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Abstract. Quantifying global cloud condensation nuclei (CCN) concentrations is crucial for reducing uncertainties in radia-

tive forcing resulting from aerosol-cloud interactions. This study analyzes two novel, independent, open-source global CCN

datasets derived from spaceborne Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements and Coperni-

cus Atmosphere Monitoring Service (CAMS) reanalysis and examines the spatio-temporal variability of CCN concentrations

pertinent to liquid clouds. The results reveal consistent large-scale patterns in both CALIOP and CAMS datasets, although5

CALIOP values are approximately 79 % higher than those from CAMS. Comparisons with existing literature demonstrate that

these datasets effectively bound the regionally observed CCN concentrations, with CALIOP typically representing the upper

bound and CAMS the lower bound. Monthly and annual variations in CCN concentrations obtained from the two datasets

largely agree over the Northern Hemisphere and align with previously reported variations. However, inconsistencies emerge

over pristine oceans, particularly in the Southern Hemisphere, where the datasets show not only opposing seasonal changes but10

also contrasting annual trends. A closure study of trends in CCN and cloud droplet concentrations suggests that dust-influenced

and pristine-maritime environments primarily limit our current understanding of CCN-cloud-droplet relationships. Long-term

CCN observations in these regions are crucial for improving global datasets and advancing our understanding of aerosol-cloud

interactions.

1 Introduction15

Aerosols act as cloud condensation nuclei (CCN) and through aerosol–cloud interactions (ACI) induce a cooling effect on the

climate, partially offsetting the warming due to greenhouse gases (Forster et al., 2021). The effective radiative forcing due to

ACI (ERFACI) is however highly uncertain, estimated to range between -1.7 and -0.3 W m-2 with moderate confidence (Forster

et al., 2021).

A fundamental parameter for constraining ERFACI is the number concentration of CCN forming aerosols (nCCN). Satellite-20

based studies of ERFACI rely on aerosol optical properties as proxies for nCCN. Part of the uncertainty in ERFACI arises from

variations in estimates between different observation-based reports, particularly due to their choice of nCCN proxy (Forster

et al., 2021; Gryspeerdt et al., 2017). The most common proxies are aerosol optical depth (AOD) and aerosol index (AI)

(Quaas et al., 2020; Rosenfeld et al., 2023). AOD, being a column-integrated bulk property, poorly represents nCCN at cloud
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level. AI, calculated from AOD and Ångström exponent, gives more weight to fine particles and offers an improvement over25

AOD. Using AI over AOD strengthens the negative radiative forcing by at least 30 % (Gryspeerdt et al., 2017). Nevertheless,

because AI is derived from AOD, it inherits the limitations of AOD (Quaas et al., 2020; Rosenfeld et al., 2023). Incorporating

additional polarimetric measurements enables retrievals of atmospheric-column-integrated aerosol number concentrations over

oceans, which have been shown to yield a significantly stronger negative forcing compared to AOD and AI (Hasekamp et al.,

2019). Despite being a significant improvement over optical proxies, these concentrations are still column-integrated and may30

not represent the cloud-level values most relevant to ACI. These studies illustrate that ERFACI significantly varies with the

choice of nCCN proxy and highlight the critical need for a comprehensive, height-resolved global nCCN dataset as the next

essential step for advancing ERFACI estimates.

Two recent efforts have addressed these limitations. Choudhury and Tesche (2023a) present a satellite-derived, vertically-

resolved, three-dimensional (3D) dataset of global nCCN. Their approach leverages the Cloud Aerosol Lidar with Orthogonal35

Polarization (CALIOP) retrievals and employs a validated CCN-retrieval algorithm (Choudhury and Tesche, 2022a) to retrieve

nCCN from profiles of aerosol extinction coefficient. The retrieved nCCN are then gridded onto a 2o by 5o latitude-longitude

grid with a vertical resolution of 60 m to produce a monthly global nCCN dataset. The robustness of the retrieval algorithm is

established through comparisons with in-situ measurements from various land and ocean-based platforms (Choudhury et al.,

2022; Choudhury and Tesche, 2022b; Aravindhavel et al., 2023).40

Complementing this effort, Block et al. (2024) present a 3D global nCCN dataset estimated from the Copernicus Atmosphere

Monitoring Service (CAMS) aerosol reanalysis (Inness et al., 2019). This dataset is based on a diagnostic box model built on

a simplified Kappa-Köhler framework that estimates nCCN from CAMS-derived aerosol mass mixing ratios. It offers a high

temporal resolution of one day, a horizontal resolution of 0.75o, and a hybrid sigma-pressure vertical grid with 60 levels. While

the validation of this dataset is ongoing, a preliminary comparison to surface-based in-situ observations gives promising results45

(Block et al., 2024).

