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Abstract. Quantifying global cloud condensation nuclei (CCN) concentrations is crucial for reducing uncertainties in radia-

tive forcing resulting from aerosol-cloud interactions. This study analyzes two novel, independent, open-source global CCN

datasets derived from spaceborne Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements and Coperni-

cus Atmosphere Monitoring Service (CAMS) reanalysis and examines the spatio-temporal variability of CCN concentrations

pertinent to liquid clouds. The results reveal consistent large-scale patterns in both CALIOP and CAMS datasets, although5

CALIOP values are approximately 79 % higher than those from CAMS. Comparisons with existing literature demonstrate

that these datasets effectively bound regionally observed CCN concentrations, with CALIOP typically representing the upper

bound and CAMS the lower bound. Monthly and annual variations in CCN concentrations obtained from the two datasets

largely agree over the Northern Hemisphere and align with previously reported variations. However, inconsistencies emerge

over pristine oceans, particularly in the Southern Hemisphere, where the datasets show not only opposing seasonal changes but10

also contrasting annual trends. Seasonal cycles in these regions are well represented in CAMS, consistent with previous in-situ

observations, while annual trends seems to be better captured by CALIOP. A closure study of trends in CCN and cloud droplet

concentrations suggests that dust-influenced and pristine-maritime environments primarily limit our current understanding of

CCN-cloud-droplet relationships. Long-term CCN observations in these regions are crucial for improving global datasets and

advancing our understanding of aerosol-cloud interactions.15

1 Introduction

Aerosols act as cloud condensation nuclei (CCN) and through aerosol–cloud interactions (ACIs) induce a cooling effect on the

climate, partially offsetting the warming due to greenhouse gases (Forster et al., 2021). The effective radiative forcing due to

ACIs (ERFACI) is however highly uncertain, estimated to range between -1.7 and -0.3 W m-2 with moderate confidence (Forster

et al., 2021).20

A fundamental parameter for constraining ERFACI is the number concentration of CCN forming aerosols (nCCN). Satellite-

based studies of ERFACI rely on aerosol optical properties as proxies for nCCN. Part of the uncertainty in ERFACI arises from

variations in estimates between different observation-based reports, particularly due to their choice of nCCN proxy (Forster
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et al., 2021; Gryspeerdt et al., 2017). The most common proxies are aerosol optical depth (AOD) and aerosol index (AI)

(Quaas et al., 2020; Rosenfeld et al., 2023). AOD, being a column-integrated bulk property, poorly represents nCCN at cloud25

level. AI, calculated from AOD and Ångström exponent, gives more weight to fine particles and offers an improvement over

AOD. Using AI over AOD strengthens the negative radiative forcing by at least 30 % (Gryspeerdt et al., 2017). Nevertheless,

because AI is derived from AOD, it inherits the limitations of AOD (Quaas et al., 2020; Rosenfeld et al., 2023). Incorporating

additional polarimetric measurements enables retrievals of atmospheric-column-integrated aerosol number concentrations over

oceans, which have been shown to yield a significantly stronger negative forcing compared to AOD and AI (Hasekamp et al.,30

2019). Despite being a significant improvement over optical proxies, these concentrations are still column-integrated and may

not represent the cloud-level values most relevant to ACIs. These studies illustrate that ERFACI significantly varies with the

choice of nCCN proxy and highlight the critical need for a comprehensive, height-resolved global nCCN dataset as the next

essential step for advancing ERFACI estimates.

Two recent efforts have addressed these limitations. Choudhury and Tesche (2023a) present a satellite-derived, vertically-35

resolved, three-dimensional (3D) dataset of global nCCN. Their approach leverages the Cloud Aerosol Lidar with Orthogonal

Polarization (CALIOP) retrievals and employs a validated CCN-retrieval algorithm (Choudhury and Tesche, 2022a) to retrieve

nCCN from profiles of aerosol extinction coefficient. The retrieved nCCN are then gridded onto a 2o by 5o latitude-longitude

grid with a vertical resolution of 60 m to produce a monthly global nCCN dataset. The robustness of the retrieval algorithm is

established through comparisons with in-situ measurements from various land and ocean-based platforms (Choudhury et al.,40

2022; Choudhury and Tesche, 2022b; Aravindhavel et al., 2023).

Complementing this effort, Block et al. (2024) present a 3D global nCCN dataset estimated from the Copernicus Atmosphere

Monitoring Service (CAMS) aerosol reanalysis (Inness et al., 2019a). This dataset is based on a diagnostic box model built on

a simplified Kappa-Köhler framework that estimates nCCN from CAMS-derived aerosol mass mixing ratios. It offers a high

temporal resolution of one day, a horizontal resolution of 0.75o, and a hybrid sigma-pressure vertical grid with 60 levels. While45

the validation of this dataset is ongoing, a preliminary comparison to surface-based in-situ observations gives promising results

(Block et al., 2024).

