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Abstract. Identifying the optimal strategy for initializing coupled climate prediction systems is challenging due to the spatio-

temporal scale separation and disparities in the observational network. We aim to clarify when strongly coupled data assim-

ilation (SCDA) is preferable to weakly coupled data assimilation (WCDA). We use a two-components coupled Lorenz-63

systemand-the-, mimicking the atmosphere and the ocean, and the Ensemble Kalman Filter (EnKF) to compare WCDA and

5 SCDA for diverse spatio-temporal scale separations and observational networks — only in the atmosphere, the ocean, or both

components. When-both-components-are-observed-In _the fully observed scenario, SCDA and WCDA yield similar perfor-
mances. However, sometimes B R Pt R e i e

approximations-in-the EnikcF—Tlittle differences are present, and we conjecture these are due to the SCDA being more sensitive

to the approximations at the basis of the EnKF present in the cross-update - linear analysis update and sampling error--, and

10 how they impact the cross-update between ocean and atmosphere. This sensitivity increases as the temporal scale separation

increases and is stronger on the slow-large scale component. When observations are only in one of the components, SEBA

systematicatly-outperforms-WEDA—The-the spatio-temporal scale separation determines-influences SCDA’s performancein

. In this scenario, and-the largest improvements are found when the observed component has a smaller spatial scale. The

fast-to-slow update has a larger benefit with a larger temporal scale separation. Meanwhile, with the slow-to-fast update, the

15 improvement is limited to instances when the temporal scale separation is less than one-half. This suggests that SCDA of fast
atmospheric observations can potentially improve the large-stow-large and slow ocean component. Conversely, observations of

the fine ocean can improve the large atmosphere at a comparable temporal scale. However, when both components are highly
chaotic, and the observed component’s spatial scale is the largest, SCDA does not improve over WCDA. In such a case, the

cross-updates may become too sensitive to data assimilation approximations.
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1 Introduction

Environmental and climate prediction systems nowadays are transitioning toward the use of coupled models — from numerical
weather prediction (NWP) to seasonal-to-decadal (S2D) climate predictions — with a target to build seamless forecasting
systems that can perform across various timescales (Shukla, 2009). In general, coupled prediction systems to date assimilate
data independently in each of the different sub-components (Meehl et al., 2021): e.g., atmospheric observations are used
to infer the state of the atmosphere, ocean observations are used for the ocean, and so on. However, this technologically
convenient strategy results in the suboptimal use of observations across the different components and can degrade the dynamical
consistency of the system and generate spurious drifts (Penny and Hamill, 2017). A key challenge of assimilating observations
across components is the spatio-temporal scale separation of the climate system.

The climate system features a wide range of temporal and spatial scales that go beyond the stereotypical association of fast
and large for the atmosphere and slow and small for the ocean. For instance, the time and spatial scale of the ocean and the
atmosphere are of the same order in the equatorial Pacific, dominated by the El Nifio-Southern Oscillation (ENSO). In the North
Atlantic, the fast North Atlantic Oscillation (NAO) strongly influences the slower and larger Atlantic meridional overturning
circulation and the Atlantic multidecadal variability (Clement et al., 2015), but with evidence of a feedback mechanism of the
slow ocean variability to NAO (Zhang et al., 2019). Quite similarly, in the Pacific, the fast and local Aleutian Low variability
is a primary driver of the variability of the Pacific decadal variability (PDV, being slow and large scale). The Aleutian Low is
influenced by both the local wind variability and ENSO, and a feedback mechanism of the PDV on the Aleutian Low has been
proposed via Rossby waves influencing the position of the Kuroshio (i.e., small-scale ocean front Newman et al., 2016).

Data assimilation (DA) methods estimate the state of a dynamical system based on observations, a dynamical model, and
statistical information on the error terms (Carrassi et al., 2018). Coupled DA (CDA) is produced with fully coupled models and
aims at providing balanced and self-consistent states within the coupled model (Zhang et al., 2020). CDA is executed in either
weakly or strongly coupled fashion (with acronyms WDCA and SCDA, respectively; Laloyaux et al., 2016). In WCDA, the
assimilation is applied to the individual components separately by using the observations available for that component. Notably,
the observations can still impact across components via the dynamical coupling between the assimilation cycle, unlike with
uncoupled data assimilation (i.e., performed with an uncoupled model). On the other hand, in SDCA, the observations from
one component impact the other components directly during the assimilation. SCDA is, in principle, the best approach for CDA
since the statistical and dynamical assimilation of observations through the coupled cross-covariance potentially provides more

information and produces better and more dynamically balanced analysis (Penny and Hamill, 2017).

Comparison of SCDA and WCDA has been studied with dynamical systems of increasing complexity (Eivetal;2043:-Shika-et-al52616

Liu et al., 2013; Sluka et al., 2016; Penny et al., 2019; Tondeur et al., 2020; Kurosawa et al., 2023). While SCDA gives some

clear improvements over WCDA in some locations, configurations (e.g., observational network, toy models) and selected pro-
cesses (Sandery et al., 2020; Kalnay et al., 2023; Sun et al., 2020) degradations are also found. Such degradations have been
attributed to the interconnection of processes with disparate spatio-temporal scales in the climate system, approximations in

DA, and model error. For instance, model error and limited ensemble sizes can hinder the accurate estimation of the system’s
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coupled cross-correlation (Han et al., 2013; Tardif et al., 2014; Lu et al., 2015a). Furthermore, SCDA improves results if ob-
servations are only found in one component (Sluka et al., 2016), but conclusions are often not as clear when both components
are partially observed (Sluka, 2018). This typically motivates the use of ad-hoc methods such as cross-component localization
(Frolov et al., 2016; Stanley et al., 2024), or the use of time average covariance, like the Leading Average Coupled Covariance

(Lu et al., 2015a, b; Sun et al., 2020, LACC method) to circumvent these limitations.