The CAMS nCCN dataset with its high spatio-temporal resolution has great potential for better constraining ERFACI. How-

ever, its dependency on satellite-derived AOD (assimilated into CAMS) and the reliance on modelled aerosol inventories in its

simulated component (Inness et al., 2019) necessitates an extensive evaluation to assess the representativeness of this dataset.

The CALIOP data’s coarse monthly resolution complicates a direct integration into ERFACI estimation. Nevertheless, it was50

found to be representative of in-situ measured long-term variations in nCCN at multiple regional continental sites (Choudhury

and Tesche, 2022b). Thus, the CALIOP nCCN dataset, currently the only satellite-based 3D global data available, presents a

valuable tool for expanding the assessment of the CAMS dataset to a global scale, particularly in regions with limited in-situ

observations.

Here, we conduct a closure study between the two independent novel nCCN datasets, reconciling not only their variability55

across diverse spatio-temporal scales but also their co-variability with relevant cloud properties. Furthermore, we augment their

validation by comparing their regional concentrations with in-situ measurements from the literature. The comparative analysis

bridges the gap between the global datasets, providing insights for their future application and development. Ultimately, this
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Figure 1. Global climatology of cloud condensation nuclei (CCN) concentration (nCCN) at altitudes below 2 km. (a) Global climatology

derived from CAMS reanalysis. (b) Global climatology derived from CALIOP spaceborne lidar. Median nCCN values are displayed on the

lateral edges of panels (a) and (b). (c) Zonal variations of nCCN climatology. (d) Meridional variations of nCCN climatology. The semi-

transparent patch in (c) and (d) represents one standard deviation. Note the different color scales in top row, and the varying right and left

y-axis limits in bottom row.

work aims to establish a benchmark for applying and developing CCN-retrieval algorithms in the context of aerosol-cloud

interactions.60

2 Results

2.1 nCCN climatology in CAMS and CALIOP

We first compare the spatial variations in nCCN climatology at a supersaturation of 0.20 % for altitudes relevant to liquid clouds

(< 2 km) in CALIOP and CAMS datasets (Fig. 1). CAMS nCCN ranges primarily between 28 cm-3 and 619 cm-3 (5th and 95th

percentiles), with a global median of 153 cm-3 (Fig. 1a). In contrast, CALIOP retrievals exhibit a broader range, varying from65

107 cm-3 to 1445 cm-3, with a global median of 274 cm-3 (Fig. 1b). Overall, CALIOP-derived nCCN are approximately 79 %

higher than those from CAMS. This difference is also reflected in the magnitudes of their zonal and meridional variations (Fig.

1c and 1d). Despite the discrepancies in magnitudes, the zonal and meridional patterns in both datasets are quite similar, with

identical peaks and troughs across most regions except in the Southern Hemisphere (SH). The difference in the SH primarily

originates from the retrievals over oceans, where CALIOP-derived concentrations are significantly higher than those from70
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Figure 2. Comparison of regional cloud condensation nuclei (CCN) concentrations nCCN with in-situ measurements. Median nCCN from

CAMS reanalysis (blue), CALIOP (red), and in-situ observations from literature (yellow) are compared. Error bars for CAMS and CALIOP

represent the geographic interquartile range of nCCN. Error bars for in-situ observations represent the temporal nCCN variations at the

specific measurement locations (refer to Table A1). NH: Northern Hemisphere; SH: Southern Hemisphere; NAm: North America; NAf:

Northern Africa; Eu: Europe; Ru: Russia; WAs: West Asia; SAs: Southern Asia; SEAs: Southeast Asia; NAt: North Atlantic; NEP: Northeast

Pacific; Au: Australia; SAm: South America; SAf: South Africa; IO: Indian Ocean; SAt: South Atlantic; SEP: Southeast Pacific.

CAMS (by 208 %). This difference is particularly large for latitudes below 45o S, where the median CAMS nCCN (33 cm-3) is

roughly seven times lower than that from CALIOP (263 cm-3).