The CAMS nCCN dataset with its high spatio-temporal resolution has great potential for better constraining ERFACI. How-

ever, its dependency on satellite-derived AOD (assimilated into CAMS) and the reliance on modelled aerosol inventories in its

simulated component (Inness et al., 2019a) necessitates an extensive evaluation to assess the representativeness of this dataset.50

The CALIOP data’s coarse monthly resolution complicates a direct integration into ERFACI estimation. Nevertheless, it was

found to be representative of in-situ measured long-term variations in nCCN at multiple regional continental sites (Choudhury

and Tesche, 2022b). Thus, the CALIOP nCCN dataset, currently the only satellite-based 3D global data available, presents a

valuable tool for expanding the assessment of the CAMS dataset to a global scale, particularly in regions with limited in-situ

observations.55

Here, we conduct a closure study between the two independent novel nCCN datasets, reconciling not only their variability

across diverse spatio-temporal scales but also their co-variability with relevant cloud properties. Furthermore, we augment their

validation by comparing their regional concentrations with in-situ measurements from the literature. The comparative analysis
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Figure 1. Global climatology of cloud condensation nuclei (CCN) concentration (nCCN) at altitudes below 2 km. (a) Global climatology

derived from CAMS reanalysis. (b) Global climatology derived from CALIOP spaceborne lidar. Median nCCN values are displayed on the

lateral edges of panels (a) and (b). (c) Zonal variations of nCCN climatology. (d) Meridional variations of nCCN climatology. The semi-

transparent patch in (c) and (d) represents one standard deviation. Note the different color scales in top row, and the varying right and left

y-axis limits in bottom row. CALIOP and CAMS data from June 2006 through December 2021 are used to generate the climatology.

bridges the gap between the global datasets, providing insights for their future application and development. Ultimately, this

work aims to establish a benchmark for applying and developing CCN-retrieval algorithms in the context of aerosol-cloud60

interactions.

2 Results

2.1 nCCN climatology in CAMS and CALIOP

We first compare the spatial variations in nCCN climatology at a supersaturation of 0.20 % for altitudes relevant to liquid clouds

(< 2 km) in CALIOP and CAMS datasets (Fig. 1). CAMS nCCN ranges primarily between 28 cm-3 and 619 cm-3 (5th and 95th65

percentiles), with a global median of 153 cm-3 (Fig. 1a). In contrast, CALIOP retrievals exhibit a broader range, varying from

107 cm-3 to 1445 cm-3, with a global median of 274 cm-3 (Fig. 1b). Overall, CALIOP-derived nCCN are approximately 79 %

higher than those from CAMS. This difference is also reflected in the magnitudes of their zonal and meridional variations (Fig.

1c and 1d). Despite the discrepancies in magnitudes, the zonal and meridional patterns in both datasets are quite similar, with

identical peaks and troughs across most regions except in the Southern Hemisphere (SH). The difference in the SH primarily70

originates from the retrievals over oceans, where CALIOP-derived concentrations are significantly higher than those from
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CAMS (by 208 %). This difference is particularly large for latitudes south of 45o S, where the median CAMS nCCN (33 cm-3)

is roughly seven times lower than that from CALIOP (263 cm-3).

Both datasets show higher nCCN in the Northern Hemisphere (NH) compared to SH. However, this contrast is significantly

stronger in CAMS (160 %) compared to CALIOP (20 %). This hemispheric difference in CAMS is particularly pronounced75

over oceans (121 %) compared to land (59%) and far exceeds the contrast observed in CALIOP (18 % over land and 10 %

over oceans). Interestingly, the hemispheric contrast persists in CAMS even over pristine oceans far from continental influ-

ence, where CALIOP exhibits homogeneous concentrations. Heterogeneity in CALIOP’s oceanic nCCN is primarily confined

to transatlantic dust transport in the tropics and the extra-tropical SH region of strong westerly winds. Since dust is not con-

sidered CCN-active in CAMS, the nCCN peak over the tropical Atlantic Ocean observed in CALIOP is less pronounced in80

CAMS. Furthermore, the CCN belt in the Southern Ocean (SO), though visible particularly in sea-salt nCCN in CAMS (see

Supplementary Fig. S1), does not appear in the total nCCN climatology due to low sea-salt concentrations. When comparing

the contrast between land and ocean nCCN, we find similar values for CAMS and CALIOP in the NH, with land values 65 %

and 86 % higher than those over oceans, respectively. However, this difference in the SH is more pronounced in CAMS (130 %)

than in CALIOP (73 %) due to substantially lower concentrations in CAMS over SH oceans. Refer to Table A1 for the median85

values used in these calculations.

2.1.1 Regional consistency with in-situ observations

To evaluate the datasets, we compare the nCCN climatology from the global datasets with in-situ observations (from the

literature, refer Table A1) for 16 regional domains encompassing major continents and ocean basins (geographical boundaries

provided in Fig. 2a). Among all, Asia exhibits the highest overall nCCN (Fig. 2b), within which Southeast Asia shows the90

highest concentration, followed by South Asia and West Asia, consistently across CAMS, CALIOP, and in-situ retrievals.

Other continental and oceanic domains follow in decreasing order. Both datasets indicate cleaner SH oceanic regions (Southeast

Pacific, South Atlantic, Indian Ocean, and Southern Ocean) compared to the NH oceans (Northeast Pacific and North Atlantic).

However, this hemispheric order is opposite in the in-situ measurements, where concentrations in the SH Atlantic and Pacific

oceans exceed their respective NH counterparts. It is important to consider that while the regional domains over oceans in this95

study extend tens of degrees of longitude away from the coast, in-situ observations for ocean environments may be limited in

space (close to the coast) and time. For instance, the observations over the Southern Ocean (Humphries et al., 2023) are mostly

obtained during the austral summer.

