2019). Although the same approach for
measuring particle morphology (laser scattering) and chemical characteristics (laser-induced fluorescence spectrum and
lifetime) is used, Rapid E+ substantially differs from its predecessor (Table Al). In particular, Rapid-E+ samples at a higher
flow rate of 5 | min™ (compared to 2.8 | min* for the Rapid-E). Also regardless the operation mode, Rapid-E+ records
concentration of all particles passing through a 447 nm scattering laser (classified into 4 size bins: >0.3 um, >0.5 um, >1 um,
>5 um), while Rapid-E only records concentration of particles above operation mode determined size limit. High efficiency
of detections has been verified for the device prototype at Swiss Federal Institute of Metrology (Certificate of Calibration No.
235-11067): >80 % of particles ranging within 0.5-5 pum and 65-75 % of particles of a 5-10 um range. Unfortunately, a test
for larger particles (in a range of most pollen grains) has not been performed. Like its predecessor, the fluorescence
measurements of Rapid-E+ can be limited to particles within a specific size range (i.e. 0.3-100 um, 1-100 pm, 5-100 pum), thus
ignoring smaller and larger particles, to extend the excitation-inducing laser lifetime. Changing the particle size sensitivity also
allows for adjusting the gain of of the fluorescence spectrum and lifetime detectors, which is useful for measuring particles
with low fluorescence emission, such as most fungal spores. The lifetime of the 337 nm laser has been extended, according to
the manufacturer, from about 100 million to about 200 million shots. However, recording all particles larger than 1 pm could
easily result in 2000 particles per minute measured, which would still quickly use up the laser. The device offers a solution by

enabling intermittent high sensitivity measurements (e.g. one in every ten minutes).
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Each measurement component in Rapid-E+ went through changes compared to its predecessor. The 447 nm laser scattering is
measured now in two polarization planes at a narrower angle window and fixed duration limited to 120 acquisitions. The
fluorescence spectrum and the fast speed fluorescence decay (lifetime) are measured at a narrower wavelength range. The
device also records slow speed fluorescence decay by measuring spectrum at the moment of the 337 nm laser shot and then
followed by 31 measurements every microsecond. In addition, the intensity of light, scattering from a 637 nm laser, is recorded
as an image using a 4x4 pixel detector.

Interface of the device has been changed as well and generally became less convenient. Rapid-E+ output files contain data of
10000 particles each and there is no more time stamp in the file name. In addition, the data transfer protocol from the device
storage changed from SSH of Rapid-E to SFTP, which has limitations in handling security keys, so the remote file
synchronisation (rsync) is not supported anymore. It complicated the automatization of the data download to an external storage

and forced a reprogramming of the external operational environment after the upgrade from Rapid-E.

2.2 Experiments with Rapid-E+

Three Rapid-E+ air flow cytometers were involved in this study. One device operated in Novi Sad, Serbia (serial number
00E7277C) was trained indoors in the laboratory of the BioSense Institute and then set into continuous outdoor measurements
during the period 7 April — 27 September 2023. Two other devices, owned by the City of Osijek, Croatia (serial number
00E74EDE) and the Finnish Meteorological Institute (FMI) in Helsinki, Finland (serial number 00C59ACA), were used in the

corresponding laboratories to test compatibility of the devices and transferability of the pollen recognition algorithm.

2.2.1 Field monitoring campaign

The monitoring was performed at a roof level (20 m a.g.l.) in Novi Sad (45.245575° N, 19.853453° E). The test period allowed
to explore measurement performance of instruments for automatic detection and quantification of bioaerosol in a variety of
conditions characteristic for the Pannonian plain. This region is characterized by a large diversity of airborne pollen (Tesendic
et al., 2020) and fungal spores (Simovic et al., 2023) often mixed with abundant mineral dust (Sikoparija et al., 2020), but also
occasional records of unusual bioaerosols, such as starch (Sikoparija et al., 2022). In the study region, the period of seasonal
pollen allergies (i.e. tree pollen season from January to April and grass pollen season from April to September) is extended by
the weed pollen season from July to the end of October when large quantities of ragweed pollen are recorded in the air
(Sikoparija et al., 2018).

During the campaign, the sensitive “Middle mode” (all particles coarser than 1 um) was active for one minute in ten minutes
cycles, which resulted in six equidistantly one-minute measurements per hour, which is still representative for capturing the

main features of diurnal variations, albeit at a somewhat coarser temporal resolution (Sikoparija et al., 2020).