Our study’s main motivation is to explore potential
connections between the coupled model’s dynamical properties and the performance of coupled DA methods and how the

latter interplay with the spatio-temporal scale separation among the model’s components. We aim to clarify which dynamical
conditions and observational scenario favour one CDA approach over the other, attempting to discern the key model and

observation features driving the results. We use a low-order coupled system and extensively compare the different approaches
for a wide range of temporal and spatial scales and observation configurations. This can help us to anticipate when the SCDA
is expected to outperform WCDA in an operational configuration, thus legitimizing the allocation of resources to migrate from
WCDA to SCDA.

The paper is structured as follows. In Sect. 2, we describe the coupled model used in this paper. We identify how the
combination of spatio-temporal scale differences between the model’s components impacts the sensitivity to initial conditions
and the general characteristics of the system. In Sect. 3, we describe the experimental setup, the metrics used, and the set of
DA experiments performed. The results of our experiments are presented and discussed in Sect. 4. We close this paper with

our concluding remarks and outlook in Sect. 5.

2 Lorenz multiscale coupled system

We use two coupled Lorenz (Lorenz, 1963, L63) models, as introduced by Pefia and Kalnay (2004), as a proxy of real complex
coupled multiscale dynamical systems (e.g., atmosphere-ocean). The system consists of a fast and a slow component, with the

following equations:

t=0(y—x)—c(SX+k)
y=rz—y—zz+c(SY +k)

zZ=xy—bz

ey

X=10(Y —=X)—c(z+k)

Y=mrX—7Y—-785XZ+c(y+k)
Z=1SXY —7bZ.
The low-case variables (x,y, z) indicate the fast component (considered in the following to be our atmosphere), while the

capital variables (XY, Z) indicate the slow component (in the following to be the ocean); and & indicates the derivative of

x with respect to time. The parameters o, b, and r (Table 1) are set to the default values of the L63 (Lorenz, 1963). The
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Table 1. Set of parameters for the coupled L63, Eq. (1).

10. 83 28 0.15 1. 0.1 10.

coupling strength is modulated by the parameter c, here set to the value ¢ = 0.15. The coupling occurs only through the
(x,y) <> (X,Y) components. The parameters S and 7 control the components’ spatial and temporal scale differences. In Pefia
and Kalnay (2004), S =1. and 7 = 0.1, meaning that both components have approximately the same spatial scale, but the
slow component is ten times slower. The effective spatial scale difference also depends on the values of the other parameters
(even from the nonlinear interactions coming from the model) but is predominantly sensitive to S (Sect. 2.1). Finally, £ = 10
is the uncentering parameter that shifts the phase of each component during the coupling. Since the coupling is relatively
weak, the “slow—fast” information is rapidly dissipated, while the “fast—slow” interaction introduces a “weather noise”-like
signal to the slow component (Pefia and Kalnay, 2004). With these parameter values, the system mimics a weak extratropical

ocean-atmosphere coupling.

Timeseries of the copupled system (S, 7)= (1., 0.1)
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Figure 1. Time series of the atmospheric (left) and ocean (right) variables. The model uses here the configuration on Table 1, of the extrat-

ropical atmosphere-ocean system.

We integrate the system using the fourth-order Runge-Kutta numerical scheme, using an adimensional time step dt¢ of 102
time units (TU) and initial condition x{ = (0,0, 20, X0, Yo, Zo) T = (0.,1.,0.,0.,0.,0.)™. We integrated the system over 1500
TU and discarded the initial transient period of approximately 40 TU for our following analyses. Figures 1 and 2 show the
time series and a 2-dimensional projection of the system’s attractor using the default parameters as in Pefia and Kalnay (2004)
(Table 1). Figure 1 shows the time scale difference between the fast and slow components while they have similar amplitude.
Figure 2 displays the projections on the (z,z) and (X, Z) planes of the system’s attractor: the atmospheric and ocean portion

of the attractor share the same topological shape, but the atmosphere has a much higher frequency.
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Copupled system attractor (S, 7)= (1., 0.1)

a) atmosphere b) ocean
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Figure 2. Standard configuration attractors of the extratropical atmosphere-ocean system during the 700-750 TU.

We commence our analysis by exploring the impact of S and 7, the parameters controlling the amplitude and time-scale
mismatch between atmosphere and ocean, on the physical and dynamical properties of the system. In particular, we focus
on (1) the energy partition between components, the effective temporal separation, and the instantaneous cross-component
covariance (Sect. 2.1); (2) the error propagation by computing the spectrum of Lyapunov exponents (LEs), the Kolmogorov
entropy (KE), the Kaplan-Yorke attractor dimension (KY-dim), and the flow’s divergence (V - f) (Sect. 2.2); and (3) the error

propagation across components (Sect. 2.3).
2.1 Parameters influence on energy, time-scale separation and cross covariance

To understand how the effective difference in temporal (or spatial) scales between the components is determined by S and 7,
we compute the energy F, /E, and period T, /T, ratio with varying values of .S and 7. The sub-index a denotes the atmosphere
and o the ocean components.