Both datasets show larger nCCN in the Northern Hemisphere (NH) compared to SH. However, this contrast is significantly

stronger in CAMS (160 %) compared to CALIOP (20 %). This hemispheric difference in CAMS is particularly pronounced

over oceans (121 %) compared to land (59%) and far exceeds the contrast observed in CALIOP (18 % over land and 10 %75

over oceans). Interestingly, the hemispheric contrast persists in CAMS even over pristine oceans far from continental influence,

where CALIOP exhibits homogeneous concentrations. Heterogeneity in CALIOP’s oceanic nCCN is primarily related to the

transatlantic dust transport in the tropics and the extra-tropical SH region of strong westerly winds. These features are not

adequately captured in CAMS retrievals. When comparing the land-ocean nCCN gradients, we find similar values in the NH

for both CAMS (65 %) and CALIOP (86 %). However, the gradients in the SH are more pronounced in CAMS (130 %) than80

CALIOP (73 %) due to its substantially lower concentrations over SH oceans. Refer to Table A1 for the median values used in

these calculations

2.1.1 Regional consistency with in-situ observations

To evaluate the datasets, we compare the nCCN climatology from the global datasets with in-situ observations (from the lit-

erature, refer Table A1) for 15 regional domains encompassing major continents and ocean basins (geographical boundaries85
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provided in Fig. A1). Asia exhibits the highest overall nCCN globally (Fig. 2), within which Southeast Asia shows the highest

concentration, followed by South Asia and West Asia, consistently across CAMS, CALIOP, and in-situ retrievals. Other con-

tinental and oceanic domains follow in decreasing order. Both datasets indicate cleaner SH oceanic regions (Southeast Pacific,

South Atlantic, and Indian Ocean) compared to the NH oceans (Northeast Pacific and North Atlantic). However, this hemi-

spheric order is opposite in the in-situ measurements, where concentrations in the SH Atlantic and Pacific oceans exceed their90

respective NH counterparts. It is important to consider that in-situ observations over oceans are primarily available close to the

coast, while the regional domains in this study extend tens of degrees of longitudes away from the coast.

When comparing the magnitudes of nCCN, we observe that CALIOP-derived concentrations are consistently larger than

those of CAMS for all regions except North America. These higher values in CALIOP data are expected because the retrieval

in CALIOP assumes a fixed CCN-activation radius, above which all aerosols are considered CCN-active regardless of their95

hygroscopicity. This assumption can lead to large nCCN in urban continental regions (Southeast and South Asia, and Southern

Africa) influenced by black carbon and regions downwind. CAMS, on the other hand, considers 80 % of black carbon aerosols

to be hydrophobic (not contributing to nCCN) (Block et al., 2024) and excludes dust as a potential CCN source. More details

on the inherent differences between the global datasets are discussed in Section A1. Despite these discrepancies, this regional

comparison with in-situ measurements suggests that the global datasets adequately capture the observed variations in nCCN100

climatology for most regions. CALIOP appears to represent the upper bound, while CAMS represents the lower bound of

nCCN, highlighting their potential for constraining nCCN even in regions lacking in-situ measurements.

2.2 Monthly nCCN variations

To understand how well the datasets capture the seasonal nCCN cycles, we analyze the average monthly variations in nCCN

derived from CALIOP and CAMS for different regional domains (see Fig. 3). Both datasets exhibit a consistent pattern for most105

continental regions, with nCCN peaking in summer (boreal in NH and austral in SH) and reaching a minimum in winter. This

pattern aligns with regional precipitation cycles (shown at the bottom of all panels of Fig. 3). Wet winters lead to precipitation

scavenging of airborne particles, resulting in lower nCCN compared to dry summers. Exceptions are the monsoon-influenced

South and Southeast Asia, which experience a summer minimum and winter maximum in nCCN due to prolonged summer

rainfall. Both datasets adequately capture this seasonal pattern driven by the monsoon cycle.110

However, the datasets show contrasting variations for all oceanic regions except North Atlantic ocean. CALIOP exhibits a

summer minimum and winter maximum in oceanic nCCN, while CAMS mostly shows a spring maximum and winter min-

imum. The variations in CALIOP align with the seasonal cycle of near-surface wind speeds over oceans (Yu et al., 2020).