When comparing the magnitudes of nCCN, we observe that CALIOP-derived concentrations are consistently higher than

those of CAMS across all regions except North America. These elevated values in the CALIOP data are expected because the100

retrieval in CALIOP assumes a fixed CCN-activation radius, above which all aerosols are considered CCN-active regardless

of their hygroscopicity. This assumption can lead to overestimation of nCCN in urban continental regions (Southeast and

South Asia, and Southern Africa) influenced by black carbon and regions downwind. CAMS, on the other hand, considers

80 % of black carbon aerosols to be hydrophobic (and thus not contributing to nCCN) (Block et al., 2024). Additionally,

CAMS excludes dust as a potential CCN source, which is accounted for in CALIOP. These differences in the assumptions in105
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Figure 2. Comparison of regional cloud condensation nuclei (CCN) concentrations nCCN with in-situ measurements. (a) Geographical extent

of regional domains considered in this study. (b) Comparison of median nCCN for various domains derived from CAMS reanalysis (blue),

CALIOP (red), and in-situ observations from literature (yellow). Error bars for CAMS and CALIOP represent the geographic interquartile

range of nCCN. Error bars for in-situ observations represent the temporal nCCN variations at the specific measurement locations (refer to

Table A1). CALIOP and CAMS data from June 2006 through December 2021 are used to produce the regional climatology. NH: Northern

Hemisphere; SH: Southern Hemisphere; NAm: North America; NAf: Northern Africa; Eu: Europe; NAs: North Asia; WAs: West Asia; SAs:

Southern Asia; SEAs: Southeast Asia; NAt: North Atlantic; NEP: Northeast Pacific; Au: Australia; SAm: South America; SAf: South Africa;

IO: Indian Ocean; SAt: South Atlantic; SEP: Southeast Pacific.

CALIOP and CAMS in terms of aerosol hygroscopicity, activation size, and CCN activity may naturally lead to lead to higher

concentrations in CALIOP compared to CAMS. Other factors may also contribute to these differences. For example, CALIOP’s

aerosol extinction coefficient may not correlate well with nCCN in complex aerosol mixtures with varying hygroscopicity

(Choudhury and Tesche, 2022a). Additionally, inaccuracies in the representation of aerosol sources and sinks in CAMS may

bias the derived nCCN (Moore et al., 2013). More details on the inherent differences between the global datasets are discussed in110

Section A1. Despite these discrepancies, this regional comparison with in-situ measurements suggests that the global datasets

adequately capture the observed variations in nCCN climatology for most regions. CALIOP appears to represent the upper
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Figure 3. Monthly variations in cloud condensation nuclei concentrations (nCCN) for various regions. Red lines represent nCCN derived

from spaceborne CALIOP, and blue lines represent nCCN from CAMS reanalysis. Panels (a) to (i) correspond to Northern Hemisphere

regions, while panels (j) to (p) represent Southern Hemisphere regions. Note the separate y-axes for CALIOP (left) and CAMS (right). The

numbers at the top and bottom of each panel represent the monthly climatology of low cloud cover (in %) from CERES and precipitation

(in cm) from GPCP product, respectively, with the opacity of the numbers proportional to their magnitude. Datasets from June 2006 through

December 2021 are used to generate the monthly climatology.

bound, while CAMS represents the lower bound of nCCN, highlighting their potential for constraining nCCN even in regions

lacking in-situ measurements.
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2.2 Monthly nCCN variations115

To understand how well the datasets capture the seasonal nCCN cycles, we analyze the average monthly variations in nCCN

derived from CALIOP and CAMS for different regional domains (see Fig. 3). Both datasets exhibit a consistent pattern for

most continental regions, with nCCN peaking in summer (boreal in NH and austral in SH) and reaching a minimum in winter.

This pattern aligns with regional precipitation cycles (shown at the bottom of all panels of Fig. 3), where wet winters lead

to precipitation scavenging of airborne particles, resulting in lower nCCN compared to dry summers. Exceptions include the120

monsoon-influenced South and Southeast Asia regions, which experience a summer minimum and winter maximum in nCCN

due to prolonged summer rainfall. Both datasets adequately capture this seasonal pattern driven by the monsoon cycle.

However, the datasets show contrasting variations for all oceanic regions, except for the North Atlantic region. CALIOP

exhibits a summer minimum and winter maximum in oceanic nCCN, while CAMS generally shows a spring–summer maximum

and winter minimum. The variations in CALIOP align with the seasonal cycle of near-surface wind speeds over oceans (Yu125

et al., 2020). Higher wind speeds increase sea spray aerosol concentrations in marine environments by enhancing wave breaking

and bubble bursting (Revell et al., 2019; Humphries et al., 2023), which may contribute to the observed CCN cycles in CALIOP.

However, oceanic nCCN are also influenced by factors beyond sea spray aerosols, such as biogenic emissions, which follow a

seasonal pattern of summer maximum and winter minimum (Lana et al., 2011; Revell et al., 2019), more in line with CAMS.

Studies in pristine oceans have shown that while sea salt aerosols primarily contribute to aerosol mass, sulphates from biogenic130

emissions dominate particle or CCN concentrations (Ayers and Gras, 1991; Gras and Keywood, 2017; Humphries et al., 2023).

Consequently, in-situ-derived nCCN variations in these regions closely follow biogenic emission patterns (Gras, 1990; Ayers

and Gras, 1991; Gras and Keywood, 2017), exhibiting a spring–summer maximum and winter minimum. As a result, cloud

droplet number concentrations (Nd), a parameter sensitive to changes in nCCN, also displays a spring–summer maxima and

winter minima in pristine Southern Oceans (McCoy et al. (2015); Mace and Avey (2017); see also Fig. S2 in the supplementary135

material). These seasonal CCN cycles are well represented in CAMS but not in CALIOP. Additionally, the austral summer

concentrations in CAMS for the Southern Ocean (Fig. 3p) are comparable to the in-situ observations reported by Humphries

et al. (2023), which were mostly obtained during the austral summer. This observation contrasts with the results inferred from

climatological concentrations in Fig. 2, where CALIOP misleadingly appears to show better agreement.