We use energy F to estimate each component’s spatial scale. The energy E of the two components (F,, for X,Y,Z and F,
for x,y, 2) of the coupled system are computed as follows:

N N N
E=Y"a2+Y uvi+> = )
n=1 n=1 n=1

where N is integration length, and z,,, ¥, and z,, are the component’s variables at time n.
We estimate the component’s period 7', i.e. the dominant time scale, as the period at which the power spectrum density

(PSD) reaches its maximum. To estimate the PSD, we use the component’s magnitude m:

m= ||z = (Jz|* + [y|* + |2]*) /2. 3)
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Energy and Period ratio with respect to (S, 7)
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Figure 3. Dependence of the a) energy ratio E,/E, and b) period ratio T, /T, on S and T with a logarithmic colourbar. Note that the ocean’s

spatial scale S (y-axis) increases upward.

The sensitivity of energy E,/F, and period T, /T, ratios to S and 7 is explored in Fig. 3. The relative energy content of
each component (Fig. 3a) shows that the energy of the ocean (F,), and hence the spatial scale separation, is mostly inversely
proportional to S and that the temporal scale has only a little influence on it. Therefore, the ocean’s spatial scale increases as
S > 1. As it could have been anticipated, the temporal separation is uniquely sensitive to 7. Figure 3 demonstrates that one can
change these two parameters separately to modulate the spatial or temporal scale differences accordingly.

We analyze the dependence of information transfer between components on the spatio-temporal parameters by computing
the cross-component instantaneous correlation of the coupled system C over 500 TU for all (S, 7) configurations and calculate
the spectral norm of it (Fig. 4). We consider the sub-matrix C°“ = ¢;;, where i = 1,2,3 and j = 4,5,6. The spectral norm of a

matrix A is computed as follows:

|A]l2 = p(A*A)'/2, 4)

where p(A*A) = max |\;] is the spectral radius of A, the maximum modulus of the n eigenvalues A; of A; and A* is the
conjugate of A. Since the correlation matrix C € R"*" then C* = CT.

The pattern in Fig. 4 reveals that the information flow across the system’s components is heavily influenced by S and 7.
The cross-component correlation decreases as the spatial scale difference increases. However, and somehow unexpected, the
cross-component correlation increases as the time scale difference increases. The cross-covariance shows a maximum when

the ocean component (X,Y, Z) has a smaller spatial scale and slower time scale than the atmospheric component (z,y, 2),
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Figure 4. Instantaneous cross-covariance spectral norm ||C°?||2 for each (.S, 7) combination. The value presented is the average of 25 runs

using different initial conditions. Colourbar is in logarithmic scale

implying a high information flow. Conversely, a large and fast ocean hampers the flow of information. These findings align

with what was found by Tondeur et al. (2020) in relation to time-scale difference only.
2.2 Influence of the spatio-temporal scale mismatch on the chaotic behaviour of the coupled system

Here, we assess how the spatio-temporal parameters influence the chaoticity of the coupled system. We quantify the sensitivity
of the system to initial conditions by exploring its Lyapunov spectrum. We use the Benettin algorithm (Benettin et al., 1980),
as described by Ayers et al. (2023), to compute the Lyapunov exponents (LEs) and the first backward Lyapunov vector (LV1).
The computation of LEs and LV1 is performed over an integration of 1 x 10* TU, thus ensuring convergence of the method.
To understand the effect of the coupling on the dynamics of the coupled system, we first compare the coupled L63 system

(Eq. (1)) to two uncoupled L63 systems (Eq. (5) Lorenz, 1963).

t=70(y—x)
y=71(re —y— Sxz) (5)
2 =71(Sry —bz).

For the uncoupled atmosphere, we set (S = 1.,7 = 1.), for the ocean (S = 1.,7 = 0.1), and compare them with the coupled

system (Eq. (1)) with the parameterization in Table 1. Figure 5 shows the Lyapunov spectrum of the uncoupled sub-components
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(atmosphere in red; ocean in green) and the coupled system (blue). Both uncoupled systems possess one positive ()\;r), one
negative (A; ), and one neutral (\Y) LE. However, while the atmosphere’s LEs are substantially different, in the ocean, they
are much closer to each other. The ocean appears only very marginally unstable, with the largest LE just above zero. Thus,
the uncoupled-unforced ocean is nearly stable. This is also confirmed by the Kolmogorov-Sinai entropy and the divergence
(KS-E and V - £, respectively, in Table 2), which are around one order of magnitude smaller than for the atmosphere. Notably,
although the ocean is much stabler than the atmosphere, their attractors’ dimensions (measured by the Kaplan-York dimension

KY-dim, in Table 2) are the same.

Lyapunov exponents

—&— Atmosphere
—&— Ocean
—8— Coupled system

Figure 5. Lyapunov exponents (LEs) for the uncoupled atmosphere (L63) in red (S = 1,7 = 1), in green the uncoupled ocean (L63-like,
with S = 1,7 = 0.1) and in blue the coupled system (S = 1,7 =0.1).

The Lyapunov spectrum of the coupled system is a mix of the uncoupled atmosphere and ocean spectra (Fig. 5). The
coupling does not affect the number of positive Lyapunov exponents, which remains one. Instead, it introduces two near-
neutral exponents while retaining the two negative exponents from each uncoupled system. The presence of these additional
exponents with values close to zero is commonly referred to as quasi-degeneracy. The emergence of these quasi-neutral modes
has been found to be related to the coupling itself (Penny et al., 2019; Tondeur et al., 2020) in models of higher complexity,
such as MAOOAM (Cruz et al., 2016). Moreover, their presence has tremendous implications when designing efficient DA
methods to control error growth (Carrassi et al., 2022).

We now investigate in Fig. 6 how the chaotic behavior of the coupled system changes with (7,S) parameters. From the
system’s Jacobian (Eq. (7)), we can already anticipate that 7 will play a larger role in modulating the system’s degree of chaos
than S. However, since S appears in the cross-component terms (from the ocean to the atmosphere, Eq. (7)), it can potentially

influence the dynamical properties of the system, regardless of the coupling parameter ¢ (Sect. 2.3).
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Table 2. Stability analysis of the coupled and uncoupled system.