2.2.2 Laboratory measurements of bioaerosols

Laboratory work aimed at two goals:
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(i) we created an extensive training dataset using the device operated in Novi Sad. Reference pollen for training was
collected locally. We selected 27 pollen classes (Table A2) that represent the most abundant pollen in Novi Sad. To
explore the specificity of chemical analysis from fluorescence measurements, the selected classes include pollen classes
that are morphologically similar (e.g. Cannabis and Humulus, Juniperus and Taxus, Urtica and Parietaria), which are
commonly grouped together in manual identification. The laboratory tests were performed in two different sensitivity
modes: “Pollen mode” that measures fluorescence for particles larger than 5 um and “Middle mode” that measures
fluorescence for particles larger than 1 um with 10% increased sensitivity of the lifetime detector and 28% increased
sensitivity of the spectrometer.

(if)  two other devices were tested independently in Osijek and Helsinki, respectively, with subsets of the Novi Sad pollen
collection shared between laboratories in order to produce theoretically-identical training datasets for the corresponding

pollen types.

2.2.3 Reference data collection

The FMI Rapid-E+ device was exposed to pollen using a Swisens Atomizer (Swisens, 2023). A custom-made system
(Bruffaerts et al., in preparation) with similar features was developed to expose pollen to the Novi Sad and Osijek devices.
Both systems prevent particles from the ambient air from entering the detection chamber while keeping the sampling flow
unaffected and facilitating the emission of pollen from an Eppendorf cuvette by a combination of vibrations and air blows.
The devices were exposed to pollen until a sufficient number of particles was collected for training, validating, and testing a
classification algorithm (Table A2). Since the atmosphere also contains numerous aerosols other than pollen (e.g. fungal
spores, mineral dust, starch), an additional training class was created from operational measurements containing particles
measured at the roof during periods when no pollen was recorded in samples collected in a collocated Hirst type sampler.
The data were pre-processed prior to further analysis (Figure B1). Firstly, we removed measurements at the seventh and the
eighth bands of the fluorescence spectrum, which, according to the manufacturer, record light at about 450 nm and at about
462 nm, respectively, thus being affected by the scattering laser interference. Only five spectral measurements (i.e. fourteenth-
eighteenth acquisitions corresponding to 13-17 ps from laser triggering) were used for classification of bioaerosols. Each
spectrum measurement, as well as both scattering images, were smoothed with the Savitzky-Golay filter (Savitzky and Golay,
1964) for the noise removal. Lifetime of fluorescence measurements was aligned to start at the 4th pixel before the first
maximum to avoid shifts caused by temperature changes in the device. Both the fluorescence spectrum and the fluorescence
lifetime modalities were converted into image-like formats for further neural network processing and then normalized into 0-
1 range to focus on the shape of the signal rather than its intensity. This resulted in the following input data dimensions: 14 x
5 for the fluorescence spectrum, 22 x 3 for the fluorescence lifetime, 120 x 14 for both polarization scattering, and 4 x 4 for
"infrared" scattering, as illustrated in Figure B1.

The data were also filtered to remove particles for which noise exceeded the signal. To do this, we focused on intensity of the

scattering and fluorescence signals, as it was done in previous studies with Rapid-E (Tesendic et al., 2020; Matavulj et al.,
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2022; 2023; Sikoparija et al., 2022; Brdar et al., 2023). The particles, for which the maximum intensity of the spectrum did
not exceed 4000 units or a sum of scattering measurements was below 50000 units after smoothing, were removed from the
analysis (Table B2). The class “other” included 1942375 particles, out of which only 10282 remained after filtering. In the
more sensitive “middle mode”, 54776 out of 1156902 particles remained in the class “other” after filtering. The single particle
measurements showed very large variability even within the filtered dataset (Figure B2), seemingly larger than in the case of
Rapid-E (Sauliene et al., 2019).

2.2.4 Creating classification algorithm

In the current study, we applied a two-step classification. The first step separates pollen from the class “other”, whereas the
second step classifies particles recognised as pollen at the first step into 27 pollen classes. The ML-based classification model
combined all measurement modalities (i.e. parallel polarization scattering, perpendicular polarization scattering, infrared
scattering, fluorescence spectrum, and fluorescence lifetime), assuming that it will result in the best performance as it was the
case of Rapid-E (Tesendic et al., 2020).

The ResNet architecture with shortcut connections was chosen for its proven superior performance in classifying pollen using
Rapid-E measurements (Matavulj et al., 2023; Daunys et al., 2022). Given the variability of input data, we adapted the ResNet
model inspired by the 18-layer version. Specifically, we implemented a 4-block layer for the fluorescence spectrum and
lifetime, a 3-block layer for the 447 nm laser scattering images, and a 1-block layer for the 637 nm laser scattering image.
Details of these configurations are provided in Table B3. These architectures were selected because they demonstrated the best
performance for the respective data types in the previous device version (Matavulj et al., 2023). The block-layers contained
three convolutional layers. where we captured a residual following the initial convolution. Subsequently, at the closure of each
block layer, we established a residual connection to the layer's output. Following the completion of all block layers, an
additional convolutional layer was integrated. This was followed by a global average pooling, which averaged over the spatial
dimensions of the images. The network initially learned from each type of input separately. After this initial training, we
transferred the learned features from these individual inputs (specifically, the parts of the network responsible for feature
extraction, known as convolutional blocks) to a new network. This new network processed all different inputs together by
equalizing the features from each input using a fully connected (FC) layer, which were then merged. Finally, the network was
trained only to classify this combined data using another FC layer with a SoftMax function. During this phase, the weights of
the feature extractors (the convolutional blocks) were kept unchanged. This means that while the network was learning to
classify the merged data, the initial parts that extract features from each input type did not undergo any further changes.