Further investigation reveals that while the total nCCN seasonal cycles in most oceanic regions are opposite in CALIOP and140

CAMS, the marine nCCN in CALIOP aligns closely with CAMS’s sea salt nCCN, with both exhibiting a summer minimum

and winter maximum (first and third columns in Fig. 4). This similarity can be attributed to the similar seasonal cycles of

CALIOP’s marine extinction coefficients (αM; second column in Fig. 4) and CAMS’s sea salt mass mixing ratio (MMRSS;

fourth column in Fig. 4), the primary parameters from which their respective nCCN are calculated (Choudhury and Tesche,

2022a; Block et al., 2024). Since aerosol mass in pristine oceans consists primarily of coarse mode sea salt particles (Humphries145

et al. (2023); fourth column in Fig. A1), αM is expected to be proportional to MMRSS, as these coarse particles dominate light

scattering. nCCN in CALIOP’s retrieval algorithm is proportional to aerosol extinction coefficient (Shinozuka et al., 2015;

Choudhury and Tesche, 2022a), so the seasonal nCCN cycles in CALIOP for pristine oceans follow the variations in sea salt
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Figure 4. Monthly variations in cloud condensation nuclei concentrations (nCCN), extinction coefficients (α) and mass mixing ratios (MMR)

for six oceanic domains. Blue lines represent marine aerosols in CALIOP and sea-salt aerosols in CAMS, while brown line represent

contributions from other aerosol species. Panels in the first and second column depict the marine and non-marine nCCN and α derived from

CALIOP, respectively. The third and fourth column show the sea-salt and non-sea-salt nCCN and MMR derived from CAMS, respectively.

Datasets from June 2006 through December 2021 are used to generate the monthly climatology.

aerosols. Given that sulphates are the primary contributors to nCCN in these regions (Ayers and Gras, 1991; Gras and Keywood,

2017; Humphries et al., 2023), the separation of marine extinction coefficients in CALIOP into contributions from sea salt and150

biogenic aerosols is crucial for accurately representing nCCN cycles over pristine oceans. This separation, however, requires

precise quantification of their lidar ratios and depolarization properties (Tesche et al., 2009), which is currently lacking. On

the other hand, CAMS, which can distinguish between different oceanic aerosol species such as sulphates, hydrophilic organic

matter, and sea salt, better captures the overall nCCN variations in pristine marine environments.

Nevertheless, CAMS may significantly underestimate the contribution of sea salt aerosols to oceanic nCCN (third column155

of Fig. 4 and Fig. A1), which can be as high as 8–51 % of the total nCCN and may increase to 100 % at higher surface wind
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Figure 5. Comparison of global and regional trends computed using annual time series. (a) Trends in cloud condensation nuclei concentra-

tions (nCCN) derived from CAMS reanalysis. (b) Trends in nCCN from CALIOP. (c) Trends in cloud droplet number concentrations (Nd)

derived from MODIS. (d) Regional trends in nCCN derived from CAMS reanalysis (blue), nCCN from CALIOP (red), and Nd from MODIS

(yellow) are compared. Dots in panels (a)–(c) indicate the grids where the trend is statistically significant. The absolute values of the trends

in panels (a)–(c) are shown in supplementary Fig. S3. Trends in nCCN from CALIOP and CAMS are produced using data from 2007 to 2021,

while data from 2007 to 2020 are used for Nd. Annual time series for the regional domains are provided in Fig. S4 in the supplementary

materials.

speeds (Fossum et al., 2018). This underestimation could stem from an underrepresentation of small-mode sea-salt aerosol

mass in CAMS (see fourth column of Fig. A1). Another plausible reason may be the size distribution assumed in CAMS’s

CCN-retrieval algorithm, which may not accurately represent small-mode sea-salt aerosols. Such factors likely contribute to

the observed low nCCN values in CAMS compared to in-situ observations for SH oceanic domains (see Fig. 2b). Additionally,160

the inaccurate representation of CCN generated from new particle formation processes (McCoy et al., 2021; Mace et al.,

2023, 2024) may further contribute to the underestimation of CCN in CAMS. However, due to limited in-situ observations

across different regions in the SH oceans, the contribution of these aerosol species to total oceanic nCCN, as well as their

seasonal variations across different oceanic regions, remains uncertain. It is important to note that SH oceans are the primary

contributor to global low-level cloud cover (see top of all panels in Fig. 3, and Fig. A2b). These inconsistencies observed in the165

global nCCN datasets in such cloud-rich regions demand further improvements in the underlying CALIOP and CAMS datasets,

as well as in the associated CCN-retrieval algorithms, to better constrain aerosol-cloud interactions.
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2.3 Reconciling trends in nCCN and Nd

Quantifying trends in nCCN is crucial for comprehending the present dynamics of radiative forcing due to ACIs and for

projecting future changes. Recent decades have witnessed declining aerosol emission rates and aerosol loadings over land170

(Collaud Coen et al., 2020; Quaas et al., 2022) and oceans (IMO, 2019; Gryspeerdt et al., 2019) due to stricter emission

policies. An exception is the South Asia region, where aerosol emissions have been increasing in the 21st century (Jin et al.,

2023). These emission trends are also expected to be reflected in Nd because of their strong sensitivity to changes in nCCN