Atm Ocn  Coupled system

KY-dim 2.062  2.061 4.646

KS-E 0.904  0.089 0.898

Vv-f -13.667  -1.367 -15.033

A 0.906  0.094 0.885

Y 0.002  -0.002 0.029
0.0003
-0.022

A -14.57  -1.457 -1.373
-14.55

Changing either 7 or S does not alter the shape of the Lyapunov spectrum — i.e., the number of positive, near-neutral,
neutral, and negative LEs (not shown). However, changing 7 impacts the degree of chaos of the system and the attractor’s
dimension (KS-E, KY-dim and V -f in Fig. 6), independently of the value of S. As the time scale separation decreases (7 — 1),
the system becomes more unstable, and the dimension of the attractor decreases. However, when 7 gets too large, the KY-dim
saturates at 4. Since the K'Y-dim approaches the phase space dimension (n = 6), the entropy decreases (near zero values), and
the divergence increases; we have that the dynamics become similar to a Hamiltonian system (it approximates a conservative

system) as the ocean becomes slower and that the error will evolve along the complete phase space.
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Figure 6. Stability analysis of the coupled system in dependence of the spatio-temporal parameters S and 7 a) Kolmogorov-Sinai entropy
KS-E, b) Kaplan-York dimension KY-dim, and c) divergence of the flow V - f. Note that each quantity has its own limits, and the colourbar is

on a linear scale.
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We finally analyze how the projection of LV1 on the state vector varies with the spatio-temporal parameters, which helps to
understand or discriminate the source of instabilities in the state vector. To this end, we show the ratio between the projection on
the atmosphere (LV1,) and that of the ocean (LV1,) component in Fig. 7. The LV1 projection on the atmospheric variables is
generally larger, implying that the dominant source of error propagation relies on the atmosphere. This behaviour is independent
of the spatial scale of the ocean (5) as long as the parameter 7 is less than one (ocean slower than the atmosphere). When both
components have the same time scale (7 = 1), the LV1 projection is larger in the component with the largest spatial scale, i.e.,
the projection on the ocean component decreases when .S > 1. When 7 > 0.25, the error propagation is relatively even on both
components. However, when 7 < 0.25, the error propagation towards the ocean is almost two orders of magnitude smaller than

towards the atmosphere.
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0.075
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Figure 7. Ratio of the normalized LV1 over atmosphere and ocean. Note that the colourbar is on a logarithmic scale.

2.3 Error propagation across model’s components

In this section, we use the (linearised) dynamical arguments from Tondeur et al. (2020) to investigate the error propagation
from one component to the other, and how it depends on the spatio-temporal scale separation parameters S and 7. In this

context the evolution of a perturbation £(t) in the system is governed by the tangent linear system:

£(t) =JE() (6)

where J is the Jacobian of such system. For our coupled system, in Eq. (1), the Jacobian reads:

10
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—0 o 0 —cS 0 0
r—z —1 —=x 0 cS 0
Y r —b 0 0 0
J= (7
—c 0 0 —T0 TO 0
0 c 0 7t(r—82) -1 —-718X
. 0 0 0 TSY TSX  —7b |
Let write our coupled system in Eq. (1) in the following general form:
X = f(X7X)7
) 3
X= 7g(xX),

where x and X indicate the atmosphere and ocean state respectively, and 7 is the time scale. Therefore, over the interval dt,

the forecast error in the atmosphere ¢(¢) and in the ocean 7(t) evolve according to:

?‘(t) _| Fa Fol |COO| ©)
nt)|  [7Ga 7Go| |n(t)

After re-arranging the terms in Eq. (7), we can identify the form of the cross-component error propagation terms, F, and G,

as:
o ¢S 0 0
Fo - 87X - 0 CS 0 (10)
0 0 o0
and
5 _—C/T 0 0
g
=< _ . 11
G, I 0 ¢/ 0 (11)
0 0 0

In these expressions, F, represents the ocean — atmosphere, while G, the atmosphere — ocean propagation of error. We
can see that F, depends explicitly on the spatial parameter S. Thus, the error propagation from the slow (ocean) to the fast
(atmosphere) component depends exclusively on .S and increases as .S does. On the other hand, G, depends only on the
temporal scale 7, and it is inversely proportional to it. Therefore, the error propagation from the fast to slow components
increases as the parameter 7 decreases. Using this information, we can plot the competing direction of error propagation,

which we can take as the ratio of the norm of G, and F,. For this, we use the Frobenius norm, defined for a matrix A

11



as ||A|| = [tr(A*A)]*/2. Thus, the competing direction of error porpagation is ||G,||||F,||~' = (S7)~!; we illustrate this
200 dependence in Fig. 8.

Figure 8 elucidates the role of S and 7 on the error propagation across components. The figure has three separate regions, in
which |G|l > ||Folls |Gall = |Foll, and |G, || < ||F,||- Thus, when the temporal scale separation vanishes and the ocean’s
spatial scale increases (7~1 > S), the error propagation is dominated by the armosphere — ocean term G, (blue region in
Fig. 8). In the opposite case, when the temporal scale separation increases and the ocean’s spatial scale decreases (77! < S),

205 the error mostly propagates from the ocean — atmosphere term F, (red region in Fig. 8).
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Figure 8. Competing direction of error propagation ||G.||||F,|| ™" as function of the spatio-temporal scale separation (S, 7). The blue region
indicates cases where the impact of atmosphere — ocean is larger. The red region is where the ocean — atmosphere error propagation is

dominant. Note that the colourbar is in logarithmic scale and is centred around 1.