Higher wind speeds increase sea spray aerosol concentrations in marine environments by enhancing wave breaking and bubble

bursting (Revell et al., 2019; Humphries et al., 2023). This could potentially contribute to the observed CCN cycles in CALIOP.115

However, oceanic nCCN is influenced by factors beyond sea spray aerosols, such as biogenic emissions, whose monthly varia-

tions (Revell et al., 2019) are more similar to those of CAMS. Due to limited in-situ observations, it is currently unclear how

much each of these factors contribute to the total oceanic nCCN. It is important to note that the SH oceans are the primary

contributor to global low-level cloud cover (see bottom of all panels in Fig. 3, and Fig. A2). The inconsistency between the

5
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Figure 3. Monthly variations in cloud condensation nuclei concentrations (nCCN) for various regions. Red lines represent nCCN derived

from spaceborne CALIOP, and blue lines represent nCCN from CAMS reanalysis. Panels (a) to (i) (top three rows) correspond to Northern

Hemisphere regions, while panels (j) to (o) (bottom two rows) represent Southern Hemisphere regions. Note the separate y-axes for CALIOP

(left) and CAMS (right). The numbers at the top and bottom of each panel represent the monthly climatology of low cloud cover (in %)

from CERES and precipitation (in cm) from GPCP product, respectively, with the opacity of the numbers proportional to their magnitude.

NAm: North America; NAf: Northern Africa; Eu: Europe; Ru: Russia; WAs: West Asia; SAs: Southern Asia; SEAs: Southeast Asia; NAt:

North Atlantic; NEP: Northeast Pacific; Au: Australia; SAm: South America; SAf: South Africa; IO: Indian Ocean; SAt: South Atlantic;

SEP: Southeast Pacific.

global nCCN datasets in these cloud-rich regions, which are crucial for ACI, raises significant questions and challenges for120

their use in quantifying these interactions.
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Figure 4. Comparison of global trends computed using annual time series. (a) Trends in cloud condensation nuclei concentrations (nCCN)

derived from CAMS reanalysis. (b) Trends in nCCN from CALIOP. (c) Trends in cloud droplet number concentrations (Nd) derived from

MODIS. Dots in each panel indicate the grids where the trend is statistically significant. The absolute values of the trends are shown in Fig.

A3.

2.3 Reconciling trends in nCCN and Nd

Quantifying trends in nCCN is crucial for comprehending the present dynamics of radiative forcing due to ACI and for pro-

jecting future changes. Recent decades have witnessed declining aerosol emission rates and aerosol loadings over land (Col-

laud Coen et al., 2020; Quaas et al., 2022) and oceans (IMO, 2019; Gryspeerdt et al., 2019) due to stricter emission policies.125

An exception is the South Asia region, where aerosol emissions have been increasing in the 21st century (Jin et al., 2023).

These emission trends are also expected to be reflected in cloud droplet number concentrations (Nd) because of their strong

sensitivity to changes in nCCN (McCoy et al., 2018; Quaas et al., 2022). Therefore, we expect the annual trends in nCCN and

Nd to be similar to the emission trends.

Over NH regions, the emission trends are reflected in both the nCCN datasets (Figs. 4a and 4b). As expected, all regions130

except South Asia exhibit a declining nCCN trend (see Fig. 5 and Table A1). The trends in Nd are also consistent with those in

nCCN from both CALIOP and CAMS (Fig. 5), with exceptions only observed over dust-influenced regions (Northern Africa

and West Asia). This discrepancy may be attributed to the hydrophobic nature of fresh mineral dust, which may not readily act

as CCN due to a lack of mixing or coating with water-soluble aerosols (Garimella et al., 2014).

Over SH regions, CALIOP shows declining nCCN trends across all domains. Nd trends are mostly negative as well consistent135

with CALIOP, except for dust-influenced Australia (Au) domain. Of particular interest are the spatially uniform and statistically

significant increasing trends in CAMS-derived nCCN at altitudes below 2 km over most SH oceanic regions. This finding not

only contradicts the negative trend observed in Nd and CALIOP-derived nCCN but also the expected decreasing trend inferred
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Figure 5. Comparison of regional trends computed using annual time series. Trends (in cm-3 yr-1) in cloud condensation nuclei concentrations

(nCCN) derived from CAMS reanalysis (blue), trends in nCCN from CALIOP (red), and trends in Nd from MODIS (yellow) are compared.

