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Abstract.

Chemical ionization mass spectrometry (CIMS) is widely used in atmospheric chemistry studies. However, due to the com-

plex interactions between reagent ions and target compounds, chemical understanding remains limited and compound identifi-

cation difficult. In this study, we apply machine learning to a reference dataset of pesticides in two standard solutions to build

a model that can provide insights from CIMS analyses in atmospheric science. The CIMS measurements were performed with5

an orbitrap mass spectrometer coupled to a thermal desorption multi-scheme chemical ionization inlet unit (TD-MION-MS)

with both negative and positive ionization modes utilizing Br– , O2
– , H3O+ and (CH3)2COH+ (AceH+) as reagent ions. We

then trained two machine learning methods on this data: 1) random forest (RF) for classifying if a pesticide can be detected

with CIMS, and 2) kernel ridge regression (KRR) for predicting the expected CIMS signals. We compared their performance

on five different representations of the molecular structure: the topological fingerprint (TopFP), the molecular access system10

keys (MACCS), a custom descriptor based on standard molecular properties (RDKitPROP), the Coulomb matrix (CM) and

the many-body tensor representation (MBTR). The results indicate that MACCS outperforms the other descriptors. Our best

classification model reaches a prediction accuracy of 0.85 ± 0.02 and a receiver operating characteristic curve area of 0.91

± 0.01. Our best regression model reaches an accuracy of 0.44 ± 0.03 logarithmic units of the signal intensity. Subsequent

feature importance analysis of the classifiers reveals that the most important structural fragments
::::::::::::
sub-structures are NH and15

OH for the negative ionization schemes and nitrogen-containing groups for the positive ionization schemes.

1 Introduction

Mass spectrometry (MS) is an analytical technique for molecular compound identification and tracking in a variety of fields

(e.g. biochemistry, food control, forensic science, pollution control, reaction physics and kinetics, thermodynamic parameters
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determination) (Griffiths and de Hoffmann, 2007). In atmospheric science, chemical ionization mass spectrometry (CIMS) has20

proliferated, because it can detect gas-phase compounds at atmospheric pressures (Sipilä et al., 2016; Laskin et al., 2018; Huey,

2007; Eisele and Tanner, 1993; Munson, 1971; Munson and Field, 1966; Riva et al., 2019; Breitenlechner et al., 2017; de Gouw

and Warneke, 2007). CIMS’ low detection limit, good sensitivity, low probability of fragmentation and the ability to detect

charged volatile compounds, make it an ideal compound tracking technique, but compound identification remains challenging.
:
.

::
In

:::::
proton

:::::::
transfer

:::::::
reaction

:::
MS,

:::::::::
properties

:::
like

::::::
proton

::::::
affinity

:::
are

::::::
utilized

::
to

::::::::
determine

:::
the

:::::::::::
detectability

::
of

::::::::::
compounds.

::::::::
Although25

:::
this

:::::::::
instrument

::
is
::::::::::

commonly
::::
used

::
to

::::::::
quantify

::::::
volatile

:::::::
organic

::::::::
precursor

:::::::::
molecules

::
at
:::::::::

relatively
::::
high

:::::::::::::
concentrations,

:::::
more

:::::::
selective

:::
and

::::::::
sensitive

:::::::::
techniques

:::
are

::::::::
typically

:::::::
required

:::
for

::::::::
analyzing

::::::
highly

::::::::::::
functionalized

::::::
aerosol

:::::::::
precursors

::::
(e.g.

:::::
NO3

–
:::

or

::
I–

::::::::::::::::::::::::::::::::
(Lee et al., 2014; Rissanen et al., 2014)

:
). Multi-scheme chemical ionization inlets (MIONs) (Rissanen et al., 2019) provide

more information than single ionization schemes. However,
:::::::::
compound

:::::::::::
identification

:::::::
remains

::::::::::
challenging,

::
as our understanding

of the complex interaction between reagent ions and sample molecules is still too limited to routinely identify compounds from30

CIMS spectra (Munson, 2006; Sandström et al., 2024).

To improve compound identification, quantum chemical calculations are used to model the interaction between reagent

ions and target molecules. Early breakthroughs revealed a correlation between the binding energy (between reagent ion and

target molecule) and the experimental detection sensitivity (Partovi et al., 2023, 2024b; Iyer et al., 2016; Hyttinen et al., 2018).

However, due to the high complexity of the interaction, the large configuration space of possible ion-molecule structures and the35

cost of the quantum chemical calculations, databases are challenging to produce. Thus no compound identification workflow

has emerged so far.

In this article, we explore if purely data-driven machine learning (ML) can facilitate CIMS compound identification. ML

excels at pattern identification, data-driven classification and regression tasks. ML is proliferating in the natural sciences and has

started to emerge in atmospheric science for, e.g., physicochemical property prediction (Lumiaro et al., 2021; Besel et al., 2023)40

:::
and

:::::::::::::
characterization

::
of

::::::::::
compounds

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lumiaro et al., 2021; Sandström et al., 2024; Besel et al., 2023, 2024)

::::::::::::::::::::::::::::::::::::::::
(Hyttinen et al., 2022, 2024; Franklin et al., 2022), detection of new particle formation events (Su et al., 2022), boundary layer

height estimation (Krishnamurthy et al., 2021), or aerosol classification (Siomos et al., 2020). In other chemical domains, e.g.

metabolomics, ML has successfully enabled chemical compound identification from fragmentation mass spectrometry (Erban

et al., 2019; Heinonen et al., 2012; Dührkop et al., 2015; Brouard et al., 2016; Nguyen et al., 2018, 2019). In atmospheric45

science, the
:::
The

:::::::::
advantage

::
of

::
an

:::::::::
ML-based

:::::::
method

::
is

:::::::
twofold:

::
it

::
is

:::::::::::::
computationally

:::::::::::
inexpensive,

::::::::
especially

:::::
when

:::::::::
compared

::
to

:::::::
quantum

::::::::
chemical

::::::::::
calculations,

::::
and

:
it
:::
can

::::::::::
interpolate

:::::::::
predictions

::
to

:::::
novel

:::::::::
compounds

:::::::
without

::::::::
requiring

::::::::
extensive

::::::::
reference

:::
data

:::::
once

::::::
trained.

::::
This

::
is
::::::::
essential

:::
for

::::::::::
atmospheric

:::::::::
chemistry,

:::::
where

:::::::::
thousands

::
of

:::::
large,

::::::
highly

:::::::
oxidized

:::::::
organic

::::::::::
compounds

:::
lack

::::::::
reference

::::::::
datasets.

::
In

:::
the

:::::
short

:::::
term,

:::
our

:::::::
method

:::::
could

:::::::::
accelerate

:::::
CIMS

:::::::::::
experimental

:::::::::::
optimization

::::
and

:::
aid

::
in

:::::::
reagent

:::
ion

::::::::
selection.

::::::::
However,

:::::::::
successful

:::::::::::
identification

:::::::
requires

:::::::::::::
comprehensive

:::::::::
collections

:::
of

::::::::
reference

:::::::
spectra,

:::::
which

:::
are

:::::::
needed50

::::
both

::
for

:::::::::
traditional

:::::::
spectral

::::::::::
comparison

:::
and

:::
for

:::::::
training

:::::::::
ML-based

::::::::
methods.

::::::::
Currently,

::
a lack of data and data standards has

prevented a similar development for CIMS or
:::::::
standards

::
in

:::::::::::
atmospheric

::::::
science

:::::::
hinders

::::::
similar

:::
ML

::::::::::::
advancements

:::
for

::::::
CIMS

:::
and fragmentation mass spectrometry (Sandström et al., 2024; Thoma et al., 2022).
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In this work, we address the data scarcity with a new dataset of CIMS spectra containing pesticides . Pesticides constitute

only a minor fraction
::::::
scarcity

::
of

::::::::::
atmospheric

::::::::::
compound

:::
data

:::::::::
standards

::
by

::::::
testing

:::
our

:::::::::::
methodology

:::
on

:
a
::::::::
reference

::::::
dataset

:::
of55

::::::::::::
approximately

:::
700

::::::::
pesticides

:::::::::
measured

::::
with

:::::
CIMS.

::::::
While

::::::::
pesticides

::::::::
represent

::::
only

:
a
:::::
small

::::::
subset of atmospheric compounds

(Brüggemann et al., 2024; Houde et al., 2019), but are
:::
they

:::
are

::::::::::
chemically

::::::::
complex,

::::
with

:::::::
diverse

:::::::::
molecular

::::::
masses

::::
and

::::::::
functional

::::::
groups

:::
that

::::
can

::::::
interact

::
in

::::::
distinct

:::::
ways

::::
with

::::::
various

:::::::
reagent

:::
ions

::::
and

:::
that

:::::
cover

::
an

::::::::
extended

:::::
range

::
of

::::::::
detection

::::
with

:::::
CIMS.

:::::
This

::::::::
structural

:::::::
diversity

::::::::
provides

:
a
:::::::
relevant

::::
test

::::
case

:::
that

:::::::
reaches

:::
and

::::::::
surpasses

:::
the

::::::::::
complexity

::
of

:::::
many

:::::::::::
atmospheric

::::::::::
compounds,

:::::::
allowing

:::
for

::
an

::::::::
effective

:::::
initial

:::
test

:::
of

:::
our

:::::::::::
methodology.

:::::::::::
Additionally,

:::::::::
pesticides

:::
are

::::::
readily available as standard60

solutions
::::::::
chemicals

:
from chemical suppliers . The dataset, therefore, provides CIMS spectra for approximately 700 clearly

defined reference molecules. This data volume is similar to what was used in metabolomics to build the first
::
at

::
an

:::::::::
accessible

::::
cost,

:::
and

:::
the

:::::::
dataset

:::
size

::
is
::::::::::
comparable

::
to
:::::

those
:::::
used

::
to

::::::::
establish

::::
early

:
ML compound identification tools

::
in

::::::::::::
metabolomics

(Heinonen et al., 2012; Dührkop et al., 2015; Brouard et al., 2016; Nguyen et al., 2018, 2019).
:::::
Thus,

:::::
while

::::::
limited

::
to

:::::::::
pesticides,

:::
this

::::::
dataset

:::::
offers

:
a
:::::::
valuable

::::::::::
preliminary

:::::::::
benchmark

:::
for

:::::::::
developing

:::::::::
ML-based

:::::
CIMS

:::::
signal

:::::::::
prediction.

:::::
Once

::::::::
reference

:::::::
datasets65

::
for

:::::::::::
atmospheric

::::::::::
compounds

:::::::
become

::::::::
available,

:::
this

::::::::::::
methodology

:::
can

:::
be

:::::::
directly

::::::
applied

::
or

:::::::
refined

::
to

:::::::::
encompass

::
a
:::::::
broader

::::
range

:::
of

::::::::::
atmospheric

::::::::
chemical

:::::::
analyses.

:

Our objective in this work is to develop ML models that learn the relation between CIMS spectra and their corresponding

compounds. Specifically, we will investigate, if we can predict a pesticide detection by CIMS, and further, if we can predict

the resulting signal intensity of different ionization methods from the atomic
::::::::
molecular structure of a pesticidemolecule. Such70

predictions could be used prior to deployment (e.g., in a field measurement campaign or for pesticide detection and monitoring)

to ensure that the detector is appropriate and sensitive enough. The ML methods will also provide insight into the interaction

between reagent ions and molecules which will help us to develop future compound identification methods in atmospheric

science.