The first convolutional layer was customized to accept a monochrome image. For handling the lifetime and spectrum data, this
layer was configured with a kernel size of 5x5, a padding of 2x2, and without any stride to maintain the original spatial
dimensions. The classification model was trained with 80 % of the reference dataset, 10 % of particles were used for model

validation during training to avoid overfitting, and 10 % were used to test the classification performance after the training.
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2.3 Manual measurements of bioaerosols in the field campaign

The performance of Rapid-E+ in the field bioaerosol monitoring has been assessed by comparing its 2-hour averaged pollen
concentrations with values obtained from the Hirst-type manual standard method EN16868 (CEN, 2019), following the
approach described by Matavulj et al. (2022).

Lanzoni VPPS2000 volumetric pollen and spore trap of the Hirst (1952) design situated side-by-side to Rapid-E+ continuously
sampled the ambient air at 10 | min ~! through a 2 mmx14 mm orifice constantly oriented towards the direction of the wind.
Particles sampled with the airflow were impacted onto an adhesive transparent plastic tape that was mounted on a rotating
drum moving past the orifice at 2 mm h-t. The 48 mm long tape segments corresponding to 24-h periods were subsequently
mounted onto a microscope slide and analysed by a light microscope at x400 magnification. Pollen grains were counted along
three horizontal transects corresponding to 11.57 % of the slide following EN16868 requirement (CEN, 2019), while fungal
spores were counted along one horizontal transect (i.e. 3.86 % of the sample) following the recommendation of Galan et al.

(2021). The results were expressed as pollen m= (Galan et al., 2017).

2.4 Meteorological data

Meteorological measurements were obtained from an automatic meteorological station (INOVIS15, Dinarska 2, 21000 Novi
Sad, 45.236° N, 19.809° E) located about 3.5 km from the aerosol measurements. The data for relative humidity, wind speed,
and precipitation were retrieved from a Weather Underground database

(https://lwww.wunderground.com/dashboard/pws/INOVI1S15).

2.5 Data analysis

Agreement between the automatic and the standard manual measurements was quantified via temporal correlation coefficient.
The correlation was evaluated for daily pollen concentrations to limit the shot-noise uncertainty resulting from substantial
detection limits due to the limited flow rate of the devices (Tummon et al., 2022). The correlations were calculated both for
the entire measurement period (to account for the effect of false positives outside the main flowering season) and for days
when average pollen concentrations measured by the manual method exceeded 10 pollen m™3, a suggested threshold for
calculating the uncertainty by the standard EN 16868:2019. By following this approach, we also focused on the main pollen
season thus limiting the inflation of correlation coefficients and p-values due to seasonality. Initial data assessment using the
Shapiro-Wilk test was performed to check for normality of distribution. Where data were found to be normally distributed,

Pearson correlation analysis was applied; Spearman's correlation coefficient was calculated otherwise.



3 Results and discussion
3.1 Aerosol quantification

The Rapid-E+ measurements in Novi Sad had only four interruptions (from 12 to 36 hours long) during six months of the
continuous operations. One resulted from a physical blockage of the nozzle, which was resolved by cleaning. The other three

190 resulted from a software “bug” related to flow measurements, which was switching off the 337 nm laser. Those cases were
resolved by restarting the device, which had to be done manually on the roof.

A strong feature of the device was its ability to provide output with very high temporal resolution (Fig.1).
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195 Figure 1: Timeseries of 5-minute average of relative humidity, wind speed, precipitation (upper panel) and fine (middle panel) and
coarse (lower panel) particle concentrations measured by Rapid-E+. The time axis shows minutes from 00 UTC on 30 July 2023.



200

205

210

215

220

225

The concentrations of submicron particles were notably higher that those larger than 1 pm and 5 pum. We also registered several
sharp increases of the detected particles, seemingly related to approaching atmospheric fronts and rain episodes (Fig. 1). It was
the most pronounced for particles larger than 1 um (Figure 1). It is interesting to note that after the start of the rainfall the
coarse particles (> 5 um) did not follow the increase in concentrations of small aerosols. This observation emphasizes the
advantage of measuring with a high temporal resolution simultaneously resolving particle size distribution, for exploring the
behaviour of aerosols in changing meteorological conditions. However, following the equations given in Tummon et al. (2022),
the flow rate of the Rapid-E+ (5 I min') is not sufficient to measure all relevant concentrations at a sub hour temporal resolution

with reasonably low uncertainty.