NH: Northern Hemisphere; SH: Southern Hemisphere; NAm: North America; NAf: Northern Africa; Eu: Europe; Ru: Russia; WAs: West

Asia; SAs: Southern Asia; SEAs: Southeast Asia; NAt: North Atlantic; NEP: Northeast Pacific; Au: Australia; SAm: South America; SAf:

South Africa; IO: Indian Ocean; SAt: South Atlantic; SEP: Southeast Pacific.

from previous ship emission reports (Quaas et al., 2022). It is worth noting that the increasing SH nCCN trends in CAMS

coincide with trends in AOD derived from MODIS (Fig. A4). Since MODIS AOD is used to constrain the CAMS aerosol140

reanalysis (Inness et al., 2019), a proportionality between AOD and CAMS-derived nCCN is inherent in homogeneous marine

environments (Block et al., 2024), and may contribute to the observed increasing trends in CAMS. These inconsistencies over

pristine oceans, where the trends in aerosol loadings differ between different spaceborne retrievals (Quaas et al., 2022), question

the representativeness of the nCCN and Nd retrievals, making it challenging to derive their inter-relationship, a parameter key

to quantifying ACI.145

3 Conclusions

The closure study presented here shows good consistency between the independent CALIOP and CAMS global nCCN datasets

in the NH. However, discrepancies emerge over pristine SH oceans not only in the nCCN climatology but also in their monthly

and annual variations. Further compounding the challenge, CAMS exhibits anomalous increasing nCCN trend over the SH

oceans, which aligns with trends in AOD but contradicts the observed variations in CALIOP as well as in Nd. This geographi-150

cally limited disagreement, restricted to pristine oceans which lack in-situ measurements, raises questions about the adequacy

of aerosol inventories used by CAMS over the SH oceans, a known issue in climate models (Moore et al., 2013). Such discrep-
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ancies in cloud-rich pristine oceans are particularly concerning because cloud properties in these regions are highly sensitive

to even small perturbations in aerosol concentrations (Moore et al., 2013; Gryspeerdt et al., 2021).

In conclusion, the aerosol-limited environments of SH oceans are identified as a significant source of uncertainty in the155

present effort to quantify a highly resolved global nCCN dataset. Future research efforts should therefore focus on accurately

quantifying the sources of CCN and their long-term cycles in remote SH oceans. These efforts are crucial to refine the global

nCCN datasets and ultimately to reduce the uncertainties in ERFACI.

Data availability. All datasets used in this work are opensource. CALIOP CCN data can be accessed at https://doi.pangaea.de/10.1594/

PANGAEA.956215 (last access: June 18, 2024; Choudhury and Tesche, 2023b). CAMS-derived CCN data can be downloaded from https:160

//doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_v1 (last access: June 18, 2024; Block, 2023). CERES SYN level 3 product were

obtained from the NASA Langley Research Center Atmospheric Science Data Center and can be accessed at https://ceres-tool.larc.nasa.

gov/data (last access: June 18, 2024). MODIS-derived cloud droplet number concentrations can be downloaded from https://dx.doi.org/10.

5285/864a46cc65054008857ee5bb772a2a2b (last access: June 18, 2024; Gryspeerdt et al., 2022). MODIS Aqua aerosol product (last access:

June 18, 2024; Platnick et al., 2017a) are obtained from the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed165

Active Archive Center (DAAC), located in the Goddard Space Flight Center in Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/).

Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) Monthly Analysis Product data provided by the

NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov (last access: June 18, 2024).

Appendix A: Methods

A1 Global nCCN datasets170

CALIOP dataset provides nCCN at a supersaturation of 0.20 %. It is available on a uniform latitude-longitude grid of resolution

2o by 5o, a vertical grid resolution of 60 m extending from mean sea level to a height of 8 km above mean sea level, and a

temporal resolution of one month. The dataset is derived from more than 15 years of CALIOP level 2 aerosol profile product

from June 2006 to December 2021. It is based on a CCN-retrieval algorithm (Choudhury and Tesche, 2022a) that integrates the

CALIOP-derived height-resolved information on the aerosol-type-specific extinction coefficient and microphysical properties175

from CALIOP’s aerosol model with the optical modelling capabilities of the MOPSMAP (Modelled Optical Properties of

enseMbles of Aerosol Particles; Gasteiger and Wiegner, 2018) package. Essentially, the algorithm adjusts the normalized size

distributions within the aerosol model to match the extinction coefficient. These adjusted size distributions are then used to

estimate particle number concentrations relevant for CCN activation. Aerosol-type-specific CCN parameterizations are then

applied to calculate nCCN at a supersaturation of 0.20 % for continental (comprising of clean, polluted, and smoke aerosols),180

dust, and marine aerosols. The algorithm accounts for hygroscopic growth of hydrophilic aerosols (continental and marine

aerosols) under humid conditions using the κ-parameterization within MOPSMAP package. Evaluations of the algorithm have

demonstrated good agreement with independent ground-based and airborne in-situ measurements across diverse geographic
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locations, with a combined normalized mean bias of ≈ 22 % and a normalized absolute error of ≈ 61 % (Choudhury et al.,

2022; Choudhury and Tesche, 2022b; Aravindhavel et al., 2023; Choudhury and Tesche, 2023a). The resulting CALIOP-185

derived nCCN has also been utilized in quantifying the CCN activation ratio for liquid clouds (Alexandri et al., 2023).