3 Data Assimilation experiments
3.1 Experimental Setup

We conduct a set of DA experiments with the coupled L63 for different values of parameters S and 7 to reflect spatio-temporal
separations between the two components of the system in Eq. (1). We used the stochastic Ensemble Kalman Filter (EnKF

210 Evensen, 2003) and compared weakly and strongly coupled data assimilation (WCDA and SCDA, respectively).

12
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We use an idealized perfect twin experiment framework (Arnold and Dey, 1986), i.e., the model used for generating synthetic
observations is the same as that used for DA. The synthetic observations are generated by adding zero-mean Gaussian noise to
a reference simulation (hereafter referred to as True). Here, we only observed (y,Y") variables. This choice follows what was
done by, e.g., Yoshida and Kalnay (2018) and Quinn et al. (2020) that showed these two variables to be more informative in
the Lorenz model (Yang et al., 2006). Similar performances were found when observing the full system (not shown).

The observation error standard deviation o is equal to 2.5% of the system’s natural variability (i.e., the time-wise standard
deviation of each model variable). This implies that the observation error covariance matrix R depends on the spatio-temporal
scales of each component (see Sect. 2.1). The observational error is uncorrelated; therefore, R is diagonal with the observational
error variance along the diagonal.

The DA is performed using an observational interval equal to one-fifth of the error-doubling time of an uncoupled L63
system (see Sect. 3.4 for further details for this choice). To prevent filter divergence, we used an adaptive inflation scheme
(Sect. 3.3) and 20 ensemble members. We run the model for 850 TU, allowing for 150 TU for spin-up before the start of
the DA. We use such a long spin-up time to allow all the system’s (.S,7) combinations to evolve beyond the transient period
(especially for the cases with a very slow ocean). The error statistics (Sect. 3.5) are computed over the last 600 TU in a similar
way to the experiments of Yoshida and Kalnay (2018) and Quinn et al. (2020). We also repeat the DA experiments 30 times

with different initial conditions x and different observation perturbations to assess the system’s performance robustly.
3.2 Data assimilation with the Ensemble Kalman Filter EnKF

The Ensemble Kalman Filter (EnKF, Evensen, 2003) is a Monte Carlo-like sequential DA methodology consisting of a forecast
step alternated with an update phase (analysis). During the first phase, the ensemble of states (the ensemble) is integrated
forward in time (forecast) from the previous ensemble of analysis states. During the second phase, observations are used
to update (analyze) the ensemble for the next iteration. The method uses ensemble covariance to provide flow-dependent
correction and performs a linear analysis update.

We denote the ensemble forecast Xf € R"*¥ . The superscript f stands for forecast, N is the ensemble size, and n is the
dimension of the state. The model error is assumed to follow a Gaussian distribution with zero mean. The ensemble mean
is denoted X' and the ensemble anomalies are Af = Xf —x%f1T, where 1 € RV*! has all its values equal to 1. Under the

aforementioned hypothesis, the ensemble covariance Pfisan approximation of the true forecast error, €, covariance matrix:

T~ Pl =(N—-1)"1AfATT, (12)

Furthermore, given y € R™*! to be the observation vector with m observations from which we can construct additional N

perturbed observations y; =y + €,;, and the ensemble of observations Y, € R™*N ag:

Yo:(y17YQ7"'ayN) (13)
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with an associated ensemble of observation perturbations I' € R"™*:

I‘:(60176027"'760N) (14)

from which we can construct the error covariance R.:

R=(N-1)"'rr?. 15)

The analysis equation then becomes:

X* =X"+ K(Y, - HX'); (16)

where H is the (linear) observation operator which relates the forecast model state variables to the measurements. Finally, K

is the Kalman gain:

K=PHTHP'HT +R)" .. (17)
3.3 Covariance inflation

In ensemble methods, such as the EnKF, the analysis step is based on a flow-dependent forecast error covariance P*, which is a
finite size ensemble approximation of the true forecast error covariance (Evensen, 2003). This sampling error causes the matrix
P! to be usually an underestimation of the actual covariance. Besides sampling error, other sources of incorrect specifications
are the model error and the nonlinearities. All these factors may lead to filter divergence, whereby the filter incorrectly trusts
a “too small” Pf. Filter divergence is usually handled using covariance inflation (Anderson, 2001; Li et al., 2009; Miyoshi,
2011; Kotsuki et al., 2017; Raanes et al., 2019).

In this study, we use the adaptive covariance inflation method proposed by Desroziers et al. (2006) and based on the following

relation:

(ddT)=HBH" + R, (18)

whered =y — Hx! are the innovation vectors, R is the observation error covariance, HBH?T" is the true forecast covariance
matrix in observation space, and (-) denotes the expected value. This relation holds if B and R are correctly known (Desroziers
et al., 2006). For an EnKF, we can approximate Eq. (18) using the ensemble-based background covariance matrix P and the

inflation factor «, according to:

(dd™) = «HP'HT + R. (19)
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The inflation factor « is estimated by taking the trace Tr(-) of Eq. (19):

T
o

Since our experiment uses a small sample of observations (i.e., two when the network includes both the ocean and atmosphere
and only one when one component is observed), the estimation of « can be plagued by noise, which is detrimental to the correct
functioning of the filter (Li et al., 2009). To mitigate the effect of the noise, we used a simple time smoothing function for o’

formulated as follows:

oy =(1—y)ap +yas_1. 21

Thus, 'y is a linear combination of the previous inflation factor «;_; and the one at current time «v;; with v being a weighting

parameter 0 < v < 1, which we tune empirically for the time scale separation 7 of our system.
3.4 Assimilation window

We set the length of the ocean (resp. atmosphere) assimilation cycle AT, (resp. AT,) as one-fifth of the error doubling time:

1l

AT =
5 M

(22)

with A; being the maximum Lyapunov exponent of the uncoupled L63 system in Eq. (5). This choice reflects observational
networks designed or optimized to counteract effectively the error growth (Pefia and Kalnay, 2004). Furthermore, and impor-
tantly for our goals here, this choice allows us to compare different DA experiments, with varying .S and 7, but keeping the
observational constraint at a comparable strength.