Figure 1 presents a schematic ML workflow followed in this work. The measurements were carried out with a thermal75

desorption (TD) MION-MS, and the experiments were run sequentially with four different ionization schemes: Br– , O2
– , H3O+

and (CH3)2COH+ (AceH+). The dataset is then preprocessed and used for training two ML algorithms: random forests (RF)

(Breiman, 2001) for detection classification and a kernel ridge regression (KRR) (Rupp, 2015) models to predict CIMS signal

intensities of a given pesticide. The models are trained on different molecular descriptorsthat encode the structural and chemical

features of each pesticide
::::::::
molecular

::::::::::
descriptors,

::::::
which

:::
are

:::::::::::
mathematical

:::::::::::::
transformations

::
of

:::
the

:::::::::
molecular

:::::::
structure

::::
that

:::::
make80

:
it
:::::::
suitable

:::
for

:::::::::
data-driven

:::::::
analysis.

::::::::
Different

:::::::::
descriptors

:::
are

::::::
tested

:::
and

::::::::
compared

:::
for

::::
both

:::::::::::
classification

:::
and

:::::::::
regression,

:::
as

::::
each

::::::::
molecular

::::::::::::
representation

:::::::
encodes

:::::
unique

::::::::
structural

::
or

::::::::
chemical

:::::::
features

:::
and

:::::
varies

::
in

::::::::::
complexity

:::
and

::::::::::::
interpretability. We tested

five different representations: properties obtained from the pesticides’ structure (RDKitPROP), the topological fingerprint

(TopFP) (James et al., 1995), the molecular access system keys (MACCS) (Durant et al., 2002), the Coulomb matrix (CM)

(Rupp et al., 2012)
:
, and the many-body tensor representation (MBTR) (Huo and Rupp, 2022). Since the descriptors differ in85

their complexity and explainability, we compared their performance for both classification and regression
:::::
Using

:::
this

:::::
range

:::
of

::::::::
molecular

:::::::::::::
representations

:::
and

::::
data

::::
from

::::::
diverse

:::::::::
ionization

:::::::
schemes,

:::
we

:::::::
evaluate

:::
the

:::::::
models’

::::::
ability

::
to

::::::
predict

:::::
CIMS

::::::::
detection

3



:::
and

:::::
signal

::::::::
intensity

::
of

:::
the

::::::::::
compounds,

::::::::
providing

:::::::
insights

:::
into

::::
how

::::::::
structural

::::::::::::
characteristics

::::::::
influence

::::::
CIMS

::::::::
sensitivity

::::::
across

:::::::
different

::::::::
ionization

::::::::
methods.

The manuscript is organized as follows: Sect. 2 presents the dataset used in this work. Sect. 3 and Sect. 4 introduce the90

molecular descriptors and ML methodology, respectively. Sect. 5 presents the results of the classification (Sect. 5.1) and

regression (Sect. 5.2) models, as well as a discussion on the chemical insight gained from the ML models (Sect. 5.3).

Figure 1. Schematic of the machine learning workflow followed in this work: the sample is analyzed and the two targets of our analyses

are defined; the preprocessing includes the filtering of the data and the creation of the molecular descriptors which will be fed into the ML

algorithms; the two ML models are divided into classification (to predict whether a molecule is detected or not) and regression (to predict the

CIMS sensitivity of a molecule); the performances of the models are evaluated and chemical insight is extracted from the feature analysis.

2 Dataset

Our dataset is generated from two standard mixtures purchased
::::::
received

:
from GALAB Laboratories, containing 404 and

312 organic pesticides. The CIMS experiments were conducted at Karsa Oy laboratory (Karsa) with a TD-MION inlet op-95

erating at atmospheric pressure coupled to a linear trap quadrupole orbitrap mass spectrometer. A
::::::
sample

::::
was

::::::
placed

:::
on

:
a
:::::::::::
custom-made

:::::
filter

:::::::
(Karsa)

:::
and

:::::
heated

::
in
:::

the
::::::::

desorber
::::
from

:::::
30◦C

::
to
:::::::
250◦C;

:::::::
different

:::::::::
pesticides

::::::::
evaporate

::::
from

:::
the

:::::
filter

::
at

::::::
various

:::::::::::
temperatures.

::
A schematic of the instrument is

::
and

::::::::
sampling

:::::::::::
methodology

:::
are presented in Partovi et al. (2023, 2024b).

The mixtures were individually measured at five different concentrations, but for this work, only measurements at the highest

concentration (2,5 ng µl−1) were considered. The measurements from the two mixtures were combined into a single dataset for100

a total of 716 pesticide observations.
:
,
:::::
where

::::
each

::::::::::
observation

::::::::::
corresponds

::
to
:::

the
::::::

parent
::::
ion’s

::::::
signal

::::::::
intensity.

:::
Due

:::
to

::::::
CIMS’

:::
soft

:::::::::
ionization,

:::
the

::::::
parent

:::
ion

::
is

:::::::
expected

::
to
:::::
have

:::
the

::::::
highest

::::::::
intensity,

::::::::::::
quantitatively,

:::
and

:::::::::::
qualitatively

:::::::
provides

:
a
::::::::::

one-to-one

:::::::::::::
correspondence

::
to

:::
the

:::::
target

:::::::::
compound.

:
Each pesticide was measured with the following ionization schemes: bromide (Br– )

ionization (produced from dibromomethane, CH2Br2); protonated acetone ((CH3)2COH+, AceH+) ionization (produced from

acetone, (CH3)2CO); proton-transfer (H+) ionization by hydronium ions (H3O+, produced from trace amounts of water, H2O+);105

and electron transfer (-) ionization by dioxide (O2
– ). The two latter

:::
first

::::
two ions were obtained by feeding dopant-free air

:::
the
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::::::
neutral

:::::::
reagents into the ion source. ,

:::::
while

:::
the

::::
two

::::
latter

::::
ions

:::::
were

:::::::
obtained

::
by

:::::::
feeding

::::::::::
dopant-free

::
air

:::::::
instead.

:::
The

:::::::::
pesticides

::::
were

:::::::
detected

::
as

:::::::::
protonated

::::
ions

:::::::
(AceH+,

:::::::
H3O+),

::
as

:::::::::::
deprotonated

::::
ions

:::::
(O2

– ),
::
or

:::
as

:::::
adduct

::::
ions

::::::
(Br– ).

From the 716 measured pesticides, we removed 23 from the dataset (Fig. S3, Table S1 and Table S2 in the Supplementary

Information, SI) for the following reasons. Twelve instances correspond to six pesticides that appeared twice (once in each110

mixture) but were measured with different signal intensities. Next, we excluded 10 pesticides with a molecular weight outside

the ideal mass spectrometer transmission window, i.e., lower than 120 u and higher than 600 u, which suffered from the

corresponding significant signal loss. Another pesticide was excluded due to its out-of-range Br– intensity value. As a side note,

several isomers
::::::
Several

::::::
isomers

:::
are

::::::
present

::
in
:::
the

::::::
dataset

:
(e.g.

:
, prometryn and terbutryn, or phoxim and quinalphos)are present

in the dataset
:
.
::::::
Across

::
38

:::::::::
molecular

::::::::
formulas,

::::
there

:::
are

::
81

:::::::
isomers

::
in

::::
total. In CIMS, isomers produce peaks at the same mass-to-115

charge ratio and cannot be distinguished with a single ionization method, as they can in, e.g., fragmentation mass spectrometry.

We decided to keep all isomersto not reduce our data set volume further, but we are aware that this decision introduces

additional uncertainty in the dataset
::
To

:::::
retain

::::::
dataset

::::
size,

:::
we

:::::::
included

:::
all

:::::::
isomers,

::::::::
assigning

:::
the

:::::
same

:::::
signal

:::::::
intensity

:::
to

::::
each

:
if
:::::::
detected

:::
by

::
an

:::::::::
ionization

:::::::
method,

:::
and

:::::::
labeling

:::
all

::
as

:::::::::
undetected

::
if

::
no

::::::
signal

:::
was

:::::::
present.

::::
This

::::::::
approach

::::
adds

::::::::::
uncertainty

::
to

::
the

::::
ML

::::::
model,

:::
can

:::::
affect

:::
the

::::::::
evaluated

:::::
model

:::::::::::
performance,

:::::::::
depending

::
on

:::
the

::::::::
structural

:::::::::
difference

::
of

:::
the

:::::::
isomers,

:::
and

::::
can

::::
limit120

::
the

::::::
model

::::::
validity

:::
for

:::::::::
real-world

::::::::::
applications

::::::::
requiring

::::::
isomer

:::::::::
distinction.

::::
This

:::::::
tradeoff

::::::
allows

:::
for

:
a
:::::
larger

::::::
dataset

:::
but

:::::::
reduces

::::::::
predictive

::::::::
accuracy

::
at

:::
the

::::::::
structural

::::
level. In the following, dataset refers to the 693 pesticides remaining after removing the

aforementioned 23 pesticides.

Figure ??
:
2
:

presents basic dataset statistics (molecular size, element composition and detection by ionization method). In

Panel (a) and (b), we distinguish between detected
:
,
:::::
when

:
a
::::::::
molecule

:::::::
presents

:
a
:::::
signal

::::
with

::
at
:::::
least

:::
one

::::::::
ionization

:::::::
method,

:
and125

undetected . If the signal intensity of a molecule is zero for all ionization methods, it is considered undetected and detected

otherwise. In panel
::::
Panel

:
(c),we make the same distinction but for each ionization method individually

:::::::
detected

:::::
refers

::
to

:::::
when

:
a
::::::::
molecule

:::::::
presents

:
a
::::::
signal

::
for

::
a
::::::::
specified

::::::::
ionization

:::::::
method

:::
and

:::::::::
undetected

::::::::
otherwise. The number of non-hydrogen atoms

per molecule (Figure ??
:
2a) is normally distributed for detected and undetected pesticides with an average of 20 atoms per

pesticide (dashed vertical line). The smallest molecule, methamidophos, contains 7 atoms, while the largest one, acrinathrin,130

contains 38 atoms. In total, we find 572 pesticides, for which at least one ionization method gives a signal, and 121 undetected

pesticides, for which no ionization method triggers.
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Figure 2. Distribution of (a) heavy atoms, (b) element types in logarithmic scale and (c) detection rate of the four reagent ions (Br– , O2
– ,

H3O+ and AceH+). Detected pesticides are shown in red, undetected pesticides in light blue. In Panel (a) and (b), a molecule is considered

detected if at least one ionization method presents a signal (full color). In Panel (c) the detection status is determined per ionization method

individually (striped color).

Figure ??
:
2b shows a histogram of the chemical elements present in the dataset. The pesticides in our dataset are organic

molecules and therefore have a prevalence for hydrogen, carbon, nitrogen and oxygen. In addition, chlorine, fluorine, sulfur,

and phosphorus, are present in over a hundred pesticides, whereas bromine, iodine, silicon and tin occur less frequently. Tin is135

the only element present only in undetected molecules (Table S3 in the SI presents a list of tin compounds).

In Figure ??
:
2c the total count of detected and undetected pesticides for each ionization method is shown. In

:::::::
Differing

:::::
from

::::
Panel

::::
(a),

:::::
where

::
a
::::
large

:::::::
number

::
of

:::::::::
pesticides

::::::
appear

::
to

:::
be

:::::::
detected,

:::::
Panel

:::
(c)

::::::
reveals

::::
that

::
in

:
contrast to the positive reagent

ions, the two negative reagent ions exhibit a higher number of undetected molecules than detected ones. Most pesticides are

detected with AceH+ and fewest with O2
– . The figure highlights that,

:::
for

:::
this

:::::::
specific

:::::::
dataset, negative reagent ions are more140

selective than positive ones
:::
for

:::
the

:::::::
detection

:::
of

:::::
parent

::::
ions.