CAMS nCCN dataset is derived from CAMS aerosol reanalysis of mass mixing ratios (Block et al., 2024) and provides

nCCN at supersaturations ranging from 0.1 % to 1 %. The dataset is available on a uniform horizontal grid of resolution 0.75o

by 0.75o and a vertical grid with 60 hybrid sigma–pressure levels extending from the surface to 0.1 hPa. The CCN-retrieval

algorithm in CAMS utilizes a box-model framework (O’Connor et al., 2014; West et al., 2014) to convert the mass mixing ratios190

of five aerosols species—sulfate, mineral dust, black carbon (hydrophobic and hydrophilic), organic matter (hydrophobic and

hydrophilic), and sea salt—into total number concentrations. Subsequently, these concentrations are combined with normalized

size distributions derived from the aerosol module of the European Centre for Medium-Range Weather Forecasts (ECMWF)

Integrated Forecasting System (IFS) model (Benedetti et al., 2009) to estimate the actual aerosol size distribution. The size

distributions of hydrophillic aerosols are then coupled with auxillary meteorological parameters and used in modified Kappa-195

Köhler theory (Pöhlker et al., 2023) to calculate the activated nCCN at various supersaturations. Consistent with the CAMS

model’s assumption of completely hydrophobic dust with no consideration of internal mixing or external coating mechanisms,

dust is excluded in the CCN calculations. Initial validation results using surface in-situ CCN observations at continental and

coastal Atmospheric Radiation Measurement (ARM) network sites have shown promising results, with an acceptable bias

factor of 1.29 (Block et al., 2024).200

A1.1 Limitations of nCCN datasets

CALIOP nCCN dataset is subject to uncertainties arising from errors in the underlying CALIOP products and approximations

within the CCN-retrieval algorithm. Uncertainties in CALIOP extinction coefficients can reach 30 %. Assuming fixed aerosol-

type-specific size distributions introduces additional uncertainty, estimated to be a factor of 1.5–2 (Choudhury and Tesche,

2022a). Further, the algorithm assumes an aerosol-species dependent fixed CCN activation radius (50 nm for continental and205

marine aerosols, and 100 nm for mineral dust at a supersaturation of 0.20 %). Using a fixed CCN activation size (assuming

all larger particles are CCN active) may result in about a 20 % overestimation in the final CCN product (Choudhury and

Tesche, 2022b). Accounting for all these limitations, the overall uncertainty associated with the CALIOP-derived CCN dataset

is expected to be a factor of 2–3 (Choudhury and Tesche, 2023a). Moreover, the CALIOP dataset is produced using only

cloud-free aerosol profiles. This can lead to sampling bias in regions with significant cloud cover, potentially leading to the210

differences observed between the CALIOP and CAMS datasets. However, there appears to be no clear relationship between

the correlation of the CALIOP and CAMS nCCN datasets and the sampling frequency of CALIOP (Fig. A5).

Similarly, uncertainties in CAMS nCCN dataset may stem from the source CAMS aerosol reanalysis product and the CCN-

estimation methodology. CAMS aerosol product is constrained by satellite-derived AOD retrievals, particularly the MODIS

dark target and deep blue AOD retrievals at 0.55 um (Platnick et al., 2017b) and Advanced Along-Track Scanning Radiome-215

ter (AATSR) retrieved AOD (Popp et al., 2016). Therefore, uncertainties in AOD retrievals can propagate into the CAMS

reanalysis and ultimately the nCCN product. Additionally, missing aerosol sources in the CAMS emission inventory (Moore
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et al., 2013; Errera et al., 2021) can introduce uncertainties, especially in remote areas with sparse observations, limiting the

effectiveness of emission parameterizations implemented in the aerosol model. Furthermore, unlike the approach in CALIOP,

the CAMS-based retrieval excludes mineral dust. Studies have demonstrated that mineral dust may be a potential CCN source,220

particularly when coated or internally mixed with water-soluble hydrophilic aerosols (Kumar et al., 2009; Bègue et al., 2015).