As shown in Sect. 2.1, the characteristic time scale of the system is largely modulated by 7 and, to a lesser extent, by S but
not by the coupling terms. We therefore decide to determine ATy, as a function of 7 only; results are shown in Fig. 9. This
relation is exponential, which is expected from Eq. (5) in which 7 is a factor multiplying all variables of the L63 system. Thus,
we use a constant AT, = 15d¢ for the atmospheric component, as 7 = 1 in all experiments (blue dot in Fig. 9). On the other

hand, the assimilation cycle of the ocean AT, will change with the ocean temporal scale (red line in Fig. 9).
3.5 Evaluation metrics

We assessed the accuracy of each DA approach by computing root-mean-squared error RMSE of the ensemble mean analysis

state, averaged over the 30 different experiments, as follows:

1 Qe 1 & 2
RMSE:NPZ<AHZ(X%—XE)2> : (23)

© j=1 i=1
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Figure 9. Ocean assimilation cycle ATy, (red) as a function of temporal scale 7. The atmosphere assimilation cycle ATy, is marked with the

blue circle. Note that the left y-axis shows the assimilation cycle in time units TU, while the right y-axis shows the number of time steps d¢.

where X? is ensemble mean of analysis state, x! is the truth at analysis step i, and V; is the integration length. The j indices
denote the experiment number performed with a different random seed (here N, = 30, see Sect. 3). In particular, we adopt
the ARMSE,, metric, which uses the WCDA experiment as a benchmark and normalizes the error by that of the FREE run

(experiment with no assimilation), calculated as follows:

RMSE3“PA _ RMSEWCPA
RM SEFREE

ARMSESCPA — (24)

Values of ARMSEZCDA < 0 indicate a reduction of error compared to WCDA, values close to zero indicate no difference,
while values ARMSEELCDA > ( indicate a degradation. We present the results as the mean of ARMSE?LCDA over each compo-

. ————<—SCDA .
nent. Hence, we present the average error reduction ARMSE,  in the full atmosphere and ocean.

4 Results

We compare WCDA and SCDA in a set of numerical experiments grouped based on the observational network. Specifically, we
shall have experiments with observations in both (i) the atmosphere and ocean (named F'U LL hereafter), (ii) the atmosphere

(AT M), and (iii) the ocean (OC N) — see Sect. 3 for a detailed description of the experimental design.
4.1 Joint atmospheric and ocean observations network (FULL)

A comparison of WCDA with SCDA with observations on ocean and atmosphere components is shown in Fig. 10. It is
important to note that overall, the differences between the SCDA and WCDA are very small (about 0.1 % of climatological
error); i.e., both systems perform nearly equally well. It was already reported in Sandery et al. (2020) that the SCDA benefit
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over WCDA reduces when both components are well observed. While confirming that finding, our results further demonstrate
that WCDA performs slightly better than SCDA in most spatio-temporal configurations.

In the atmosphere (Fig. 10a), SCDA yields slight degradation as the temporal scale separation decreases and most when the
scale separation between the two components is large (small S). Both components are highly chaotic when 7 is 1 (Fig. 7). When
S is small, most of the energy is found in the chaotic ocean component (Fig. 3a). There is little gain during the assimilation as
the cross-covariance of the system is relatively small (Fig. 4), and the performance is highly sensitive to spurious covariance
in the system (sampling error). This result also aligns with the linear error analysis carried out in Tondeur et al. (2020) that
suggested that when the temporal scale separation is not large, WCDA is preferable.

In the ocean (Fig. 10b), the dependence of the error on the temporal separation is the opposite of that seen in the atmosphere.
It increases as the time scale separation gets larger, i.e., as the “stable” ocean gets more sensitive to the chaotic atmosphere.
When the energy of the system is dominated by the ocean (small .S), performance is slightly degraded, but when the energy
is distributed or prominent in the atmosphere component (S > 1), and the cross-covariance is maximum, the SCDA improves
over WCDA.

SCDA has little advantage over WCDA when both components have good observation coverage. Furthermore, the system
becomes vulnerable to the approximation inherent in the DA (sampling error, linear analysis update), which can lead to slight
degradation. We speculate that if we were increasing ensemble size and softening the linear analysis update (e.g., with itera-
tive approaches), this degradation would be gone, and the SCDA would outperform WCDA, but discrepancies would remain
marginal.

Note also that when the ocean and atmosphere assimilate data every 20 d¢, SCDA improves over WCDA for all (.S, 7) con-
figurations, especially for the ocean, but the difference is again very small (not shown). This result agrees with the experiments
of (Penny et al., 2019), which shows that SCDA provides better analyses than WCDA in a fully observed system, with the

same assimilation cycle on both components.
4.2 Atmospheric observation network (ATM)

When we observe only the atmosphere (Fig. 11), SCDA shows improvement over WCDA in nearly all spatio-temporal scale
experiments. The pattern of improvements in the atmosphere and ocean components is similar; however, the ocean shows
comparatively a larger improvement.