Table 1 presents six examples of chemical diversity in our dataset. The first two entries correspond to the smallest and

the largest pesticides (methamidophos (7 atoms) and acrinathrin (38 atoms)). Subsequent entries highlight the diversity in

functional groups. The molecular complexity ranges from 1-naphthaleneacetic acid (containing naphthalene with acetic acid

substituent) to trichlorfon (containing oxygen, nitrogen, fluorine, sulfur and aromatic rings), alpha-HCH (cyclohexane with 6145

chlorine substituents) or tritosulfuron (containing 3 chlorine, 4 oxygens and a phosphorus atom over 12 total atoms).

6



Table 1. Example of the chemical diversity of the dataset.

Name Number of atoms Molecular weight [u] Detected with: Structure

Methamidophos 7 141.00 H3O+; AceH+

Acrinathrin 38 541.13 Br– ; O2
– ; AceH+

1-Naphthaleneacetic acid 14 186.07 O2
– ; AceH+

Tritosulfuron 29 445.03 O2
–

alpha-HCH 12 287.86 Br– ; O2
–

Trichlorfon 12 255.92 Br– ; H3O+; AceH+

Figure ??
:
3
:

presents the logarithmic signal intensity distribution (panel
::::
Panel

:
a) and the scatter matrix of the logarithmic

signal intensity (panel
:::::
Panel b) for each reagent ion. In panel a

:::::
Panel

:::
(a), both AceH+ and H3O+ are normally distributed. The

7



distribution for O2
– is flatter (probably due to the small number of detected molecules) and Br– is almost homogeneously

distributed across the intensity range. Panel b
::
(b)

:
visualizes the bivariate relationship between (logarithmic signal intensities )150

for the pesticides detected with all four reagent ions. Only the two positive
::::::
polarity ionization schemes AceH+ and H3O+ exhibit

a clear correlation (R2=0.6). The negative ionization schemes O2
– and Br– are not as well correlated (R2=0.2). Meanwhile,

the inter-correlation between positive and negative reagent ions is below 0.07. The general lack of correlation between
:::::::
opposite

::::::
polarity

:
ionization schemes indicates that different reagent-ions probe different parts of

::::::
reagent

::::
ions

::::::
interact

::::
with

:
the target

molecules
:
in

:::::::
distinct

:::::
ways,

:::::::
possibly

::::::::
engaging

::::
with

:::::::
different

:::::::::
functional

::::::
groups.155

Figure 3. (a) Distribution of logarithmic signal intensities for molecules detected by each of the four ionization methods, and (b) scatter

matrix of logarithmic signal intensities for molecules detected by all reagent ions, illustrating correlations between different ionization

signals.

Figure 4 shows the t-stochastic neighbourhood embedding (t-SNE
:
,
:::::::::::::::::::::::::::::
(van der Maaten and Hinton, 2008)) of the logarith-

mic signal intensity values
::
for

::::
each

:::::::::
compound. t-SNE (van der Maaten and Hinton, 2008) visualizes high-dimensional data

in lower dimensions preserving the
:::
local

:
similarity of data points. We used the scikit-learn implementation of t-SNE

(sklearn.manifold.TSNE, Pedregosa et al. (2011)) with a random state of 42, a perplexity of 50 and a maximum number of

iterations of 5000. We then assigned different colours and symbols to the ionization method combinations that detected a given160

pesticide.

Clear clusters of the same colour and the same symbol emerge in the t-SNE plot in Figure 4. Only one cluster is composed

of molecules detected with both Br– and AceH+ (yellow squares), Br– and H3O+ (yellow circles), and Br– , AceH+ and H3O+

(blue squares). From this we conclude, that Br– delivers the most information for these pesticides and the positive
::::::
polarity

8



ionization method is of lesser importance. The situation is similar for H3O+ and AceH+ that appear in two clusters where165

blue triangles (H3O+, AceH+, Br– ) come close to yellow crosses (H3O+, O2
– ) and blue stars (AceH+, Br– , O2

– ) close to

yellow diamonds (AceH+, Br– ) and squares (AceH+, O2
– ). The presence of clear clusters suggests thatthe CIMS signals

carry information that might allow ML to distinguish different pesticides
:
,
::::::::::
collectively,

:::
the

:::::::
reagent

::::
ions

::::
have

:::
the

::::::::
potential

::
to

::::::::::
differentiate

:::::::
between

::::::::
molecular

:::::::::
structures.

Figure 4. Similarity between the signal intensity of the molecules by using t-SNE clustering. The comparison was based on the logarithmic

signal intensity and each cluster follows a color-code based on the detection type (all the possible combinations between the four reagent

ions).

3 Molecular descriptors170

Molecular representations transform molecular structures into
:
A

:::::::::
molecular

::::::::::::
representation

::
is

:
a
::::::::::::
transformation

:::
of

:
a
:::::::::
molecular

:::::::
structure

::::
that

::::::::
simplifies

:::
the

:::::::::
structural

::::::::::
information

::::
into

:
a
:

readable input for ML methods.
:::::::::
data-driven

::::::::
methods.

::::::::::
Depending

::
on

:::
the

::::::::::
application,

:::::
they

:::
can

:::::::
provide

::
a
::::::::
valuable

:::::::::::
cost-efficient

:::::::::
alternative

::
to

::::::::::::::
computationally

:::::::::
expensive

::::::::
quantum

::::::::
chemical

:::::::::::
computations.

:
These descriptors are numerical representations of atomistic systems that should fulfil certain requirements,

such as being invariant to spatial and rotational transformations, invariant to permutation of atomic indices, unique, continu-175

ous, compact and computationally efficient (Himanen et al., 2020; Huo and Rupp, 2022; Rupp, 2015; Xue and J, 2020; Langer

et al., 2022).
::::::::
Molecular

:::::::::
descriptors

::::
may

::::
vary

::
in

::::::::::
complexity

:::
and

:::::::::::::
interpretability;

:::::
some

::::::
reflect

:::::::
tangible

::::::::
properties

::::
that

:::
are

::::
easy

::
for

:::::::
humans

::
to

::::::::::
understand,

:::::
while

:::::
others

:::
are

::::::::
calculated

:::::::
through

:::::::::::
mathematical

::::::
means

:::
and

::::
may

::::
lack

:::::::
intuitive

::::::::::::
interpretation. How-
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ever, a universal descriptor able to perform well for every chemical system and task does not exist. For this reason,
::::
being

::
a

:::::::::::
first-of-a-kind

::::::
study, we tested five different descriptors (Fig. 1a) for our classification and regression tasks

:::
task

::::::::::
(prediction180

::
of

:::
the

:::::::::
detection)

:::
and

:::::::::
regression

::::
task

::::::::::
(prediction

::
of

:::
the

::::::
CIMS

::::::
signal

::::::::
intensity). We investigated a property-based descrip-

tor (RDKitPROP), two structure-based descriptors (TopFP and MACCS) derived from SMILES (Simplified Molecular-Input

Line-Entry System) strings, and two structure-based descriptors obtained from the Cartesian coordinates of the atoms in the

molecules (CM and MBTR) (Landrum, 2006; Durant et al., 2002; Rupp et al., 2012; Huo and Rupp, 2022). The Cartesian

coordinates were obtained from the SMILES string of each pesticide through geometry optimization with a universal force185

field implemented in RDKit (Landrum, 2006). Figure ??
:
5
:
depicts visual examples of four descriptors. The representations are

discussed in more detail in the following sections.

Figure 5. Visual example of 1-Naphthaleneacetic acid molecular representations: on the left descriptors computed from SMILES, (a) topo-

logical fingerprint (TopFP), (b) molecular access system keys (MACCS); on the right descriptors computed from cartesian coordinates, (c)

coulomb matrix (CM), (d) many-body tensor representation (MBTR).

3.1 Property-based descriptor (RDKitPROP)

RDKitPROP includes 43 properties computed from the molecular structure of the pesticides (represented by a SMILES

string), by applying the function rdkit.Chem.rdMolDescriptors.Properties (Landrum, 2006).
::::
This

::::::::
descriptor

::::
was

::::::::
included

::
in190

::
the

::::::::
analysis

::
to

:::::::
evaluate

:::
the

:::::::
models’

:::::::::::
performance

:::::
based

::
on

::::::
known

:::::::::
properties

::::
that

:::
are

:::::::::::::
computationally

::::::::::
inexpensive

:::
to

::::::
obtain.

In the SI, we describe these properties in more detail (Table S4). In Sect. 5, we will discuss only a subset of the five most

important properties for the best classifier (see Sect. 4.1). These properties are the topological polar surface area (TPSA, (Ertl

et al., 2000)), the number of hydrogen bond donors (HBD), the number of hydrogen bond acceptors (HBA), the Wildman-
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Crippen logarithm of the partition coefficient (CrippenClogP, (Wildman and Crippen, 1999)), the fraction of sp3 carbons195

(FractionCSP3), the Hall-Kier alpha value (HallKierAlpha, (Hall and Kier, 1991)) and the molecular weight. TPSA calcu-

lates the polar surface area by summing the contribution of individual fragments
:::::::::::
sub-structures

:
containing nitrogen, oxygen,

phosphorus and sulfur. The HallKierAlpha value is the sum of the scaled measures of each atom’s covalent radius, adjusted

for its hybridization state and electronegativity. The scaling is relative to the covalent radius of a sp3 hybridized carbon atom.

CrippenClogP measures the hydrophobicity of a molecule while the FractionCSP3 indicates the saturation of carbon atoms200

in the molecule. The number of HBA counts the oxygen and nitrogen atoms in the molecule. In the descriptor, two distinct

properties address this value (LipinskiHBA and NumHBA). The number of HBD calculates the number of hydrogen atoms

attached to oxygen and nitrogen atoms in the molecule (addressed by LipinskiHBD and NumHBD). Lastly, the molecular

weight is addressed as well by two distinct properties: the average molecular weight (AMw) and the exact molecular weight

(ExactMw).205

3.2 Topological fingerprint (TopFP)

TopFP (Fig. ??
:
5a) implemented in RDKit (Landrum, 2006) is a molecular descriptor inspired by the Daylight fingerprint

(James et al., 1995). This fingerprint extracts molecular fragments
:::::::::::
sub-structures of a certain size by starting from one atom and

following the bond topology. A mathematical function converts each fragment
:::::::::::
sub-structure into a bit string (hashing) and all

strings are concatenated into the final fingerprint. In the implementation, the length of the path
::::::::::
sub-structure, the number of bits210

per hash and the final size of the fingerprint are called hyperparameters and can be optimized to improve the performance of the

descriptor. TopFP is easily implemented at a reasonable computational cost. However, the hash function makes interpretation

difficult as there is no one-to-one correspondence between fragments
:::::::::::
sub-structures and bits.

3.3 Molecular access system keys (MACCS)

MACCS also encodes molecular features as binary string (Durant et al., 2002) (Fig. ??
:
5b). Unlike TopFP, however, bits corre-215

spond to the one-hot encoding of specific predefined questions, such as ’Does the molecule contain a carbonyl group?’ (Yes:

1, No: 0). In this work we used the RDKit MACCS implementation, which encompasses a total of 166 keys (Landrum, 2006),

making this descriptor fast to run. However, MACCS is limited in the number of implemented questions and any structural or

chemical information not captured by these questions is lost.