This exclusion may thus lead to an underestimation in the final nCCN product.

A2 Spaceborne cloud and precipitation data

Nd data for low-level liquid clouds are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard

Aqua polar orbiting satellite (Gryspeerdt et al., 2022). The dataset is available at a uniform spatial resolution of 1o by 1o with225

daily temporal resolution spanning from July 2002 and 2020. Low-level cloud cover data are obtained from the Clouds and

the Earth’s Radiant Energy System (CERES) SYN Edition 4A monthly product (Doelling et al., 2013). This product merges

retrievals from CERES, MODIS, and geostationary sensors to construct a global gridded dataset suitable for studying aerosol-

cloud interactions. The dataset is operationally available at a latitude-longitude resolution of 1o by 1o starting from July 2002.

Precipitation data are derived from the Global Precpitation Climatology Project (GPCP) monthly product (Adler et al., 2003).230

This product integrates rainfall data obtained from several platforms, including satellites, in-situ soundings, and rain gauges,

to generate a global monthly precipitation dataset on a uniform horizontal resolution of 2.5 o available from 1979.

A3 Data harmonization, trend estimation, and averaging methodologies

CCN, cloud, and precipitation parameters are considered between latitudes of 65o N and 65oS. Horizontal grids of all datasets

are harmonized by transforming them to the coarser 2o by 5o latitude-longitude grid of CALIOP using bilinear interpolation.235

We exclude CAMS data in grids surrounding Mauna Loa and Altzomoni due to documented biases in CAMS aerosol emission

datasets over these regions (Inness et al., 2019).

To specifically focus on the liquid clouds, which are most relevant for aerosol-cloud interactions, average nCCN between

altitudes of 0–2 km are considered in this study. Additionally, a supersaturation of 0.20 % is selected because this value

represents a characteristic supersaturation near the base of liquid clouds. Temporal averages of CALIOP data are weighted by240

the number of valid aerosol retrievals within each grid cell (Choudhury and Tesche, 2023a). Horizontal averages in CALIOP

and CAMS are weighted by the area of the latitude-longitude grids. Trends in nCCN and Nd are estimated using the non-

parametric Mann-Kendall trend. Monthly and annual statistics are calculated using data between 2007 and 2021 for CALIOP-

and CAMS-derived nCCN, and between 2007 and 2020 for MODIS-derived Nd.
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Figure A1. Regional domains considered in this study. NAm: North America [20◦− 65◦N, 120◦− 80◦W]; NAf: Northern Africa

[10◦− 30◦N, 15◦W− 30◦E]; Eu: Europe [40◦− 60◦N, 10◦W− 35◦E]; Ru: Russia [45◦− 65◦N, 40◦− 120◦E]; WAs: West Asia [15◦−
40◦N, 35◦−60◦E]; SAs: Southern Asia [5◦−30◦N, 65◦−90◦E]; SEAs: Southeast Asia [20◦−40◦N, 95◦−125◦E]; NAt: North Atlantic

[10◦−35◦N, 60◦−20◦W]; NEP: Northeast Pacific [20◦−45◦N, 170◦−135◦W]; Au: Australia [35◦−15◦S, 115◦−155◦E]; SAm: South

America [55◦− 10◦S, 80◦− 40◦W]; SAf: South Africa [35◦− 0◦S, 10◦− 40◦E]; IO: Indian Ocean [35◦− 5◦S, 55◦− 110◦E]; SAt: South

Atlantic [35◦− 5◦S, 30◦W− 5◦E]; SEP: Southeast Pacific [40◦− 10◦S, 135◦− 90◦W].
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Figure A2. Relating correlation between CALIOP and CAMS with global cloud cover. Panel (a): Global map of Pearson’s correlation

coefficient (ρ) between monthly mean cloud condensation nuclei concentration (nCCN) derived from spaceborne CALIOP and CAMS

reanalysis datasets. Panel (b): Low-level cloud cover climatology (in %) derived from CERES SYN product.
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Figure A3. Comparison of global trends (in cm-3 yr-1) computed using annual time series. (a) Trends in cloud condensation nuclei concen-

trations (nCCN) derived from CAMS reanalysis. (b) Trends in nCCN from CALIOP. (a) and spaceborne CALIOP. (c) Trends in cloud droplet