The benefit is largest when 7 gets small as the ocean gets less chaotic and well constrained by the atmospheric state. The
region for 7 < 0.25 shows a very strong sensitivity to .S. Improvement of SCDA is largest when the ocean has a large scale
(S < 0.75), and holds most of the system’s energy. The well-constrained atmosphere and atmospheric data (even with moderate
cross-covariance) can constrain the predictable ocean. In the region where the ocean has a smaller scale (S > 0.75), SCDA
has no impact, unlike in the FULL experiment. This result can be explained as the atmosphere — ocean error propagation is
smaller (Fig. 8); thus, the atmospheric data has no impact over the ocean. Indeed, the lack of ocean data --implies that the ocean
cannot influence the atmosphere at analysis time. Furthermore, the ocean’s energy is too small to impact the coupling during

the model integration step.
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Figure 10. FULL experiment ARMSE,SlC for a) atmosphere and b) ocean. The colour red (blue) indicates that the SC error is larger (smaller)
than that of the WC experiments. Dotted area indicates ARMSEZC > 0, meaning that SCDA degrades over WCDA. Note that the colourbar

for both components has different limits.

Thus, we can conclude that using SCDA is highly beneficial when only the atmospheric component is observed, itis-highly
benefietal-to-use-SEDA;-except when the time scale separation is very large and the energy in the non-observed component is

small.
4.3 Ocean observations network (OCN)

When observing only the ocean, the skill pattern of the SCDA, Fig. 12, is overall similar to what is seen in the case of only
the atmosphere being observed. Nevertheless, we see now that the impact (positive or negative) of SCDA is larger in the
atmosphere and almost negligible in the ocean (~ 1 % of the climatological error).

Strongly coupled DA degrades over WCDA when the ocean is fast and has a large amplitude (S > 0.25,7 > 0.5). Both
components are chaotic, but the ocean holds most of the system’s energy. As the cross-covariance is minimal, and the ocean
— atmosphere error propagation is small, the usefulness of the cross-update from the ocean towards the chaotic atmosphere
is limited and sensitive to the linear update and sampling error. On the contrary, when the ocean’s energy decreases (S <
0.25,7 > 0.5), the ocean state benefits from the improved atmosphere’s initial condition during the model integration. There,
the cross-covariance is high with an increased ocean — atmosphere error propagation so that the atmosphere can benefit from
ocean observations. These results resemble those obtained in (Tang et al., 2021), which uses SCDA in a real framework to

update the atmosphere with ocean observations, improving the ocean-atmosphere tropical interface.
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Figure 11. As for Fig. 10 but with only the atmospheric state observed — ATM experiment.

It is somewhat surprising that little improvement in the atmosphere is found when it interacts with a slow and small ocean
(S >0.25,7 < 0.5). In this region, the error propagation is largely in the atmosphere, and the cross-covariance maximum and
the sensitivity to error growth are largely dominated by the ocean — atmosphere. We conjecture that the ocean assimilation
cycle is so large that the cross-update cannot properly constrain the atmospheric state, in agreement with (Tondeur et al., 2020).

In a way, the conclusions of the ocean observation network are quite analogous to those found with the atmospheric obser-
vation network (being symmetrical w.r.t the spatial scale). We could anticipate that when the ocean time scale gets as fast as

the atmosphere, the benefit will further increase until a certain threshold.

5 Concluding remarks
5.1 Summary and main findings

This study investigates how spatio-temporal scale separation in coupled atmosphere-ocean dynamics — i.e., the instability of
the system — and the availability of observational data on either or both of the components influence the skill of different
approaches to coupled data assimilation. In particular, we analyze the so-called weakly and strongly coupled data assimilation
(Penny and Hamill, 2017). In the former, the observations in one of the model components are used to infer the state of that
component only during the assimilation step. In the SCDA, the observations are all used to infer the full coupled model, no

matter where they are taken.
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Figure 12. As for Fig. 10 but with only the ocean state observed — OCN experiment.

We focus on ensemble-based data assimilation using the well-established EnKF (Evensen, 2003) and use a prototypical low-
dimensional coupled system obtained by coupling together two Lorenz-63 models with different parameters (Pefia and Kalnay,
2004). The model configuration allowed us to explieitly-modify the parameters affecting the spatio-temporal scales ;let-alone
that-the-explicitly. The model’s low computational cost allowed us to analyse its dynamic properties and made it possible to
obtain statistically robust results.

The main conclusions are the following:

1. In a well-observed system, the potential for improvements over WCDA is very limited as observations from both compo-

nents constrain the system nearly optimally —With-eurimplementation-(EnKE);-we-already. We even find that sometimes
SCDA degrades the system’s-performancevery-stightly-due-to-’s performance. This is possibly due to the approximation
in the DA method —— linear analysis update ;-sampling-error—and sampling error. The state vector to be updated in
SCDA has dimension 6, whereas it is 3 with WCDA for the update of the individual components. Consequently, for the
same ensemble size, the sampling error is larger in the SCDA, which has a larger dimension to update than in the WCDA
case. Furthermore, the cross-component covariances are often weaker, and their non-linearity grows as the temporal
scale separation increases. Both aspects are difficult to estimate with a small ensemble. The linear approximation during.
the analysis with the EnKF can yield a degradation. When the time scale separation (and, to a lesser extent, the spatial
scale separation) s large, a nonlinear update (c.g., Evensen et al. (2024)) may be better suited.