(McCoy et al., 2018; Quaas et al., 2022). Therefore, we expect the annual trends in nCCN and Nd to be similar to the emission

trends.175

Over NH regions, the emission trends are reflected in both the nCCN datasets (Figs. 5a and 5b). As expected, all regions

except South Asia exhibit a declining nCCN trend (see Fig. 5c and Table A1). The trends in Nd are also consistent with those in

nCCN from both CALIOP and CAMS (Fig. 5c), with exceptions only observed over dust-influenced regions (Northern Africa

and West Asia). This discrepancy may be attributed to the hydrophobic nature of fresh mineral dust, which may not readily act

as CCN due to a lack of mixing or coating with water-soluble aerosols (Garimella et al., 2014).180

Over SH regions, CALIOP shows declining nCCN trends across all domains. Nd trends are mostly negative as well consistent

with CALIOP, except for dust-influenced Australia (Au) domain. Of particular interest are the spatially uniform and statistically

significant increasing trends in CAMS-derived nCCN at altitudes below 2 km over most SH oceanic regions. This finding not

only contradicts the negative trend observed in Nd and CALIOP-derived nCCN but also the expected decreasing trend inferred

from previous ship emission reports (Quaas et al., 2022). The trend even exists in the mass mixing ratios in CAMS data (see185

Fig. S11 in the supplementary materials), particularly corresponding to sulphate aerosol species. It is worth noting that the

increasing SH nCCN trends in CAMS coincide with trends in AOD derived from MODIS (see Fig. A3 in the supplementary

material). Since MODIS AOD is used to constrain the CAMS aerosol reanalysis (Inness et al., 2019a), a proportionality between

AOD and CAMS-derived nCCN is inherent in homogeneous marine environments (Block et al., 2024), and may contribute to

the observed increasing trends in CAMS. These inconsistencies over pristine oceans, where the trends in aerosol loadings differ190

between different spaceborne retrievals (Quaas et al., 2022), question the representativeness of the nCCN and Nd retrievals,

making it challenging to derive their inter-relationship, a parameter key to quantifying ACIs.

3 Conclusions

The closure study presented here shows good consistency between the independent CALIOP and CAMS global nCCN datasets

in continental environments. However, significant discrepancies emerge over most pristine oceans, not only in nCCN climatol-195

ogy but also in their monthly and annual variations. While the seasonal cycles of oceanic nCCN derived from CAMS largely

align with previous in-situ observations (Gras, 1990; Ayers and Gras, 1991; Gras and Keywood, 2017; Humphries et al., 2023)

and the variations in Nd, CAMS likely underestimates the contributions from sea salt and secondary biogenic nCCN. In con-

trast, the seasonal nCCN cycles in CALIOP are not representative, likely due to its inability to resolve marine nCCN into sea

salt and sulphate (from biogenic emission) components.200
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The results, however, are completely opposite for annual trends in nCCN and Nd. While trends in CAMS and CALIOP

generally agree across most NH regions, they diverge significantly in the SH. CALIOP consistently shows a declining nCCN

trend in these regions, which aligns with previous reports (IMO, 2019; Gryspeerdt et al., 2019; Quaas et al., 2022) and the

decreasing trend in Nd, while CAMS exhibits an anomalous increasing nCCN trend over SH oceans. This geographically

limited disagreement, restricted to pristine oceans with limited in-situ measurements, raises questions about the adequacy of205

aerosol inventories used by CAMS in SH oceans, a known issue in climate models (Moore et al., 2013). These discrepancies

in cloud-rich pristine oceans are particularly concerning because cloud properties in these regions are highly sensitive to even

small perturbations in aerosol concentrations (Moore et al., 2013; Gryspeerdt et al., 2023).

Caution should therefore be taken when using these nCCN datasets in the pristine oceans of SH. Future research efforts

should focus on first separating the sea salt and biogenic components of marine aerosols in CALIOP, and second, on accurately210

quantifying the sources and sinks of CCN and their long-term cycles in remote SH oceans for improving the representativeness

of aerosol inventories in CAMS. An alternative approach could involve the further development of advanced data-driven tech-

niques to derive global CCN dataset (Redemann and Gao, 2024). These efforts are crucial to refine the global nCCN datasets and

ultimately to reduce the uncertainties in ERFACI. In conclusion, the aerosol-limited environments of SH oceans are identified

as a significant source of uncertainty in the present effort to quantify a highly resolved global nCCN dataset.215

Data availability. All datasets used in this work are opensource. The CALIPSO Level 2 Aerosol Profile product can be downloaded from

https://doi.org/10.5067/CALIOP/ (NASA/LARC/SD/ASDC, 2018). CALIOP CCN data can be accessed at https://doi.pangaea.de/10.1594/

PANGAEA.956215 (last access: December 25, 2024; Choudhury and Tesche, 2023b). CAMS mass mixing ratios were acquired from

the Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store (ADS) https://ads.atmosphere.copernicus.eu/datasets/

cams-global-reanalysis-eac4-monthly?tab=overview (last access: December 25, 2024; Inness et al., 2019b). CAMS-derived CCN data can be220

downloaded from https://doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_v1 (last access: December 25, 2024; Block, 2023). CERES

SYN level 3 product were obtained from the NASA Langley Research Center Atmospheric Science Data Center and can be accessed at

https://ceres-tool.larc.nasa.gov/data (last access: December 25, 2024). MODIS-derived cloud droplet number concentrations can be down-

loaded from https://dx.doi.org/10.5285/864a46cc65054008857ee5bb772a2a2b (last access: December 25, 2024; Gryspeerdt et al., 2022).