3.4 Coulomb matrix (CM)220

The Coulomb matrix (Fig. ??
:::
M ,

:::
Fig.

::
5c) encodes both the cartesian coordinates and the nuclear charges of each atom in the

molecule as a n×n matrix, where n is the number of atoms in the molecule:

MIJ =

0.5Z2.4
I ∀ I = J

ZIZJ

|RI−RJ | ∀ I ̸= J.
(1)
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ZI is the atomic number of atom I and |RI −RJ | the Euclidean distance between the atoms I and J . The elements on the

diagonal were fitted to atomic energies, while the off-diagonal elements encode a Coulomb repulsion between each atom pair in225

the molecule (Rupp et al., 2012). Compared to other three-dimensional representations, the CM is straightforward to interpret,

easy to implement, and fast to compute. This simplicity, however, comes with a loss of detail, e.g. bond connectivity, which

may be relevant for
::::::::::
representing larger molecules such as pesticides.

In this work, we used the DScribe (Himanen et al., 2020) implementation of the CM. The CM has no hyperparameters to

optimize, which adds to its appeal.230

3.5 Many-body tensor representation (MBTR)

The MBTR (fK , Fig. ??
:
5d) captures the 3D structure of a molecule in a continuous way (Huo and Rupp, 2022):

fK(x) =
1

σK

√
2π

e
− (x−gK (K))2

2σ2
K . (2)

Here σK is the standard deviation of the Gaussian kernel, gK a geometry function with input K for many-body rank k.

The first term (k = 1) encodes only elemental features (K = Zi). The second term (k = 2) records inverse or direct distances235

between atoms K = 1
|Ri−Rm| or K = |Ri−Rm| and the third term (k = 3) angles between three atoms K = ∠(Ri−Rm,Rn−

Rm) (or K = cos(Ri −Rm,Rn −Rm)). Because the three terms are tabulated on a grid, this descriptor is the largest one we

tested.

In this work, we used the DScribe (Himanen et al., 2020; Laakso et al., 2023) implementation of the MBTR. We used only the

k = 2 and k = 3 terms, since including the first term did not improve the performance but increased the computation time (see240

Fig. S6 in the SI). We used inverse distances and the cosine for K=2 and K=3, respectively, and applied exponential weighting

to determine the relative importance of each term. The tuned hyperparameters are the Gaussian broadening parameter σ2 and

σ3 and the scale of the weighting referred to as w2 and w3 (Himanen et al., 2020).

4 Machine learning methods

In this section, we briefly introduce the two ML methods that we use in this work. To
:::::
Figure

::
2c

:::::::::
presented

:
a
::::::::
potential

:::::::
problem245

::
for

:::
the

::::::
direct

::::::
training

:::
of

:
a
:::::::::
regression

::::::
model:

:::
for

:::::::::
individual

::::::::
ionization

::::::::
methods,

:::
the

::::
data

::
is

::::::::::
imbalanced

::::
with

:
a
:::::::::

relatively
::::
high

::::::
amount

::
of

::::::::::
undetected

:::::::::
pesticides.

::::
This

:::::::::
imbalance

:::::::
suggests

::::
that

::::
there

::::::
might

:::
not

::
be

:::::::
enough

::::::::
instances

::
to

::::
train

::
a
::::::
model

::::
able

::
to

::::::::
generalize

:::::::
patterns

::::
and

::::::
signals

::
of

:::
the

:::::::::
molecules,

::::::::::
potentially

::::::
leading

::
to

:::::
poor

::::::::
predictive

:::::::::::
performance.

:::
To

:::::
tackle

::::
this

::::::::
problem,

::
we

:::::::
decided

::
to

::::::
divide

:::
the

:::::
CIMS

::::::
signal

:::::::::
prediction

:::
into

::
a
:::::::::::
classification

::::
task

:::
and

::
a
:::::::::
regression

::::
task.

:::
To classify, if a pesticide is

detectable or not with a specific ionization method, we will train a RF classifier. Subsequently, we will investigate, if we can250

predict the corresponding CIMS intensity with KRR.
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4.1 Random forest classifier (RF)

RF (Breiman, 2001) is a ML method that combines different decision trees, each of which learns the relation between input

and output features in terms of simple decision rules. Each tree is trained on a subset of the data and input features. Additional

bootstrapping decreases the variance of the prediction by resampling the training set observations. In this work, we used a255

scikit-learn RF classifier (sklearn.ensemble.RandomForestClassifier). Each tree gives a class probability prediction (detected

or undetected) and the final prediction is an average of the probability given by each tree. We optimized the following hyperpa-

rameters: the maximum number of estimators (the trees creating the forest), the maximum depth of each tree (the length from

the starting point, "root", to the final points, "leaves"); the minimum number of samples per leaf, to ensure that each leaf has

an adequate number of data points to avoid overfitting and underfitting; the minimum number of sample splits, to ensure that260

each internal node (which can branch again) has an adequate number of samples.

4.2 Kernel Ridge Regression (KRR)

Regression is a statistical process that determines the strength and character of the relationship between one dependent variable

and a series of other variables. In this work, we perform kernel ridge regression (KRR) to include non-linearities (kernel) and

prevent over-fitting (ridge regression (Hoerl and Kennard, 1970)). The kernel model (f ) is expressed as a linear sum over kernel265

functions k over the training samples xi

f (x̃) =

n∑
i=1

αik (xi, x̃). (3)

The expansion coefficients αi follow from the minimization of the ridge loss function

arg min
α∈Rn

n∑
i=1

(f(xi)− yi)
2
+λ∥f∥2H → α= (K +λI)−1y. (4)

Here K is the kernel matrix, I is the identity matrix and ∥f∥H is the norm of f in the feature space. We use the Gaussian kernel270

k(xi,xj) = exp

(
−∥xi −xj∥22

2σ2

)
(5)

where σ is the length scale hyperparameter. In this work, we applied the KRR implementation (sklearn.kernel_ridge.KernelRidge)

from scikit-learn.

4.3 Performance metrics

The classification performance will be tested by calculating the accuracy of the class prediction.
::::::::
Different

:::::::::::
performance275

::::::
metrics

::::
will

::
be

:::::::
adopted

:::
to

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
classifier

::::
and

:::
the

::::::::
regressor

::::::::
methods.

:::
For

:::
the

:::::::::::
classification

:::::
task,
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::
the

:::::::::::
performance

::::
will

:::
be

::::::::
evaluated

:::::
using

::::
two

:::::::
metrics:

::::::::
accuracy

:::
and

:::
the

::::::::
receiver

::::::::
operating

:::::::::::
characteristic

::::::
(ROC)

::::::
curve.

:
The

accuracy score is the fraction of correct predictions compared to the total number of observations present in a test set:

accuracy(y, ŷ) =
1

n

n−1∑
i=0

1(ŷi = yi) (6)

where ŷi is the i-th predicted class, yi is its reference class and n the number of samples in the test set.280

The receiver operating characteristic (ROC )
:
In

:::
the

::::
case

::
of

:::
the

:::
RF

:::::::::
classifier,

:::
the

:::::
model

:::::::
outputs

:::::::::
probability

::::::
scores

::
for

:::::
each

::::
class,

::::
and

::::
then

:
a
::::::::

threshold
::

is
:::::::
applied

::
to

:::::::::
determine

:::
the

::::
final

::::
class

:::::
label,

:::
the

::::::::
predicted

:::::
class.

::::
The

:::::
ROC curve provides us with

an additional performance assessment. The curve puts the correctly classified pesticides (true positive rate, vertical axis) in

relation to the incorrectly classified ones (false positive rate, horizontal axis), across a range of different threshold levels.
:::
By

::::::
varying

:::
the

::::::::
threshold

:::::
used

::
to

:::::::
convert

:::::::::
probability

::::::
scores

::::
into

::::
class

::::::
labels,

:::
we

::::
can

:::::::
observe

:::
the

:::::::
model’s

:::::::::::
performance

::::::
across285

:::::::
different

::::::::
operating

::::::
points. The area under the curve (AUC) quantifies the overall ability of the classifier to distinguish between

the detected class and the undetected class
:::
two

:::::
given

::::::
classes (Géron, 2022). The more the curve shifts towards the top-left

corner (with an AUC corresponding to 1), the better the classification. A random classifier would correspond to a diagonal line

with an AUC of 0.5.

The regression performance will be assessed with the mean absolute error (MAE), a metric commonly used to measure the290

average absolute difference between a variable’s predicted and reference values. Unlike other metrics, MAE does not penalize

outliers as it assigns equal weight to all errors (Rupp, 2015). The MAE is defined as

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi| , (7)

where ŷi is the predicted value of the i-th sample, yi is the corresponding true value in the dataset and n is the number of

observations.295

4.4 Computational details

We train a separate classification and regression model for each ionization method. The datasets were randomly split into test

(20%) and training (80%) sets,
::::::::

ensuring
::::
that

:::
the

::::::
trained

:::::::
model’s

:::::::::::
performance

::
is

::::::::
evaluated

::::
with

:::
an

::::::::::::
out-of-sample

:::::
subset

:::
of

:::
data. The training set is further split into six subsets to create a learning curve. Each model was trained with five different

random splits (i.e., different random seeds) to average out data variability and to collect statistics. Additionally, we optimized300

the hyperparameters with 5-fold cross-validation using random search implemented by scikit-learn

(sklearn.model_selection.RandomizedSearchCV), which is efficient in higher dimensions (Stuke et al., 2021).

We trained binary classifiers that distinguish only between two classes (class 1: detected, class 0: undetected), for which we

have a maximum of 554 training points (80% of the data). The regressors were trained on the logarithmic CIMS intensity of

the detected pesticides.
:::::
Before

::::::::
training,

::
we

::::::::::::::
log-transformed

:::
the

:::::::
non-zero

::::::
CIMS

::::::::
intensities

::
to

:::::
create

::
a
::::::::::
normal-like

::::::::::
distribution,305
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:::::::
reducing

:::::::
outliers’

::::::
impact

::::
and

::::::::
stabilizing

::::::::
variance.

:::::
MAE

::
is

::::
then

:::::::
reported

:::
on

:::
this

:::
log

:::::
scale,

:::::::
showing

:::
the

:::::::
model’s

:::::
error

::
in

:::::
terms

::
of

::::::::::::::::
order-of-magnitude

::::::::
accuracy. This gives us a maximum of 240

::::::
training data points for Br– , 174 for O2

– , 376 for H3O+, and

379 for AceH+.

In Sect. S4 of the SI, we provide the optimized hyperparameters for each model and each random seed. Tables S6, S7, S8, S9,

and S10 report the RF hyperparameters and Tables S11, S12, S13, S14, and S15 the KRR hyperparameters for each molecular310

descriptor.

5 Results and discussion

::
In

:::
this

:::::::
section,

::
we

:::::::
present

:::
and

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::
our

::::::
trained

:::::::
models.

:::
For

:::
the

:::::::::::
classification,

:::
we

:::::::
examine

:::
the

::::::
ability

::
of

:::
our

:::
RF

::::::
models

::
to

::::::
predict

:::
the

:::::::
detected

:::
or

:::::::::
undetected

:::::::::
compounds

:::
in

:::
the

:::
test

:::
set.

:::
For

:::
the

::::::::::
regression,

::
we

::::::::::
investigate

:::::::
whether

:::
our

::::
KRR

::::::
models

::::
can

::::::::
accurately

::::::
predict

:::
the

:::::
CIMS

:::::::::
sensitivity

::
of

:::
the

:::
test

:::
set

::::::::::
compounds.