. SCDA improves over WCDA when only one component is observed, and improvements are largest in the non-observed

component. The benefit is larger when the observed component has a smaller spatial scale (hence less energy in our
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idealized experimental setup). A similar situation was also pointed out in Evensen et al. (2024). Our study further finds
how the temporal scale separation limits this benefit. As such, the slow-but-large variability modes of the ocean can

be improved from atmospheric observations, which, in turn, improves dynamically during the forecast step. Similar
conclusions have also been drawn in other idealized studies such as Han et al. (2013), Sluka et al. (2016), and Ton-
deur et al. (2020), in which the assimilation of atmospheric observations improves ocean reanalysis. Conversely, using
the relatively fast-ocean observations, it is possible to constrain fast-large atmosphere modes. In this regard, already
O’kane et al. (2019) and Sandery et al. (2020) in experiment AOOA, indicated that the assimilation of ocean observations

improves the initialization of a tropical-atmosphere component.
5.2 Discussion

Our study uses a low-order complexity model to explore isolated cases of spatio-temporal scale separations with different
observation networks. Despite its simplicity, our study confirms previous studies’ findings and provides a complete picture of
configurations where SCDA is expected to yield improvement over WCDA. However, we acknowledge the simplifications of
our experiment design and discuss their expected impact on our conclusions: effects of the coupling strength, the superposition
of spatio-temporal scales, the choice of data assimilation method, the choice of the observation network and model biases.

Our experiment assumes a weak coupling and studies coupled processes in isolation, while the coupling strength varies
from process to process and often influences each other. The influence of the coupling strength for comparing SCDA and
WCDA was studied in Tondeur et al. (2020), where it was shown that a stronger coupling results in a more stable system and
higher cross-covariances among the components. As such, we can anticipate that as the coupling gets weaker, the observed
benefit of SCDA over WCDA will fade out and strengthen with a stronger coupling. For example, Miwa and Sawada (2024)
reports this benefit when increasing the cross-component interaction in a system with equal spatial scale separation. We do not
think combining several processes is an issue, as standard DA methods (particularly ensemble methods) are designed for that.
However, it is expected that a larger ensemble size is required.

All experiments in our study were carried out with the EnKF, which has the advantage of providing flow-dependent error
covariance, a property that is important for SCDA (Penny et al., 2019). However, the linear analysis update in the EnKF
is suboptimal for strong non-linear dynamics (Sakov et al., 2012; Yang et al., 2012), which can also occur with a too-long
assimilation cycle. In our study, we encountered these situations when disparate spatial scales and strongly chaotic components
led to a degradation of SCDA. We expect that methods that soften the linear analysis update approximation, such as the iterative
Ensemble Kalman Filer GEnKF, Bocquet and Sakov, 2012, 2014; Evensen et al., 2024) or outer-loop 4D-Var (Laloyaux et al.,
2016, e.g., CERA-like method) would improve the performance of SCDA. The iEnKF has been tested in a low-complexity
coupled model with different spatial scales by Evensen et al. (2024), showing a good performance. It would be interesting to
test whether the iEnKF could remove the degradation of the SCDA over the WCDA with our system. In situations when the
iterative approach is unable to mitigate the approximation from the linear update, one could consider using the lagged cross-

correlations between the system’s components as proposed by Lu et al. (2015a, LACC method). It should be acknowledged
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that the LACC method only allows for a way stream of information (from the fast to the slow component) and is challenging
to use with the superposition of processes with different spatio-temporal scales.

Another limitation of the EnKF is sampling error, as large ensemble sizes are needed to accurately sample the variance of
the system (Han et al., 2013; Quinn et al., 2020). We did not investigate this issue in our study as 20 members can already be
considered a large ensemble size given the size of our dynamical system (Bocquet and Carrassi, 2017). With a realistic system,
the sampling error is comparatively much larger. Based on our dynamic analysis, we can infer that the limited ensemble
size becomes a more restrictive factor for the successful implementation of SCDA as the time scale separation increases
(Fig. 6). Different approaches have been proposed to address sampling error. Some methods consider the system’s dynamic
characteristics, such as Quinn et al. (2020), which uses the attractor dimension to estimate the rank of the cross-covariance
needed for SCDA. Ad-hoc solutions such as vertical localization, as discussed by Stanley et al. (2024), or the correlation-cutoff
method, as in Yoshida and Kalnay (2018), and hybrid covariance (Barthelemy et al., 2024) are also options to address the same
issue.

Our study highlighted that the observational network is a significant factor in when SCDA outperforms WCDA. Here we
only asses configurations where observations are only in the atmosphere, the ocean, or in both components. The situation
is not as distinct in a real framework but still shows a strong imbalance between the observation network of the different
components. Historically, ocean observations have been scarce compared to the atmospheric network (Laloyaux et al., 2018).
We can thus anticipate that the largest benefit of SCDA is expected in the ocean component, meaning that the slow ocean
modes of variability can benefit from the high-frequency atmospheric variability, as shown in Sandery et al. (2020). However,
we acknowledge that there has been recent rapid progress in the ocean observation network. For example, the SWOT altimetry
(Morrow et al., 2019) may allow to constrain ocean fronts at a much finer scale than is currently possible, providing an exciting
perspective on SCDA having the capability to enhance numerical weather prediction based on ocean observations.

Finally, given our perfect-model assumption, we have not addressed one critical aspect: how model bias can hinder SCDA’s
potential. Earth System Models have large biases (Palmer and Stevens, 2019; Richter et al., 2014; Tian and Dong, 2020), and
coupled processes are often only partially represented. Therefore, as models increase their resolution and the availability of
ocean observations changes and better resolve those coupled processes (Hewitt et al., 2017; Kim et al., 2023), ocean obser-
vations can provide more useful information about the atmosphere’s surface processes, making SCDA a powerful tool for

initializing the coupled system and making skilful predictions.
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