MODIS Aqua aerosol product (last access: December 25, 2024; Platnick et al., 2017a) are obtained from the Level-1 and Atmosphere225

Archive and Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in the Goddard Space Flight Center in

Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/). Precipitation data are obtained from the Global Precipitation Climatology Project

(GPCP) Monthly Analysis Product data provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov

(last access: December 25, 2024).

11

https://doi.org/10.5067/CALIOP/
https://doi.pangaea.de/10.1594/PANGAEA.956215
https://doi.pangaea.de/10.1594/PANGAEA.956215
https://doi.pangaea.de/10.1594/PANGAEA.956215
https://ads.atmosphere.copernicus.eu/datasets/cams-global-reanalysis-eac4-monthly?tab=overview
https://ads.atmosphere.copernicus.eu/datasets/cams-global-reanalysis-eac4-monthly?tab=overview
https://ads.atmosphere.copernicus.eu/datasets/cams-global-reanalysis-eac4-monthly?tab=overview
https://doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_v1
https://ceres-tool.larc.nasa.gov/data
https://dx.doi.org/10.5285/864a46cc65054008857ee5bb772a2a2b
https://ladsweb.nascom.nasa.gov/
https://psl.noaa.gov


Appendix A: Methods230

A1 Global nCCN datasets

CALIOP dataset provides nCCN at a supersaturation of 0.20 %. It is available on a uniform latitude-longitude grid of resolution

2o by 5o, a vertical grid resolution of 60 m extending from mean sea level to a height of 8 km above mean sea level, and a

temporal resolution of one month. The dataset is derived from more than 15 years of CALIOP level 2 aerosol profile product

from June 2006 to December 2021 (NASA/LARC/SD/ASDC, 2018). It is based on a CCN-retrieval algorithm (Choudhury and235

Tesche, 2022a) that integrates the CALIOP-derived height-resolved information on the aerosol-type-specific extinction coeffi-

cient and microphysical properties from CALIOP’s aerosol model with the optical modelling capabilities of the MOPSMAP

(Modelled Optical Properties of enseMbles of Aerosol Particles; Gasteiger and Wiegner, 2018) package. Essentially, the algo-

rithm adjusts the normalized size distributions within the aerosol model to match the extinction coefficient. These adjusted size

distributions are then used to estimate particle number concentrations relevant for CCN activation. Aerosol-type-specific CCN240

parameterizations are then applied to calculate nCCN at a supersaturation of 0.20 % for continental (comprising of clean, pol-

luted, and smoke aerosols), dust, and marine aerosols. The algorithm accounts for hygroscopic growth of hydrophilic aerosols

(continental and marine aerosols) under humid conditions using the κ-parameterization within MOPSMAP package. Evalua-

tions of the algorithm have demonstrated good agreement with independent ground-based and airborne in-situ measurements

across diverse geographic locations, with a combined normalized mean bias of ≈ 22 % and a normalized absolute error of245

≈ 61 % (Choudhury et al., 2022; Choudhury and Tesche, 2022b; Aravindhavel et al., 2023; Choudhury and Tesche, 2023a).

The resulting CALIOP-derived nCCN has also been utilized in quantifying the CCN activation ratio for liquid clouds (Alexandri

et al., 2024).

CAMS nCCN dataset (Block et al., 2024) is derived from CAMS aerosol reanalysis of mass mixing ratios (Inness et al.,

2019b) and provides nCCN at supersaturations ranging from 0.1 % to 1 %. The nCCN dataset retains the native resolution of250

CAMS reanalysis data and is available on a uniform horizontal grid of resolution 0.75o by 0.75o and a vertical grid with 60

hybrid sigma–pressure levels extending from the surface to 0.1 hPa. The CCN-retrieval algorithm in CAMS utilizes a box-

model framework (O’Connor et al., 2014; West et al., 2014) to convert the mass mixing ratios of five aerosols species—sulfate,

mineral dust, black carbon (hydrophobic and hydrophilic), organic matter (hydrophobic and hydrophilic), and sea salt—into

total number concentrations. Subsequently, these concentrations are combined with normalized size distributions derived from255

the aerosol module of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System

(IFS) model (Benedetti et al., 2009) to estimate the actual aerosol size distribution. The size distributions of hydrophillic

aerosols are then coupled with auxillary meteorological parameters and used in modified Kappa-Köhler theory (Pöhlker et al.,

2023) to calculate the activated nCCN at various supersaturations. Consistent with the CAMS model’s assumption of completely

hydrophobic dust with no consideration of internal mixing or external coating mechanisms, dust is excluded in the CCN260

calculations. Initial validation results using surface in-situ CCN observations at continental and coastal Atmospheric Radiation

Measurement (ARM) network sites have shown promising results, with an acceptable bias factor of 1.29 (Block et al., 2024).
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A1.1 Limitations of nCCN datasets

CALIOP nCCN dataset is subject to uncertainties arising from errors in the underlying CALIOP products and approximations

within the CCN-retrieval algorithm. Uncertainties in CALIOP extinction coefficients can reach 30 %. Assuming fixed aerosol-265

type-specific size distributions introduces additional uncertainty, estimated to be a factor of 1.5–2 (Choudhury and Tesche,

2022a). Further, the algorithm assumes an aerosol-species dependent fixed CCN activation radius (50 nm for continental and

marine aerosols, and 100 nm for mineral dust at a supersaturation of 0.20 %). Using a fixed CCN activation size (assuming

all larger particles are CCN active) may result in about a 20 % overestimation in the final CCN product (Choudhury and

Tesche, 2022b). Accounting for all these limitations, the overall uncertainty associated with the CALIOP-derived CCN dataset270

is expected to be a factor of 2–3 (Choudhury and Tesche, 2023a). Moreover, the CALIOP dataset is produced using only

cloud-free aerosol profiles. This can lead to sampling bias in regions with significant cloud cover, potentially leading to the

differences observed between the CALIOP and CAMS datasets. However, there appears to be no clear relationship between

the correlation of the CALIOP and CAMS nCCN datasets and the sampling frequency of CALIOP (Fig. A4).