:::::::::::
Furthermore,

:::
we

::::::
analyze

::::::
which

:::::::::
descriptors315

::::
most

:::::::::
effectively

:::::::
enhance

:::::
model

:::::::::::
performance

:::
and

:::::::
explore

:::::::
whether

:::::::
chemical

:::::::::
qualitative

:::::::
insights

:::
can

:::
be

::::::
derived

:::::
from

:::::
them.

5.1 CIMS detection prediction

The classification ROC curves and relative AUC values for each ionization scheme are presented in Fig. 6 for the five molecular

descriptors. All ROC curves lie above the diagonal, which implies that our RF models can classify if a pesticide is detectable

based on its atomic and chemical structure. However, they do so with varying degrees of success. The best performance is320

achieved with the MACCS, MBTR and RDKitPROP descriptors, with average AUC values above 0.86. The TopFP and CM

descriptors perform worse, in particular for the negative ionization schemes, most likely due to the smaller number of training

samples.
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Figure 6. Evaluation of the classification performance with RF, by the use of ROC curves for the four ionization schemes (Br– , O2
– , H3O+,

AceH+) with the five molecular descriptors (MACCS, MBTR, TopFP, CM, properties). For each curve, we report the AUC value. The x-axis

reports the false positive rate, the y-axis reports the true positive rate. The mean value and standard deviation are obtained by repeating the

training with five different random re-shuffling of the dataset.
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Table 2 reports the classification accuracy for each reagent ion over five random re-shuffles of the datasets. The learning

curves for the accuracy can be found in the SI (Fig. S7), where we also present the learning curves for similar performance325

metrics such as recall, precision and F1 score (Fig. S8, Fig. S9 and Fig. S10, respectively). All classification models reach an

accuracy above 0.6. The CM descriptor shows the worst overall performance for Br– (0.64 ± 0.04 of accuracy) and MACCS

reaches the best overall performance for H3O+ (0.85 ± 0.02 of accuracy). In general, the accuracy is lost
:::::
worse

:
for Br– ,

while O2
– is en par with H3O+ and AceH+. Overall, MBTR and MACCS yield the highest accuracy, followed by TopFP and

RDKitPROP and then CM.330

Table 2. Accuracy Mean value and standard deviation of the prediction on the test dataset with RF for all reagent ions with the five different

molecular descriptors. The values were obtained by repeating the training on the largest training size (80% of the dataset) with 5 different

random re-shuffling of the dataset.

Ionization method Training size Descriptor Accuracy

Br– 554 TopFP 0.75 ± 0.04

MACCS 0.78 ± 0.02

CM 0.64 ± 0.04

MBTR 0.76 ± 0.06

RDKitPROP 0.76 ± 0.03

O2
– 554 TopFP 0.78 ± 0.06

MACCS 0.83 ± 0.04

CM 0.73 ± 0.05

MBTR 0.80 ± 0.04

RDKitPROP 0.84 ± 0.02

H3O+ 554 TopFP 0.83 ± 0.02

MACCS 0.85 ± 0.02

CM 0.76 ± 0.02

MBTR 0.81 ± 0.01

RDKitPROP 0.79 ± 0.03

AceH+ 554 TopFP 0.80 ± 0.02

MACCS 0.83 ± 0.02

CM 0.76 ± 0.03

MBTR 0.82 ± 0.01

RDKitPROP 0.83 ± 0.02
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MBTR is the largest and most complex descriptor we have tested. Its good performance is similar to previous observations

for vapour pressure (Lumiaro et al., 2021) and ionization energy predictions (Stuke et al., 2019). The fact that the MACCS key

achieves a similar performance is at first surprising because it performed poorly in the earlier studies. The good classification

performance reported here, however, indicates that the chemical complexity of the pesticides is well captured by the questions

encoded in the MACCS key
::::
keys.335

The ROC curves and the accuracy metrics demonstrate good discriminative capabilities for predicting pesticide detection.

This performance is particularly noteworthy given the challenges posed by the class imbalance in the dataset and the relatively

small training set of just 554 observations, which is modest compared to typical ML applications. The fact that all models

classify well indicates that they can capture the inherent chemical and structural diversity of the pesticides, which can provide

additional insight into the interaction between the target molecules and reagent ions (see Sect. 5.3).340

With an accuracy and AUC of around 0.8 our best-performing models are good enough to be useful in deployments. We

expect that the trained models can predict detection with CIMS (specifically with Br– , O2
– , H3O+, or AceH+ as reagent

ions) for molecules with similar structural features to those in our dataset. This could speed up laboratory analyses or field

deployment for measuring campaigns or safety and security systems since one can a priori check if a pesticide will be detectable

without having to perform a CIMS experiment.345

5.2 Quantitative prediction of CIMS sensitivity to target molecules

We now turn to evaluate the performance of the regression models tasked to predict the CIMS sensitivity of the pesticides.

The MAE learning curves of the KRR models are shown in Fig. 7 for five random seeds and the different descriptors. For

all the reagent ions, the MAE decreases with increasing training size indicating that our models indeed learn with data. The

learning rate is comparable to earlier work Lumiaro et al. (2021); Stuke et al. (2019) that used much larger datasets. Usually,350

the variance decreases with increasing dataset size, which is not the case in Fig. 7. We ascribe that the variance across the

learning curves is moreless similar to the fact that our datasets are extremely small
:::::::
attribute

:::
the

:::::::::
variability

::
in

:::::::
learning

::::::
curves

::
to

:::
the

:::::
small

:::
size

:::
of

:::
the

::::::
training

:::::::
dataset.

:::::
When

:::::::
subsets

::
of

::::
data

:::
are

:::::::
selected

:::::
using

::::::::
different

::::::
random

::::::
seeds,

:::
the

::::::
limited

:::::::
number

::
of

::::::::::
observations

:::::
leads

::
to

::::::::::
inconsistent

::::::::
sampling

::
of

::::
data

:::::::
patterns,

:::::
which

::::::::
prevents

:::
the

:::::
model

:::::
from

:::::::::
stabilizing,

::::::::::
particularly

::::::
against

::::::
outliers.

:::
As

::
a
:::::
result,

:::
the

::::::::
variance

:::::
across

::::::::
learning

:::::
curves

:::
as

:::
the

:::::::
training

::
set

::::
size

::::::
grows

:::::::
remains

::::
high

:::
due

::
to
:::

the
:::::

small
:::::::

sample355

:::
size.
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Figure 7. Learning curve with mean absolute error (MAE) of the signal intensity values in logarithmic scale of Br– , O2
– , H3O+ and AceH+

datasets, based on the TopFP, MACCS, CM, MBTR and properties as the descriptors. The x-axis reports the training set size, the y-axis

reports the MAE of the logarithmic signal intensity. The mean value and standard deviation are obtained by repeating the training with five

different random re-shuffling of the dataset.
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Table 3 presents the average MAE values for the highest training size for each ionization method and descriptor averaged

over the five random seeds. All trained models achieved an error lower than one logarithmic unit of signal intensity. Such low

MAEs present a significant achievement considering both the complex task and the small size of the dataset and the fact that

CIMS signals vary over several orders of magnitude.360

We find the lowest MAEs for the positive
::::::
polarity ionization methods, most likely, because the available datasets are larger.

Unlike for classification, the different descriptors perform similarly for
:
to

:
the regression task. Overall, MACCS is still the best,

followed by TopFP and the MBTR. The fact all descriptors learn similarly is surprising since they capture different features of

the elemental and structural features. We attribute this behaviour to the fact that the CIMS intensity correlates with the binding

strength of the reagent ion (Partovi et al., 2023; Iyer et al., 2016; Hyttinen et al., 2018), but none of the descriptorstook the365

reagent ion into account. We suspect that refined descriptors that target the combined ion-molecule ensemble will perform

better
:::::
believe

::::
this

::::::::
behaviour

:::::
stems

:::::
from

:::
the

:::::::
inherent

::::::::::::
characteristics

::
of

:::
the

:::::::
dataset.

::::
The

::::
noise

::::
and

:::::::::
variability

::
in

:::
the

::::
data

:::::
could

::::::
obscure

:::
the

::::::::
potential

::::::::::
advantages

::
of

:::::
these

:::::
more

:::::::
complex

::::::::::
descriptors.

::::::::
Moreover,

:::::
since

:::
we

::::::::
employed

:::::
KRR

::
as
::::

our
:::::::::
regression

::::::
model,

:::
its

::::::
ability

::
to

::::
learn

:::::::
intricate

:::::::
patterns

:::::
might

::
be

:::::::
limited

::
by

:::
the

:::::::
inherent

:::::::::
challenges

::::::
present

::
in
:::
the

:::::
data.
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Table 3. Mean absolute errors (MAE) and standard deviation of the prediction on the test dataset with KRR for all reagent ions with the five

different molecular descriptors. The values were obtained by repeating the training on the largest training size (80% of the detected dataset)

with 5 different random re-shuffling of the dataset.

Ionization method Training size Descriptor MAE [log(signal intensity)]

Br– 240 TopFP 0.74 ± 0.10

MACCS 0.72 ± 0.06

CM 0.82 ± 0.05

MBTR 0.74 ± 0.07

RDKitPROP 0.86 ± 0.06

O2
– 174 TopFP 0.55 ± 0.07

MACCS 0.60 ± 0.08

CM 0.74 ± 0.07

MBTR 0.61 ± 0.03

RDKitPROP 0.64 ± 0.05

H3O+ 376 TopFP 0.47 ± 0.06

MACCS 0.44 ± 0.03

CM 0.48 ± 0.03

MBTR 0.47 ± 0.04

RDKitPROP 0.45 ± 0.04

AceH+ 379 TopFP 0.50 ± 0.05

MACCS 0.44 ± 0.03

CM 0.54 ± 0.05

MBTR 0.50 ± 0.03

RDKitPROP 0.48 ± 0.04

The results demonstrate that all models can achieve a MAE under one unit of logarithmic signal intensity, which is impres-370

sive, especially considering the even lower number of observations compared to the classification task (174 in the worst case).

Such an accuracy is already sufficient for deployment in field studies. For suspected molecules or pollutants, ML models could

estimate the expected signal intensity, and subsequently its concentration in the atmosphere without relying on quantum chem-

ical computations or direct measurements. Conversely, insight into the detection processes could be garnered by identifying

chemical features that correlate with the signal intensity for the different ionization methods. We will present such analysis in375

the next section.
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5.3 Chemical insight

Next, we will extract chemical insight from our ML models. RF provides access to the feature importance, i.e., to the input

features that correlate most strongly with the output. This feature importance provides insight into the complex
::::::
explore

:::
the

:::::::
chemical

::::::
insight

:::
our

::::
ML

:::::::::::
classification

::::::
models

::::
offer

::::
into ion-molecule interactions.

::
As

:
a
:::::
proof

::
of

::::::::
concept,

::
we

::::
aim

::
to

:::::
relate

:::
the380

::::::
model’s

:::::::
findings

::
to
::::::::::
established

:::::::::
knowledge

::::
and

:::
note

::::
any

::::::::::
unexpected

::::::::
influential

::::::::
features.

:::
We

:::::
focus

::
on

:::
the

:::
RF

::::::::
classifier

::::::
model,

::
as

::
it

::::::
enables

:::::::::::::
straightforward

::::::::::::
identification

::
of

::::
key

:::::::::
molecular

:::::::
features

:::::::::
associated

::::
with

:::::
signal

::::::::::::
detectability.