3.2 Pollen recognition performance in laboratory

Performance of the binary model designed to discriminate pollen from “other” bioaerosols measured in “pollen mode” (Fig.
C1A) in laboratory conditions was characterised by high precision (94 %), recall (98 %) and F1 score (0.96). Classifications
of twenty-seven pollen classes in “pollen mode” (Fig. 2A) yielded average precision, recall and F1 score at 83 %, 85 %, and
0.84, respectively, which was comparable to results of classification models built for the Rapid-E measurements for the similar
number of pollen types (Tesendic et al., 2020; Smith et al., 2022; Matavulj et al., 2022). As expected, there was a confusion
between Alnus, Betula and Corylus, Morus and Broussonetia, Carpinus and Quercus and Alnus, Cannabis and Humulus and
Morus, which have similar morphology. Once we merged those classes that cannot be distinguished in the manual analysis
(i.e. Cannabis and Humulus, Juniperus and Taxus, Urtica and Parietaria) the performance improved (average precision, recall
and F1 score are 86 %, recall 86 % and F1 score 0.86). It is interesting to note that the classification algorithm distinguishes
Urtica and Parietaria from Brousonetia with high accuracy despite these pollen grains are morphologically similar. However,
there was an unexpected confusion between Cannabis and Platanus.

Measurements with the more sensitive “middle mode” resulted in more particles exceeding the fluorescence threshold (Table
A2). However, as can be seen from the confusion matrix (Fig. 2B) the performance in discriminating pollen from other aerosols
slightly decreased. The average precision, recall and F1 score were 93 %, recall 96 % and F1 score 0.95, respectively (Fig.
C1B). Performance of the multiclass pollen classification also decreased, so that average precision, recall and F1 score became

75 %, 77 %, and 0.76, respectively. The accuracy improved only for Corylus.
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Figure 2: Confusion matrices depicting pollen classification performance on test dataset measured in (A) “pollen mode” and (B)
“middle mode”.

3.3 Comparison of field measurement with manual reference time series

230 The Rapid-E+ measurements in “pollen mode” record an order of magnitude less pollen and fungal spores than the Hirst-type
measurements (Fig. 3). This can be attributed to the very rigorous cleaning of the measurements (Section 2.2.3), either from

failed measurements (in particular, fluorescence) or good measurements of particles that emit a weak fluorescence signal.
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From the 27" to the 31% daily measurement points (3-7 May 2023), Rapid-E+ underestimated total pollen concentrations even
more. When looking into the pollen types detected by the standard measurements for these days, a notable amount of small
235 Broussonetia pollen (about 10 um (Halbritter, 1998)) is evident (Fig. C2), which probably caused the higher omission rate.
The apparent under-representativity of the Rapid-E+ measurements for small pollen grains could be handled by a less strict
cleaning of the scattering signal. This would improve detections of Broussonetia, Urtica, Morus, Parietaria, Platanus but could
increase the number of false positives from other small aerosols present in the atmosphere. Similar underestimation can be
seen for the days 136 - 144 (corresponding to 21-29 August) when Ambrosia pollen was dominant in the atmosphere, implying
240 that a notable amount of this pollen was also filtered out. Ambrosia has larger diameter but contains air in its pollen wall (like
saccate pollen i.e. Pinus, Picea, Abies), which could affect refraction index and resulted in a size underestimation when inferred
from more homogenous PSLs (Polystyrene Particles). Also, it could affect the fluorescence measurements by limiting the

number of excited fluorophores, which in turn would require more sensitive detections of fluorescence for reliable counting.
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245  Figure 3: Time series of daily concentrations measured in Novi Sad by side-by-side operated Hirst type device (EN16868) and Rapid-
E+ in “pollen mode” for (A) total pollen and (B) total spores (mind the difference in y-axes scales).

Automatic detections of total pollen, Juglans, Morus and Ambrosia, have a statistically significant positive correlation with

the standard EN16868 measurements during days when daily concentration exceeded 10 pollen m? (Table 1). Overall

11



250 seasonality was captured for most of the pollen classes, with a limited number of false positive detections outside the season.
The exceptions were Juglans, Pinus, Tilia, Chenopodium, Humulus, and Cannabis, for which a significant number of wrong
classifications existed outside the pollen season (Fig. C3). There was a clear tendency towards confusion of pollen occurring
simultaneously in the air, which was expected following the result of tests shown in Fig. 2A. Merging Rapid-E+ measurements
for classes that are difficult to identify by manual method (i.e. Taxus and Juniperus, Urtica and Parietaria, Cannabis and

255 Humulus) did not improve the correlations (Table 1). Some improvement in the correlations could be expected if the
measurement uncertainty of the standard Hirst volumetric method (EN16868), inherited from the subsampling during the
analysis of the tapes, is eliminated by counting 100% of the slide area (Mimic and Sikoparija, 2021). However, such analysis

for the entire season is extremely difficult, and even if done so, the effects is presumed to be small.