Similarly, uncertainties in CAMS nCCN dataset may stem from the source CAMS aerosol reanalysis product and the CCN-275

estimation methodology. CAMS aerosol product is constrained by satellite-derived AOD retrievals, particularly the MODIS

dark target and deep blue AOD retrievals at 0.55 um (Platnick et al., 2017b) and Advanced Along-Track Scanning Radiome-

ter (AATSR) retrieved AOD (Popp et al., 2016). Therefore, uncertainties in AOD retrievals can propagate into the CAMS

reanalysis and ultimately the nCCN product. Additionally, missing aerosol sources in the CAMS emission inventory (Moore

et al., 2013; Errera et al., 2021) can introduce uncertainties, especially in remote areas with sparse observations, limiting the280

effectiveness of emission parameterizations implemented in the aerosol model. Furthermore, unlike the approach in CALIOP,

the CAMS-based retrieval excludes mineral dust. Studies have demonstrated that mineral dust may be a potential CCN source,

particularly when coated or internally mixed with water-soluble hydrophilic aerosols (Kumar et al., 2009; Bègue et al., 2015).

This exclusion may thus lead to an underestimation in the final nCCN product.

A2 Spaceborne cloud and precipitation data285

Nd data for low-level liquid clouds are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard

Aqua polar orbiting satellite (Gryspeerdt et al., 2022). The dataset is available at a uniform spatial resolution of 1o by 1o with

daily temporal resolution spanning from July 2002 and 2020. Low-level cloud cover data are obtained from the Clouds and

the Earth’s Radiant Energy System (CERES) SYN Edition 4A monthly product (Doelling et al., 2013). This product merges

retrievals from CERES, MODIS, and geostationary sensors to construct a global gridded dataset suitable for studying aerosol-290

cloud interactions. The dataset is operationally available at a latitude-longitude resolution of 1o by 1o starting from July 2002.

Precipitation data are derived from the Global Precpitation Climatology Project (GPCP) monthly product (Adler et al., 2003).

This product integrates rainfall data obtained from several platforms, including satellites, in-situ soundings, and rain gauges,

to generate a global monthly precipitation dataset on a uniform horizontal resolution of 2.5 o available from 1979.
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A3 Data harmonization, trend estimation, and averaging methodologies295

CCN, cloud, and precipitation parameters are considered between latitudes of 65o N and 65oS. Data at higher latitudes are

not considered due to the uncertainties associated with MODIS observations at high solar zenith angles (Grosvenor and Wood,

2014; Grosvenor et al., 2018) and the lack of validation for CALIOP retrievals at these latitudes. Horizontal grids of all datasets

are harmonized by transforming them to the coarser 2o by 5o latitude-longitude grid of CALIOP using bilinear interpolation.

We exclude CAMS data in grids surrounding Mauna Loa and Altzomoni due to documented biases in CAMS aerosol emission300

datasets over these regions (Inness et al., 2019a).

To specifically focus on the liquid clouds, which are most relevant for aerosol-cloud interactions, average nCCN between

altitudes of 0–2 km are considered in this study. Additionally, a supersaturation of 0.20 % is selected because this value

represents a characteristic supersaturation near the base of liquid clouds. Temporal averages of CALIOP data are weighted by

the number of valid aerosol retrievals within each grid cell (Choudhury and Tesche, 2023a). Horizontal averages in CALIOP305

and CAMS are weighted by the area of the latitude-longitude grids. Trends in nCCN and Nd are estimated using the non-

parametric Mann-Kendall trend test, as it does not require any assumptions about the distribution of the time series data and

is more robust in handling outliers (Mann, 1945; Kendall, 1975). Annual trends computed using linear regression are shown

in Fig. S4 in the supplementary material. Monthly and annual statistics are calculated using data between 2007 and 2021 for

CALIOP- and CAMS-derived nCCN, and between 2007 and 2020 for MODIS-derived Nd.310
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Figure A1. Monthly variations in the fractional contributions of different aerosol species to cloud condensation nuclei concentrations (nCCN),

aerosol extinction coefficients (α), and mass mixing ratios (MMR) for six oceanic domains. Panels in the first and second column depict the

fractional nCCN and α contributions of different aerosol species (continental, marine, smoke, and dust) in CALIOP. The third and fourth

column show the fractional nCCN and MMR contributions of different aerosol species in CAMS (sulphate(SU) , sea salt large (SSl), sea

salt medium (SSm), sea salt small (SSs), black carbon (BC), and organic matter (OM)). Datasets from June 2006 to December 2021 are

used to generate the monthly climatology. Fractional contributions for other regional domains are given in Figs. S5–S8 in the supplementary

material.
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Figure A2. Relating correlation between CALIOP and CAMS with global cloud cover. Panel (a): Global map of Pearson’s correlation

coefficient (ρ) between monthly mean cloud condensation nuclei concentration (nCCN) derived from spaceborne CALIOP and CAMS

reanalysis datasets. Panel (b): Low-level cloud cover climatology (in %) derived from CERES SYN product.
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Figure A3. Global map of annual trend in MODIS aerosol optical depth (AOD) derived using combined dark target and deep blue algorithms.