::::
This

::
is

::::::::
achieved

::
by

::::::::
analyzing

::::::
which

:::::::
features

:::
are

:::::
most

:::::::::
influential

::
in

:::
the

:::
RF

:::::::
model’s

:::::::::::
classification

:::::::::
decisions.

:
We will focus on the MACCS

and RDKitPROP descriptors because they are the most interpretable.
:
In

:::
the

::::
case

:::
of

::::::::
MACCS,

:::
the

::::::
insight

:::
into

::::
the

:::::::::
interaction

:::
can

::
be

::::::::
extracted

:::
by

::::::::
analysing

:::
the

:::::::::
occurrence

:::
of

::::::::
molecules

::::::::
detected

:::
and

:::
not

::::::::
detected

:::
for

::::
each

::::::
feature,

:::
i.e.

:::::
each

:::::::
MACCS

::::
key385

::::::::::::
(sub-structure)

::
of

:::
the

:::::::::
molecular

::::::::
structure.

::
In

::::
the

::::
case

::
of

:::::::::::
RDKitPROP,

:::
the

::::::
insight

::::
into

:::
the

::::::::::
interaction

:::
can

:::
be

:::::::::
formulated

:::
by

::::::::
analysing

::::
each

:::::::
feature,

:::
i.e.

::::::::
property.

:
For each ionization method, we pick the largest training set size and then obtain the

feature ranking and the corresponding coefficients (importance values) from the trained RF models for the five random seeds.

We then average the importance values for each feature and rank again.
::
For

::::
each

:::::::::
ionization

:::::::
method,

:::
we

:::
pick

:::
the

::::::
largest

:::::::
training

::
set

::::
size

:::
and

::::
then

::::::
obtain

::
the

::::::
feature

:::::::
ranking

:::
and

:::
the

::::::::::::
corresponding

::::::::::
coefficients

::::::::::
(importance

::::::
values)

:::::
from

:::
the

::::::
trained

::
RF

:::::::
models390

::
for

:::
the

::::
five

::::::
random

::::::
seeds.

:::
We

::::
then

::::::
average

:::
the

::::::::::
importance

:::::
values

:::
for

::::
each

::::::
feature

::::
and

::::
rank

:::::
again.

:

Figure 8. Pearson correlation coefficient (%) of the normalized features importance values obtained from the RF estimator trained on 80%

of the data with optimized hyperparameters based on MACCS and RDKitPROP.

We then compare the most important features of a given ionization method to those of the other ionization methods by means

of the Pearson correlation coefficient. Figure 8 shows the Pearson correlation coefficient of the normalized feature importance

22



values in percentage for the RDKitPROP and MACCS descriptors. For both descriptors, the features for the negative (Br–

and O2
– ) and positive

::::::
polarity

:
ionization methods (H3O+ and AceH+) correlate strongly (above 86.8%). The inter-correlation395

between the features of the positive and negative reagent ions, however, is much weaker (between 21.4% and 52.7%). The

Pearson correlation coefficients reveal that the polarity of the reagent ion predominately determines which molecular features

the ion interacts with. We made a similar observation in Fig. ??
:
3b, where we saw that the signal intensities cluster strongly by

the polarity of the reagent ion.

Figure 9 reports the importance values in percentage for the most important features of the RDKitPROP model for the400

four ionization methods. Table S16 and Table S17 in the SI provide the values for all the properties, and additionally, the

average value of the property calculated individually for detected and undetected pesticides. No feature has an importance

above 10% and only four of them reach an importance above 6 %: TPSA, LipinskiHBA in the case of positive reagent ions,

and LipinskiHBD and NumHBD in the case of negative reagent ions. The next most important properties are NumHBA

and NumAtoms for positive
::::::
polarity

:
ionization methods and then HallKierAlpha, CrippenClogP, FractionCSP3, AMw and405

ExactMw presenting similar importance for both positive and negative
::::::
polarity

:
ionization methods.

Figure 9. RDKitPROP RF best estimator features importance % of a subset of properties for each ionization method.

As mentioned in Sect. 3.1, some properties present repetitive information, which means that the overall importance relative to

the number of HBD, as an example, is shared between the NumHBD property and the LipinskiHBD property. Either property

probably would have reached a higher importance if only one of the two were considered. The other two properties that

present repetitive information are the number of HBA (with importance shared between NumHBA and LipinskiHBA), and410
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the molecular weight (with importance shared between AMw and ExactMw). Going into more detail, the number of HBD

correlates strongly with negative
::::::
polarity

:
ionization methods and the number of HBA with positive ones. This behaviour is

expected, because HBD quantifies the number of hydrogen atoms attached to either oxygen or nitrogen atoms. Both of these

groups can create a hydrogen bond and thus promote the interaction with negative reagent ions. Conversely, HBA encodes the

number of oxygen or nitrogen atoms in the molecule, which can both create a hydrogen bond or accept a proton, promoting415

the interaction with positive reagent ions.

The high importance of TPSA highlights the significance of the molecular polar surface for the interaction with the reagent

ions. As expected, if the polarity is right, the reagent ion can bind. The binding energy
::
in

:::
the

:::::::::
ionization

::::::::::
mechanism.

::::
The

::::::
polarity

::
of

:::
the

::::::
target

:::::::
molecule

::::
can

:::::::
increase

:::
the

:::::::
chances

::
of

:::::::::
interacting

::::
with

:::
the

:::::::
reagent

::::
ion,

:::::::
therefore

:::::::::
increasing

:::
the

::::::::
resulting

:::::
signal

::::::::
intensity.

:::
The

::::::::
tendency

::
of

::::::::
ionization

:
and thus the CIMS signal intensity then increase with increasing polarity. Notably,420

our models assign a higher importance to the polarity for positive reagent ions, possibly due to the higher number of detected

pesticides in the data. However, it is important to note that TPSA was originally calculated and implemented by not including

halogen contributions in the equation (Ertl et al., 2000; Landrum, 2006). Therefore, the high presence of bromine, fluorine and

iodine atoms in pesticides influences the polarity and might result in a different polar surface area.

Similar to TPSA, CrippenClogP adds the importance of hydrophilicity to the interaction list
:::::::::
emphasizes

:::
the

:::
role

:::
of

:::::::::::
hydrophilicity425

::
in

:::
our

:::::::::
interaction

:::::::
analysis. The importance of the molecular weight and NumAtoms indicates that the

::::
larger

:
molecular size

correlates with detectability, possibly, because a larger molecule offers more van der Waals binding and potentially more

binding sites for the
::
as

:
it
::::::::
provides

::::
more

:::::::::
functional

:::::::
groups,

:::
and

::
a
::::::
greater

:::::::
collision

::::::::::::
cross-section,

:::::::
thereby

:::::::
possibly

:::::::::
increasing

::
the

:::::::::
likelihood

::
of

::::::::::
interactions

::::
with

:::
the

:
reagent ion.

HallKierAlpha was also found useful in predicting molecular detection characteristics, which indicates that for each molecule430

the sum of the scaled measures of each atom’s covalent radius (adjusted for its hybridization state relative to the covalent radius

of a sp3 hybridized carbon atom) relates to the reagent ion-target molecule interaction. For all ionization methods, both detected

and undetected molecules have negative HallKierAlpha values (see Table S16 and Table S16), suggesting that the molecules in

the dataset generally have smaller average atomic sizes relative to a sp3 hybridized carbon atom. Detected molecules exhibit,

on average, a smaller HallKierAlpha value than undetected ones. However, it is not clear, if this difference in HallKierAlpha435

values is statistically significant.

The presence of FractionCSP3 among the most important features indicates that the fraction of sp3 hybridized carbons in

the molecule contributes to the reagent ion-molecule interaction. With an in-depth analysis, the data suggests that molecules

with a ’rigid’ structure (fewer sp3 carbons) slightly prefer interaction with negative reagent ions, while molecules with flexible

structures (more sp3 carbons) slightly prefer interaction with positive reagent ions.440

:::
We

:::::::
observe

:::
that

:::::::
several

::
of

::::
the

::::::::
identified

:::::::::
important

:::::::
features

:::::
relate

::
to

::::::
proton

:::::::
affinity.

::::
The

:::::::
number

:::
of

:::::
HBA

::::::::::
(NumHBA,

:::::::::::
LipinskiHBA)

:::
is

::::::
directly

:::::::::
correlated

::
to

::::::
proton

:::::::
affinity

::
as

::
it

::::::::
calculates

::::
the

::::::
number

:::
of

::::
sites

::::::::
available

::
to

::::::
accept

:
a
:::::::

proton.
::::
The

:::::
TPSA

::::::::
describes

:::
the

:::::::::
molecule’s

:::::::
polarity,

:::
and

:::
for

::::::
certain

:::::::::
molecules,

:
a
::::::
higher

:::::
TPSA

:::::
could

::::::::
correlate

::::
with

:
a
:::::
higher

::::::
proton

:::::::
affinity.

::::::::::::
HallKierAlpha

::::::::
correlates

::
as

::::
well

:::::
since

:::::
every

:::::
atom’s

::::::::
covalent

:::::
radius

::
is

:::::::
adjusted

:::
for

::
its

:::::::::::
hybridization

::::
state

::::
and

::::::::::::::
electronegativity,

::::::::
reflecting

::
the

:::::::::
likelihood

::
of

:::::
atoms

::::::
within

:
a
::::::::
molecule

::
to

::::::
donate

:::::::
electron

::::::
density

::
to

:
a
:::::::
proton.

::::::::::::
FractionCSP3,

:::::
while

:::
not

:::::::::
correlating445
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::::::
directly

::
to
::::::

proton
:::::::

affinity,
:::::
might

:::::::::
influence

:::
the

::::::
overall

:::::::
basicity

::
of

:::
the

::::::::
molecule

:::::
(e.g.

:
a
::::::
higher

:::::::
amount

::
of

:::
sp3

:::::::
carbons

:::
in

:::
the

:::::::
molecule

:::::::::
potentially

::::::
affects

:::
the

:::::::
electron

::::::
density

::
of
:::::::::::
heteroatoms

:::::::::
indirectly).

:::
We

::::
note

:::
that

:::::::
different

:::::::
reagent

::::
ions

::::
react

::::
with

:::
the

::::::
analyte

:::
in

::::::
distinct

:::::
ways

:::
(see

:::
the

::::::::::::
Introduction).

:::::
While

:::
our

::::::
results

:::::::
support

:::
the

::::::::
predictive

:::::
nature

:::
of

::::::::
properties

::::
like

::::::
proton

::::::
affinity,

::::::::::
specifically

:::
for

:::::::
positive

::::::
reagent

:::::
ions,

:::
the

:::
ML

:::::::
model’s

:::::::::
advantage

:::
lies

::
in

:::
its

::::::::
flexibility.

:::
As

::::::
shown,

:::
this

::::::::
approach

:::::
aligns

::::
well

::::
with

:::::::::
established

::::::::::
knowledge,

:::
yet

:::
the

:::
ML

:::::::::::
methodology

::::::::
combined

::::
with

:::::::::
molecular450

::::::::::::
representations

:::
can

::::::
relate

:::
any

::::::
reagent

::::
ion

::
or

::::::::
ionization

::::::::::
mechanism

::
to

:::
the

:::::::::
magnitude

:::
of

:::::
CIMS

::::::
signals

:::::
using

::::
only

:::
the

:::::::
analyte

::::::::
molecular

::::::::
structure.