Table 1: Correlations between daily concentrations measured by Rapid-E+ in “pollen mode” and EN16868

measurements.
Class label All days Concentration > 10 pollen m-
(number of data points in bracket)

Total Pollen 0.378 ** 0.5832 (153) **

Total Fungal Spores 0.060 0.180 2 (156) *

Acer 0.117 -

Alnus 0.237 ** -

Ambrosia 0.642 ** 0.693 2 ** (41)

Artemisia 0.342 ** -

Betula 0.680 ** 0.795 ** (16)

Broussonetia 0.703** 0.386 2 (21)

Cannabaceae Cannabis 0.082, Humulus 0.477 ** Cannabis -0.721 (6) Humulus -0.540 2 (6)
Cannabis + Humulus -0.245 ** Cannabis+Humulus -0.566 2 (6)

Carpinus 0.557 ** -

Chenopodium 0.626 ** 0.534 2(6)

Corylus -0.103 -

Fraxinus 0.496 ** 0.3452(4)

Juglans 0.180 * 0.3452(19)

Morus 0.744 ** 0.576 @ **(25) **

Pinaceae 0.187 * 0.186 2 (13)

Plantago 0.137 0.3382(15)

Platanus 0.659 ** 0.766 ** (16)

Poaceae 0.454 ** -0.110 2 (58)

Quercus 0.633 ** 0.3172(20)

Salix 0.652 ** 0.5822*(19)

Taxaceae/Cupressaceae Taxus 0.549 **, Juniperus 0.462 * Taxus -0.632 2 (3), Juniperus -0.900 2 (3)

Taxus + Juniperus -0.097 Taxus + Juniperus -0.866 2 (3)

Tilia 0.314 ** 0.124 2 (6)

Ulmus 0.242 ** -

Urticaceae Urtica 0.773 ** | Parietaria 0.609 ** Urtica 0.642 @ ** (101), Parietaria 0.445 ** (101)

Urtica + Parietaria 0.174 * Urtica + Parietaria 0.461 ** (101)

* p<0.05, ** p<0.01, 2 Pearson correlation coefficient
260
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Despite the sensitivity of the fluorescence detectors increased in the “middle mode”, which expectedly improved
representativity of the Rapid-E+ measurements, some of the clear peaks (e.g. Platanus, Broussonetia) were still not detected
(Fig. C2). The increase of the fluorescence sensitivity also increased fluorescence at shorter wavelengths that dominated in the
class “other” (Fig. E1). This could lead to difficulties in discriminating pollen from other bioaerosols and an additional
uncertainty affecting the discrimination between different pollen classes, in agreement with the confusion matrix of the test
dataset (Fig. 2B).

3.3 Compatibility of different devices and transferability of the classification algorithm

Rapid-E+ is delivered without a particle classification algorithm and reference pollen datasets, therefore a major effort is
needed to create these monitoring prerequisites. Repeating it for each device in a network is unfeasible, which puts tight
requirements to compatibility of the measurement signal across devices: an algorithm developed and trained for one device
must be equally (or with minor losses in fidelity) applicable to all devices in the network. At the same time, individual features
of lasers and detectors, as well as variations in the hardware setup resulting in slightly different light paths for different devices,
cause various device-specific features of the signal. As a result, classification performance falls when a model trained on a
reference dataset from one device is tested on a reference dataset from another one, which was demonstrated for Rapid-E
(Matavulj et al., 2021). The same problem exists in Rapid-E+ (Fig. 4). The algorithm created on the training dataset collected
with the Novi Sad device failed to identify the same reference pollen collected with both Osijek and FMI devices (average F1

score = 0.01 in both cases).
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Figure 4: Confusion matrices with the results depicting performance of classification model trained on the reference dataset collected
280 with the Novi Sad Rapid-E+ device when classifying the same pollen measured by the Osijek (upper panel) and Helsinki (lower
panel) devices.

3.4 Strength of the fluorescence signal and difference between devices

Cleaning the reference data based on fluorescence intensity reveals differences in the signal strength between different pollen
285 types, in line with observations from Rapid-E (Smith et al., 2022). This limits detection of pollen with low fluorescence
signatures by Rapid-E+. As shown by earlier excitation-emission measurements (Péhlker et al., 2013), the excitation with the
337 nm laser may lead to a low-intensity response for some pollen types. The most affected pollen are from Pinaceae and

Betulaceae families (Table 1).
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When analysing the results of the cleaning reference data for the same pollen measured with different devices, we noticed a
significant difference between the devices for most pollen classes except for Platanus, Salix, Betula. Different timing of the
lab work and different methods of exposing the device to pollen cannot explain observed differences, but it is rather attributed
to differences in device sensitivity to the scattering and/or fluorescence signals.