Panel (a) shows the trend in 10-3 yr-1 and panel (b) in % yr-1. Dots in each panel indicate the grids where the trend is statistically significant.

Data between 2007 and 2021 are used to estimate the trends.
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Figure A4. Relationship between sampling frequency in CALIOP and correlation between the datasets. (a) Global map of number of days

with a valid aerosol retrieval observed by CALIOP within period of June 2006 to December 2021. (b) Median number of valid CALIOP

aerosol retrieval over oceans versus Pearson’s correlation coefficient between CALIOP and CAMS (ρCALIOP−CAMS). Error bars denote the

interquartile range. Each ρCALIOP−CAMS bin consists of 407 data points.
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Table A1. Median cloud condensation nuclei (CCN) concentration (nCCN) at a supersaturation of 0.20 % in cm-3 with interquartile range in

parentheses, and annual nCCN trend in cm-3 yr-1 for various regions. Trends in bold indicate statistically significant trends (p < 0.05). In-situ

nCCN observations and their corresponding references are also provided. Abbreviations are explained in the footnote.

Region CALIOP nCCN Trend CALIOP CAMS nCCN Trend CAMS In situ nCCN In-situ reference

Globe 274 (204, 387) -4.5 153 (84, 250) -1.4 - -

Land 483 (230, 1071) -3.5 276 (188, 398) -1 - -

Ocean 259 (200, 322) -1.9 130 (71, 183) -0.5 - -

NH 308 (213, 614) -6.2 221 (159, 343) -3.3 - -

NH land 510 (225, 1143) -4.4 296 (214, 447) -1.8 - -

NH ocean 275 (212, 395) -2 179 (147, 267) -1.9 - -

SH 257 (198, 315) -4.3 85 (44, 139) 0.7 - -

SH land 432 (245, 831) -2.5 186 (91, 276) 0 - -

SH ocean 250 (194, 299) -2.1 81 (41, 124) 0.8 - -

NAm 202 (138, 402) -4.9 265 (200, 318) -5.1 515 (154, 876) Shen et al. (2019)

NAf 837 (648, 1180) -4.1 302 (265, 371) -9.5 1505 (902, 2108) Désalmand (1987)

Eu 485 (324, 726) -14.2 253 (181, 361) -7.8 578 (91, 1065) Paramonov et al. (2015)

NAs 293 (226, 367) -1.3 271 (216, 313) -0.9 174 (109, 239) Asmi et al. (2016)

WAs 1464 (1066, 1734) -26.3 755 (543, 944) -3.5 - -

SAs 1920 (798, 3713) 24.4 893 (664, 1237) 15.9 1900 (777, 3023) Jayachandran et al. (2020)

SEAs 2297 (1142, 3649) -93.5 1256 (790, 1787) -37.3 2377 (1133, 3023) Shen et al. (2019)

NAt 291 (252, 346) -2.6 147 (138, 164) -2.9 191 (149, 233) Wood et al. (2017)

NEP 231 (197, 265) -1.8 150 (146, 155) -3.5 117 (37, 197) Brendecke et al. (2022)

Au 280 (202, 359) -3.2 54 (21, 119) -1.4 94 (51, 137) Humphries et al. (2023)

SAm 317 (213, 566) -13.9 174 (93, 230) 0.1 448 (71, 825) Shen et al. (2019)

SAf 1017 (379, 1751) -13.4 306 (218, 445) 1.7 552 (250, 854) Ross et al. (2003)

IO 236 (203, 268) -1.9 107 (92, 137) 1.2 - -

SAt 199 (167, 246) -3.6 90 (73, 152) 0.9 207 (94, 320) Redemann et al. (2021)

SEP 198 (173, 231) -1.6 93 (80, 110) 1.7 149 (85, 213) Allen et al. (2011)

SO 289 (185, 335) -2 36 (27, 57) 0.6 125 (76, 174) Humphries et al. (2023)

NAm: North America [20◦ − 65◦N, 120◦ − 80◦W]; NAf: Northern Africa [10◦ − 30◦N, 15◦W − 30◦E]; Eu: Europe [40◦ − 60◦N, 10◦W − 35◦E]; NAs: North Asia

[45◦ − 65◦N, 40◦ − 120◦E]; WAs: West Asia [15◦ − 40◦N, 35◦ − 60◦E]; SAs: Southern Asia [5◦ − 30◦N, 65◦ − 90◦E]; SEAs: Southeast Asia

[20◦ − 40◦N, 95◦ − 125◦E]; NAt: North Atlantic [10◦ − 35◦N, 60◦ − 20◦W]; NEP: Northeast Pacific [20◦ − 45◦N, 170◦ − 135◦W]; Au: Australia

[35◦ − 15◦S, 115◦ − 155◦E]; SAm: South America [55◦ − 10◦S, 80◦ − 40◦W]; SAf: South Africa [35◦ − 0◦S, 10◦ − 40◦E]; IO: Indian Ocean [35◦ − 5◦S, 55◦ − 110◦E];

SAt: South Atlantic [35◦ − 5◦S, 30◦W − 5◦E]; SEP: Southeast Pacific [40◦ − 10◦S, 135◦ − 90◦W]; SO: Southern Ocean [65◦ − 40◦S, 30◦W − 180◦E]
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