Figure 10 reports the importance values in percentage of a representative subset of the 50 most important keys (e.g. reaching

1% importance for at least one ionization method) of the MACCS model
::::::::
descriptor

:
for the four ionization methods (the

remaining important keys can be found in Table S18 and Table S19 in the SI). We find no key with importance above 6%,455

suggesting that in complex systems such as pesticides, no single structural or chemical feature dominates the interaction with

the reagent ions. Instead, multiple features of the molecule participate in the interaction, either by actively connecting to the

reagent ion or passively through, e.g., inductive effects that increase the bond strength. It is also important to remember that

our dataset is quite diverse. Thus, specific features or functional groups could have different importance for different types of

molecules, decreasing the overall importance values. The groups with the highest importance are amines (NH, either primary460

or secondary) and hydroxyl (OH), for negative reagent ions, and nitrogen and nitrogen atoms with three single bonds (NA(A)A,

where "A" stands for any element) for positive reagent ions. All other features do not surpass 2.5% of importance, on average.

Figure 10. MACCS RF best estimator features importance % of a subset of MACCS keys for each ionization method.
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Additionally, Table 4 reports a subset of the 50 most important MACCS features. The table reports individually for each

reagent ion: the key (or group)structure
:::::::::::
sub-structure), its importance value in (IMP %), the proportion of appearance in the

dataset (PP %) and the average count of the appearing key per molecule (Avg) (calculated individually for detected (D) and465

undetected (ND) pesticides).

NH is most important for Br– and O2
– (3.56% and 5.64% of importance respectively). It is nearly twice as important for

detected than undetected pesticides (approx. 57% vs approx. 24%). With 2.29% and 3.19%, the importance of OH is slightly

lower than for NH. Like NH, OH groups trigger predominately for detected pesticides (approx. 23% for detected vs 6% for

undetected molecules). For both OH and NH groups, the undetected pesticides had a higher average frequency of appearance470

(Avg, how many times a group is present in a molecule, for the full dataset on average, by considering only the detected

or undetected cases). However, we note that negative reagent ions suffer from a class imbalance, and the high amount of

undetected cases could influence this statistic.

Both OH and NH are HBD groups. OH is known to be important for the interaction with negative reagent ions, while the

importance of NH groups for this interaction has been observed by quantum chemical calculations in Partovi et al. (2023).475

With our ML models, we find these relations solely through patterns in the data.

For positive ionization schemes, OH groups do not reach 1% of importance and do not present any relevant variation between

detected and undetected. Amine groups reach 1% of importance and correlate with detected pesticides (44% for detected

vs 19% for undetected molecules). For AceH+ ionization, NH is only the 4th most important feature. The most important

groups for positive ionization are instead those containing nitrogen. Being a HBA, nitrogen is an element that can facilitate the480

interaction between reagent ions and sample molecules.

The presence of nitrogen (N in the table) reaches 3.65% and 4.00% in importance for H3O+ and AceH+. In both datasets,

N appears approximately in 88% of the detected pesticides and in 52% of the undetected pesticides. Similarly, NA(A)A groups

reach 3.80 % and 3.93 % of importance for H3O+ and AceH+. This group is common in the studied dataset (for positive reagent

ions: approximately 83% for detected, but only 42% for undetected pesticides).485

Next, we will analyse other groups with importance for both positive and negative reagent ions. Five important features

relate to the presence of halogens: the first three indicate if a halogen is present (X), if it has three single bonds (XA(A)A), and

if it is bonded to a ring (X!A$A, where "!" stands for a chain or non-ring bond and "$" stands for a ring bond). The last two

specify whether the halogen is a chlorine (Cl) or fluorine (F) atom. These halogen-related features range between 1% and 2% in

importance across the four ionization schemes (F is the only one not reaching 1% of importance for positive reagent ions). For490

negative reagent ions, these groups are 10-20% more prevalent in detected than undetected pesticides. However, the average

frequency of appearance per molecule between detected and undetected molecules does not present any clear difference. In

contrast, molecules detected by positive reagent ions have 15-20% fewer halogen features than undetected molecules (specif-

ically for the groups X, XA(A)A, X!A$A). The frequency of appearance per molecule is also higher for undetected pesticides,

with an average of 3 to 6 groups per molecule (compared to 2-3 groups per molecule for detected instances). F shows the495

opposite trend for positive reagent ions. It has a slightly higher presence and a higher average group frequency for detected

molecules. However, as previously stated, F does not reach 1% of importance for positive ionization schemes, so this result
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might not be as relevant as for the other features. In summary, the presence of halogens in a molecule enhances the detectability

of negative ionization schemes and reduces it for positive ones.

The carbonyl group have
::
has

:
a moderate importance (<2%) for all ionization schemes. For Br– and O2

– , the importance is500

1.8% and 1.52% and for H3O+ and AceH+ 0.82% and 1.57%, respectively. Focusing on negative reagent ions, C=O appears

approximately in 70% of the detected pesticides and in 50% of the undetected ones, with a similar frequency per molecule

(1.3 times). Carbonyl is an HBA group. Its importance for negative ionization schemes could therefore be due to either an

inductive effect of oxygen or a possible redirection of the reagent ion to HBD groups. For positive reagent ions, C=O is present

in approximately 64% detected and 40% undetected molecules, following its ability to accept hydrogens.505

Among the important MACCS keys, we find three which enumerate whether there is one, more than one or more than two

methyl groups (CH3, CH3>1 and CH3>2). The positive ionization schemes show a greater prevalence of these features for

detected pesticides than the negative schemes. For positive reagent ions, CH3 is most important when it appears two times in a

molecule.
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Table 4. MACCS-based RF best estimator feature importances % of a subset of structural keys (groups). For each key, the structure, the

importance value (IMP %) and the proportion of presence (PP%) with, in addition, the average group count per molecule (Avg) for detected

(D) and undetected (ND) molecules are stated. In the name of the structures, the special characters stand for: "A": any element, "X": halogen,

"!": chain or non-ring bond and "$": ring bond.

Br– O2
–

D ND D ND

Structure IMP % PP % Avg PP % Avg IMP % PP % Avg PP % Avg

NH 3.56 50.33 1.28 25.95 1.38 5.64 64.22 1.26 23.79 1.41
OH 2.29 21.00 1.02 6.11 1.25 3.19 24.77 1.02 6.95 1.18
N 0.66 83.67 2.39 71.50 2.05 0.57 87.16 2.41 72.00 2.10
NA(A)A 0.50 77.33 3.10 64.12 2.83 0.53 79.36 3.32 65.47 2.76
X 1.70 66.67 2.90 48.09 2.68 1.19 67.43 2.86 50.95 2.75
XA(A)A 1.87 64.33 3.43 43.00 3.60 1.38 64.68 3.33 46.53 3.63
X!A$A 1.59 54.00 4.13 36.39 4.94 1.19 53.67 3.79 39.58 4.95
Cl 1.18 53.33 1.94 40.20 2.37 0.99 50.46 1.72 43.79 2.38
F 1.56 25.67 3.34 10.43 2.56 1.81 28.90 3.48 11.58 2.60
C=O 1.80 68.33 1.34 50.38 1.32 1.52 72.48 1.31 51.58 1.34
CH3 0.76 74.67 2.58 82.70 2.87 1.16 70.18 2.55 83.37 2.83
CH3 > 1 1.39 56.00 3.10 71.50 3.16 1.14 53.21 3.04 70.11 3.17
CH3 > 2 (&...) 0.94 35.00 3.76 43.77 3.90 1.21 29.82 3.86 44.63 3.84

H3O+ AceH+

D ND D ND

Structure IMP % PP % Avg PP % Avg IMP % PP % Avg PP % Avg

NH 1.44 44.68 1.29 19.28 1.49 1.82 44.94 1.28 18.26 1.58
OH 0.81 10.43 1.00 17.04 1.18 0.82 10.34 1.00 17.35 1.18
N 3.65 88.30 2.28 52.47 1.97 4.00 88.19 2.26 52.05 2.04
NA(A)A 3.80 82.98 2.87 42.15 3.31 3.93 82.91 2.88 41.55 3.29
X 1.33 49.15 2.41 70.85 3.36 1.27 50.42 2.44 68.49 3.36
XA(A)A 1.27 45.53 2.79 66.37 4.55 1.35 47.05 2.81 63.47 4.64
X!A$A 2.07 37.02 3.23 58.74 6.21 1.24 39.66 3.26 53.42 6.52
Cl 1.81 38.51 1.50 61.43 3.01 1.34 40.51 1.51 57.53 3.13
F 0.63 19.15 3.04 12.56 3.14 0.48 18.99 3.10 12.79 2.96
C=O 0.82 63.62 1.31 46.64 1.39 1.57 64.77 1.32 43.84 1.38
CH3 1.44 85.96 2.90 65.02 2.34 1.15 84.81 2.86 67.12 2.44
CH3 > 1 2.28 72.55 3.25 48.43 2.80 1.69 70.68 3.23 52.05 2.86
CH3 > 2 (&...) 1.85 47.66 3.90 23.77 3.62 1.34 45.36 3.92 28.31 3.58
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Overall, RDKitPROP and MACCS in combination with RF have given us insight
:::::::
valuable

:::::::
insights into CIMS ion-molecule510

interactions, reaffirming general knowledge obtained by
:
.
::
In

::::
the

::::
case

::
of

:::::::
positive

:::::::
polarity

:::::::::
ionization

::::::::
methods,

::::
the

::::::
results

:::::::
obtained

::::
with

:::
the

::::::::
chemical

:::::::
insight

:::::::
analysis

:::::::
support

::::::
known

:::::::::
alternative

::::::::
methods

::
of

::::::::::
identifying

:::::::
whether

:
a
:::::::::

molecule
:::
can

:::
be

:::::::
detected,

:::
by

::::::::::
highlighting

::
a
:::::
series

:::
of

::::::::
properties

::::
that

::::
can

:::::
relate

::
to

::::::
proton

:::::::
affinity.

::
In

:::
the

::::
case

:::
of

:::::::
negative

:::::::
polarity

:::::::::
ionization

:::::::
methods,

::
a
:::::::::
substantial

::::::::::
comparison

:::
can

:::
be

:::::
made

::::
with

::::::::
literature

:::::::
findings

::::::
mainly

:::::
based

::
on

:::::::
detailed

:
quantum chemical calcula-

tionsor revealing uncharted features. Notably, our analysis extended to larger molecules than those examined by Partovi et al. (2023)515

, demonstrating that the insights gained apply to a wider variety of molecules.
:::::
Based

:::
on

:::::::::::
RDKitPROP,

:::
the

:::::::
number

::
of

:::::
HBD

::
in

::
the

::::::::
molecule

::::
was

::::::::
attributed

:::::
more

::::
than

:::::
10%

::
of

::::::::::
importance

:::
(by

:::::::::
combining

::::::::::::
LipinskiHBD

:::
and

:::::::::
NumHBD

::::::::::::
percentages);

:::::
while

:::::
based

::
on

::::::::
MACCS,

:::::
HBD

::::::
groups

::::
such

::
as

:::
OH

::::
and

:::
NH

:::::
were

:::::
found

::::::
among

:::
the

::::
most

::::::::
important

:::::
ones.

Given the simplicity of both molecular descriptors,
:::::
These

::::::
results

::::
agree

::::
with

:::::::::::
atmospheric

::::::::
chemistry

::::::
studies

::::
such

::
as

::::::::::::::
Iyer et al. (2016)

:::
and

:::::::::::::::::
Hyttinen et al. (2018)

:
,
:::::
where

::::::::
quantum

:::::::
chemical

::::::::::
calculations

::::::::
indicated

:::
that

:::
for

::::::
organic

:::::::
vapours,

::::
OH

:
is
:::
the

:::::::
primary

::::::::
functional520

:::::
group

:::::::::
interacting

::::
with

:::::::
negative

:::::::
reagent

::::
ions.