When comparing the Betula size measured by Rapid-E+, derived from a 447 nm laser scattering image (Fig. 5A and 5B), the
distributions are similar for all tested devices (Fig. 5C) but there is a shift between them. Also, the absolute value is smaller
than the expected size (10-25 um) for this pollen grain (Halbritter et al., 2020). This discrepancy could originate from the fact
that the linear regression function for calculating the size supplied by the Rapid-E+ manufacturer (Annex D) is derived from
measurements of PSLs, which have different refraction characteristics and are more homogenous than pollen. This could also
be the reason for negative size reported for some particles, which is an evident artefact, especially since size was positively
correlated with intensity of the scattering measurements of Rapid-E (Lieberherr et al., 2021). There is also a big difference

between the devices in the average 647 nm laser scatter signals (Fig. 5D).
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Figure 5: Comparison of reference Betula pollen measurements in “pollen mode” on Novi Sad, Osijek and Helsinki Rapid-E+ devices
after preprocessing: (A) average 447 nm laser perpendicular polarisation scatter, (B) average 447 nm laser parallel polarisation
scatter, (C) histogram of size distribution (D) average unitless intensity of 637 nm laser scattered light, recorded as an image using
a 4x4 pixel detector .
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With respect to fluorescence, the difference between devices in the spectrum measurements are hardly noticeable (Fig. 6A).
However, signals of the fluorescence lifetime notably differ (Fig. 6B). The noise seems to dominate in the Betula pollen
average fluorescence lifetime signals from both Osijek and Helsinki devices (Fig. 6B). Similar differences in the fluorescence
lifetime measurements by different devices are seen also for other directly comparable pollen classes (Figure F1).

These observations explain the poor transferability of the recognition algorithm.

4 Conclusions

The upgrade of Plair Rapid-E to Rapid-E+ brought some improvements in performance regarding identification of pollen and
provided some new capabilities. The most-useful new feature is recording the particles in different size bins even when the
fluorescence-inducing laser was not activated. Accuracy of the size determination, however, may depend on pollen type,
especially for particles that significantly differ from PSLs used for establishing the relationships between the scattering
measurements and particle size. The new device worked reliably in continuous measurements and, according to the
manufacturer, the lifetime of the 337 nm fluorescence inducing laser has been doubled. Ability to detect particles with different
sensitivity of fluorescence measurements potentially enables measurements of fungal spores.

The most significant problem were faced with the fluorescence measurements. Uncertainty of the single-particle fluorescence
measurements was large, which limited the accuracy of the particle recognition, both in the lab and in the field campaign. At
the same time, there is a large discrepancy between the signals measured by different devices. Both aspects make the device
unsuitable for large operational monitoring networks: the Rapid-E+ comes without a classification algorithm and training
datasets, the creation of which is a highly demanding process. Each of the devices analysed in the current study required a full-
scale independent training of the algorithm prior to application.

Additional efforts from the manufacturer are needed to increase the signal to noise ratio of the fluorescence measurement, for
a wide spectrum of bioaerosols of interest. This is particularly emphasized for regions where numerous pollen and fungal spore
classes are simultaneously present in the atmosphere. A much closer collaboration of the manufacturer with its clients is needed

to bring Rapid-E+ to the level required for monitoring in operational aerobiological networks.
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Figure 6: Comparison of reference Betula pollen fluorescence measurements in “pollen mode” with Novi Sad, Osijek and Helsinki
Rapid-E+ devices after preprocessing: (A) average spectrum, (B) average lifetime. Both regular line plot and image-like smoothed
335 and normalised presentation (the latter one used as input for neural network) are shown.
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Appences A-F

a0 Appendix A

Table Al: Side by side key specification of PLAIR SL Rapid-E and Rapid-E+ as extracted from user manuals

Parameter Rapid-E Rapid-E+
Particle size range, micrometres (um) 1-100 0.3-100
Maximum counts, particles per litre 1600 (fully characterized) 1000000 (scattering only)
4800 (fully characterized)
Sample air flow, liters per minute (LPM) | 2.8 5
Power supply:
Volts AC 90-240 90-240
Volts DC 18-30
Power consumption, watts 200 200
Size (H x W x D), centimetres 40x34x73 40 x 34 x 55
Weight, kilograms 20 25
Scattering laser wavelength, nanometres | 450 447 £ 5
(nm)
Scattering image 24 detectors (each different angle 45- | 2  (perpendicular and parallel
135 degrees) polarizations) x 14 detectors (each
different angle 75-100 degrees)
Red laser wavelength, nanometres (hm) - 6375
“infra-red” image - 4 x 4 detectors
UV laser wavelength, nanometres (nm) 337 3375
Fluorescence spectral range, nm 350-800 (14 nm per pixel) 390-570 £ 5 (12 nm per pixel) *
32 detectors, 8 records in time (500 ns | 16 detectors, 32 records in time (500
difference) ns difference)
Fluorescence spectral range of lifetime | 350-400 one photodetector | 375-397 £5 | one photodetector
module (nm) 420-460 per spectral range | 415-450+5 | per spectral range
511-572 467-487 £ 5
672-800
Fluorescence decay resolution, | 2 (for each spectral range) 1 (for each spectral range)
nanoseconds (ns) but two consecutive records are the
same value