number concentrations (Nd) derived from MODIS. Dots in each panel indicate the grids where the trend is statistically significant. Figure

with trends in percentages are shown in Fig. 4 of the manuscript.
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Figure A4. Global map of annual trend in MODIS AOD derived using combined dark target and deep blue algorithms. Panel (a) shows the

trend in 103 yr-1 and panel (b) in % yr-1. Dots in each panel indicate the grids where the trend is statistically significant.
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Figure A5. Relationship between sampling frequency in CALIOP and correlation between the datasets. (a) Global map of number of days

with a valid aerosol retrieval observed by CALIOP within period of June 2006 to December 2021. (b) Median number of valid CALIOP

aerosol retrieval over oceans observed versus Pearson’s correlation coefficient between CALIOP and CAMS (ρCALIOP−CAMS). Error bars

denote the interquartile range. Each ρCALIOP−CAMS bin consists of 407 data points.
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Table A1. Median cloud condensation nuclei (CCN) concentration (nCCN) at a supersaturation of 0.20 % in cm-3 with interquartile range in

parentheses, and annual nCCN trend in cm-3 yr-1 for various regions. Trends in bold indicate statistically significant trends (p < 0.05). In-situ

nCCN observations and their corresponding references are also provided. Abbreviations are explained in the footnote.

Region CALIOP nCCN Trend CALIOP CAMS nCCN Trend CAMS In situ nCCN In-situ reference

Globe 274 (204, 387) -4.5 153 (84, 250) -1.4 - -

Land 483 (230, 1071) -3.5 276 (188, 398) -1 - -

Ocean 259 (200, 322) -1.9 130 (71, 183) -0.5 - -

NH 308 (213, 614) -6.2 221 (159, 343) -3.3 - -

NH land 510 (225, 1143) -4.4 296 (214, 447) -1.8 - -

NH ocean 275 (212, 395) -2 179 (147, 267) -1.9 - -

SH 257 (198, 315) -4.3 85 (44, 139) 0.7 - -

SH land 432 (245, 831) -2.5 186 (91, 276) 0 - -

SH ocean 250 (194, 299) -2.1 81 (41, 124) 0.8 - -

NAm 202 (138, 402) -4.9 265 (200, 318) -5.1 515 (154, 876) Shen et al. (2019)

NAf 837 (648, 1180) -4.1 302 (265, 371) -9.5 1505 (902, 2108) Désalmand (1987)

Eu 485 (324, 726) -14.2 253 (181, 361) -7.8 578 (91, 1065) Paramonov et al. (2015)

Ru 293 (226, 367) -1.3 271 (216, 313) -0.9 174 (109, 239) Asmi et al. (2016)

WAs 1464 (1066, 1734) -26.3 755 (543, 944) -3.5 - -

SAs 1920 (798, 3713) 24.4 893 (664, 1237) 15.9 1900 (777, 3023) Jayachandran et al. (2020)

SEAs 2297 (1142, 3649) -93.5 1256 (790, 1787) -37.3 2377 (1133, 3023) Shen et al. (2019)

NAt 291 (252, 346) -2.6 147 (138, 164) -2.9 191 (149, 233) Wood et al. (2017)

NEP 231 (197, 265) -1.8 150 (146, 155) -3.5 117 (37, 197) Brendecke et al. (2022)

Au 280 (202, 359) -3.2 54 (21, 119) -1.4 94 (51, 137) Humphries et al. (2023)

SAm 317 (213, 566) -13.9 174 (93, 230) 0.1 448 (71, 825) Shen et al. (2019)

SAf 1017 (379, 1751) -13.4 306 (218, 445) 1.7 552 (250, 854) Ross et al. (2003)

IO 236 (203, 268) -1.9 107 (92, 137) 1.2 - -

SAt 199 (167, 246) -3.6 90 (73, 152) 0.9 207 (94, 320) Redemann et al. (2021)

SEP 198 (173, 231) -1.6 93 (80, 110) 1.7 149 (85, 213) Allen et al. (2011)

NH: Northern Hemisphere; SH: Southern Hemisphere; NAm: North America; NAf: Northern Africa; Eu: Europe; Ru: Russia; WAs: West Asia; SAs: Southern Asia; SEAs: Southeast

Asia; NAt: North Atlantic; NEP: Northeast Pacific; Au: Australia; SAm: South America; SAf: South Africa; IO: Indian Ocean; SAt: South Atlantic; SEP: Southeast Pacific
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