::::::::
Similarly,

:::::::::::::::::
Partovi et al. (2023),

:::
in

:
a
:::::
study

::
of

::::::::
pesticide

:::::::::
molecules,

::::::::
identified

::::
NH

:::::
groups

:::
as

:::::::::
significant

::
in

::::::::::
interactions

:::::
with

::::
Br–

:::::
when

::::
OH

::::::
groups

::::
were

:::::::
absent.

:::::
Thus,

::::
our

:::::
model

::::::::
supports

:::::
these

:::::::
findings

:::
by

:::::::::
identifying

::::::::
important

:::::::
features

::::::
directly

:::::
from

::::
data

:::::::
patterns

::::::
without

:::::::
needing

::::::::
intensive

:::::::
quantum

::::::::
chemical

::::::::
methods.

:::::
While

:::::::
previous

:::::::
studies

::::::
focused

:::
on

:::::
single

:::::::::
compound

:::::::
classes

::::
(e.g.,

:::::::::::
homogenous

::::
sets

::
of

:::::::
volatile

::::::
organic

:::::::::::
compounds),

:::
or

::
in

:
a
::::::
limited

:::::::
amount

::
of

::::::::
complex

::::::::::
compounds,

:::
our

:::::::
method

::::::
utilizes

::
a
::::
less

:::::::::::
homogeneous

::::
and

:::::
larger

:::::::
dataset.

::::
The

::::::::
chemical

::::::
insight525

::::::
analysis

:::
of

:::
our

:::::
work

:::::::
provides

::
a
::::::
general

::::::
profile

::
of

:::
the

::::::::::
interaction

::::::::::
mechanism,

:::::::::
supporting

:::
the

:::::::
findings

:::::
from

:::
the

::::::::
literature

:::
but

:::
also

:::::::::::
highlighting

::::
other

::::::::::::
functionalities

::::
that

:::::
might

:::::
affect

:::
the

:::::
signal

:::
due

::
to
:::::
their

::::::
relation

::
to

:::
the

:::::::::
electronic

::::::::
structure.

::::
This

:::::::::
data-driven

::::::::
approach

::::
also

:::::::
required

:
minimal computational resources were needed to obtain the insight we discussed

in this section. Compared to the computationally more demanding
:::
due

::
to

:::
the

:::::::::
simplicity

::
of

:::
the

:::::::::::
RDKitPROP

::::
and

::::::::
MACCS

:::::::::
descriptors,

::::::::::
contrasting

::::
with

:::
the

::::::
higher

:::::::
demands

:::
of quantum chemical calculations

:
.
::::::::
Although

:::::::
quantum

::::::::
chemical

::::::::::
approaches530

::::::
remain

:::::::
essential

:::
for

:::::::
detailed,

:::::::::::::::
molecule-specific

:::::::::::
interactions,

:::
our

:::
ML

::::::
model

:::::::::
effectively

::::::
reveals

:::::::
broader

::::::
trends, ML can more

easily expose trendsacross different ionization schemes, distinguish
:::::::::::
distinguishing

:
between detected and undetected molecules

and handle larger molecular sets and groups. However, for analyzing the interaction between specific reagent ions and molecules,

quantum chemical computations still provide an advantage
:::::
across

:::
the

::::
four

::::::
studied

:::::::::
ionization

:::::::
schemes.

6 Conclusions535

In summary, we developed a ML workflow for predicting the detection with CIMS (with a classification algorithm) and

CIMS sensitivity to molecules (with a regression algorithm) to improve atmospheric compound identification.
:::
The

::::
goal

::
is

::
to

:::::::
evaluate

:
if
:::
our

::::
ML

:::::
model

::::
can

::::::::
accurately

::::::
predict

:::::::::
detections

:::
and

:::::
signal

:::::::::
intensities,

::::
thus

:::::::
offering

:
a
:::::::::
foundation

:::
to

::::
build

:
a
::::::::
database

::
of

::::::::
simulated

:::::::::::
compounds’

::::::
signals

:::
for

::::::::::
compound

:::::::::::
identification

::::::::
purposes

::::
with

::::::
CIMS.

:::::::::
Currently,

:::::::::
compound

::::::::::::
identification

::
is

:::::::
typically

::::::::
achieved

::
by

:::::::::
comparing

::
an

::::::::
unknown

:::::::::::
compound’s

:::::::
spectrum

::
to
::
a
::::::::
reference

::::::::
database.

:::::
While

:::
this

:::::
work

::::
does

:::
not

:::::::
provide540

:::::
direct

:::::::::::
identification

::
of

::::::::
unknown

:::::::::::
compounds,

::
it

:::::::::
establishes

::
a

:::::::::::
methodology

:::
for

:::::::::
developing

:::::
such

:
a
::::::::
database,

::::::
which

:::::
could

:::
be

::::::::
expanded

::
for

:::::::
broader

:::
use

::
in

:::::::::::
atmospheric

::::::::
chemistry.

:
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Two standard solutions containing 693 pesticides were analyzed with orbitrap TD-MION-MS. A RF classifier and a KRR

model were trained on five different molecular structure representations. The best descriptor found is MACCS for both the

classification and the regression. In the case of classification, MACCS reaches 0.85 ± 0.02 of accuracy and AUC of 0.91 ±545

0.01; in the case of regression, MACCS can reach 0.44 ± 0.03 of MAE in logarithmic units of signal intensity. Models based

on this descriptor have the lowest errors in both algorithms and are also easy to understand and implement, as they encode

the presence of functional groups, or structural fragments
:::::::::::
sub-structures

:
starting from SMILES strings. Because of its white-

box nature, the MACCS descriptor can provide chemical insight. Our feature importance analysis of the RF classifier provided

insight into the reagent-ion interaction. RDKitPROP highlighted trends in the data that are generally known from basic chemical550

intuition. The feature analysis of the MACCS-based model highlighted the possible structural fragments
:::::::::::
sub-structures

:
that

might impact the detection of the molecules. Models based on the two negative
::::::
polarity

:
ionization methods, Br– and O2

– ,

presented similar results, such as the high importance of OH and NH groups, and carbonyls and halogens. Positive
::::::
polarity

ionization methods, H3O+ and AceH+, also presented similar results and highlighted the key role of nitrogen for detection

and halogens for decreasing the chances of detection. These are the most relevant features found for the ML model, which555

generalizes features of experimental data.

The results demonstrate that it is possible to extract sensible
::::::::
predictive

:
information even in small experimental datasets.

However, more instances could help to generalize the structural features better and help prevent class imbalance problems.

::::::::
Currently,

:::
our

::::
ML

::::::
models

:::
are

:::::::
directly

::::::::
applicable

:::
to

::::::::
predicting

:::
the

::::::::
detection

:::
and

::::::
signal

:::::::
intensity

::
of

:::::::::
molecules

::::
with

:::::::::
molecular

::::::::
structures

::::::
similar

::
to

:::::
those

::
in

:::
our

:::::::
dataset.

:::
For

:::::::::
molecules

::::
with

:::::
more

::::::
diverse

:::::::::
structures,

:::::::
transfer

:::::::
learning

:::::::::
approaches

:::::
could

::::
use560

::::
these

::::::
trained

::::::
models

:::
as

:
a
::::::::
baseline,

:::::::
updating

::::::
learned

::::::::::
parameters

::
to

:::::::::::
accommodate

:::
the

::::::::::::
characteristics

::
of

::::
new

:::::::::
structures.

::::::::
Applying

:::
our

::::::::
approach

:::::::
directly

::
to

::::
field

::::::::::::
measurements

::::
will

::::::
require

::
a
:::::::::::::
comprehensive,

:::::::::::
standardized

::::::
dataset

::
of

:::::::::::
atmospheric

:::::::::
compounds

::::
with

::
a
::::::
limited

:::::::
number

::
of

::::::
reagent

::::
ions

:::
for

::::::::
practical

::::::::::
applications.

:::::
Such

:
a
::::::
dataset

:::::
could

::::::::
facilitate

:::::::
accurate

::::::::
mapping

::
of

::::::::
ionization

::::::::::
tendencies,

:::::::::
potentially

:::::::
enabling

::::::::::
compound

:::::::::::
identification

::::::
directly

:::::
from

::::
field

::::::
CIMS

::::::::::::
measurements

::
in

:::
the

::::::
future.

::::::::
Moreover,

:::::
while

::::
this

::::::::
workflow

:::
was

:::::::::
developed

:::::
using

::::::::::::
high-resolution

:::::::
orbitrap

:::::
data,

:
it
:::
can

::::
also

:::
be

::::::
utilized

::::
with

::::::::::::::
lower-resolution565

::::
data,

::::::
though

:::
this

::::
may

::::::::
introduce

::::::
greater

::::::::::::
uncertainties.

The ML models developed in this work are a first step towards optimizing CIMS measurements for comprehensive reaction

product detection with ML, aiming to enhance the general understanding of complex analyses such as that of atmospheric CIMS

in the future. In future work, studying datasets with similar structures to atmospheric compounds (focusing on oxygenated

compounds) could bring a greater understanding of the reagent ion and sample molecule interaction inside the instrumentation,570

thereby providing a greater understanding of the compounds detected in situ atmospheric measurement. An improvement in the

ML performance could come from both experimental data and synthetic data. Furthermore, the development of standardized

experimental datasets is crucial, as these can significantly boost the possibility of using artificial intelligence algorithms and

enhance the accuracy and reliability of future atmospheric analyses.
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Stuke, A., Rinke, P., and Todorović, M.: Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization, Machine

Learning: Science and Technology, 2, 035 022, https://doi.org/10.1088/2632-2153/abee59, 2021.

Su, P., Joutsensaari, J., Dada, L., Zaidan, M. A., Nieminen, T., Li, X., Wu, Y., Decesari, S., Tarkoma, S., Petäjä, T., Kulmala, M.,

and Pellikka, P.: New particle formation event detection with Mask R-CNN, Atmospheric Chemistry and Physics, 22, 1293–1309,715

https://doi.org/10.5194/acp-22-1293-2022, 2022.

Thoma, M., Bachmeier, F., Gottwald, F. L., Simon, M., and Vogel, A. L.: Mass spectrometry-based Aerosolomics: a new approach to

resolve sources, composition, and partitioning of secondary organic aerosol, Atmospheric Measurement Techniques, 15, 7137–7154,

https://doi.org/10.5194/amt-15-7137-2022, 2022.

van der Maaten, L. and Hinton, G.: Visualizing Data using t-SNE, Journal of Machine Learning Research, 9, 2579–2605, http://jmlr.org/720

papers/v9/vandermaaten08a.html, 2008.

Wildman, S. A. and Crippen, G. M.: Prediction of Physicochemical Parameters by Atomic Contributions, Journal of Chemical Information

and Computer Sciences, 39, 868–873, https://doi.org/10.1021/ci990307l, 1999.

Xue, L. and J, J. B.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening, Comb Chem

High Throughput Screen, 8, https://doi.org/10.2174/1386207003331454, 2020.725

35

https://doi.org/10.1002/qua.24954
https://doi.org/10.3390/rs12060965
https://doi.org/10.1038/nature19314
https://doi.org/10.1063/1.5086105
https://doi.org/10.1088/2632-2153/abee59
https://doi.org/10.5194/acp-22-1293-2022
https://doi.org/10.5194/amt-15-7137-2022
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1021/ci990307l
https://doi.org/10.2174/1386207003331454