* There is discrepancy in the ranges given in different parts of the Rapid-E+ Operation and Service Manual version 6.2 In the
specification on page 9 and in table on page 14 it writes 390-570 nm, in figure on page 14 it is 350-about 560 nm (so resolution
is about 14 nm), in figures on pages 21, 22, 24, 28, 29, 30, it is from 350 nm and resolution is larger than 12 nm while in figure
on page 31 it is from 350-700 nm (so resolution is 23.34 nm)

345
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Table A2: Pollen classes in tests and results of cleaning the dataset for each device involved in this study.
(If more than one species used as pollen source, taxa from which reference data is collected on different devices
is marked using bold font.)

total number of measured particles
- (% remaining after cleaning)
Class label Pollen source Novi Sad Novi Sad Osijek EMI
pollen mode middle mode pollen mode pollen mode
Abies Abies concolor (Gordon) Lindley ex - - - 8501 (18%)
Hildebrand
Acer Acer negundo L. 7758 (63%) 3807 (61%) - -
Alnus Alnus glutinosa L. (Gaertn.) 14346 (23%) 12177 (38%) 11099 (40%) 53073 (49%)
Ambrosia Ambrosia artemisiifolia L. 23558 (20%) 17941 (37%) - 10973 (45%)
Artemisia Artemisia  absintium L., Artemisia 18368 (18%) 21216 (31%) 626 (37%) -
vulgaris L.
Betula Betula pendula Roth 18089 (21%) 30240 (14%) 30531 (29%) 5667 (25%)
Broussonetia Broussonetia papyrifera (L.) Vent. 7462 (32%) 6172 (46%) 16409 (65%) -
Cannabis Cannabis sativa L. 13049 (33%) 11013 (31%) - -
Carpinus Carpinus betulus L. 11666 (4%) 13613 (8%) 9585 (16%) -
Chenopodium | Chenopudium album L. 3441 (12%) 10522 (16%) - -
Corylus Corylus avellana L., Corylus colurna L. 12660 (20%) 19137 (40%) 16156 (34%) 41367 (46%)
Cupressus Cupressus sempervirens L. - - 9605 (24%) -
Fraxinus Fraxinus angustifolia Vahl, Fraxinus 55921 (19%) 22673 (65%) 4334 (30%) 13782 (56%)
pennsylvanica Marshall
Humulus Humulus lupulus L. 10475 (18%) 10103 (35%) - -
Juglans Juglans regia L., Juglans nigra L. 27507 (20%) 18497 (45%) 11512 (21%) 12459 (38%)
Juniperus Juniperus virginiana L. 9869 (15%) 65516 (6%) - 15600 (58%)
Morus Morus alba L. 30327 (43%) 6748 (52%) 7359 (59%) -
Parietaria Parietaria officinalis L. 10022 (32%) 11712 (24%) - -
Picea Picea omorica (Panci¢) Purk. - - - 12963 (18%)
Pinus Pinus silvestris L., Pinus nigra Arnold 37498 (4%) 85241 (6%) - 5175 (43%)
Plantago Plantago lanceolata L. 16882 (38%) 14829 (63%) 2627 (47%) -
Platanus Platanus orientalis L. 7675 (61%) 12505 (91%) 7437 (60%) 15905 (56%)
Poaceae Dactylis glomerata L., Poa trivialis L., 19536 (52%) 40624 (45%) 13624 (67%) -
Dasypyrum villosum (L.) Borbés
Populus Populus alba L., Populus canadensis 20844 (28%) 23880 (58%) 9705 (44%) 54803 (76%)
Moench., Populus nigra L., Populus
nigra var. pyramidalis Spach.
Quercus Quercus robur L., Quercus robur var. 36114 (16%) 28132 (44%) 11738 (28%) 27351 (41%)
pyramidalis C.C.Gmel.
Salix Salix alba L., Salix caprea L. 9740 (32%) 8183 (65%) 3163 (38%) 5061 (34%)
Taxus Taxus baccata L. 16801 (25%) 23301 (9%) 9320 (50%) -
Tilia Tilia tomentosa Moench. 11836 (16%) 25917 (43%) - -
Ulmus Ulmus sp. 4211 (53%) 8549 (23%) - -
Urtica Urtica dioica L. 4537 (64%) 14281 (65%) 5437 (43%) -

* does not fully represent taxonomic rank (i.e. pollen in reference data coming only from one or several species of the

respective taxonomic category) thus not written in italics
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Figure B1: Preprocessing of Rapid-E+ single Betula pollen fluorescence measurements: (A) spectrum and (B) lifetime.
Upper panel raw signal, middle panel selection of suitable measurements from raw signal, lower panel image-like smoothed
and normalised format used as input for neural network. (y-axis is unitless)
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Table B1: Feature extractors for each data type. The convolutional layers are represented as N x M, F, where N X M represents

the filter size for the 2D convolution, while F represents the number of feature maps.

Input type: Scattered light images Fluorescence spectrum Fluorescence lifetime Infrared image
Input dimension: 120x14 5x14 3x22 4x4
convl 7x7,70 1x7,70 1x7,70 3x3,70
blockl 3x3,70 1x3,70 1x3,70 3x3,70
3x3,70 1x3,70 1x3,70 3x3,70
3x3,70 3x3,70 3x3,70 3x3,70
5x5, 140 1x7,140 1x5,140
block2 5x5, 140 1x5, 140 1x5,140
3x3,140 3x3,140 3x3,140
block3 7x 1,200 1x5,200 1x 3,200
5x 5, 200 1x5,200 1x 5,200
3x 3,200 3x 3,200 3x 3,200
block4 1x 3,300 1x 3,300
1x5,300 1x5,300
3x 3,300 3x 3,300
final_conv 3x3,200 3x 3,300 3x 3,300 4x4,70

355
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Figure B2: Median (with the interquartile range 25th - 75th percentiles depicted by area around lines) fluorescence
spectrum (left side) and lifetime (right side) measurements after preprocessing for: (A) Betula pendula, (B) Fraxinus
pennsylvanica, (C) Juglans regia and (D) Platanus orientalis reference pollen measured in “pollen mode* on Novi

Sad Rapid-E+ device. (y-axis is unitless)
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Figure C1: Confusion matrices depicting performance of classification model in discriminating
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pollen from other
bioaerosols on test dataset measured in (A) “pollen mode” and (B) “middle mode”.
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Figure C2: Daily pollen concentrations measured side-by-side using Rapid-E+ device (orange) and standard EN16868
method (blue) for pollen classes with concentrations exceeding 10 pollen m at least 10 days. (Mind the difference in y-

axes). Rapid-E+ records affected by collecting reference datasets and interruption in measurements were removed.
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Figure C3: Two-hourly pollen and total fungal spores concentrations measured side-by-side using Rapid-E+ device (orange)
in ““pollen mode*“ and standard EN16868 method (blue). (Mind the difference in y-axes.) Rapid-E+ records affected by

collecting reference datasets and interruption in measurements were removed.
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Appendix D

Equation below is for calculating particle size [nm] from features of the scattering signal. The formula is supplied by the

manufacturer with a reference to data collected during the device calibration at Swiss Federal Institute of Metrology.

370 Size [nm] = —6.87 °10™* x Uy — 2.26°10™* * Dgym + 9.33°1073  Upygy + 1.13°1072 % Dyygy + 4.79 * Upyyy

+0.573 % Dp,, + 422

where Usym is sum of all pixels of the perpendicular polarization, Dsym is sum of all pixels of the parallel polarization, Umax is
maximum of the sum of all pixels of the perpendicular polarization, Dmax is maximum of the sum of all pixels of the parallel

375 polarization, Up,, is duration of the perpendicular polarization, Dpy is duration of the parallel polarization.
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Figure E1: Average normalized fluorescence spectrum in ““pollen mode“ (left side) and “““middle mode* (right side)
measured using Novi Sad Rapid-E+ device for reference pollen: (A) Acer, (B) Alnus, (C) Ambrosia, (D) Artemisia, (E)
Betula, (F) Cannabis, (G) Carpinus, (H) Chenopodium, (I) Corylus, (J) Fraxinus, (K) Humulus, (L) Juglans, (M) Morus,
(N) Broussonetia, (O) Urtica, (P) Parietaria, (R) Poaceae, (S) Populus, (T) Quercus, (Q) Salix, (W) Taxus, (X) Juniperus,
(Y) Tilia, (2) Pinus, (AA) Ulmus, (AB) Plantago, (AC) Platanus, (AD) “other*. (y-axis is unitless).
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Figure F1. Comparison of (A) Fraxinus, (B) Juglans and (C) Platanus pollen average fluorescence lifetime measurements

in “pollen mode” after preprocessing, on Novi Sad, Osijek and FMI Rapid-E+ devices. Both regular and normalized image-

like formats used by the neural network are presented. (y-axis is unitless)
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